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Abstract

Recurrent Neural Networks (RNNs) have
been widely applied to sequential data anal-
ysis. Due to their complicated modeling
structures, however, the theory behind is still
largely missing. To connect theory and prac-
tice, we study the generalization properties
of vanilla RNNs as well as their variants, in-
cluding Minimal Gated Unit (MGU), Long
Short Term Memory (LSTM), and Convolu-
tional (Conv) RNNs. Specifically, our the-
ory is established under the PAC-Learning
framework. The generalization bound is pre-
sented in terms of the spectral norms of the
weight matrices and the total number of pa-
rameters. We also establish refined general-
ization bounds with additional norm assump-
tions, and draw a comparison among these
bounds. We remark: (1) Our generaliza-
tion bound for vanilla RNNs is significantly
tighter than the best of existing results; (2)
We are not aware of any other generalization
bounds for MGU and LSTM RNNs in the ex-
iting literature; (3) We demonstrate the ad-
vantages of these variants in generalization.

1 Introduction

Recurrent Neural Networks (RNNs) have success-
fully revolutionized sequential data analysis, and been
widely applied to many real world problems, such as
natural language processing (Cho et al., 2014; Bah-
danau et al., 2014; Sutskever et al., 2014), speech
recognition (Graves et al., 2006; Mikolov et al., 2010;
Graves, 2012; Graves et al., 2013), computer vision
(Gregor et al., 2015; Xu et al., 2015; Donahue et al.,
2015; Karpathy and Fei-Fei, 2015), healthcare (Lipton
et al., 2015; Choi et al., 2016a,b), and robot control
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(Lee and Teng, 2000; Yoo et al., 2006). Quite a few
of these applications can be approached easily in our
daily life, such as Google Translate and Apple Siri.

The sequential modeling nature of RNNs is signif-
icantly different from feedforward neural networks,
though they both have neurons as the basic compo-
nents. RNNs exploit the internal state (also known as
hidden unit) to process the sequence of inputs, which
naturally captures the dependence of the sequence.
Besides the vanilla version, RNNs have many other
variants. A large class of variants incorporate the so-
called “gated” units to trim RNNs for different tasks.
Typical examples include Long Short-Term Memory
(LSTM, Hochreiter and Schmidhuber (1997)), Gated
Recurrent Unit (GRU, Jozefowicz et al. (2015)) and
Minimal Gated Unit (MGU, Zhou et al. (2016)).

The success of RNNs owes not only to their special
network structures and the ability to fit data, but also
to their good generalization property: They provide
accurate predictions on unseen data. For example,
Graves et al. (2013) report that after training with
merely 462 speech samples, deep LSTM RNNSs achieve
a test set error of 17.7% on TIMIT phoneme recog-
nition benchmark, which is the best recorded score.
Despite of the popularity of RNNs in applications,
their theory is less studied than other feedforward
neural networks (Haussler, 1992; Bartlett et al., 2017;
Neyshabur et al., 2017; Golowich et al., 2017; Li et al.,
2018). There are still several long lasting fundamen-
tal questions regarding the approximation, trainabil-
ity, and generalization of RNNs.

In this paper, we propose to understand the general-
ization ability of RNNs and their variants. We aim to
answer two questions from a theoretical perspective:
Q.1) Do RNNs suffer from significant curse of
dimensionality ?

Q.2) What are the advantages of MGU and
LSTM over vanilla RNNs?

The investigation of generalization properties of RNNs
has a long history. Many early works are based on
over-simplified assumptions. For example, Dasgupta
and Sontag (1996) and Koiran (1998) adopt a VC-
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dimension argument to show complexity bounds of
RNNs that are polynomial in the size of the net-
work. They, however, either consider linear RNNs
for binary classification tasks, or assume RNNs take
the first coordinate of their hidden states as out-
puts. More recently, Bartlett et al. (2017) propose
a new technique for developing generalization bounds
for feedforward neural networks based on empiri-
cal Rademacher complexity under the PAC-Learning
framework. Neyshabur et al. (2017) further adapt the
technique to establish their generalization bound using
the PAC-Bayes approach. The follow-up work Zhang
et al. (2018) use the PAC-Bayes approach to establish
a generalization bound for vanilla RNNs.

We exploit the compositional nature of RNNs, and de-
couples the spectral norms of weight matrices and the
number of weight parameters. This makes our anal-
ysis conceptually much simpler (e.g. avoid layer wise
analysis), and also yields better generalization bound
than Zhang et al. (2018).

——

Consider vanilla RNNs, we hy_1 2> \ h
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where z;; € R% and the  Figure 1: A building

response z;; € Z for all block of vanilla RNNs.
t=1,....,7 and ¢ = 1,...,m. Each sequence is drawn
independently from some underlying distribution over
R4xT x Z. Extensions to dependent sequences are
discussed in Section 7, however, note that data points
(@i, 7 ¢) can be dependent within a sequence, i.e., for
afixed ¢ € {1,...,m}. The vanilla RNNs compute h; ;
and y; ; iteratively as follows,

hit =0 (Uhjp—1+Wa,y), and yir =0, (Vhiy),
where oy and o}, are activation operators, h;; € Rén
is the hidden state with h;o = 0, and U € Rénxdn
V € R%wxdn and W € R%*d= are weight matrices.
The activation operators op, and o, are entrywise, i.e.,
on([ve,. .- va]") = [on(v1),...,0n(vg)]T, and Lips-
chitz with parameters p;, and p, respectively. We as-
sume oy (-) = tanh(-), 0,(0) =0, and p, = 1. Exten-
sions to general activations are given in Section 2.

Our Contribution. To establish the generalization
bound, we need to define the “model complexity” of
vanilla RNNs. In this paper, we adopt the empiri-
cal Rademacher complexity (ERC, see more details in
Section 2), which has been widely used in the existing
literature on PAC-Learning. For many nonparametric
function classes, we often need complicated argument
to upper bound their ERC. Our analysis, however,
shows that we can upper bound the ERC of vanilla
RNNs in a very simple manner by exploiting their
Lipschitz continuity with respect to the model param-
eters, since they are essentially in parametric forms.
More specifically, denote Fy = {f; : {z1,...,x¢} — Yt}

as the class of mappings from the first ¢ inputs to the
t-th output computed by vanilla RNNs. For a matrix
A, ||A|l2 denotes the spectral norm, and for a vector v,

lv||2 denotes the Euclidean norm. Define ‘5:11 =t for

a = 1. Then, informally speaking, the “model com-
plexity” of vanilla RNNs satisfies

U1l — 1}
U]z —1

U1
" \/10g (g 1))

where d = \/d,dj, + d2 + dpd,.

Complexity = O <d||V||2 min {Vd, | W]z

We then consider a new testing sequence (mt,zt)le.
The response sequence is computed by 2z, =
¢(ye), forallt=1,...,T, where ¢ is a function map-
ping the output of vanilla RNNs to the response of
interest. In practice, the function ¢ varies across dif-
ferent data analysis tasks. For example, in sequence to
sequence classification, we take ¢(y;) = argmax;[y];;
in regression, we take ¢(y;) = y;; in density estima-
tion, we can take ¢(y;) = softmax(y;).

We further define a risk function that can unify dif-
ferent data analysis tasks. Specifically, let £(A(y, 2))
be a loss function, where A(y, z) is a function taking
the output y; and the observed response z; as inputs,
and L is chosen according to different tasks. Then
we define the population risk for the ¢-th output as
R(f:) = E[L(A(yt,z))]. Its empirical counterpart is
similarly defined as R(f;) = LS L(AWie, 2ie)-
Training RNNs is essentially minimizing the empiri-
cal risk R(f;). Many applications can be formulated
into this framework. For example, in classification, we
take A = —M as the functional margin operator and
L = L. as the ramp loss with v being the margin value
(see detailed definitions in Section 2); in regression, we
take A(y, z¢) = ¥ — 2 and L as the £, loss for p € Z.
We then give the generalization bound in the following
statement.

Theorem 1 (informal). Assume the input data space
is bounded, i.e., ||z]]2 < 1 and z € Z bounded. Sup-
pose the mapping A(y, z) is Lipschitz in y, and the loss
function £ satisfies |£(A(y, z))| < B and is L-Lipschitz
for any y computed by RNNs and z € Z. Given a col-
lection of samples S = {(mi’t, Zit)iq,i=1,.., m} and
a new testing sequence (z, 2;)L_;, with probability at
least 1 — ¢ over S, for any f; € F; with integer t < T,
we have,

R(f,) < ﬁ(.ft) n 5<L x Complexity +B 10g(1/5)>.

vm m

Please refer to Section 2 for a complete statement.
Most of the aforementioned commonly used A4 and £
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satisfy the assumptions in Theorem 1. For example, in
classification, the functional margin operator M(y, z)
is 2-Lipschitz in Z. The ramp loss £, is uniformly
bounded by 1 and %—Lipschitz. In regression, A(y, z)
is 1-Lipschitz in y and bounded since the input data
are bounded. Then the ¢, loss becomes bounded and
Lipschitz due to its bounded input.

Comparison with Existing Results. To better un-
derstand the obtained generalization bound and draw
a comparison among existing literature, we instantiate
Theorem 1 for sequence to sequence classification us-
ing vanilla RNNs. Recall that for classification tasks,
we have L = 1/, B =1 and M(y, z) is 2-Lipschitz in
y. We list the corresponding generalization bounds in
Table 1 according to the magnitude of ||U]|2.

Table 1: Generalization bounds for vanilla RNNs in
classification tasks (we only list the order of the gap
R(fr) — ﬁ(ft)) The third column lists the result ob-
tained in Zhang et al. (2018).

Theorem 1 Zhang et al. (2018)
M U2 <1 | O(d/vm) O (dt* /y/m)
(D) [Uz=1 | O(dt/ymy) | _O(d/y/m)
(L) [Ulls > 1 | O(Vat/v/m) | 01U/ vm)

As can be seen, the obtained generalization bound only
has a polynomial dependence on the size of vanilla
RNNs, ie., width d and sequence length ¢. Thus,
we theoretically justify that the complexity of vanilla
RNNs do not suffer from significant curse of dimen-
sionality. Because they compute outputs y; recur-
sively using the same weight matrices, and their hidden
states h; are entrywise bounded.

We compare Theorem 1 with the generalization bound
obtained in Zhang et al. (2018), which is of the order
O (de2||W |o[V]}o max{1, [U[[5}/v/m) , and we dis-
tinguish the same three different scenarios as listed
in Table 1. Our bound is tighter by a factor of #2
for case (I), a factor of ¢ for case (II). Additionally,
Zhang et al. (2018) fail to incorporate the boundedness
condition of hidden state into their analysis, thus the
generalization bound is exponential in ¢ for case (III).
Our generalization bound, however, is still polynomial
in d and t for case (IIT).

Moreover, (II) is closely related to a few recent results
on imposing orthogonal constraints on weight matri-
ces to stabilize the training of RNNs (Saxe et al., 2013;
Le et al., 2015; Arjovsky et al., 2016; Vorontsov et al.,
2017; Zhang et al., 2018). We remark that from a
learning theory perspective, (II) implies that orthog-
onal constraints can potentially help generalization.

We also present refined generalization bounds with ad-
ditional matrix norm assumptions. These assumptions
allow us to derive norm-based generalization bounds.

We draw a comparison among these bounds and high-
light their advantage under different scenarios.

Our theory can be further extended to several variants,
including MGU and LSTM RNNs. Specifically, we
show that the gated units in MGU and LSTM RNNs
can introduce extra decaying factors to further reduce
the dependence on d and ¢ in generalization. Such an
advantage in generalization makes these RNNs do not
suffer from significant curse of dimensionality. To the
best of our knowledge, these are the first results on
generalization guarantees for these neural networks.

Notations: Given a vector v € R?, we denote its
Euclidean norm by [|v]|2 = Y%, |vi]?, and the in-
finity norm by ||v||cc = max;|v;|. Given a matrix
M € R™*™ we denote the spectral norm by || M|z as
the largest singular value of M, the Frobenius norm
by |M||Z = trace(MMT), and the (2,1) norm by
[Mll2,0 = Yiy | M.ill2. Given a function f, we de-
note the function infinity norm by || f|jec = sup|f|. We
use O(+) to denote O(-) with hidden log factors. We
denote a A b = min{a, b}.

2 Generalization of Vanilla RNNNs

To establish the generalization bound, we start with
imposing some mild assumptions.

Assumption 1. Input data are bounded, i.e.,
lzitlle < By foralli=1,...,mandt=1,...,T.

Assumption 2. The spectral norms of weight ma-
trices are bounded respectively, i.e., |Ull2 < By,
[Vll2 < By, and [|[W]|2 < Bw.

Assumption 3. Activation operators o}, and o, are
Lipschitz with parameters p; and p, respectively, and
on(0) = 0,(0) = 0. Additionally, o), is entrywise
bounded by b.

Assumptions 1 and 2 are moderate assumptions.
Moreover, Assumption 3 holds for most commonly
used activation operators, such as op,(-) = tanh(-) and
oy(-) = ReLU(-) = max{-,0} (1-Lipschitz).

Recall vanilla RNNs compute h; ¢ and y; ¢+ as follows,
hip=o0n (Uhjp—1+Wziy) and y, =0, Vhii),
where U € Ré4xdn 1/ ¢ Ré4Xdn and W e Rén*ds,
We consider multiclass classification tasks with the la-
bel z € Z = {1,...,K}. Given a sequence (z¢, )1,
we define X; € R%** by concatenating z1,...,z; as
columns of X;. Recall that we denote F; = {f; : X; —
y+} as the class of mappings from the first ¢ inputs to
the ¢t-th output computed by vanilla RNNs.

As previously mentioned, we define the functional mar-
gin for the t-th output in vanilla RNNs as

M(fi(X), 2e) = [fe( X))z, — maxjze, [fi(Xe)];
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We further define a ramp loss L, (=M (fe(X¢), 2¢)) -
R — R* to each margin, where £, is a piecewise linear
function defined as
Ly(a)=1{a >0} + (1 +a/y)I{—y < a <0},

where 1{A} denotes the indicator function of
a set A. Accordingly, the ramp risk is de-
fined as R,(f;) = E[L, (—M(ft(Xt),zi))] , and
its empirical counterpart is defined as R,(f;) =
LS Ly (—M(fi(Xi4), 2i,¢)) - We then present the
formal statement of Theorem 1.

Theorem 2. Let activation operators o;, and o,
be given, and Assumptions 1-3 hold. Then for
(z1,20)i=1 and S = {(zig 2i0)i,i=1,...,m}
drawn ii.d. from any underlying distribution over
R%XT % {1,..., K}, with probability at least 1—4 over
S, for every margin value v > 0 and every f; € F; for
integer t < T', we have

SN

log
2m

log (tVdm =) ) (

P (% # 2) < Ry(f1) +3

Vmy D
where d = \/d,dj, + d? + didy, B = ppBu, and A\, =
min{b\/g, phBZBW% .

Remark 1. To ease the presentation, we only provide
the generalization bound for the classification task.
Extensions to general tasks are straightforward by re-

placing functions A and £ and substituting suitable
values of L and B.

(dpyBVAt
(0]

The generalization bound depends on the total number
of weights, and the range of p, By in three cases as
indicated in Section 1. More precisely, if p, By < (14
7) for constant o > 0 bounded away from zero, the

dt” ) which

vmy )’
has a polynomial dependence on d and t. As can be

seen, with proper normalization on model parameters,
the model complexity of vanilla RNNs do not suffer
from significant curse of dimensionality.

generalization bound is of the order 9] (

We also highlight a tradeoff between generalization
and representation of vanilla RNNs. As can be seen,
when pp By is strictly smaller than 1, the generaliza-
tion bound is nearly independent on ¢. The hidden
state, however, only has limited representation ability,
since its magnitude diminishes as t grows large. On the
contrary, when pp, By is strictly greater than 1, the rep-
resentation ability is amplified but the generalization
becomes worse. As a consequence, recent empirical
results show that imposing extra constraints or regu-
larization, such as UTU = I or ||U[|s < 1 (Saxe et al.,
2013; Le et al., 2015; Arjovsky et al., 2016; Vorontsov
et al., 2017; Zhang et al., 2018), helps balance the gen-
eralization and representation of RNNs.

3 Proof of Main Results

Our analysis is based on the PAC-learning framework.
Due to space limit, we only present an outline of our
proof. More technical details are deferred to Appendix
A. Before we proceed, we first define the empirical
Rademacher complexity as follows.

Definition 1 (Empirical Rademacher Complexity).
Let H be a function class and S = {s1,...,8m} be
a collection of samples. The empirical Rademacher
complexity of ‘H given S is defined as

1

)

1
Rs(H) = E | sup —
het T 5=

where ¢;’s are i.i.d. Rademacher random variables, i.e.,

We then proceed with our analysis. Recall that
Mohri et al. (2012) give an empirical Rademacher
complexity (ERC)-based generalization bound, which
is restated in the following lemma with F,; =

{(Xt, 20) = £y (= M(fe(Xy),20)) = fr € Fie}-

Lemma 1. Given a testing sequence (z¢,2)l;,
with probability at least 1 — § over samples S =

{(xi7t, Zig)i,i=1,... ,m}, for every margin value
v > 0 and any f; € F;, we have
. og(2/9)

Rey(f) < Ry (fe) + 285 (Fya) + 3y — =

Note that Lemma 1 adapts the original version (Theo-
rem 3.1, Chapter 3.1, Mohri et al. (2012)) for the mul-
ticlass ramp loss, and we have P(2; # z;) < R, (f:) by
definition.

Now we only need to bound the ERC Rg(F, ). Our
analysis consists of three steps. First, we charac-
terize the Lipschitz continuity of vanilla RNNs w.r.t
model parameters. Next, we bound the covering num-
ber of function class F;. At last, we derive an up-
per bound on Rg(F, ;) via the standard machinery
in the PAC-learning framework. Specifically, consider
two different sets of weight matrices (U,V,W) and
(U, V',W'). Given the same activation operators and
input data, denote the t-th output as y; and y; respec-
tively. We characterize the Lipschitz property of ||y:||2
w.r.t model parameters in the following lemma.

Lemma 2. Under Assumptions 1-3, given input
(z¢)1_, and for any integer ¢ < T, ||y¢]|2 is Lipschitz in
U,V and W, i.e.,

||yt - y£||2 < Lug ||U - U/HF + Ly HV - V/HF
+ L [W =W,

where Ly, = pnBv Bwtay, Ly = Bway, and Ly, =

(pnBuy)'—1

Bya; with a; = pypn By o Bo—T
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The detailed proof is provided in Appendix A.2. We
give a simple example to illustrate the proof technique.
Specifically, we consider a single layer network that
outputs y = o(Wxz), where z is the input, o is an
activation operator with Lipschitz parameter p, and
W is a weight matrix. Such a network is Lipschitz in
both z and W as follows. Given weight matrices W
and W', we have

ly =9/l = llo(Wa) — o (W'z)|l2 < pllzll2|[W = W[p.
Additionally, given inputs z and z’, we have
ly = ¥ll2 = llo(Wa) — o(Wa')|l2 < p|Wll2llz — 2']|2.

Since vanilla RNNs are multilayer networks, Lemma 2
can be obtained by telescoping.

We remark that Lemma 2 is the key to the proof of
our generalization bound, which separates the spec-
tral norms of weight matrices and the total number of
parameters.

Next, we bound the covering number of F;. Denote
by N (Ft, €, dist(, -)) the minimal cardinality of a sub-
set C C JF; that covers F; at scale € w.r.t the metric
dist(-, ), such that for any f; € F;, there exists f; € C

satistying dist(fy, fi) = supx, [ f(Xe) = fi(Xo)2 <
€. The following lemma gives an upper bound on

N (Fi, e, dist(-,-)).
Lemma 3. Under Assumptions 1-3, given any € > 0,
the covering number of F; satisfies
6evdt ((pnBu)' —1)\3¢
€(pnBy — 1) ) ,
where ¢ = pypp By Bw By max {1, pp, By }.

N(Fy, e, dist(-, ) < (1 +

The detailed proof is provided in Appendix A.3. We
briefly explain the proof technique. Given activation
operators, since vanilla RNNs are in parametric forms,
ft has a one-to-one correspondence to its weight ma-
trices U, V, and W. Lemma 2 implies that dist(-,-) is
controlled by the Frobenius norms of the differences of
weight matrices. Thus, it suffices to bound the cov-
ering numbers of three weight matrices. The product
of covering numbers of three weight matrices gives us
Lemma 3.

Lastly, we give an upper bound on fRg(
following lemma.

‘F’Y,t) in the

Lemma 4. Under Assumptions 1-3, given activa-
tion operators and samples S = {(@i,2i¢)iq,i =
1,...,m}, the empirical Rademacher complexity
MRg(Fy,¢) satisfies

Byt —1
Re(Fyt) = O(dmin {b\/ﬁ, PthBW%}

pva \/log tvd pph%[?])f 11)
vmy

The detailed proof is provided in Appendix A.4. Our
proof exploits the Lipschitz continuity of M and /.,
and uses Dudley’s entropy integral as the standard ma-
chinery to establish Lemma 4. Combining Lemma 1
and Lemma 4, we complete the proof.

4 Refined Generalization Bounds

When additional norm constraints on weight matrices
U,V and W are available, we can further refine gen-
eralization bounds. Specifically, we consider assump-
tions as follows.

Assumption 4. The weight matrices satisfy ||U||2,1 <
My, V]2 < My, and [[W]|21 < M.
Assumption 5. The weight matrices satisty ||Ullr <

Bypr, |V|r < By, and |W|r < Bwr.

Note that Assumption 4 appears in Bartlett et al.
(2017) and Assumption 5 appears in Neyshabur et al.
(2017). We have an equivalent relation between ma-
trix norms, ie., ||+ fla < |- [laq < V|| - [[g < dl| - [lo-
Comparing to Assumption 2, Assumptions 4 and 5 fur-
ther restrict the model class. We then establish refined
empirical Rademacher complexities for vanilla RNNs,
the corresponding generalization bounds follows im-
mediately.

Theorem 3. Let activation operators o;, and o,
be given, and Assumptions 1-3 hold. Then for
(z1,20)i=1 and S = {(zig 2i0)i,i=1,...,m}
drawn i.i.d. from any underlying distribution over
R%XT % {1,..., K}, with probability at least 1—4 over
S, for every margin value v > 0 and every f; € F; for
integer ¢t < T, the following two bounds hold:

e Suppose Assumption 4 also holds. We have

\/b?log(fm))
Vmy ’

taSg 1 phBU)
Rg(Fyi) = O(

(2)
where o = p%pvaBwBI, 52’1 = MU + MV + Mw,
and d = \/dydy + &2 + dpd,.

e Suppose Assumption 5 also holds. We have

o/ By A Sp @B =L /qTog d
57,0 =0 £y ) @
Vmy
where o = pppyBwB;, Sr = Bur + Bwr +

By, A = min {bV/d, p B, By 25021

ph,Bufl }7 and d =
Vdydp, + d3 + dpd,,.

The detailed proof is provided in Appendix B.1. The
first bound (2) adapts the matrix covering lemma in
Bartlett et al. (2017). The second bound (3) adapts
the PAC-Bayes approach (Neyshabur et al., 2017) by
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analyzing the divergence when imposing small pertur-
bations on the weight matrices.

We highlight the improvements of the obtained refined
generalization bounds: When the weight matrices are
approximately low rank, that is, || - |21 < d|| - ||2 and
| - lr < Vd|| - ||l2, for 8 < 1, bound (3) improves
bound (1) by reducing dependence on d. Additionally,
if t(My + My + Mw) < d, bound (2) also tightens
bound (1). Note that ¢ (My + My + Mw) < d implies
that the input sequence is relatively short.

5 Extensions to MGU,
Conv RNNs

LSTM, and

We extend our analysis to Minimal Gated Unit
(MRU), Long Short-Term Memory (LSTM) RNNs,
and convolutional RNNs (Conv RNNs).

The MGU RNNs compute
re = o(Wexy + Uphy 1),
he = oy, (Whay + Up(re © hy—1)),
he = (1—1) © hy—1 + 7t @ hy,

where W,, W), € R¥*Xd= [ U, € RIxdn | ¢
R%*dn and r, € R%. The notation ® denotes
the Hadamard product (entrywise product) of vectors.
Denote by F, ¢ the class of mappings from the first ¢
inputs to the ¢-th output computed by gated (MGU or
LSTM) RNNs. For simplicity, we consider ¢ being the
sigmoid function, i.e., o(x) = (14+exp(—z))~!, on(-) =
tanh(-), and o, being p,-Lipschitz with o,(0) = 0. Ex-
tensions to general Lipschitz activation operators as in
Assumption 3 are straightforward. Suppose we have
ho = 0 and the following assumption.

-~ T T == ~
ht
S om0 A
l t Up,
[ Wi TTt \
i - A
]
\ U,
he—1 \ T T Iy
T4 ~ W, /7

Figure 2: A building block of MGU RNNs.

Assumption 6. All the weight matrices have
bounded spectral norms respectively, i.e. |[|[Wy|2 <
BWM ||Wh||2 < BWh’ HUTHQ < BUM ||UhH2 < BUh7 and
V2 < Bv.

A similar argument for vanilla RNNs yields a general-
ization bound of MGU RNNs as follows.

Theorem 4. Let the activation operator o, be given
and Assumptions 1 and 6 hold. Then for (x,2)
and S = {(mi,t,zi,t)thl,i = L...,m} drawn i.i.d.
from any underlying distribution over R%*T x
{1,..., K}, with probability at least 1 — § over .S, for

every margin value v > 0 and every f; € F, for inte-
ger t < T, we have

SEIN)

log
2m
dpy By (Vd A By, B, =) [log (§=Ldy/m)
o )
Vmy

+ By, |Irj1%,
max{dy, dy, dp}.

P (% # 2) < Ry (fe) +3

bo=p8+

where § = max; { 11 —75ll»
2BU,« + BUTBUM d=

The detailed proof is provided in Appendix C.1. As
can be seen, r; shrinks the magnitude of hidden state
to reduce the dependence on d and ¢ in generalization.
As a result, with proper normalization of weight ma-
trices, the generalization bound of MGU RNNs is less
dependent on d, t.

The LSTM RNNs are more complicated than MGU
RNNs, which introduce more gates to control the in-
formation flow in RNNs. LSTM RNNs have two hid-
den states, and compute them as,

gt = o(Wyxy + Ughy—1), 1 =0Wyxy + Urhy—1),
0y = c(Wory +Ushi—1), ¢ = 0c(Wewy +Uchy—1),
=gt Oci—1+1:OC¢, hy=o0;0 tanh(c),

where Wy, W,, W, , W, € Rénxds Uy, Ur,U,, U €
R Xdn and g;,r¢,0, € R . For simplicity, we also
consider ¢ being the sigmoid function, and o.(-) =
tanh(-). The t-th output is y; = o,(Vh:), where
V € R%>*dn and o, is p,-Lipschitz with o, (0) = 0.
Suppose we have hyg = c¢g = 0 and the following as-
sumption.

P = \
Ct—1 —H@ —|— \ Ct
/ A \
[/ ® \
: gt Tt Ct o )
. o o—0O |
By g —\ U;T UT UL UO'TT | /I n
T \ - Wy W, W, W, Y,

—_— e e = = = = = = = =

Figure 3: A building block of LSTM RNNs.

Assumption 7. The spectral norms of weight ma-

trices are bounded respectively, ie. |[Wyl2 <
Bw,, Wiz < Bw,,[Wollz < Bw,, [Wella <
Bw,, IUgllz < Bu,|[Url2 < Bu,|[Uslla <

BU07 ||Uh||2 < BUh,7 and ||V||2 < By.

For properly normalized weight matrices W, and U,,
the generalization bound of LSTM RNNs is given in
the following theorem.

Theorem 5. Let the activation operator o, be given
and Assumptions 1 and 7 hold. Then for (zy,2)i
and § = {(xi7t,zi7t)f:1,i = 1,...,m} drawn i.i.d.
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from any underlying distribution over R%*T x
{1,..., K}, with probability at least 1 — § over .S, for
every margin value v > 0 and every f; € F,, for inte-
ger t < T, we have

log
2m
o (dpva(\/a A Byw, B, 5=t )y los (G=t dy/m) )

vy
where 8 = max{||gj||OO + By, ||l o, ||0jHOO}7 =08+
BUg + BUT + BUU7 and d = max{dw, dy, dh}

SIS

P (% # 2) < Ry (fe) +3

The detailed proof is provided in Appendix C.2. Sim-
ilar to MGU RNNs, LSTM RNNs also introduce ex-
tra decaying factors to reduce the dependence on d
and t in generalization. However, LSTM RNNs are
more complicated, but more flexible than MGU RNNs,
since three factors, r;, o; and g; are used to jointly
control the spectrum of U.. We further remark that
LSTM RNNSs need spectral norms of weight matrices,
We, W, Wy, Uy, U, and U,, to be properly controlled
for obtaining better generalization bounds.

We further extend our analysis to Convolutional RNNs
(Conv RNNs). Conv RNNs integrate convolutional fil-
ters and recurrent neural networks. Specifically, we
consider input € R? and k-channel k-dimensional
convolutional filters Z;,...,Z; € RF followed by an
average pooling layer over the k channels for reducing
dimensionality. Extensions to convolution with strides
and other kinds of average pooling layers (e.g., block-
wise pooling) are straightforward.

Here we denote the circulant-like matrix generated by
Z; as

2 | P 0
N—————
d—k
0 Z 0...... 0
Ci — d—k—1 c R(d—k-&-l)xd,
O......... 0 I'
—_—————
L d—k J
and write Wz = [C],...,CJ]T. We further de-
note P = %[Id,kJrl Id,kJrl Id,kJrl], where Id de-

totally k identity matrices
notes the d-dimensional identity matrix. Define 7 =

[Z1,...,Zy], and T x x = PWzz. Given a sample
(w4, 2¢)1_,, the Conv RNNs compute h; and y; as fol-
lows,

he =0nU*hi—1 +Wxay), and y =0, (V*h),
where hy,z; € RY, and U, V, W € RF** are matri-
ces with column vectors being k-dimensional convolu-
tional filters. We use zero-padding to ensure the out-
put dimension of convolutional filters matches the in-
put (Krizhevsky et al., 2012). To get y;, we convolve h;

with V followed by an average pooling to reduce the di-
mension to K. Since we aim to show that Conv RNNs
reduce the dependence on d in generalization through
parameter sharing, we simplify the notations to as-
sume hy = 0, and impose the following assumption.
Extensions to general settings are straightforward.

ET]
7]
Cl | — — — — ~ Average Pooling
7] / )
- P
3
7.
03 - Z; x I *T
I3
Wt

Figure 4: Illustration of input x € RS convolving with
3-channel 3-dimensional convolutional filters Iy, T,
and I3, followed by an average pooling.

Assumption 8. The activation operators o5, and oy
are 1-Lipschitz with 04,(0) = 0,(0) = 0. oy is en-
trywise bounded by 1. The convolutional filters U,
V, and W are orthogonal with normalized columns,
e, UTU = UUT = %Ik,VTV = V' = %Ik, and
WIW =WWT = %Ik.

We remark that the orthogonality constraints enhance
the diversity among convolutional filters (Xie et al.,
2017; Huang et al., 2017). Additionally, the normal-
ization factor % is to control the spectral norms of
Wy, Wy, and Wy, which prevents the blowup of hid-
den state. Denote by F.; the class of mappings from
the first ¢ inputs to the ¢-th output computed by Conv
RNNs. Then the generalization bound is given in the
following theorem.

Theorem 6. Let activation operators o;, and oy
be given, and Assumptions 1 and 8 hold. Then
for (zy,2)i—; and S = {(wi¢,zi0)iq,i=1,...,m}
drawn i.i.d. from any underlying distribution over
RIXT x {1,..., K}, with probability at least 1 —§ over
S, for every margin value v > 0 and every f; € F.:
for integer t < T', we have

The detailed proof is provided in C.3. Similar to the
analysis of vanilla RNNs, our proof is based on the
Lipschitz continuity of Conv RNNs with respect to its
model parameters in the convolutional filters. Specifi-
cally, by Assumption 8, the spectral norms of Wy, Wy,
and Wy are all bounded by 1. Combining with the
inequality, [Wylr < Vd|U|lr, we have ||y, — yi]l> <
Lvi|V = V'llp + Luplld = U'[[p + Lt [W = W|[p,
where Ly, Ly, and Ly are polynomials in d and
t. Additionally, observe that the total number of pa-
rameters in a Conv RNN is at most 3k2, which is inde-
pendent of input dimension d. As a consequence, the
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generalization bound of Conv RNNs only has a lieanr
dependence on k and t.

6 Numerical Evaluation

We demonstrate a comparison among our obtained
generalization bound with Bartlett et al. (2017),
Neyshabur et al. (2017), and Zhang et al. (2018).
Specifically, we train' a vanilla RNN on the wikitext
language modeling dataset (Merity et al., 2016). We
take o, = tanh and set the hidden state h € R'?® and
the input z € R with ||z|lz < 1. Accordingly, we
have d = 128 and take the sequence length ¢t = 56. We
list the complexity bounds for vanilla RNNs in The-
orem 2 (Ours), Zhang et al. (2018) (Bound 1), (2) of
Theorem 3 (Bound 2), and (3) of Theorem 3 (Bound
3) neglecting common log factors in d and ¢:

e Ours: dBy min {\/8, By ggj}\/log (gg:i),

e Bound 1: dt? By By max{1, B} };

e Bound 2: By By (My + My + My) tgfjj%

e Bound 3: (min{\/a, Bw ggj}BU + BW) gg:}
X \/d(B?LF + B2+ Bl ).

The corresponding complexity bounds are shown in
Figure 5. As can be seen, our complexity bound in
Theorem 2 is much smaller than Bounds 1-3. In more
detail, the trained vanilla RNN has By = 2.6801 > 1.
As discussed earlier, for By > 1, only our bound in
Theorem 2 is polynomial in the size of the network,
while Bounds 1-3 are all exponential in ¢t. The resulting
complexity bounds corroborate such a conclusion.
35

30

log 10 complexity
- m e
a8 5

2

Ours Bound1 Bound2 Bound3

Figure 5: Complexity bounds on wikitext dataset.
We also observe that Bound 3 is smaller than Bound 2.
The reason behind is that the weight matrices in the
trained vanilla RNN have relatively small Frobenius
norms but large (2,1) norms. Taking matrix U as an
example, we have By r = 13.6823 and My = 154.5439.
Then, we can calculate the stable rank Bgf =51<

\/ﬁ/?, and the ratio ]%UF = 11.3 ~ v/d. This im-
plies that the singular values of U are not evenly dis-
tributed, while the norms of row vectors in U are ap-

proximately equal.

"We adopt the code: https://github.com/pytorch/
examples/tree/master/word_language_model.

7 Discussions and Open Problems

(I) Tighter bounds: Our obtained generalization
bounds depend on the spectral norms of weight matri-
ces and the network size. Can we exploit other model-
ing structures to further reduce the dependence on the
network size? Or can we find better choices of norms
of weight matrices that yield better bounds?

(IT) Margin value: Our generalization bounds de-
pend on the margin value of the predictors. As can be
seen, a larger margin value yields a better generaliza-
tion bound. However, establishing a sharp characteri-
zation of the margin value is technically very challeng-
ing, because of its complicated dependence on the un-
derlying data distribution and the training algorithm.

(III) Implicit bias of SGD: Numerous empirical
evidences have already shown that RNNs trained by
stochastic gradient descent (SGD) algorithms have su-
perior generalization performance. There have been
a few theoretical results showing that SGD tends to
yield low complexity models, which can generalize
(Neyshabur et al., 2014, 2015; Zhang et al., 2016;
Soudry et al., 2017). Can we extend this argument
to RNNs? For example, can SGD always yield weight
matrices with well controlled spectra? This is crucial
to the generalization of MGU and LSTM RNNs.

(IV) Adaptivity to the underlying distribution:
The current PAC-Learning framework focuses on the
worst case. Taking classification as an example, the
theoretical analysis holds even when the input features
and labels are completely independent. Therefore, this
often yields very pessimistic results. For many real ap-
plications, however, data are not obtained adversari-
ally. Some recent empirical evidences suggest that the
generalization of neural networks seems very adaptive
to the underlying distribution: Easier tasks lead to low
complexity neural networks, while harder ones lead to
highly complex neural networks. Unfortunately, none
of the existing analysis can take the underlying distri-
bution into consideration.

(V) Sequentially dependent data: To extend
the analysis to scenarios where input sequences are
dependent is quite challenging and largely open.
Rakhlin et al. (2015) propose a so-called “Sequen-
tial Rademacher Complexity” to quantify the model
complexity with dependent data. Their bound how-
ever, is exponential in the depth of a neural network,
even with proper normalization on the weight matri-
ces. Kuznetsov and Mohri (2017) also derive general-
ization bounds for dependent data under mixing con-
ditions. They assume block independence for a sub-
sample selection trick. The extension to fully depen-
dent data is beyond the scope of this paper. We leave
it for future investigation.
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A  Proofs in Section 2

A.1 Lipschitz Continuity of M and ¢,

We show the Lipschitz continuity of the margin operator M and the loss function ¢, in the following lemma.

Lemma 5. The margin operator M is 2-Lipschitz in its first argument with respect to vector Euclidean norm,
and £, is L_Lipschitz.
v
Proof. Let y, v’ and z be given, then
M) - M)

Yy — Y. + (r;lggyﬁ' - r;ljgyj) ’

<

Yz _ylz

+ ’Iﬁg}y; - Y

2y =¥l < ly =l
For function ¢, it is a piecewise linear function. Thus, it is straightforward to see that £, is %—Lipschitz. O

A.2 Proof of Lemma 2

Proof. The Lemma is stated with matrix Frobenius norms. However, we can show a tighter bound only involving
the spectral norms of weight matrices. Given weight matrices U, V, W and U’, V', W', consider the t-th outputs
y¢ and y; of vanilla RNNs,

e = yillo = oy (Vhe) = oy (VR
S py ||Vht — V/ht -+ V/ht — V/hQHQ
< py IV = V) hully + [V (he = By)l5)
< py (Ihello IV = V'lly + By ([ = hil,) - (4)

We have to bound the norm of h; as in the following lemma.

Lemma 6. Under Assumptions 1 to 3, for ¢ > 0, the norm of h; is bounded by

(pnBu)' -1 } '

htll, < min < bVd, p, By B
” t||2—m1n{ \faph WDy PhBU_l

Proof. We prove by induction. Observe that for ¢ > 1, we have
[elly = llon(Wze + Uhy—1)]l,

< pn Wy + Uhy—1]l,
< pon ([[Wally + [|[Uhe—1][5)

< pn (BwBs + By [|h—1ll,) - (6)
Applying equation (6) recursively with hg = 0, we arrive at,

(pnBuv)' —1
A N -
Ihll < B B2 Y (onBo = on B B 5
We also have ||hi]le < b Thus, combining with the above upper bound, we get |hill, <
min {b\/ZL phBWBE%}. Clearly, ||ho||2 = 0 satisfies the upper bound. O

When pp, By = 1, the ratio is defined, by L’Hospital’s rule, to be the limit,

(pnBu) =1 _,
phBU—>1 phBU — 1 '

With Lemma 6 in hand, we plug the bound (5) into equation (4) and end up with

(pnBu)' —

1
||Z/t—y£||2 < pyprnBw Bz \|V—V’||2—|—pvaHht—hQHQ. (7)
pnBy —1

The remaining task is to bound ||hs — hy||, in terms of the spectral norms of the difference of weight matrices,
W =W, and [|U = U"|,.
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Lemma 7. Under Assumptions 1 to 3, for ¢ > 1, the difference of hidden states h; and h} satisfies
1he = hilly < Lwe [W = Wlly + Lo [U = U]l

where Ly = py By 2B and Ly = p? By Byt L2501

Proof. Similar to the proof of Lemma 6, we use induction.
he = hilly = ||on (Way + Uhy—1) — on (W'ae + U'hj_,)
< pn ||(W =Wz + Uhyy = U'hi_ |,
< on (W =Wzl + |Uhe—y — U'hi_4|,)
< pn (B [W = Wyt |[Uhes = U'hes 4+ Uiy = U'hi 4 )
< prBo [[W — WI”Q + pn (”htlez U — UI||2 + Bu ||ht71 - h:fleg) :
Repeat this derivation recursively, we have
1he = Billy < puBa (W = Wiy + pn [lhe—1lly 1U = U'lly + puBu [[e—1 — by |,
< pnBy (L + prBu) W = Wy + pn ([[e—1lly + prBu [he—2|l2) 1U = U’,
+ (pnBu)? |he—2 — hi s,

I

< ......
t—1 ] t—1
< By Y (pnBu) W =Wy +pn Y ((onBu) 7 (Ihll,) U = U],
j=0 j=0
+ (pnBu)* o — Rgl,
¢ t—1
< B, L =L Wy 3 (0B ) 10 = 0 ®)
=0

We now plug in the upper bound (5) to calculate the summation involving the Euclidean norms of the hidden
state h;.

t—1 t—1 t—1
> (onBu) I hilly <G+ D(pnBu) pnBw By <t (pnBu) prBw B
7=0 7=0 7=0
(pnBu)' — 1
< pp By Byt-Ph2U) 2
> ppbw onBy — 1

Plugging back into equation (8), we have as desired,

By)' -1 (pnBu)' —1
hy — hyll, < Bx(phi -w 2 By Byt-———— =-U,-
[[he tlla < pn onBu — 1 W =W, + pi, Bw onBo — 1 U -0,
O
Combining equation (7) and Lemma 7, and |[W||g > |IW||2, we immediately get Lemma 2. O

A.3 Proof of Lemma 3

Proof. Our goal is to construct a covering C(F, e, dist(-,-)), i.e., for any f; € F, there exists ft € Fy, for any
input data (z;)]_,, satisfying

<e
2

Fo(X0) = FuXo)
Note that f is determined by weight matrices U,V and W. By Lemma 2, we have
#00) = |, < v [V =T Lo W =]+ Lo -

sup
Xy

sup
X
Then it is enough to construct three matrix coverings, C(U,ﬁ,”'”];‘), C(V, ﬁ,”“p) and

C (VV, s ||HF) Their Cartesian product gives us the covering C(F%, €, dist(+,-)). The following lemma gives
an upper bound on the covering number of matrices with a bounded Frobenius norm.
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Lemma 8. Let G = {A € R4“*% : ||A|; < A} be the set of matrices with bounded spectral norm and € > 0 be
given. The covering number N(G, €, ||-||r) is upper bounded by

min{\/a7 J@} >\>d1d2

Proof. For any matrix A € G, we define a mapping ¢ : R*% — R4 such that ¢(4) = [A,A,,..., AT,
where A.; denotes the i-th column of matrix A. Denote the vector space induced by the mapping ¢ by V(G) =
{¢(A) : A € G}. Note that we have [|A[j2 = 30 AlA.; = ||¢(A)||3 and the mapping ¢ is one-to-one and onto.
By definition, the square of Frobenius norm equals the square of sum of singular values and the spectral norm is
the largest singular value. Hence, the equivalence of Frobenius norm and spectral norm is given by the following
inequalities,

JAllz < |Alle < min {v/d1, V2 } |1 A]z-

Now, we see that if we construct a covering C(V(G),¢ | |l2), then ¢ 1C(V(G),¢ | l2) =
{7 (v) :v € C(V(G),€ |Il2)} is a covering of G at scale e with respect to the matrix Frobenius norm.
Therefore, we get N (G, ¢, |||lr) S NV(G),¢, ||-]l2). As a consequence, it is suffices to upper bound the covering
number of V(G). In order to do so, we need another closely related concept, packing number.

Definition 2 (Packing). Let G be an arbitrary set and € > 0 be given. We say P(G, ¢, ||-||) is a packing of G at
scale e with respect to the norm |[|-||, if for any two elements A, B € P, we have

|A—B| > e
Denote by M(G, ¢, ||||) the maximal cardinality of P(G,e, ||-||)-

By the maximality, we can check that N'(C. e, [|-||) < M(C,¢,|-||). Indeed, let P*(G, ¢, ||-||) be a maximal packing.
Suppose there exists A € G such that for any B € P*(G, ¢, ||-||), the inequality ||A — B|| > € holds. Then we can
add A to P*(G,¢, ||||), while still keeping it being a packing, which contradicts the maximality of P*(G, ¢, ||-||).
Thus, we have V(G ¢, [|-)) < M(G, €, || ]])-

Observe that V(G) is contained in an Euclidean ball B(0; R) € R%% of radius at most
R = max|(4)]|; < min {\/dl, \/dQ} A2 < min{\/dl, \/dQ} A

Additionally, the union of Euclidean balls B(v;¢/2) C R4 with radius €/2 and center v € P(V(G), ¢, ||-||2) is
further contained in an Euclidean ball B(0; R.) of slightly enlarged radius R. = min {\/a AV da } A+ €/2. Those
balls B(v;€/2) are disjoint by the definition of packing, thus we have

dyds
NV(C), & |ll2) <PV(C), € |-]l2) < m _ (52)
; dyds
= <1+2m1n{\/§7 \/@})\) ’
where vol(-) denotes the volume. -

By Lemma 8, we can directly write out the upper bounds on the covering numbers of weight matrices,

Vo dy
’|.||F> < <1+6thULU¢> 7
€

d,dp
min{\/dmvdh}BVLV,t) v and
6 b)

€
N\U, ——
( 3Ly,

€
. < (1
N(v, 3Lv,t’” |F> < ( +6

¢ min{v/dy, vy} Bw Ly ) ™"
e ) <(1+6 .
3LW75 €

)

v (w
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Then we immediately have,

. € €
NFendist() <N (Vg e ) s (Voo e ) 8 (Wogm )
( 6WBULUt> '<1+min{61/dy,\/ﬁ}Bva,t>dydh

€

IN

y (1 | 6min{vd,, \/%}BWLW,t)d“"d’L
v .

Substituting the coefficients Ly ¢+, Ly, and Ly + from Lemma 2, we get

N (Fi, e, dist(-,-))

f (pnBu)'—1 2d2 f (pnBu)*—1 @
n 6 dPyPhBVBWme 14 6V dpypy, * By By Bw B, tm
- € €

3d?

(pnBu)' =1
chft o By T

€

where ¢ = pypp By Bw By max {1, p,By}. For future usage, we also write down for small € > 0, such that
GC\fti(pph%U) ;1
h2U

- > 1, the logarithm of covering number satisfies,

(prBu)t-1
120\/&t7ph s

€

log N (Fy, €, dist(-, -)) < 3d? log

A.4 Proof of Lemma 4

Proof. Define Fpqr = {(X¢, z¢) = M(fi(Xe),2¢) : fr € Fi}. By Lemma 5, we see that M is 2-Lipschitz in its

first argument. In order to cover Faq at scale ¢, it suffices to cover F; at scale §. This immediately gives us

the covering number N (Faq¢, €, [|]|oc) < N (Fi,€/2,dist(-,-)).
We then give the statement of Dudley’s entropy integral.

Lemma 9. Let H be a real-valued function class taking values in [—r, 7] for some constant r, and assume that
0€H. Let S=(s1,...,5m) be given points, then

<4a 12 [FvVm

Rg(H) < inf 7 m

a>0

Vieg N (H, e, |-l de).

The proof can be found in Bartlett et al. (2017). Taking H = Faq,, we can easily verify that Fq, takes values
in [—r,7] with r = p, By |||z < pyBy min{b\/a, phBWBQE%} and 0 € Faq. Thus, directly applying
Lemma 9 yields the following bound,
4o 12 (VM
< — 4+ = : .
Rs(Fm,e) < inf <\/ﬁ o \/logN(fM,t,e, I ||oo)d€>

We bound the integral as follows,

2ry/m 2r/m 24Cft (pnBu)?
/ \/10%N(fM,ue,H'lloo)de§/ 3d210g< T de

€

< 2ry/m, | 3d? log
a

(pnBu)t—1
(24cft’;;BUU 1)
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Picking a = ﬁ is enough to give us an upper bound on Rg(Fur,e),

4 24 (pnBy)t —1
Rs(Far) € —+ 3d2r2 1o (240\/ mt~-Fh2U) T )
(Fm) = g nBo —1

Finally, by Talagrand’s lemma (Mohri et al., 2012) and £, being %—Lipschitz, we have

1 4 24 (pnBy)t —
< — < _— 2,2 MY 7).
Re(Fre) < ryms(]'/\/l,ﬂ S o + N \/3d r2 log (240\/ mt P - )
B Proof in Section 4

B.1 Proof of Theorem 3
Proof. Under additional Assumption 4, we only need to show that, with the additional matrix induced norm

bound, we have a refined upper bound on the matrix covering number. The proof relies on the following lemma
adapted from Bartlett et al. (2017) Lemma 3.2.

Lemma 10. Let G = {4 € R%*92 ; ||A]|5; < A}. We have the following matrix covering upper bound

)\2
logj\/(g, €, || . ||2) S 67 10g(2d1d2).

The above Lemma is a direct consequence of Lemma 3.2 in Bartlett et al. (2017) with X being identity, a = A,

b=1, and m = dy,d = do. We apply the same trick to split the overall covering accuracy € into 3 parts, 3L—€W,
T Lv -, an nd 75— corresponding to U, V, W respectively. Then we derive a refined bound on the covering number
of F:
. 9(MyLg, + MyL}, + MwL3y,,) )
log N (Fy, €, dist (-, ) < : TR log(2d°), 9)

€
where d = max {d,, dy, dp}. Substituting (9) into the Dudley integral as in the proof of Lemma 4 yields

Aoy 192 2ry/m
N

Rs(Fare) < inf ( Viog N'(Fi€/2, Il-lloo)d6> :

We bound the integral as follows,

2ry/m 2ry/m MULUt +MVLVt +MWLWt

VIg N (Fi,€/2, |[-[[oc)de < / 36 log(2d?)de

[e3% e €

2
= 36\/MUL%,¢ + My L2, + Myw L%, ,/log(2d%) log Irym

Choosing o = \/% yields

4 432
Rs(Fm) < — —+ 7\/MULUt + My LY, + Mw Ly, ,\/log(2d?) log (Zm\/;l> )
Finally, substituting the Lipschitz constant Ly ¢, Ly, Ly, into the expression, we have

1 4 432
Rs(Fy) < - Rsl(Fana) S o —\/MULUt + My L}, + My Ly, \/log(2d2) log (2mV/d)

amaX{MU, Mv, Mw}t

<0 ST ﬁl\/@bg(m\f)

Combining with Lemma 1 completes the proof.

Under additional Assumption 5, our proof is based on the following result from Lemma 1 in Neyshabur et al.
(2017).
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Lemma 11. Let f, (z) : X — R? be any predictor with parameter a, and P be any distribution on the
parameter that is independent of training data. Then, for any ~,d > 0, with probability at least 1 — ¢ over the
training set of size m, for any a and any random perturbation 8 s.t. Pg [maxgex |fats (2) — fo (2)| < 3] > 3,
we have

KL (a + B||P) + log (%2)

m—1

)

Ro (fa) = Ry (fa) < M

where KL (o + 8||P) is KL divergence of distributions o + 8 and P.

For convenience, we omit the superscript for sample index. Denote h; () and h; (o + 3) as the hidden variables
with parameters a and a4+ respectively. Then we provide an upper bound of the gap of hidden layers before and
after the perturbation. Denote the parameters oo = vec ({W, U, V'}) and the perturbation 3 = vec ({oW, 6U, 6V }).

For any t € {1,2,...,T}, we have
[t (e + B) — ha (@)

(1)
S Ph ||(U + 5U) ht—l (Oé + B) + (W =+ 5W) Ty — Uht_l (Oé) — WCCt||2

(i)
< puBu [[he—1 (a+ B) = hy—1 (a)lly + dpn By [|he—1 (o + B) |y + dpn B Bw

t t—1
< (pnBu)* [ho (a4 B) = ho (@) |y + 3> _(pnBu)* [|he—i (a + B)lly + 6pnBaBw Y _(pnBu)’, (10)
=1 =0

By Lemma 6, we have that for any ¢t < T,

By)t -1
e (@)1, < min {by/p, puBo By LB =1L
2

11
pnBy —1 (1)

Combining (10), (11), and hg = 0, we have
t t—1

1he (e + B) = e (@)l < 6Xe > (pnBu)' +6pnBeBw Y _(pnBu)’

i=1 =0

By)t—1
<4 ()\tphBU + pthBw) M (12)
pnBy — 1
Denote y; (o) and y; (o + ) as the out with parameters « and « + S respectively. Then we have
(4)
lye (4 B) =y (@)lly < py [I(1 4 0) Ve (0 + B) = Vihe (@)l
< pyBv ||he (a+ B) = by ()l + 0py By ||he (o + B)ll;
(1) By)t -1
< épyByv (MpnBu + pn B Bw) (enBy) 1 +dpy By A, (13)
pnBy — 1

where (¢) is from Lipschitz continuity of o, and (i7) is from (11) and (12).

Then choosing the prior distribution and the perturbation distribution as A/ (O, o’I ), and from the concentration
result for the spectral norm bounds, we have

_52
Panaoaty. 1Al > € < 2pep (3205 )

This implies with probability at least 1/2, we have max{éBy,dBw,dBy} < o4/2dIn(12d). Taking o =
(7/4py (()\tphBU + pn Bz Bw) (enBu)'—1 )\t> 2d1n (12d)) and combining with (13), with probability at least

prnBy—1
1/2, we have

mnax lys (o + B) = e ()]l

By)t -1
< (()\tphBU + pn By Bw) nBu) =1 At) -oy/2d1n (12d) <

prBy — 1

N
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Finally, we calculate the KL divergence of P and « + f with respect to this choice of o,

KL (a+ 8||P) < ”O;HQ

(pnBu)' —1

2
P
= <§ : (()\tphBU + pnBzBw) onBy — 1

2
+ At) dln (d) (Bfp + By + B%,F)>

_ o (72 OeonBu + pnBaBw)’ (8" = 1) pln () (B x + Bive + Blir)
¥ (B -1)*
We complete the proof by applying Lemma 11. O

C Proofs in Sections 5 and 7?7

C.1 Proof of Theorem 4

Proof. We use the same argument from the analysis of vanilla RNNs to investigate the Lipschitz continuity of
MGU RNNs. Consider h; and h} computed by different sets of weight matrices.

[he — Rilly, = H(l 1) @hyy + 1 @ hy — (L= 7)) @ hf_y — 1, @ I

2

<||(rf =) © By |y + (1 =74) © (hymy — hi_1) ||y + || (re = 77) ©h re ® (he — hp)

+
2

2

<l = rilly [l 00 = 7l et = i, + e = il |

+ el e = T

2
Expand the expression of h;. Note that r¢ is nonnegative, and ||r¢[lsc < 1. Then we have ||h¢||oc < 1. Additionally
tanh(-) is 1-Lipschitz. Thus we get
| S U1 @ 72) + Waae = Up by © 77) = Wia |
< |[Un(he—r @ 7e) = Uy (hy 5 © 1) ||y + B Wi = Wil
<|Un = Uplly 11 © rilly + Buy, [7ellog || e—1 = Bi—1 ||, + Buy, ||hi—a || o ll7e = 74l
+ B, ||Wh - WI;”Q
< HhtHz 1Un — U}/LHz + Bu,

T — T

"o Hht—l - hw/f—luz + Bu,

re = 1illy + Bz [[Wh = Will, -
We have to expand r; — r} as follows,
lre — rille = ||Wra:t +Uphi—q — W)z, — U;h;_1H2
< By [Wr = Willy + Bo, |[he-1 = hi ||, + 181 ll21Ur = Uyl
We also need to bound |[|h¢]|2,

eely < 10 = rellog Whealy + ]
< 1= rell oo el + el (Bui, Ba + Buy, el eal2)
= (In = 7illoe + By a2 ) Iha-ally + B, B

By
2

o0 ’

2
< max {[|1 =l + B 5% } [1he-alls + B, Bo.

Applying the above inequality recursively and remember [|h¢|loc < 1, we get ||h¢|, < min {\/(37 %Bwh Bx}
with § = max;<; {||1 — 75l + Bu, ||TJ||iO} Put all the above ingredients together, we have
lhe = Rilly < (B + 2By, + By, Bu,) ||he—1 — hi_i ||,
+ Vd||Uy = Uglly + By [Wh = Wil
+ (2 + BU;L) \/g ”UT - U7I~||2 + (QBI + BU;LBJ;) ||W7 - W;HQ :
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Apply the above inequality recursively, denote by § = 3 + 2By, + By, By, , we have

t t
lhe = hylly SVAY 07 Uy — Uplly + B Y 07 |[Wh — Will,

j=1 j=1
L L
+(m@+3w%ﬂzﬁMWVJMB+@&+BmBgzyHm@—WmT
j=1 j=1
We then derive the Lipschitz continuity of ||y||z,
lye = illy < py By Ihe = hillz + py VAV = V'|l2

ot —1 ot —1
< Pva\/gm 1Un = Uplly + PyBVBacm IWh = Will, + Py\/gHV = V|2
0t —1 , 0t —1 ,
+ pyBv (Q\Q‘*‘ BUh\/g) -1 |Ur = Ully + pyBv (2B2 + By, B) -1 W = Will, .

Following the same argument for proving the generalization bound of vanilla RNNs, we can get the generalization
bound for MGU RNNSs as

P (% # 2) < Ry(fe) + O

dp, By min {\/&, BWth%} log (d m%f:ll) log%
+
V' m

Vmy

C.2 Proof of Theorem 5

Proof. We first bound the norm of h; as follows,
[7ell2 < lloelloc ltanh(ce)ll2 < llot]lollctll2

< [lgellocllee—llz + lIrellsollce]l2

< llgellsslice-1llz + lI7elloe (Bw. Bz + Bu. [|he-1ll2)

< llgellssllce—1llz + lIrelloc (Bw. Bz + Bu. [[otllos llct-1ll2)

< ([l9tlloe + lIrellsolloelloe Bue) llct-1ll2 + Bw, Be-
By applying the above inequality recursively, we have |hla < Jletlla < BWCBI%, where [
max;j<; {[1g;lloc + [7jllccll0jllcBr.}.  We also have [|h]l2 < v/d. Thus, put together, we have |hfs <

min {\/E, BWCBJ.%}. Next, we investigate the Lipschitz continuity of h;.
([ — hill, < [lo¢ © tanh(c;) — of © tanh(cy)|,
< [los — oy l[2[[tanh(cs)[loc + [[0t]loollce — cill2
We have to expand o; — o},
lloe = otll2 < Bx|[Wo = Woll2 + By, llhe—1 — he—1ll2 + [he-1][2[|Us — Up]l2-

Note that || By, ||2 is usually small, o; and o} are close, and we have ||hi—1 — h}_1]l2 < ||ot|loollci—1 — ¢j_1]]2
llei—1 — ¢,_1|l2- Thus, we can derive

lloe — 0}ll2 < Bal|[Wo — Wil|2 + By, llci—1 — ce-1ll2 + Vd|Us — Up| 2.

We also expand ¢; — ¢} to get,

A

llee = cillz < llee—1llocllge — gillz + lIrtllollee—1 — ch_qll2 + [Glloollre — 7ill2 + lIrtlloc G — il
We also have,
et = Gll2 < Bullhe—1 = hi_yll2 + [he—1ll2l|Ue — Ullz + Bol[We — W2,
lge = gilla < BallWy = Wyllz + Bw, lhe—1 = hy_y |l + V||[Uy — Ugll2,  and
Ire = 7ill2 < Bo|We = W/ll2 + Bw, [lhe—1 = by |2 + V||[U, = U].
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Putting together, we get

llee = cill2

< By ([[We = Wll2 + Wy = Wyllz + W, — Wr]2)
+ VA (|Ue = ULllz + 11U = Ugll2 + U = Uy ll2)
+llgellcllce-1 — ¢t 1ll2 + (Irellc Bu. + Bu, + Bu,) [he-1 — by 1 |2

< By ([We = Wella + [[Wy = Wella + [[W, = Wil2 + (Bu, + Bu, + Bu,)[|[Wo — W2)
+Vd (U = Ullla + 11Uy = Uglla + 11U, = Ull2 + (Bu, + Bu, + Bu,)IIUs = Up|l2)
+ (lloellsclIrell o B, + Bu, + Bu, + Bu,) llee-1 = ¢z

By induction, we have

llee = cillz
ot —1
SBep—7 (IWe = Wellz + Wy = Wil + W = W]ll2 + (Bu, + Bu, + Bu, ) [[Wo — Wi|2)

0t —1
+Vdg—= 1V = Ulll2 + g = Ugll2 + U = Upll2 + (Bu, + Bu, + Bu,)[Us = Usl2)

where 6 = 3 + By, + By, + By,. Now we immediately have

1he = Pt
0" — 1
< By g (IWe = Will2 + Wy = Wyll2 + [Wr = W/ll2 + (Bu, + Bu, + Bu,)[Wo = Wil2)

0t —1
+Vdg— (Ve = Ulll + 1Us = Ullz + [[Ux = Ull> + (Bu, + Bu, + Bu,)|Uo = Ugll2) -
Then the Lipschitz continuity of 4; can be written as
lye = yill2 < pyBv |he = hill2 + py V||V = V']|s.

Following the same argument for proving the generalization bound of vanilla RNNs, we can get the generalization
bound for LSTM RNNs as

~ dp, By min {\/&, By, Bm%} log (d\/m%) log %
P (z <R o '
(Zt # 2t) <R, (fe) + vy N

C.3 Proof of Theorem 6
Proof. We first characterize the Lipschitz continuity of ||y:||2 with respect to model parameters U, W and V. We
have
lye = willz < pyllhell2lWy = Whr 2 + py Wy l2]lhe — Byl
Since ||h¢l|oo < 1, we have ||h¢|l2 < V/d. Then we expand h; — hi,
17 = hilla < pullU" * By + Wk g —U 5 hy_y = W 5 24|

= ph||PW1,{ht_1 + PWwaxs — PW&h;_l — PWWItHQ

< pullPll2[Wathi—1 + Wway — Wigrhi 3 — Wiyl

< Pl Pll2 | Ball Wi = Wanr Iz + Vall Weg = Werlla + [Waall2llhe—1 = Ry 2] -
Observe that we have by the definition of circulant matrix,

[Wa = W3 < (W = Warlf = (d = R)IlU = U'||§ < dlltd — U3

The same holds for Wy, — Wy, and Wy — Wy, We also have ||P|l2 = 1. The remaining task is to bound
the spectral norm of W, and Wy,. Consider the matrix product WJ Wiy We claim that the diagonal elements

of W] Wy, is bounded by Zf:1||ui|\§, and the off-diagonal elements are zero. To see this, denote by Cy, the
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circulant like matrix generated by ;. Then we have Wy, = [CJl, cee CJk]T. The diagonal elements of WJ Wy
are
k k
(Wi Wat);, = > (G Cu) < D Ikl

j=1 i=1

By the orthogonality of U, the off-diagonal elements are
k k
T _ T
(W War) ., = 2 (e Cu) =37 (G, (C),, =0
j=1 j=1

Thus, the spectral norm [|[Wy|l2 < \/Zle lU:]13 < 1, and |[Wy |2, [Wi]]2 < 1 also hold. Then we can derive

1he = Billz < ppBo VAW = W lp + prd|U = U' |l + prllhe—1 = hi_yl2-
Apply the above inequality recursively, we get

—1
Mthh<m3fﬂ/HW W%+md LA

< Bmftnw —W|le + dt|ld fU’HF.
Thus, we have the following Lipschitz continuity of ||y||2,
lye = yillz < AV = V[l + BoVat|w — W' ie + dt |l —U'||p.
We also bound the norm of h; by induction. Specifically, we have
hellz < pul| PWihi—1 + PWwai|le < pullWyhi—1ll2 + prllWwaill2 < [[hi—1ll2 + Ba.

Applying the above expression recursively, we have ||h;||z < min{v/d, Byt} < B,t. Then following the same
argument for proving the generalization bound of vanilla RNNs, we can get the generalization bound for Conv
RNNs as

B, kt\/log (dt+/m log 5

P (% # 2) < Ry(fi) + O



