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Abstract

Modern data acquisition routinely produce mas-
sive amounts of event sequence data in various
domains, such as social media, healthcare, and
financial markets. These data often exhibit com-
plicated short-term and long-term temporal de-
pendencies. However, most of the existing recur-
rent neural network based point process models
fail to capture such dependencies, and yield un-
reliable prediction performance. To address this
issue, we propose a Transformer Hawkes Process
(THP) model, which leverages the self-attention
mechanism to capture long-term dependencies
and meanwhile enjoys computational efficiency.
Numerical experiments on various datasets show
that THP outperforms existing models in terms of
both likelihood and event prediction accuracy by
a notable margin. Moreover, THP is quite general
and can incorporate additional structural knowl-
edge. We provide a concrete example, where
THP achieves improved prediction performance
for learning multiple point processes when incor-
porating their relational information.

1. Introduction

Event sequence data are naturally observed in our daily life.
Through social media such as Twitter and Facebook, we
share our experiences and respond to other users’ informa-
tion (Yang et al., 2011). In these websites, each user has a
sequence of events such as tweets and interactions. Hun-
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dreds of millions of users generate large amounts of tweets,
which are essentially sequences of events at different time
stamps. Besides social media, event data also exist in do-
mains like financial transactions (Bacry et al., 2015) and
personalized healthcare (Wang et al., 2018). For example,
in electronic medical records, tests and diagnoses of each
patient can be treated as a sequence of events. Unlike other
sequential data such as time series, event sequences tend
to be asynchronous (Ross et al., 1996), which means time
intervals between events are just as important as the order
of them to describe their dynamics. Also, depending on spe-
cific application requirements, event data show sophisticated
dependencies on their history.

Point process is a powerful tool for modeling sequences
of discrete events in continuous time, and the technique
has been widely applied. Hawkes process (Hawkes, 1971;
Isham & Westcott, 1979) and Poisson point process are
traditionally used as examples of point processes. However,
the simplified assumptions of the complicated dynamics
of point processes limit the models’ practicality. As an
example, Hawkes process states that all past events should
have positive influences on the occurrence of current event.
However, a user on Twitter may initiate tweets on different
topics, and these events should be considered as unrelated
instead of mutually-excited.

To alleviate the over-simplifications, likelihood-free meth-
ods (Xiao et al., 2017a; Li et al., 2018) and non-parametric
models like kernel methods and splines (Vere-Jones et al.,
1990) have been proposed, but the increasing complexity
and quantity of collected data crave for more powerful mod-
els. With the development of neural networks, in particular
deep neural networks, focuses have been placed on incorpo-
rating these flexible models into classical point processes.
Because of the sequential nature of event steams, exist-
ing methods rely heavily on Recurrent Neural Networks
(RNNs). Neural networks are known for their ability to
capture complicated high-level features, in particular, RNNs
have the representation power to model the dynamics of
event sequence data. In previous works, either vanilla RNN
(Du et al., 2016) or its variants (Mei & Eisner, 2017; Xiao
et al., 2017b) have been used and significant progress in
terms of likelihood and event prediction have been achieved.

However, there are two significant drawbacks with RNN-
based models. First, recurrent neural networks, even those
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equipped with forget gates, such as Long Short-Term Mem-
ory (Hochreiter & Schmidhuber, 1997) and Gated Recurrent
Units (Chung et al., 2014), are unlikely to capture long-term
dependencies. In financial transactions, short-term effects
such as policy changes are important for modeling buy-sell
behaviors of stocks. On the other hand, because of the
delays in asset returns, stock transactions and prices often
exhibit long-term dependencies on their history. As another
example, in medical domains, at times we are interested
in examining short-term dependencies on symptoms such
as fever and cough for acute diseases like pneumonia. But
for certain types of chronic diseases such as diabetes, long-
term dependencies on disease diagnoses and medications
are more critical. Desirable models should be able to capture
these long-term dependencies. Yet with recurrent structures,
interactions between two events located far in the tempo-
ral domain are always weak (Hochreiter et al., 2001), even
though in reality they may be highly correlated. The reason
is that the probability of keeping information in a state that
is far away from the current state decreases exponentially
with distance.

The second drawback is trainability of recurrent neural net-
works. Training deep RNNs (including LSTMs) is notori-
ously difficult because of gradient explosion and gradient
vanishing (Pascanu et al., 2013). In practice, single-layer
and two-layer RNNs are mostly used, and they may not
successfully model sophisticated dependencies among data
(Bengio et al., 1994). Additionally, inputs are fed into the
recurrent models sequentially, which means future states
must be processed after the current state, rendering it impos-
sible to process all the events in parallel. This limits RNNs’
ability to scale to large problems.

Recently, convolutional neural network variants that are
tailored for analyzing sequential data (Oord et al., 2016;
Gehring et al., 2017; Yin et al., 2017) have been proposed
to better capture long-term effects. However, these models
enforce many unnecessary dependencies. This particular
downside plus the increased computational burdens deem
these models insufficient.

To address the above concerns, we propose a Transformer
Hawkes Process (THP) model that is able to capture both
short-term and long-term dependencies whilst enjoying
computational efficiency. Even though the Transformer
(Vaswani et al., 2017) is widely adopted in natural language
processing, it has rarely been used in other applications. We
remark that such an architecture is not readily applicable
to event sequences that are defined in a continuous-time
domain. To the best of our knowledge, our proposed THP is
the first of this type in point process literature.

Building blocks of THP are the self attention modules (Bah-
danau et al., 2014). These modules directly model depen-
dencies among events by assigning attention scores. A large
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Figure 1. Illustration of dependency computation between the last
event (the red triangle) and its history (the blue circles). RNN-
based NHP can only model dependencies through recursion. THP
directly and adaptively models event’s dependencies on its history.
Convolution-based models enforce static dependency patterns.

score between two events implies a strong dependency, and
a small score implies a weak one. In this way, the modules
are able to adaptively select events that are at any temporal
distance from the current event. Therefore, THP has the
ability to capture both short-term and long-term dependen-
cies. Figure 1 demonstrates dependency computation of
different models.

The non-recurrent structure of THP facilitates efficient train-
ing of multi-layer models. Transformer-based architectures
can be as deep as dozens of layers (Devlin et al., 2018; Rad-
ford et al., 2019), where deeper layers capture higher order
dependencies. The ability to capture such dependencies
creates models that are more powerful than RNNs, which
are often shallow. Also, THP allows full parallelism when
calculating dependencies across all events, i.e., the compu-
tation between any two event pairs is independent with each
other. This yields a model presenting strong efficiency.

Our proposed model is quite general, and can incorporate
additional structural knowledge to learn more complicated
event sequence data, such as multiple point processes over a
graph. In social networks, each user has her own sequence of
events, like tweets and comments. Sequences among users
can be related, for example, a tweet from a user may trigger
retweets from her followers. We can use graphs to model
these follower-followee relationships (Zhou et al., 2013;
Farajtabar et al., 2017), where each vertex corresponds to a
specific user and each edge represents connections between
the two associated users. We propose an extension to THP
that integrates these relational graphs (Borgatti et al., 2009;
Linderman & Adams, 2014) into the self-attention module
via a similarity metric among users. Such a metric can be
learned by our proposed graph regularization.

We experiment THP on five datasets to evaluate both vali-
dation likelihood and event prediction accuracy. Our THP
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model exhibits superior performance to RNN-based models
in all these experiments. We further test our structured-THP
on two additional datasets, where the model achieves im-
proved prediction performance for learning multiple point
processes when incorporating their relational information.

2. Background

We briefly review Hawkes Process (Hawkes, 1971), Neural
Hawkes Process (Mei & Eisner, 2017), and Transformer
(Vaswani et al., 2017) in this section.

Hawkes Process is a doubly stochastic point process,
whose intensity function is defined as

)=p+ Y v(t—t) (1)

jitj<t

Here p is the base intensity and v(+) is a pre-specified de-
caying function, i.e., exponential function and power-law
function. Intuitively, Eq. | means that each of the past events
has a positive contribution to occurrence of the current event,
and this influence decreases through time. However, a ma-
jor limitation of this formulation is the simplification that
history events can never inhibit occurrence of future events,
which is unrealistic in complex real-life scenarios.

Neural Hawkes Process generalizes the classical Hawkes
process by parameterizing its intensity function with recur-
rent neural networks. Speciﬁcally,

Z)\k ka Wk

Fu(z) = Br log 1+exp( ))
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where A(t) is the intensity function, K is the number of
event types, and h(t)s are the hidden states of the event
sequence, obtained by a continuous-time LSTM (CLSTM)
module. CLSTM is an interpolated version of the standard
LSTM, and it allows us to generate outputs in a continuous-
time domain. Also, fi(-) is the softplus function with param-
eter 0, that guarantees a positive intensity. One downside
of the neural Hawkes process is that intrinsic weaknesses
of RNNSs are still inherited, namely the model is unable to
capture long-term dependencies and is difficult to train.

, t€(0,7T],
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Transformer is an attention-based model that has been
broadly applied in tasks such as machine translation (Devlin
et al., 2018) and language modeling (Radford et al., 2019).
Despite its success in natural language processing, it has
rarely been used in other areas. We remark that the Trans-
former architecture is not directly applicable to model point
processes. In particular, time intervals between any two
events can be arbitrary in event streams, while in natural
languages, words are observed on regularly spaced time
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Figure 2. Architecture of the Transformer Hawkes Process. Each
event sequence S is fed through embedding layers and N multi-
head self-attention modules. Outputs of the THP are hidden repre-
sentations of events in S, with history information encoded.

intervals. Therefore, we need to generalize the architecture
to a continuous-time domain.

3. Model

We introduce our proposed Transformer Hawkes Process.
Suppose we are given an event sequence S = {(¢;, kj)}jL:1
of L events, where each event has type k; € {1,2,..., K},
with a total number of K types. Then each pair (¢}, k;)
corresponds to an event of type k; occurs at time ;.

3.1. Transformer Hawkes Process

The key ingredient of our proposed THP model is the self-
attention module. Different from RNNSs, the attention mech-
anism discards recurrent structures. However, our model
still needs to be aware of the temporal information of inputs,
i.e., time stamps. Therefore, analogous to the original posi-
tional encoding method (Vaswani et al., 2017), we propose
to use a temporal encoding procedure, defined by

i—1
cos (t;/1000037 ), if i is odd,
[=(t;)]: = { ’

. & &Y
sin (t;/1000077 ),

if 7 is even.

Eq. 2 uses trigonometric functions to define a temporal
encoding for each time stamp, i.e., for each ¢;, we determin-
istically computes z(t;) € RM, where M is the dimension
of encoding. Other temporal encoding methods can also be
applied, such as the relative position representation model
(Shaw et al., 2018), where two temporal encoding matrices
are learned instead of pre-defined.

Besides temporal encoding, we train an embedding matrix
U € RMXXK for the event types, where the k-th column
of U is a M-dimensional embedding for event type k. For
any event of type k;, let k; be its one-hot encoding (a K-
dimensional vector with all Os except for the k;-th index,
which has value 1), then its embedding is Uk;. Notice
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that for any event and its corresponding time stamp (t;, k;),
the temporal encoding z(¢;) and the event embedding Uk;
both reside in R . Embedding of the event sequence S =
{(t;, k;)}F_, is then specified by

X=(UY+2), 3)

where Y = [k, ko, ..., k] € RE*L is the collection of
event type embedding, and Z = [z(t1),z(t2),...,z(tL)] €
RM>L is the concatenation of event time encodings. Notice
that X € RE*M and each row of X corresponds to the
embedding of a specific event in the sequence.

After the initial encoding and embedding layers, we pass X
through the self-attention module. Specifically we compute
attention output S by

_ QKT
S = Softmax (\/W) V, 4@

Q=XW? K=XWK v=xwV.

Here Q, K, and V are the query, key, and value ma-
trices obtained by different transformations of X, and
WC WK ¢ RMxMx WV ¢ RMxMv are weights for
the linear transformations, respectively. In practice using
multi-head self-attention to increase model flexibility is
more beneficial for data fitting. To facilitate this, differ-
ent attention outputs S1,So, ..., Sy are computed using
different sets of weights {T/VjQ7 W, WY L. The final
attention output for the event sequence is then

S =[S1,Ss,...,8y| W9,
where WO ¢ RHMv>M jg an agoregation matrix.

We highlight that the self-attention module is able to directly
select events whose occurrence time is at any distance from
the current time. The j-th column of the attention weights
Softmax(QK " //M) signifies event ¢;’s extent of depen-
dency on its history. In contrast, RNN-based models encode
history information sequentially via hidden representations
of the events, i.e., the state of ¢; depends on that of ¢;_,
which in turn depends on ¢;_», etc. Should any of these
encodings be weak, i.e., the RNN fails to learn sufficient
relevant information for event ¢, hidden representations of
any event t; where j > k will be inferior.

The attention output S is then fed through a position-wise
feed-forward neural network, generating hidden representa-
tions h(t) of the input event sequence:

H = ReLU(SW{ + by )W5C + by,
h(t;) = H(j, ).
Here W€ € RM*Mu WEC ¢ RMuxM 1 ¢ RM# and
by € RM are parameters of the neural network, and Wgc
has identical columns. The resulting matrix H € RI*M

contains hidden representations of all the events in the input
sequence, where each row corresponds to a particular event.

®)

To avoid “peeking into the future”, our attention algorithm is
equipped with masks. That is, when computing the attention
output S; (the j-th column of S), we mask all the future
positions, i.e., we set Q,11,Qj42,..., Qg to 0. This will
avoid the softmax function from assigning dependency to
events in the future.

In practice we stack multiple self-attention modules together,
and inputs are passed through each of these modules sequen-
tially. In this way our model is able to capture high level
dependencies. We remark that stacking RNN/LSTM is not
plausible because gradient explosion and gradient vanishing
will render the stacked model difficult to train. Figure 2
illustrates the architecture of THP.

3.2. Continuous Time Conditional Intensity

Dynamics of temporal point processes are described by
a continuous conditional intensity function. Eq. 5 only
generates hidden representations for discrete time stamps,
and the associated intensity is also discrete. Therefore an
interpolated continuous time intensity function is in need.

Let A(¢|H:) be the conditional intensity function for our
model, where H; = {(t;,k;)} for all j such that t; < ¢
is the history up to time ¢t. We define different inten-
sity functions for different event types, i.e., for every
ke {1,2,..., K}, define A\, (t|H,) as the conditional inten-
sity function for events of type k. The conditional intensity
function for the entire event sequence is defined by

K
AHHe) =Y Me(t|He),
k=1

where each of the type-specific intensity takes the form

t—t,;
Ak-(tl%lt):fk(ozk t_j+wkTh(t)+ by, ) (6)
—_— ——

current history base

In Eq. 6, time is defined on interval ¢ € [t;,¢;41), and
fi(z) = Brlog (1 + exp(z/By)) is the softplus function
with “softness” parameter 3. The reason for choosing this
particular function is two-fold: first, the softplus function
ensures that the intensity is positive; second, “softness” of
the softplus function guarantees stable computation and
avoids dramatic changes in intensity.

Now we explain each term in Eq. 6 in detail:

© The “current” influence is an interpolation between two
observed time stamps ¢; and ¢;1, and o modulates im-
portance of the interpolation. When ¢ = t;, i.e., a new
observation comes in, this influence is 0. When ¢t — ¢;1,
the conditional intensity function is no longer continuous.
As a matter of fact, Eq. 6 is continuous everywhere except
for the observed events {(t;, k;)}. However, these “jumps”
in intensity is a non-factor when computing likelihood.
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© The “history” term contains two parts: a vector wy, that
transforms the hidden states of the THP model into a scalar,
and the hidden states h(¢) (Sec. 3.1) themselves that encode
past events up to time ¢.

© The “base” intensity represents probability of occurrence
of events without considering history information.

With our proposed conditional intensity function, next time
stamp prediction and next event type prediction is given by'
t

() = Mt exp (— [ Al ar),

tj

tj1 :/ t- p(t[He)dt, (7
t

ki1 = argmax M_
ko AtilHie)

3.3. Training

For any sequence S over an observation interval [t1,¢L],
given its conditional intensity function A(¢|H;), the log-
likelihood is

1

L tr
5(8)=Zlogk(tﬂ’ﬂj)—/ Mt[H)dt . (8)
j=1 t

event log-likelihood non-event log-likelihood

Model parameters are learned by maximizing the log-
likelihood across all sequences. Concretely, suppose we
have N sequences 51, Sa, ..., SN, then the goal is to find
parameters that solve

max Zivzl L0S;),

where £(S;) is the log-likelihood of event sequence S;. This
optimization problem can be efficiently solved by stochas-
tic gradient type algorithms like ADAM (Kingma & Ba,
2014). Additionally, techniques that help stabilizing train-
ing such as layer normalization (Ba et al., 2016) and residual
connection (He et al., 2016) are also applied.

In Eq. 8, one challenge is to compute A = fttlL A(t|Hy)dt,
the non-event log-likelihood. Because of the softplus func-
tion, there is no closed-form computation for this integral,
and a proper approximation is needed.

The first approach to approximate the non-event log-
likelihood is by using Monte Carlo integration (Robert &
Casella, 2013):

L N

KMC = Z(tj - L‘j_l)(% Z )\(Ui))a
) = 1’:1N )
VAMC = Z(tj - tjfl) (N Z V)\(UJ)
j=2 i=1

"Without causing any confusion, denote H; 5 as Hj.
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Figure 3. lllustration of event sequences on a graph. Sequences
on vertices are aligned temporally to form a long sequence, and
relational information among events are shown in arrows. Notice
that only the structural information of the last event (the blue
circle) and the third to the last event (the purple diamond) are
shown. Like before, events cannot attend to future.

Here u; ~ Unif(¢;_1,t;) is sampled from a uniform distri-
bution with support [¢;_1, ¢;]. Notice that A(u;) and VA (u;)
can be calculated by feed-forward and back-propagation
through the model, respectively. Moreover, Eq. 9 yields an
unbiased estimation to the integral, i.e., E[Apc] = A.

The second approach is to apply numerical integration meth-
ods, which are faster because of the elimination of sampling.
For example, the trapezoidal rule (Stoer & Bulirsch, 2013)
states that

L
Av=) % (A(tj|7'lj) + )\(tjfl\%‘fl)) (10)
j=2

qualifies as an approximation to A. Other higher order meth-
ods such as the Simpson’s rule (Stoer & Bulirsch, 2013) can
also be applied. Even though approximations build upon
numerical integration algorithms are biased, in practice they
are affordable. This is because the conditional intensity
(Eq. 6) uses softplus as its activation function, which is
highly smooth and ensures bias introduced by linear inter-
polations (Eq. 10) between consecutive events are small.

4. Structured Transformer Hawkes Process

THP is quite general and can incorporate additional struc-
tural knowledge. We consider multiple point processes,
where any two of them can be related. Such relationships
are often described by a graph G = (V, £), where V is the
vertex set, and each vertex is associated with a point process.
Also, & is the edge set, where each edge signifies relational
information between the corresponding two vertices. Figure
3 illustrates event sequences on a graph.

The graph encodes relationships among vertices, and further
indicates potential interactions. We propose to model all
the point processes with a single THP, and the heterogene-
ity of the vertices’ point processes is handled by a vertex
embedding approach.

Suppose we have an event sequence S = {(t;, kj,v;)} ;.
where ¢; and k; are time stamps and event types as before.
Further, v; € {1,2,...,|V|} is an indicator to which ver-



Transformer Hawkes Process

tex the event belongs. In addition to the event embedding
and the temporal encoding (Eq. 3), we introduce a vertex
embedding matrix E € RM*IVI where the j-th column of
E denotes the M-dimensional embedding for vertex j. Let
v; be the one-hot encoding of v;, then embedding of S is
specified by

X=(UY+EV+2),

where V = [v1,va, ..., v] € RVIXL is the concatenation
of vertex embedding, and other terms are defined in Eq. 3.

The graph attention output is defined by

QK'

+A Vvalu67
VMk

A= (EV) ' Q(EV),

where Q, K, and V. are the same? as in Eq. 4. Matrix
A € REXE s a vertex similarity matrix, where each entry
A;; signifies the similarity between two vertices v; and v;,
and Q € RM*M i a metric to be learned. To extend the
graph self-attention module to a multi-head setting, we use
different metric matrices {€2; }le for different heads.

We remark that unlike RNN-based shallow models, in
structured-THP, multiple multi-head self-attention modules
can be stacked (Figure 2) to learn high level representations,
a feature that enables learning of complicated similarities
among vertices. Moreover, the vertex similarity matrix en-
ables modeling of even more complicated structured data,
such as sequences on dynamically evolving graphs.

S = Softmax (
(11)

With the incorporation of relational information, we need to
modify the conditional intensity function accordingly. As
an extension to Eq. 6, where each type of events has its own
intensity, we define a different intensity function for each
event type and each vertex. Specifically,
K |V
AHH) =D Mew(t/Hy), € [tj,t541),

k=1v=1

t—t,
>\k',v (ﬂHt) = fk,v (ak,’ufj + W}Iq;h(t) + bk‘,v) .

J
Model parameters are learned by maximizing the log-
likelihood (Eq. 8) across all sequences. Concretely, suppose
we have N sequences S1, S, ..., SN , then parameters are
obtained by solving

N
max Y £(S;) + pLgrapn (V, ),
i=1

where u is a hyper-parameter and
VI Kk

Lgl‘aph (V7 Q) = Z Z - IOg (1 + exp(VjQVk))
k=1j=1

+ 1{(vj,vk) € g}(VJQVk)

>We use Vyaue to denote the value matrix instead of V, which
denotes the vertex embedding.

Table 1. Datasets statistics. From left to right columns: name of
the dataset, number of event types, number of events in the dataset,
and average length per sequence.

Dataset K #events | Avg. length
Retweets 3 2,173,533 109
MemeTrack 5000 123,639 3
Financial 2 414,800 2074
MIMIC-II 75 2,419 4
StackOverflow 22 480,413 72
911-Calls 3 290, 293 403
Earthquake 2 256,932 500

Here Lgrpn(V, ) is a regularization term that encourages
V€2V, to be large when there exists an edge between v;
and vi. Which means if two vertices are connected in graph
G, then the regularizer will promote attention between them,
and vice versa.

Notice that in the simplest case, A in Eq. 11 can be some
transformation of the adjacency matrix, i.e., A;; = 1if
(vi,v;) € &, and 0 otherwise. However, we believe that
this constraint is too strict, i.e., some connected vertices
may not be similar. Therefore, we treat the graph as a guide
and introduce a regularization term that encourages A to be
similar to the adjacency matrix, but not enforce it. In this
way, our model is more flexible.

S. Experiments

We compare THP against existing models: Recurrent
Marked Temporal Point Process (RMTPP) (Du et al., 2016),
Neural Hawkes Process (NHP) (Mei & Eisner, 2017), Time
Series Event Sequence (TSES) (Xiao et al., 2017b), and Self-
attentive Hawkes Processes (SAHP) (Zhang et al., 2019)°.
We evaluate the models by per-event log-likelihood (in nats)
and event prediction accuracy on held-out test sets. Details
about training are deferred to the appendix.

5.1. Datasets

We adopt several datasets to evaluate the models. Table 1
summarizes statistics of the datasets.

Retweets (Zhao et al., 2015): The Retweets dataset contains
sequences of tweets, where each sequence contains an origin
tweet (i.e., some user initiates a tweet), and some follow-up
tweets. We record the time and the user tag of each tweet.
Further, users are grouped into three categories based on the
number of their followers: “small”, “medium”, and “large”.

MemeTrack (Leskovec & Krevl, 2014): This dataset con-
tains mentions of 42 thousand different memes spanning
ten months. We collect data on over 1.5 million documents
(blogs, web articles, etc.) from over 5000 websites. Each se-
quence in this dataset is the life-cycle of a particular meme,

3This is a concurrent work that also employs the Transformer
architecture, and we only include results reported in their paper.
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where each event (usage of meme) in the sequence is asso-
ciated with a time stamp and a website id.

Financial Transactions (Du et al., 2016): This financial
dataset contains transaction records of a stock in one day.
We record the time (in milliseconds) and the action that
was taken in each transaction. The dataset is a single long
sequence with only two types of events: “buy” and “sell”.
The event sequence is further partitioned by time stamps.

Electrical Medical Records (Johnson et al., 2016): MIMIC-
IT medical dataset collects patients’ visit to a hospital’s ICU
in a seven-year period. We treat the visits of each patient
as a separate sequence, where each event in the sequence
contains a time stamp and a diagnosis.

StackOverflow (Leskovec & Krevl, 2014): StackOverflow is
a question-answering website. The website rewards users
with badges to promote engagement in the community, and
the same badge can be rewarded multiple times to the same
user. We collect data in a two-year period, and we treat
each user’s reward history as a sequence. Each event in the
sequence signifies receipt of a particular medal.

911-Calls*: The 911-Calls dataset contains emergency
phone call records. Calling time, location of the caller,
and nature of the emergency are logged for each record.
We consider three types of emergencies: EMS, fire, and
traffic. We treat location of callers (given by zipcodes) as
vertices on a relational information graph. Zipcodes are
ranked based on the number of recorded calls, and only the
top 75 zipcodes are kept. An undirected edge exists between
two vertices if their zipcodes are within 10 of each other.

Earthquake’: This dataset contains time and location of
earthquakes in China in an eight-year period. We partition
the records into two categories: “small” and “large”. A
relational information graph is built based on geographical
locations of the earthquakes, i.e., each province is a vertex
and earthquakes are sequences on the vertices. Two vertices
are connected if their associated provinces are neighbors.

5.2. Likelihood Comparison

We fit THP and NHP on Retweets and MemeTrack. From
Figure 4, we can see that THP outperforms NHP during
the entire training process by a large margin on both of the
datasets. The reason is because of the complicated nature of
social media data, and RNN-based models such as NHP are
not powerful enough to model the dynamics.

In the Retweets dataset, we often observe time gaps between
two consecutive retweets become larger, and this dynamic
can be successfully modeled by temporal encoding. Also,

“The dataset is available on www.kaggle.com/

mchirico/montcoalert.

SThe dataset is provided by China Earthquake Data Center.

(http://data.earthquake.cn)

Table 2. Log-likelihood comparison. Here RT is the Retweets
dataset, MT is the MemeTrack dataset, FIN is the Financial Trans-
actions dataset, and SO is the StackOverflow dataset.

Model RT MT FIN MIMIC-II SO
RMTPP | -599 -6.04 -3.89 -1.35 -2.60
NHP -5.60 -6.23 -3.60 -1.38 -2.55
SAHP | -4.56 — — -0.52 -1.86
THP -2.04 0.68 -1.11 0.820 0.042
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Figure 4. Training curves of NHP and THP fitted on Retweets (left
figure) and MemeTrack (right figure).

unlike RNN-based models, our model is able to capture
long-term dependencies that exist in long sequences. In the
MemeTrack dataset, we have extremely short sequences,
i.e., average sequence length is 3. Even though the data only
exhibit short-term dependencies, we still need to model la-
tent properties of memes such as topics and targeted users.
We build deep THP models to capture these high-level fea-
tures, and we remark that constructing deep NHP is not
plausible because of the difficulty in training.

Table 2 summarizes results on other datasets. Note that
TSES is likelihood-free. Our THP model fits the data well
and outperforms all the baselines in all the experiments.

Figure 5 visualizes attention patterns of THP. We can see
that each attention head employs a different pattern to cap-
ture dependencies. Moreover, while attention heads in the
first layer tend to focus on individual events, the attention
patterns in the last layer are more uniformly distributed.
This is because features in deeper layers are already trans-
formed by attention heads in shallow layers.

5.3. Event Prediction Comparison

For point processes, event prediction is just as important as
data fitting. Eq. 7 enables us to predict future events. In
practice, however, adding additional prediction layers on top
of the THP model yields better performance. Specifically,
given the hidden representation h(t;) for event (¢;, k;), the
next event type and time predictions are as follows.

© The next event type prediction is
ﬁj+1 = Softmax (Wtypeh(tj)) y

kjy1 = argmax Pjr1(k),

where WOP¢ € REXM g the parameter of the event type
predictor, and p; (k) is the k-th element of p; € R¥.
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Figure 5. Visualization of attention patterns of different attention
heads in different layers. Pixel (i,j) in each figure signifies the
attention weight of event t; attending to event t;. Attention heads

in the upper two figures are from the first layer, while they are from
the last layer in the lower two figures.

© The next event time prediction is
fe1 = W™h(t)),
where W'ime ¢ R1*M jg the predictor parameter.

To learn the predictor parameters, the loss function is
equipped with a cross-entropy term for event type predic-
tion and a mean square error term for event time prediction.
Concretely, for an event sequence S = {(t;, k;)}i_;, let
ki, ko, ...,k be the ground-truth one-hot encodings for
the event types, we define

Luype(S) = X275 —k] log(p;),
Lime(S) = Y55 (t; — 1),

notice that we do not predict the first event. Then, given
event sequences {S; } |, we seek to solve

N
min > —U(S;) + Liype(Si) + Lime(S:),
i=1

where ¢(S;) is the log-likelihood (Eq. 8) of S;.

To evaluate model performance, we predict every held-out
event (t;, k;) given its history H;, i.e., for a test sequence of
length L, we make L —1 predictions. We evaluate event type
prediction by accuracy and event time prediction by Root
Mean Square Error (RMSE). Table 3 and Table 4 summarize
experiment results. We can see that THP outperforms the
baselines in all these tasks. The datasets we adopted vary
significantly in average sequence length, i.e., the average
length in Financial Transactions is 2074 while it is only
4 in MIMIC-IL In all the three datasets, THP improves
upon RNN-based models by a notable margin. The results

Table 3. Event type prediction accuracy comparison.

Model | Financial MIMIC-II  StackOverflow
RMTPP 61.95 81.2 45.9
NHP 62.20 83.2 46.3
TSES 62.17 83.0 46.2
THP 62.64 85.3 47.0

Table 4. Event time prediction RMSE comparison.

Model | Financial MIMIC-II  StackOverflow
RMTPP 1.56 6.12 9.78
NHP 1.56 6.13 9.83
TSES 1.50 4.70 8.00
SAHP — 3.89 5.57
THP 0.93 0.82 4.99
Financial
Transactions MIMIC-1I StackOverflow
38.2 T 21.2 54.5 ZI\:;PP
38.0 197 o2 "
2378 18.2 53.9
n':; 376 16.7 53.6 :|:
= 37.4 152 53.3
37.2 - 13.7 53.0 J
37.0 12.2 52.7

RMTPP  NHP  THP

Figure 6. Prediction error rates of THP, NHP, and RMTPP. Based
on a same train-dev-test splitting ratio, each dataset is sampled
five times to produce different train, development and test sets.
Error bars are generated according to these experiments.

RMTPP  NHP THP RMTPP  NHP THP

demonstrate that THP is able to capture both short-term and
long-term dependencies better than existing methods.

Figure 6 illustrates run-to-run variance of THP, NHP, and
RMTPP. The error bars are wide because of how the data
are split. Held-out test sets are constructed by randomly
sampling some events from the entire dataset. That is, at
times “important” events are sampled out and that will yield
unsatisfactory model performance. Our results are better
than all the baselines in all the individual experiments.

5.4. THP vs. Structured-THP

Now we demonstrate by incorporating relational informa-
tion, THP achieves improved performance.

Baseline models are constructed as following: for each ver-
tex on a relational graph G, there exists a point process that
consists of time and type of events. These event sequences
are learned separately by both THP and NHP, i.e., we do not
allow information sharing among vertices in these models.

To integrate G into THP, we consider two approaches. The
first approach is by allowing full attention, i.e., information
from one vertex can be shared with all the other vertices.
The second approach is by using the neighborhood graph,
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Figure 7. Log-likelihood and prediction accuracy of NHP, THP, THP with full attention (THP-F), and structured-THP (THP-S) fitted on
the 911-Calls (left two figures) and the Earthquake (right two figures) datasets. Models are trained using different number of events.

which is constructed based on spatial proximity. In this
approach, a specific vertex can only share information with
its neighbors. We fit a structured-THP to both of the cases.

Figure 7 summarizes experimental results. We can see that
THP is comparable or better than NHP in both validation
likelihood and event prediction, which further demonstrates
that THP can model complicated dynamics better than RNN-
based models. Notice that THP-F, the structured-THP with
full attention, yields a much better likelihood than the base-
line models, which means relational information sharing
can help the models in capturing latent dynamics. However,
unlike likelihood, THP-F does not show consistent improve-
ments in event prediction. This is because when the number
of training events is small, the model cannot build a suffi-
cient information-sharing heuristic. Also, the performance
drop when the number of training events is large is due
to the inhomogeneity of data. This demonstrates that the
full attention scheme results in undesirable dependencies
on which the attention heads focus. THP-S successfully re-
solves this issue by eliminating such dependencies from the
attention heads’ span based on spatial closeness of vertices.
In this way THP-S further improves upon THP-F, especially
in event prediction tasks.

5.5. Ablation Study

We perform ablation study on Retweets and MemeTrack,
and we evaluate models by validation log-likelihood. We
inspect variants of THP by removing self-attention and tem-
poral encoding mechanisms. Moreover, we test the effect of
temporal encoding on NHP. Table 5 summarizes experimen-
tal results. As shown, both the self-attention module and the
temporal encoding contribute to model performance.

We examine the models’ sensitivity to the number of pa-
rameters on the Retweets dataset. As shown in Table 6, our
model is not sensitive to its number of parameters. With-
out the recurrent structure, Transformer-based models often
have large number of parameters, but our THP model can
outperform RNN-based models with fewer parameters. In
all the experiments, using a small model (about 100-200k
parameters) will suffice. In comparison, NHP has about
1000k and TSES has about 2000k parameters to achieve the

Table 5. Log-likelihood of variants of NHP and THP fitted on
Retweets and MemeTrack. TE stands for temporal encoding (Eq. 2),
and PE stands for positional encoding (Vaswani et al., 2017).

Model Retweets MemeTrack
NHP —5.60 —6.23
NHP + TE —2.50 —1.64
Atten —5.29 —5.09
Atten + PE —5.25 —4.70
Atten + TE —2.03 0.68

Table 6. Sensitivity to the number of parameters and run-time com-
parison. Speedup is the speed of THP against NHP.

# parameters ,]1:’;)1% hkdﬂll\?l(_)l(}i) Speedup
100k —2.090 —6.019 | x1.985
200k —2.072  —5.595 | x2.564
500k —2.058 —5.590 | x2.224
1000k —2.060 —5.614 | x1.778

best performance, which are much larger than THP. We also
include run-time comparison in Table 6. We conclude that
THP is efficient in both model size and training speed.

6. Conclusion

In this paper we present Transformer Hawkes Process, a
framework for analyzing event streams. Event sequence
data are common in our daily life, and they exhibit sophisti-
cated short-term and long-term dependencies. Our proposed
model utilizes the self-attention mechanism to capture both
of these dependencies, and meanwhile enjoys computational
efficiency. Moreover, THP is quite general and can integrate
structural knowledge into the model. This facilitates ana-
lyzing more complicated data, such as event sequences on
graphs. Experiments on various real-world datasets demon-
strate that THP achieves state-of-the-art performance in
terms of both likelihood and event prediction accuracy.
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A. Training Details
In this section we provide details about training.

To facilitate comparison with previous works, all the
datasets are used by Du et al. (2016) and Mei & Eisner
(2017), except for 911-Calls and Earthquake. Details about
data pre-processing and train-dev-test split, as well as down-
loadable links, can be found in the aforementioned papers.
For the 911-Calls dataset, we exclude zipcodes (and the
associated events) whose occurrence is scarce, i.e., we only
keep zipcodes that have the top 75 frequent occurrences.
The dataset contains 141 types of events, and we cluster
them into three categories, namely EMS, fire, and traffic.
We do not exclude any event in the Earthquake dataset.
Earthquakes are partitioned into two categories, “small” and
“large”, where small earthquakes are the ones whose Richter
scale is equal to or lower than 1.0. We perform this par-
tition because of the imbalance in data, i.e., most of the
recorded earthquakes are on small magnitude. Models are
trained on 911-Calls and Earthquake with different number
of training events. In each experiment, we equally divide
the events that are not in the training set in half to construct

the development set and the test set.
Table 8. Hyper-parameters used for training each dataset.

There are three sets of hyper-parameters that we use through- Dataset set batch Ir solver
out the experiments, and they are summarized in Table 7. Retweets 1 16 5% 103 MC
Besides layer normalization and residual connection, we MemeTrack 1 128 1x1073 MC
also employ the dropout technique to avoid overfitting prob- Financial 2 1 1x104 NU
lems. Table 8 contains the specific parameters that are ap- MIMIC-II 1 1 1x104 NU
plied for the training of each dataset. In the table, from left StackOverflow | 3 4 1x10°4 NU
to right columns specify: name of the dataset, the set of ap- 911-Calls 2 1 1x10°° MC
plied hyper-parameters, batch size, learning rate, and solver Earthquake 3 1 1x107° MC

for the approximation of integral (MC stands for Monte
Carlo integration, and NU stands for numerical integration
with the trapezoidal rule), respectively. In the 911-Calls and
the Earthquakes datasets, we also employ the graph regu-
larization method, and the corresponding hyper-parameter
is set to be 0.01 for all of the experiments. We use a single
NVIDIA RTX graphics card to run all the experiments.

Table 7. Sets of hyper-parameters used in training.

Parameters # head # layer M
Set 1 3 3 64
Set 2 6 6 128
Set 3 4 4 512

Parameters | Mg = My, My dropout
Set 1 16 256 0.1
Set 2 64 2048 0.1
Set 3 512 1024 0.1




