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Abstract

Modern data acquisition routinely produce mas-

sive amounts of event sequence data in various

domains, such as social media, healthcare, and

financial markets. These data often exhibit com-

plicated short-term and long-term temporal de-

pendencies. However, most of the existing recur-

rent neural network based point process models

fail to capture such dependencies, and yield un-

reliable prediction performance. To address this

issue, we propose a Transformer Hawkes Process

(THP) model, which leverages the self-attention

mechanism to capture long-term dependencies

and meanwhile enjoys computational efficiency.

Numerical experiments on various datasets show

that THP outperforms existing models in terms of

both likelihood and event prediction accuracy by

a notable margin. Moreover, THP is quite general

and can incorporate additional structural knowl-

edge. We provide a concrete example, where

THP achieves improved prediction performance

for learning multiple point processes when incor-

porating their relational information.

1. Introduction

Event sequence data are naturally observed in our daily life.

Through social media such as Twitter and Facebook, we

share our experiences and respond to other users’ informa-

tion (Yang et al., 2011). In these websites, each user has a

sequence of events such as tweets and interactions. Hun-
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dreds of millions of users generate large amounts of tweets,

which are essentially sequences of events at different time

stamps. Besides social media, event data also exist in do-

mains like financial transactions (Bacry et al., 2015) and

personalized healthcare (Wang et al., 2018). For example,

in electronic medical records, tests and diagnoses of each

patient can be treated as a sequence of events. Unlike other

sequential data such as time series, event sequences tend

to be asynchronous (Ross et al., 1996), which means time

intervals between events are just as important as the order

of them to describe their dynamics. Also, depending on spe-

cific application requirements, event data show sophisticated

dependencies on their history.

Point process is a powerful tool for modeling sequences

of discrete events in continuous time, and the technique

has been widely applied. Hawkes process (Hawkes, 1971;

Isham & Westcott, 1979) and Poisson point process are

traditionally used as examples of point processes. However,

the simplified assumptions of the complicated dynamics

of point processes limit the models’ practicality. As an

example, Hawkes process states that all past events should

have positive influences on the occurrence of current event.

However, a user on Twitter may initiate tweets on different

topics, and these events should be considered as unrelated

instead of mutually-excited.

To alleviate the over-simplifications, likelihood-free meth-

ods (Xiao et al., 2017a; Li et al., 2018) and non-parametric

models like kernel methods and splines (Vere-Jones et al.,

1990) have been proposed, but the increasing complexity

and quantity of collected data crave for more powerful mod-

els. With the development of neural networks, in particular

deep neural networks, focuses have been placed on incorpo-

rating these flexible models into classical point processes.

Because of the sequential nature of event steams, exist-

ing methods rely heavily on Recurrent Neural Networks

(RNNs). Neural networks are known for their ability to

capture complicated high-level features, in particular, RNNs

have the representation power to model the dynamics of

event sequence data. In previous works, either vanilla RNN

(Du et al., 2016) or its variants (Mei & Eisner, 2017; Xiao

et al., 2017b) have been used and significant progress in

terms of likelihood and event prediction have been achieved.

However, there are two significant drawbacks with RNN-

based models. First, recurrent neural networks, even those
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that for any event and its corresponding time stamp (tj , kj),
the temporal encoding z(tj) and the event embedding Ukj

both reside in R
M . Embedding of the event sequence S =

{(tj , kj)}Lj=1 is then specified by

X =
(
UY + Z

)>
, (3)

where Y = [k1,k2, . . . ,kL] ∈ R
K×L is the collection of

event type embedding, and Z = [z(t1), z(t2), . . . , z(tL)] ∈
R

M×L is the concatenation of event time encodings. Notice

that X ∈ R
L×M and each row of X corresponds to the

embedding of a specific event in the sequence.

After the initial encoding and embedding layers, we pass X

through the self-attention module. Specifically we compute

attention output S by

S = Softmax

(
QK>

√
MK

)

V,

Q = XWQ, K = XWK , V = XWV .

(4)

Here Q, K, and V are the query, key, and value ma-

trices obtained by different transformations of X, and

WQ,WK ∈ R
M×MK ,WV ∈ R

M×MV are weights for

the linear transformations, respectively. In practice using

multi-head self-attention to increase model flexibility is

more beneficial for data fitting. To facilitate this, differ-

ent attention outputs S1,S2, . . . ,SH are computed using

different sets of weights {WQ
j ,WK

j ,WV
j }Hj=1. The final

attention output for the event sequence is then

S =
[
S1,S2, . . . ,SH

]
WO,

where WO ∈ R
HMV ×M is an aggregation matrix.

We highlight that the self-attention module is able to directly

select events whose occurrence time is at any distance from

the current time. The j-th column of the attention weights

Softmax(QK>/
√
MK) signifies event tj’s extent of depen-

dency on its history. In contrast, RNN-based models encode

history information sequentially via hidden representations

of the events, i.e., the state of tj depends on that of tj−1,

which in turn depends on tj−2, etc. Should any of these

encodings be weak, i.e., the RNN fails to learn sufficient

relevant information for event tk, hidden representations of

any event tj where j ≥ k will be inferior.

The attention output S is then fed through a position-wise

feed-forward neural network, generating hidden representa-

tions h(t) of the input event sequence:

H = ReLU
(
SWFC

1 + b1

)
WFC

2 + b2,

h(tj) = H(j, :).
(5)

Here WFC
1 ∈ R

M×MH , WFC
2 ∈ R

MH×M , b1 ∈ R
MH , and

b2 ∈ R
M are parameters of the neural network, and WFC

2

has identical columns. The resulting matrix H ∈ R
L×M

contains hidden representations of all the events in the input

sequence, where each row corresponds to a particular event.

To avoid “peeking into the future”, our attention algorithm is

equipped with masks. That is, when computing the attention

output Sj (the j-th column of S), we mask all the future

positions, i.e., we set Qj+1,Qj+2, . . . ,QL to 0. This will

avoid the softmax function from assigning dependency to

events in the future.

In practice we stack multiple self-attention modules together,

and inputs are passed through each of these modules sequen-

tially. In this way our model is able to capture high level

dependencies. We remark that stacking RNN/LSTM is not

plausible because gradient explosion and gradient vanishing

will render the stacked model difficult to train. Figure 2

illustrates the architecture of THP.

3.2. Continuous Time Conditional Intensity

Dynamics of temporal point processes are described by

a continuous conditional intensity function. Eq. 5 only

generates hidden representations for discrete time stamps,

and the associated intensity is also discrete. Therefore an

interpolated continuous time intensity function is in need.

Let λ(t|Ht) be the conditional intensity function for our

model, where Ht = {(tj , kj)} for all j such that tj < t
is the history up to time t. We define different inten-

sity functions for different event types, i.e., for every

k ∈ {1, 2, . . . ,K}, define λk(t|Ht) as the conditional inten-

sity function for events of type k. The conditional intensity

function for the entire event sequence is defined by

λ(t|Ht) =
K∑

k=1

λk(t|Ht),

where each of the type-specific intensity takes the form

λk(t|Ht) = fk

(

αk

t− tj
tj

︸ ︷︷ ︸

current

+w>
k h(t)

︸ ︷︷ ︸

history

+ bk
︸︷︷︸

base

)

. (6)

In Eq. 6, time is defined on interval t ∈ [tj , tj+1), and

fk(x) = βk log
(
1 + exp(x/βk)

)
is the softplus function

with “softness” parameter βk. The reason for choosing this

particular function is two-fold: first, the softplus function

ensures that the intensity is positive; second, “softness” of

the softplus function guarantees stable computation and

avoids dramatic changes in intensity.

Now we explain each term in Eq. 6 in detail:

� The “current” influence is an interpolation between two

observed time stamps tj and tj+1, and αk modulates im-

portance of the interpolation. When t = tj , i.e., a new

observation comes in, this influence is 0. When t → tj+1,

the conditional intensity function is no longer continuous.

As a matter of fact, Eq. 6 is continuous everywhere except

for the observed events {(tj , kj)}. However, these “jumps”

in intensity is a non-factor when computing likelihood.
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tex the event belongs. In addition to the event embedding

and the temporal encoding (Eq. 3), we introduce a vertex

embedding matrix E ∈ R
M×|V|, where the j-th column of

E denotes the M -dimensional embedding for vertex j. Let

vj be the one-hot encoding of vj , then embedding of S is

specified by

X =
(
UY +EV + Z

)>
,

where V = [v1,v2, . . . ,vL] ∈ R
|V|×L is the concatenation

of vertex embedding, and other terms are defined in Eq. 3.

The graph attention output is defined by

S = Softmax

(
QK>

√
MK

+A

)

Vvalue,

A = (EV)>Ω(EV),

(11)

where Q, K, and Vvalue are the same2 as in Eq. 4. Matrix

A ∈ R
L×L is a vertex similarity matrix, where each entry

Aij signifies the similarity between two vertices vi and vj ,

and Ω ∈ R
M×M is a metric to be learned. To extend the

graph self-attention module to a multi-head setting, we use

different metric matrices {Ωj}Hj=1 for different heads.

We remark that unlike RNN-based shallow models, in

structured-THP, multiple multi-head self-attention modules

can be stacked (Figure 2) to learn high level representations,

a feature that enables learning of complicated similarities

among vertices. Moreover, the vertex similarity matrix en-

ables modeling of even more complicated structured data,

such as sequences on dynamically evolving graphs.

With the incorporation of relational information, we need to

modify the conditional intensity function accordingly. As

an extension to Eq. 6, where each type of events has its own

intensity, we define a different intensity function for each

event type and each vertex. Specifically,

λ(t|Ht) =

K∑

k=1

|V|
∑

v=1

λk,v(t|Ht), t ∈ [tj , tj+1),

λk,v(t|Ht) = fk,v

(

αk,v

t− tj
tj

+w>
k,vh(t) + bk,v

)

.

Model parameters are learned by maximizing the log-

likelihood (Eq. 8) across all sequences. Concretely, suppose

we have N sequences S1,S2, . . . ,SN , then parameters are

obtained by solving

max

N∑

i=1

`(Si) + µLgraph(V,Ω),

where µ is a hyper-parameter and

Lgraph(V,Ω) =

|V|
∑

k=1

k∑

j=1

− log
(
1 + exp(VjΩVk)

)

+ 1{(vj , vk) ∈ E}
(
VjΩVk

)
.

2We use Vvalue to denote the value matrix instead of V, which
denotes the vertex embedding.

Table 1. Datasets statistics. From left to right columns: name of

the dataset, number of event types, number of events in the dataset,

and average length per sequence.

Dataset K # events Avg. length

Retweets 3 2, 173, 533 109
MemeTrack 5000 123, 639 3

Financial 2 414, 800 2074
MIMIC-II 75 2, 419 4

StackOverflow 22 480, 413 72
911-Calls 3 290, 293 403

Earthquake 2 256, 932 500

Here Lgraph(V,Ω) is a regularization term that encourages

VjΩVk to be large when there exists an edge between vj
and vk. Which means if two vertices are connected in graph

G, then the regularizer will promote attention between them,

and vice versa.

Notice that in the simplest case, A in Eq. 11 can be some

transformation of the adjacency matrix, i.e., Aij = 1 if

(vi, vj) ∈ E , and 0 otherwise. However, we believe that

this constraint is too strict, i.e., some connected vertices

may not be similar. Therefore, we treat the graph as a guide

and introduce a regularization term that encourages A to be

similar to the adjacency matrix, but not enforce it. In this

way, our model is more flexible.

5. Experiments

We compare THP against existing models: Recurrent

Marked Temporal Point Process (RMTPP) (Du et al., 2016),

Neural Hawkes Process (NHP) (Mei & Eisner, 2017), Time

Series Event Sequence (TSES) (Xiao et al., 2017b), and Self-

attentive Hawkes Processes (SAHP) (Zhang et al., 2019)3.

We evaluate the models by per-event log-likelihood (in nats)

and event prediction accuracy on held-out test sets. Details

about training are deferred to the appendix.

5.1. Datasets

We adopt several datasets to evaluate the models. Table 1

summarizes statistics of the datasets.

Retweets (Zhao et al., 2015): The Retweets dataset contains

sequences of tweets, where each sequence contains an origin

tweet (i.e., some user initiates a tweet), and some follow-up

tweets. We record the time and the user tag of each tweet.

Further, users are grouped into three categories based on the

number of their followers: “small”, “medium”, and “large”.

MemeTrack (Leskovec & Krevl, 2014): This dataset con-

tains mentions of 42 thousand different memes spanning

ten months. We collect data on over 1.5 million documents

(blogs, web articles, etc.) from over 5000 websites. Each se-

quence in this dataset is the life-cycle of a particular meme,

3This is a concurrent work that also employs the Transformer
architecture, and we only include results reported in their paper.
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A. Training Details

In this section we provide details about training.

To facilitate comparison with previous works, all the

datasets are used by Du et al. (2016) and Mei & Eisner

(2017), except for 911-Calls and Earthquake. Details about

data pre-processing and train-dev-test split, as well as down-

loadable links, can be found in the aforementioned papers.

For the 911-Calls dataset, we exclude zipcodes (and the

associated events) whose occurrence is scarce, i.e., we only

keep zipcodes that have the top 75 frequent occurrences.

The dataset contains 141 types of events, and we cluster

them into three categories, namely EMS, fire, and traffic.

We do not exclude any event in the Earthquake dataset.

Earthquakes are partitioned into two categories, “small” and

“large”, where small earthquakes are the ones whose Richter

scale is equal to or lower than 1.0. We perform this par-

tition because of the imbalance in data, i.e., most of the

recorded earthquakes are on small magnitude. Models are

trained on 911-Calls and Earthquake with different number

of training events. In each experiment, we equally divide

the events that are not in the training set in half to construct

the development set and the test set.

There are three sets of hyper-parameters that we use through-

out the experiments, and they are summarized in Table 7.

Besides layer normalization and residual connection, we

also employ the dropout technique to avoid overfitting prob-

lems. Table 8 contains the specific parameters that are ap-

plied for the training of each dataset. In the table, from left

to right columns specify: name of the dataset, the set of ap-

plied hyper-parameters, batch size, learning rate, and solver

for the approximation of integral (MC stands for Monte

Carlo integration, and NU stands for numerical integration

with the trapezoidal rule), respectively. In the 911-Calls and

the Earthquakes datasets, we also employ the graph regu-

larization method, and the corresponding hyper-parameter

is set to be 0.01 for all of the experiments. We use a single

NVIDIA RTX graphics card to run all the experiments.

Table 7. Sets of hyper-parameters used in training.

Parameters # head # layer M
Set 1 3 3 64
Set 2 6 6 128
Set 3 4 4 512

Parameters MK = MV MH dropout

Set 1 16 256 0.1
Set 2 64 2048 0.1
Set 3 512 1024 0.1

Table 8. Hyper-parameters used for training each dataset.

Dataset set batch lr solver

Retweets 1 16 5× 10−3 MC

MemeTrack 1 128 1× 10−3 MC

Financial 2 1 1× 10−4 NU

MIMIC-II 1 1 1× 10−4 NU

StackOverflow 3 4 1× 10−4 NU

911-Calls 2 1 1× 10−5 MC

Earthquake 3 1 1× 10−5 MC


