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Abstract

Traditional methods for adding locally private noise to bag-of-words features
overwhelm the true signal in the text data, removing the properties of sparsity and
non-negativity often relied upon by distributional semantic models. We argue the
formulation of limited-precision local privacy, which guarantees privacy between
documents of less than a user-specified maximum distance, is a more appropriate
framework for bag-of-words features. To reduce the number of features to which we
must add random noise, we also compress word features before adding noise, then
decompress those features before model inference. We test randomized methods
of aggregation as well as methods informed by distributional properties of words.
Applying LDA and LSA to synthetic and real data, we show that these approaches
produce distributional models closer to those in the original data.

1 Introduction

Text collections in bag-of-words format can surface very specific, unique phrases or associations
that raise privacy concerns. An increasingly popular approach to protect data privacy works in the
so-called local model of differential privacy (henceforth local privacy) [32, 12], which has recently
been deployed by a number of commercial platforms [13, 31]. In local privacy, each user perturbs
their own observation with random noise before sending it to a potentially untrusted aggregator, who
will then extract useful information from the noisy data. Under local privacy, however, bag-of-words
observations are difficult to privatize due to their high-dimensional features: the size of a vocabulary
for a text dataset can be orders of magnitude larger than the number of words in the document and,
according to Zipf’s law, continues to grow as the number of documents increases. Additionally,
words are bursty: if a word shows up at all in a document, it is likely to appear several times. Since
standard local privacy requires any two documents to be indistinguishable after perturbation, such
mechanisms add overwhelming amounts of random noise to all vocabulary features.

We offer three primary contributions. First, we detail how standard existing mechanisms of local
differential privacy introduce prohibitive amounts of noise for distributional semantic models, making
it difficult to retain the co-occurrence statistics valuable in data. Second, we justify the use of a
recent generalization of local privacy, called limited-precision local privacy (LPLP) [26], to define
our text privacy constraints. LPLP allows us to specify privacy at the level of text spans instead of
documents, a more natural privacy guarantee for text that offers some insights in how to parameterize
effectively for this privacy definition. Third, to more accurately retain co-occurrence information, we
offer a modified version of classic differential privacy with compression [36]: instead of randomly
combining documents, we use a low-rank projection to combine features. We show that this approach
in conjunction with LPLP leads to released data that more closely preserves co-occurrence statistics
of words in text. We measure this through comparisons of LDA [5] and LSA [11] models.
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(a) Original data (b) Laplace (c) Geometric (d) Laplace, LPLP (e) Geometric, LPLP

Figure 1: A visualization of a portion of the Consumer Finance Protection Bureau dataset (a) as a
frequency heatmap from 0 (lightest) to 5 or more (darkest). Rows are words in descending order by
frequency, columns are documents. Data is processed with different randomized mechanisms under
standard local differential privacy with ε = 2 (b-c) and limited-precision local privacy (LPLP) with
ε = 2, N = 2. LPLP preserves more sparsity, it still provides sufficient random noise such that every
randomized document shown contains many words not in the original.

2 Prior Methods

There are two primary models of differential privacy. In the central model, a trusted curator has
direct access to raw private data (without any noise) and releases the output of a differentially
private algorithm run on that data. Recent work on differentially private inference of models in
machine learning and NLP often uses this model [23, 20, 37, 8]. In contrast, the local model [32],
or randomized mechanism of privacy, adds noise to data rows before they are sent to a central data
curator, without knowledge of other data. Since the released data already satisfies differential privacy,
any computation or processing on those data can be performed without further privacy cost.

Definition 1 (Local privacy) Consider a database D with rows in Rm. A randomized mechanism R
is ε-locally private if, for all pairs of possible rows y, y′ ∈ Rm, and a set of possible outputs S ⊂ Rm,

Pr[R(y) ∈ S] ≤ eε · Pr[R(y′) ∈ S].

The amount of randomness introduced in central differential privacy is determined by the “sensitivity”
of a feature, defined here as the largest difference summed across all features between any two
documents in the corpus. In related problems such as histograms and contingency tables often
constrain total corpus sensitivity based on the idea of only modifying one count by one unit in a large
collection of counts, requiring relatively little total noise to produce a meaningful privacy guarantee
[? 3, 18]. However, in this setting, not only does the count data have large dimensions and difficult
properties of sparsity, but the difference between neighboring datasets must be defined instead by an
upper bound on the number of times a single word would show up in a document. The Laplace [12]
and geometric [14] mechanisms both add random noise to produce impractically dense data in Figure
1b and 1c from the original data in Figure 1a. Further, random noise explodes document lengths,
reaching an average length of one thousand times the original average document length with Laplace
noise enforcing a per-feature privacy budget of ε = 2.

An alternate technique specifically targeted for sparse data release subject to privacy constrains is the
data sketch [1, 3, 19], inspired by the Johnston-Lindenstrauss lemma [6, 17], which adds noise to
each document by randomly projecting the data into a “sketch” and then estimating the true data from
the sketch. However, this method, too, is far too dense and noisy to recover meaningful co-occurrence.
Further, the complexity of this algorithm scales inversely with the level of privacy desired: if we need
little privacy, storing the random projection is impractically memory- and time-intensive. All three
approaches conceal term frequencies and variances, with no meaningful overlap of high-probability
terms between topics learned on the original data and on the private data.

3 Privacy Definition

Standard local differential privacy in the context of documents aims to add sufficient random noise to
make it impossible to distinguish whether a particular document was in the collection or not. For
two dominant domains in private text analysis, medicine [10, 15, 24, 25, 27, 34] and search query
analysis [9, 16, 22, 28, 29, 30, 35], this level of privacy appears appropriate: identifying a record’s
identity may leak sensitive information about an individual. However, there are many cases where
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this level of anonymity is not required to protect what is sensitive about the underlying data, such as
text under copyright or anonymous papers under submission to a conference. Though a paper title
may reveal a broader idea, the real content that must be kept private is more likely specific portions
of text describing the unique contents of that paper. One objective in text reconstruction prevention,
then, is to treat small passages as the object of privacy, not documents.

A recent alternate framework for this is limited-precision local privacy [26].

Definition 2 (Limited-precision local privacy) Consider a database D with rows in Rm. A ran-
domized mechanism R is (N, ε)-limited-precision locally private if, for all pairs of possible rows
y, y′ ∈ Rm with `1 difference ‖y − y′‖1 ≤ N , and a set of possible outputs S ⊂ Rm,

Pr[R(y) ∈ S] ≤ eε · Pr[R(y′) ∈ S].

This formulation allows us to obtain a concrete privacy guarantee, related to portions of documents
instead of their full length, without adding prohibitive levels of noise. However, to provide an LPLP
guarantee still requires the addition of dense random noise to every vocabulary feature in every
document. As shown in Figures 1d and 1e, the resulting output is still quite dense.

4 Horizontal Compression

We next propose a mechanism for operationalizing limited-precision local privacy through compres-
sion, an easy way to retain information about large-scale correlation in the data. In our case, we add
noise to a compressed representation of the data and then reverse the compression, so that noise will
be distributed over multiple elements of the original data. This approach, which we call horizontal
compression, effectively leverages the hashing trick used in nonprivate scenarios to compress sparse
feature representations by combining them in a lower-dimensional space [2, 33]. We show this
general approach to be private in the appendix.

To create compressed features while maintaining positive integer counts, we group vocabulary terms
from the original M -dimensional feature space to sum into K compressed features. We then add
noise to the compressed features entry-wise privacy budget using the geometric mechanism [14] under
limited-precision local privacy guarantees with an increased per-entry privacy budget ε′ =Mε/K
corresponding to our K/M -compression. Finally, we reverse this public compression: if private
feature k with original feature set Fk has count ñdk in document d, we can release an estimate of
the total private corpus count of feature f ∈ Fk, c̃f , using the geometric mechanism. We use this
to resample counts of each true feature n̂df by sampling from a multinomial across Fk with priors
given by c̃f : ~nd,Fk

Multi(n̂dk, 〈 c̃f∑
f′∈Fk

cf′
〉). This final operation spends a small additional quantity

of privacy budget scaling with the original number of features.

We test four different approaches to assigning N original features to K compressed indices:

• RANDOM: assign features uniformly at random to indices. This is similar to existing
methods that combine records instead of features through compression [36].
• FREQUENCY: sort features by decreasing frequency using differential privacy guarantees

for histograms, then assign the ith original feature round-robin to k = i( mod K).
• GLOVE-CLUSTER: Using K-means with the Hungarian algorithm, learn K same-sized

clusters of features, making one compressed feature per cluster.
• GLOVE-DISPERSE: as above, but learn N mod K same-sized clusters, distributing each

feature in a cluster to a different compressed index.

In each approach, we can release the projection we used to perform this transformation, as it was
either produced using public data or differentially private computations.

5 Experiments

We experimentally validate the efficacy of horizontal compression on LDA model inference [5]
and LSA document embedding classification [11] using both synthetic data generated from LDA
generative models and real data from a U.S. database of consumer complaints [7]. We compressed
from 100 to 10 dimensions for synthetic data and 6800 to 100 dimensions for the real data.
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Figure 2: Evaluations of LDA and LSA models of real data. Baselines for nonprivate data for
exclusivity and coherence of LDA topics are 0.2642 and -1.9167, respectively. Precision, recall, and
F1 score are similar to accuracy for LSA classification. Error bars give 95% confidence intervals
across five initializations per combination of privacy level and compression method.

Evaluations. We use several metrics to evaluate LDA models of private data with respect to models
of the true data. First, we compare the top 20 terms of private and nonprivate topics to find the Jaccard
similarity between the closest pairing of corresponding topics. Second, we study the exclusivity of
each topic, measured as how unique top terms are to a given topic as compared to other topics in
the same model [4]. Third, in the real data, we consider topic coherence [21] to measure how well
the top words of a topic actually adhere to a shared subject in meaning space. For latent semantic
analysis (LSA) embeddings [11], we apply five-fold cross-validation to compute reconstruction error
of the true text and classification accuracy of the data into their product categories.

Results. For weaker privacy guarantee ε = 5 with N = 10 for the compressed data, the Jaccard
similarity for neither the RANDOM (0.281) nor FREQUENCY (0.310) approaches matches that
achieved with the same privacy budget on the uncompressed data with N = 1 (0.408). However,
comparing the stronger privacy level ε = 0.5, N = 10 from the uncompressed data with ε =
0.5, N = 1 compressed data, both RANDOM (0.201) and FREQUENCY (0.301) outperform the
uncompressed model (0.108) in terms of topic Jaccard similarity. The frequency-based approach
consistently outperforms the random approach for these and other privacy parameter settings on
synthetic data. An additional positive feature of compression is retained sparsity of the data: while
document lengths increase, they remain closer to the same average length.

In Figure 2 and 2d, we see that stronger privacy guarantees often benefit from using compression
even before acknowledging that compressed methods spend a tenth of the total privacy budget. Our
results, however, do not suggest a single optimal method: random projections or frequency-distributed
features actually often fare as well or better than compression using a pre-trained embedding. The
intuition behind this relates to what we observe in the synthetic data: there is a benefit to avoiding
grouping together high-frequency features. As random methods are likely to distribute frequent
original features among the compressed features, these produce better reconstructions of the original
data. However, we found in Figure 2c that the models using embedding-based methods retain
comparable coherence scores with other compressive methods.

6 Discussion

In our work, we describe why limited-precision local privacy may provide more suitable privacy
guarantees for bag-of-words features. Further, we show that in cases with more conservative privacy
guarantees, using horizontal compression can preserve sparsity and therefore improve the quality
of distributional semantic applications. We demonstrate several promising compression approaches
leveraging distributional properties of the text. In the future, we hope to combine these approaches
with existing mechanisms for privacy in histogram-like data [3, 18] to produce more-optimal privacy
guarantees for limited noise.
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A Proof of horizontal compression

Theorem 1 (Horizontal Compression) Consider a databaseD withm columns, a public projection
matrix A of dimension m× k with k < m and inverse A−1, and a differentially private data release
mechanism M that uses elementwise noise with per-entry privacy budget ε to perturb the input
database before releasing it. In this case, M(DA, ε)A−1 produces an ε-differentially private release
of D.

Proof. Consider two datasets D and D′ with n rows and m columns differing in one row i:

∀j 6= i, 1 ≤ i, j ≤ n, dj = di.

We want to show that the ratio of the probability of an output C given input D is less than m · exp e
times the probability of the same output given input D′, or the additive sum of the privacy budget for
each column of the differing document:

P (M(DA, ε)A−1 = C)

M(D′A, ε)A−1 = C)
≤ m · exp ε.

Because this is a deterministic linear transformation that is nonprivate, we can move to before this
post-processing step:

P (M(DA, ε)A−1 = C)

M(D′A, ε)A−1 = C)
=
P (M(DA, ε) = CA)

M(D′A, ε) = CA)
.

We then can factorize these probabilities, ignoring rows where D and D’ (and thus their corresponding
probabilities) are the same and replacing CA with C̃:

P (M(DA, ε) = C̃)

M(D′A, ε) = C̃)
=
P (M(diA, ε) = c̃i)

P (M(d′iA, ε) = c̃i)
.

If M is a valid differentially private data release mechanism, as previously established, we already
know that for any pair of rows and resulting output, the above ratio should be less than exp ε by
definition.

P (M(diA, ε) = c̃i)

P (M(d′iA, ε) = c̃i)
≤ k exp ε ≤ m exp ε.

We thus end our proof, showing that as long as k ≤ m, this projection preserves ε-differential privacy.
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B Example topics

Embedding ε N Jaccard Top 20 words in private topic Top 20 words in corresponding nonprivate topic
No compression 5 1 0.6000 wells fargo mortgage property loan which hsbc documents

who where never case time trust foreclosure their any all
transfer its

wells fargo american express bank mortgage case amex doc-
uments where all new trust time which who any never
foreclosure property

Random 5 1 0.2121 payment has but account times how been will payments
late being never accounts now which month made reported
funds told

payment payments late due made make month account
would pay amount paid had past time monthly days were
months which

Frequency 5 1 0.6000 information report verified experian verify their dispute
reporting fcra verification accounts transunion these are
disputed provide has under any law

information report verified experian bankruptcy verify re-
porting equifax transunion fcra accounts has verification
are these file dispute investigation disputed record

No compression 1
2 10 0.0256 outgoing reassured speaks reactivated capacity month stor-

ing manipulating xxxx ceo attended studying faxes promptly
responsibly tear delinquencies balanced excuses present

balance interest amount paid statement pay full payment
charges off due charged account which charge made bmo
month billing statements

Random 1
2 10 0.0811 could these informed america him return based part delin-

quent disputing gone repeated arrangements agents after buy-
ing discharged expired know only

had would were did about told time after there what when
informed which contacted could been should them never
being

Frequency 1
2 10 0.0811 personal breach like customers returned still collect noticed

bureau every sent over sending months federal were prove
score cash remove

report inquiries inquiry transunion removed hard were re-
move companies would contacted requested did these bureau
inquires are reporting union all

Table 1: Comparison of private and nonprivate topics. Pairs of topics were matched according to
highest Jaccard similarity coefficients, and matches with the 10th-highest Jaccards are shown. Words
in bold are shared between both topics. An extended version of this table is available in the appendix.
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