Published as a conference paper at ICLR 2020

IMPLICIT BIAS OF GRADIENT DESCENT BASED AD-
VERSARIAL TRAINING ON SEPARABLE DATA

Yan Li, Huan Xu, Tuo Zhao

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

Atlanta, GA 30318

{y1i939, huan.xu, tourzhao}@gatech.edu

Ethan X.Fang

Department of Statistics
Pennsylvania State University
University Park, PA 16802
xxf1l3@psu.edu

ABSTRACT

Adversarial training is a principled approach for training robust neural networks.
Despite of tremendous successes in practice, its theoretical properties still remain
largely unexplored. In this paper, we provide new theoretical insights of gradi-
ent descent based adversarial training by studying its computational properties,
specifically on its implicit bias. We take the binary classification task on linearly
separable data as an illustrative example, where the loss asymptotically attains its
infimum as the parameter diverges to infinity along certain directions. Specifically,
we show that for any fixed iteration 7', when the adversarial perturbation during
training has proper bounded /o-norm, the classifier learned by gradient descent
based adversarial training converges in direction to the maximum ¢5-norm margin

classifier at the rate of O(1/+/T), significantly faster than the rate O (1/logT)
of training with clean data. In addition, when the adversarial perturbation during
training has bounded /,-norm with ¢ > 1, the resulting classifier converges in
direction to a maximum mixed-norm margin classifier, which has a natural inter-
pretation of robustness, as being the maximum ¢s-norm margin classifier under
worst-case {,-norm perturbation to the data. Our findings provide theoretical back-
ups for adversarial training that it indeed promotes robustness against adversarial
perturbation.

1 INTRODUCTION

Deep neural networks have achieved remarkable success on various tasks, including visual and speech
recognitions, with intriguing generalization abilities to unseen data (Krizhevsky et al., 2012; Hinton
et al., 2012). One salient feature of deep models is its overparameterization, with the number of
parameters several orders of magnitude larger than the training sample size. As a consequence of such
overparameterization, it is likely that the empirical loss function, in addition to being non-convex,
can have substantial amount of global minimizers (Choromanska et al., 2015), while only a small
subset of global minimizers have the desired generalization properties (Brutzkus et al., 2018).

Contrary to the worst-case reasoning above, researchers have observed that simple first-order algo-
rithm such as Stochastic Gradient Descent (SGD) !, performs surprisingly well in practice, even
without any explicit regularization terms in the objective function (Zhang et al., 2017). Inspired
by classical computational learning theories, one plausible explanation of such a remarkable phe-
nomenon is that the training algorithm enjoys some implicit bias. That is, the training algorithm
tends to converge to certain kinds of solutions (Neyshabur et al., 2015b;c), and SGD converges to
low-capacity solutions with the desired generalization property (Brutzkus et al., 2018). Recently,
some exciting works have related the implicit bias to specific first-order algorithms (Wilson et al.,

'In conjunction with Dropout (Srivastava et al., 2014) and Batch Normalization (Ioffe and Szegedy, 2015)



Published as a conference paper at ICLR 2020

2017), stopping time (Hoffer et al., 2017), and optimization geometry (Gunasekar et al., 2018a;
Keskar et al., 2017). Some practical suggestions based on these findings have also been proposed to
further improve the generalization ability of deep networks (Neyshabur et al., 2015a).

Despite the aforementioned phenomenal success achieved by deep neural networks, it is observed that
adversarially constructed small perturbation to the input can potentially fool the network into making
wrong predictions with high confidence (Szegedy et al., 2014; Goodfellow et al., 2015). This issue
raises serious concerns about using neural network for some security-sensitive tasks (Papernot et al.,
2017). Researchers have devised various mechanisms to generate and defend against adversarial
perturbations (Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016; Carlini and Wagner, 2017,
Athalye et al., 2018; Xie et al., 2018; Papernot et al., 2016). However, most of the defense mechanisms
are heuristic or ad-hoc, which lack principled theoretical justification (Carlini and Wagner, 2016;
He et al., 2017). Inspired by literatures in robust optimization (Wald, 1939; Ben-Tal et al., 2009),
Feige et al. (2015); Madry et al. (2018) formalize the notion of achieving adversarial robustness (i.e.,
having small adversarial risk) as solving the following minimax optimization problem
Inin Ly (0) = min B )0 [rgleagf(f), z+6,y)|, (D
where A is the set that each sample could be contaminated by arbitrary perturbation chosen within
this set. As a common practice, adversarial training refers to the finite-sample empirical version of (1)
without access to the underlying distribution D that
N

in Loqv(0) = mi 00,z + 6, ). 2
Inin av(0) (ggggi:lgg( z; +0,y:) 2)

A commonly adopted approach to solving (2) is the the Gradient Descent based Adversarial Training
(GDAT) method. At each iteration, GDAT first solves the inner maximization problem (approxi-
mately) for adversarial perturbations, and then uses the gradient of the loss function evaluated at
the perturbed samples to perform a gradient descent step on the parameter #. A natural question
is then how adversarial training helps the trained model in achieving adversarial robustness. Some
recent theoretical results partially answer this question, such as deriving adversarial risk bound
(Athalye et al., 2018), relating it to the distributionally robust optimization (Sinha et al., 2018), and
characterizing trade-offs between robustness and accuracy via regularization (Zhang et al., 2019).

Yet, all existing results neglect the algorithmic effect during the training process in promoting
adversarial robustness. Inspired by the significant role of algorithmic bias in the generalization of
neural networks, it is natural to ask

Does gradient descent based adversarial training enjoy any implicit bias property?
If so, does the implicit bias provide insights on how adversarial training promotes robustness?

Motivated by these questions, in this paper, we study the algorithmic effect of adversarial training by
investigating the implicit bias of GDAT. Due to current technical limits in directly analyzing deep
neural networks, we analyze a simpler model, with the key characteristics that the model overfits
the training data while being able to generalize well. Specifically, we take the binary classification
with linearly separable data as an example. This helps us focus on the effect of implicit bias without
dealing with complicated structures of neural networks.

Main Contributions. We summarize our main theoretical findings below.

e Our first part of result shows an interesting interplay between adversarial perturbation and implicit
bias of the gradient descent (GD). By exploiting this interplay, we show a property of adversarial
training that is not known in the literature before: adversarial training accelerates convergence.
Specifically, when the perturbation is bounded by fo-norm, i.e., A = {§ € R? : ||§||2 < ¢}, with
proper choice of c, the gradient descent based adversarial training is directionally convergent that
lim; o0 ﬁ = ug, where uy is the maximum /2-norm margin hyperplane (i.e., standard SVM)
of the training data. In addition, when the perturbation level c is set according to 1" appropriately,
the rate of convergence is O(1/+/T)?, which is exponentially faster than the rate O (1/log T') when
we use standard clean training, i.e., training with clean data using gradient descent. Based on this,
we establish that the convergence of training loss on clean data using GDAT is almost exponentially
faster than standard clean training using GD.

20 hides logarithmic factor.
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o Our second part of result shows that adversarial training adapts the implicit bias of gradient descent
for different adversarial perturbation geometry. Specifically, when the perturbation is bounded
by {,-norm for ¢ > 1,i.e, A = {§ € R? : ||§]|, < c}, with proper choice of ¢, the gradient

. . . . . . . t
descent based adversarial training is directionally convergent that lim;_, HGQW = ug 4, Where

U2, 4 1s the maximum mixed-norm margin hyperplane of the training data. We further reveal natural
interpretation of robustness that we obtain the maximum />-norm margin classifier under worst-case
£4-norm perturbation.

Notations. For two vectors z,y € R?, (z,y) = Z?Zl x;y; denotes their Euclidean inner product.

For a vector § € R?, ||6][, defined by ||0]|P = 25:1 |6;|7 denotes its p-norm for p € [1,00), and
|10]| o0 = max;e(q |05, where [d] = {1,...,d}. For any general norm || - ||, we denote its dual norm
by [|z[|« = max)|y| <1 (,y). The sign function is sign(v) = 1(,>0) — L(y<0). For alinear subspace
L € RY, we denote its orthogonal subspace by L.

2 BACKGROUND

We consider a binary classification problem using a dataset S = {(z;,v;)}"; C R x {—1,+1}. We
aim to learn a linear decision boundary f(x) = (6, x) and its associated classifier y(z) = sign (f(z)),
by solving the empirical risk minimization problem:
in £(0;S) = mi 0(y;z.] ), where £(-) is some loss function. 3

min £(0;.S) ;gﬁ{g;(y% ), where £(-) i uncti 3)
In what follows, we suppress the explicit presentation of S when the context is clear, and we focus on
the exponential loss £(r) = exp(—r). We point out that our analysis can be further extended to other
smooth loss functions with tight exponential tail such as logistic loss.

We assume the dataset S is linearly separable, i.e., there exists w such that min;¢(y yiz; u > 0.
Under this assumption, one notable feature of problem (3) is that there is no finite minimizer, and
L(6) — 0 only if ||#||2 — oo along certain directions. In fact, there is a polyhedral cone C, such that

for any u € C, we have lim,_,, £L(a@) = 0.

Several recent results have studied the implicit bias of gradient descent algorithm on separable dataset.
Soudry et al. (2018) study the implicit bias of the gradient descent algorithm (GD) on (3), and
show that lim;_,, ||6%||2 = oo, while % converges in direction to the maximum /{5-norm margin
classifier (i.e., the standard SVM). Ji and Telgarsky (2018) further study the convergence of risk and
parameter without separability condition. (Ji and Telgarsky, 2019) and (Gunasekar et al., 2018b)
study the implicit bias for training deep linear network and linear convolutional networks, respectively.
Gunasekar et al. (2018a) also analyze the implicit bias of steepest descent in general norm || - ||, and
show that 6% converges in direction to the maximum || - ||.-norm margin hyperplane.

Throughout this paper, we assume the perturbation set is an £,-norm ball with radius ¢, i.e., A = {§ €
R? : ||6]|, < c}. Under the general framework of adversarial training in (2), we aim to minimize the
empirical adversarial risk )

gy Coae(0) = gul 03 mgesp (Sl 8070). @
Note that, given any 6, the inner maximization problem in (4) admits a closed form solution. Then the
gradient descent based adversarial training (GDAT) algorithm runs iteratively that at the ¢-th iteration,
we first solve the inner maximization problem by deriving the worst adversarial perturbation of each
sample. It is not difficult to see that for each sample, the worst perturbation is §! = cy;d;, where 6; =
argming, |5, <1 (9, 0"). Then, letting each sample’s perturbed counterpart be (7}, y;) = (v; + 9}, i),
we take gradient of the loss function evaluated at the perturbed samples and perform a gradient descent
step, i.e., 01Tt = 08 —ntVo L (0 {(Zt, y:)}™,)), where n® > 0 is some prespecified stepsize. We
present the outline of GDAT in Algorithm 1.

3 THEORETICAL RESULTS

In this section, we show that the GDAT algorithm possesses implicit bias, which depends on the
perturbation set during training. We provide explicit characterization of the implicit bias, and further
conclude that such implicit bias indeed promotes robustness against adversarial perturbation.
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Let us start with some definitions. Con-

sider a dataset S = {(z;,y;)}"_, C R? x Algorithm 1 Gradient Descent based Adversarial Train-
{—1,+1}. Givenp,q > 0 such that 1 /p+ ing (GDAT) with £,-norm Perturbation

1/q = 1, the £¢-norm margin of Hy on S is Input: Number of iterations 7', perturbation level c,
defined as 74 (#) = min;ep,) vix; 0/]|0]]p.  stepsizes {n'}7_,, samples {x;,y; }7,.

Note that for z; € R%, [§7z|/||0||, mea-  Initialize: 6° < 0.

sures the ¢, distance between z; and the fort=0,...,7 —1do

hyperplane Hyg = {z € R?: T2 = 0}. fori=1,....ndo .

Since y; € {—1,+1}, when Hy correctly Compute 0] = cy; argmin, s, <1 (9,0")
classifies all samples, 7,(6) measures the Let (2%, y;) < (z; + 6%, v:)-

minimal £, distance between the samples end for .

in S and Hy. Given that v,(6) is scale- Ot 0t — LS exp (—yi@] 0') (—yidi).

invariant with respect to 6, without loss of end for
generality, we restrict ||0||, = 1. We also
identify the hyperplane Hy by its normal vector 6.

Definition 3.1. Forp,q > 0 with 1/p + 1/q = 1, the maximum {,-norm margin hyperplane u, of
S = {(wi,y:)}y C RY x {—1,+1} and its associated {,-norm margin ~, are defined as
Ug € argmax min y,-x?&, Vg = Mmax min yla:lTH 5)
[16]|,=1 €[] 110]],=1 i€[n]
We denote SV (S) as the support vectors of S, i.e., SV(S) = argmin , ,)cs (Uq, y).

By the separability assumption, u, is an optimal hyperplane that correctly classifies all samples
with the maximal margin v, > 0. Next, by the notion of margin defined above, we characterize the
landscape of empirical adversarial risk in (4) based on the perturbation level c.

Proposition 3.1. Let p,q > 0 satisfy 1/p + 1/q = 1. Given a nonnegative scalar ¢, where
0 < ¢ <7y = max|g||,<1 Mile[y) yiz; 0, problem (4) has infimum 0 but does not admit a finite

o~

minimizer. When ¢ > v, problem (4) has a unique finite minimizer 0(c), and is equivalent to the
standard clean training with explicit {,-norm regularization. That is, there exists A(c) > 0 such that

~ 1 <
0(c) = argmax — Z exp(—yiz; 0) + X(c)||0]],-
oerd TV i

It is not difficult to see that for ¢ < 7, any perturbed dataset S = {(Z;, )}y, with ||a; — Z4||, < ¢
for all 4, is still linearly separable, which directly follows from the definition of -y, above. On the other

hand, when ¢ > ,, by the definition of +,, there exists some perturbed dataset S= {(@s,9:) 1y,
with ||z; — Z;||q < cfor all 4, such that S is no longer linearly separable.

3.1 ADVERSARIAL PERTURBATION WITH BOUNDED /5-NORM

In this subsection, we analyze both the empirical adversarial risk convergence and the parameter
convergence of the case when the perturbation set A in (4) is an ¢5-norm ball with radius c.

Adversarial Risk Convergence. We first analyze the convergence of empirical adversarial risk (4)
using GDAT. One substantial roadblock of minimizing (4) is its non-smoothness, in the sense that
Laqv(0) is not differentiable at the origin, and its Hessian V2L, 4, (6) explodes around the origin. To
address the challenge, our key observation is that, by the next lemma, at each iteration, there exists an
acute angle between the update on #* and the maximum £5-norm margin hyperplane wuy. This gives a
lower bound on ||6¢||5.

Lemma 3.1. Take A = {6 € R? : ||6|]2 < c} in problem (4). Given ¢ < 73, we have that
(=V Lagv(0),u2) > Laav(0) (2 — ¢) > 0 for any § € R4

We highlight that despite its simple proof, Lemma 3.1 and its generalization to {,-perturbation is a
crucial step for analyzing both adversarial risk and implicit bias. In addition, our techniques here can
also be adapted to simplify the proof of Lemma 10 in (Gunasekar et al., 2018a), which, in comparison,
is more technically involved.

Since we initialize GDAT (Alg. 1) using §° = 0, any perturbation inside A will have no effect on
the adversarial loss. Hence we take clean samples as adversarial examples at the first iteration of
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GDAT. From Lemma 3.1, we have the following simple corollary showing that our whole solution
path {6*}L_, is bounded away from the origin.

Corollary 3.1. Let 6° = 0 in Algorithm 1 with g = 2, we have: ||0%||2 > n°a forall t > 1.

By Corollary 3.1, we bypass the non-differentiability issue at the origin and also control the Hessian
V2L.4v () throughout the entire training process. Similar to (Ji and Telgarsky, 2018), in the next
theorem, we show that the loss £,4(6), although not uniformly smooth, is locally L4y (6)-smooth.
Consequently, by the smoothness based analysis of the gradient descent algorithm, we establish the
convergence of the empirical adversarial risk.

Theorem 3.1. Suppose ||z;||2 < 1foralli=1...n. For GDAT (Alg. 1) with {3-norm perturbation,
ie, A={6 €RY:||d]|]a < c},wesetc<ye,n’=1landn' =n < min{#ﬁc(m, 1} for
t > 1, then we have

1< Ty log?
E;g}gz\(exp (—yi(zi +06;)'6") =0 <”7(72_C)2 . (6)

In comparison with the standard clean training using GD (Ji and Telgarsky, 2018), this theorem states
that we pay an extra (yo — ¢)~2 factor in the risk convergence of adversarial training. However,
this direct comparison is too pessimistic since we compare the adversarial risk with the standard
risk (corresponding to A = {0}). Interestingly, as seen later in Corollary 3.2, we prove that the
convergence of standard risk in GDAT is significantly faster than its counterpart in the standard clean
training using GD.

Parameter Convergence. We then show that if we set the perturbation level ¢ < 79 in the GDAT
algorithm, GDAT with ¢5-norm perturbation possesses the same implicit bias as the standard clean

training using GD, i.e., we have lim; ﬁ = uq. Intuitively, GDAT with ¢5-norm perturbation

searches for a decision hyperplane that is robust to £>-norm perturbation. Since the learned decision
hyperplane in the standard clean using GD converges to us, which is already the most robust decision
hyperplane against ¢s-norm perturbation to the data, GDAT retains the implicit bias of standard clean
training using GD.

Surprisingly, even though both GDAT in the adversarial training and GD in the standard clean training
converge in directions to wug, their rates of directional convergence are significantly different as shown
later. Specifically, letting the perturbation level c depend on the total number of iterations 7' in the
GDAT algorithm, the directional error after 7 iterations in GDAT algorithm can be significantly
smaller than the error of GD in the standard clean training.

We first show that the projection of 6 onto the orthogonal subspace of span(us) is bounded.

Lemma 3.2. Define a(S) = min|j¢||,=1,cespan(uz)t MaX (2 y)esv(s) (&, yx), where we assume

SV(S) spans R%. Let 0, be the projection of vector 0 onto span(usy)*. Then there exists a constant K
that only depends on a(S) and logn, such that ||0", ||2 < K for any t > 0 in the GDAT algorithm.

Note that the same «(S) is defined in (Ji and Telgarsky, 2019) and proved to be positive with
probability 1 if the data is sampled from absolutely continuous distribution. We then show in the next
lemma that ||0?||2 goes to infinity, where we provide a refined analysis to establish the acceleration of
the directional convergence in comparison with the standard clean training.

Lemma 3.3. Under the same conditions in Theorem 3.1, and let o« = «(S) defined in Lemma 3.2.

Then for all t > 0, we have
tn(y2 —¢)?
t miy2 —¢)” _
101k > tog (220 ) /(02— )

Lemma 3.3 provides the key insight to establish the acceleration of directional convergence. Specifi-
cally, it allows us to set ¢ depending on the total number of iterations 7', so that ||#7 ||, is sublinear in
T, in comparison with being logarithmic in 7" in standard clean training as in Ji and Telgarsky (2018).
We are now ready to present the main theorem for parameter convergence.

Theorem 3.2 (Speed-up of Parameter Convergence). Under same conditions in Theorem 3.1, and
let « = a(S) and K be defined in Lemma 3.2. In GDAT with {5-norm perturbation, let ¢ and total
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141/ 1/2 -
number of iterations T satisfy vo — ¢ = (%) , and define 9T = ﬁ. We have
_ A+1/0)/2 K oo T
1- (7" w)y=0(" %2 (7)
VIvT

One might argue that the polynomial dependence on sample size n in (7) is too pessimistic, making
the GDAT unfavorable in comparison with the standard clean training. We show that this is not an

. . . . . . . . =T . ..

issue by a direct comparision of iteration complexity to achieve || — us||2 < € for a given precision
. . . =T ~

€ > 0. Specifically, given € > 0, to achieve ||§" — uz||2 < €, GDAT needs O (n(lﬂ/o‘)e”) number

of iterations. In comparison, the standard clean training by GD needs O (nexp (¢~')) number of
iterations (Ji and Telgarsky, 2018), which has exponential dependence on precision .

Finally, by Theorem 3.1 and Lemma 3.3, we show that the empirical clean risk after 7" iterations of
GDAT is almost exponentially smaller than its counterpart in the standard clean training.

Corollary 3.2 (Speed-up of Clean Risk Convergence). Under the same conditions in Theorem 3.2,
we have

L") =0 (exp <fp\/f/log T)) ,

where L is a constant dependent on 7, o, n.

Note that the empirical clean risk decreases at the rate of O (exp(—\/f)) up to a logarithmic factor in

the exponent. In comparison, using standard clean training with GD, we only have £(07) = O (1/T)
(Soudry et al., 2018).

3.2 ADVERSARIAL PERTURBATION WITH BOUNDED /,-NORM

In this subsection, we generalize our results to the case where the perturbation set is some bounded
¢4-norm ball. To facilitate our discussion, we first define a robust version of SVM.

Definition 3.2. For a given separable dataset S with {4-norm margin v4 and ¢ < g, letting
1/p+1/q =1, the robust SVM against {,-norm perturbation parameterized by c is
1 T .
Inin §||0||§ stooyxy 0>, +1,Vi=1,... n (8)

Remark 3.1 (Maximum Mixed-norm Margin). Note that problem (8) is equivalent to solving for
a maximum mixed-norm margin hyperplane. Specifically, by the KKT condition of (8), there exists
n(c) > 0, such that (8) is equivalent to the following problem:

arn]ikg 10]]2 + ()]0l st vz, 0> 1,¥i=1,...,n. )
€

Now define || - || = || - ]2 + n(c)|| - ||p, it is clear that || - || defines a norm which is a mixture of
U5 and Ly, norm. Let || - || be its dual norm. Then we have that the solution to (9) is the maximum

| - ||«-norm margin hyperplane.

Note that the constraint in (8) is equivalent to minj|s, ||, <c yi(z; +6;)70>1,Vi=1,...,n.Bya
simple scaling argument, in the following lemma, we see the robust nature of (8).

Lemma 3.4. Under the same notations in Definition 3.2, problem (8) is equivalent to:

¢) = max min min y;(z; +6;) 0. (10)
124(¢) = max min min yi( )

We denote the (unique) solution to problem (10) as ug 4(c). In what follows, we surpress explicit
presentation of ¢ when the context is clear.

The equivalent formulation (10) provides a clear interpretation on the robustness of (10). In particular,
the robust SVM against £,-norm perturbation parameterized by c is in fact the SVM problem on the
the dataset S(c, ¢), which is generated from S by placing a ¢,-norm ball with radius ¢ around each
samples, i.e., S(c,¢) = {(z,y) : 3 € [n], s.t., ||z — xi|lp < ¢, y = y; }. In other words, ug 4 is the
maximum ¢>-norm margin classifier under worst case £,-norm perturbation bounded by c.

In the remaining part of this section, we first analyze the convergence of the empirical adversarial
risk, and then establish the implicit bias of GDAT with ¢, perturbation for ¢ € [1, co]. Our analysis
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for ¢ € {1, 00} is based on approximation argument. For ease of presentation, we only discuss when
q € (1, 00) in the main text, and defer the discussion for ¢ € {1, 00} in Appendix D.

Adversarial Risk Convergence. Our analysis is similar to the analysis for GDAT with /5 perturba-
tion, where we use similar techniques to address issues such as non-differentiability at the origin and
Hessian explosion of L4y (6) around the origin.

Theorem 3.3. Suppose ||z;||2 < 1fori=1,...,n, and let l + l = 1. In the GDAT with {,-norm

perturbation, setting ¢ < 74 and letting M, = [(1 +cvd)? + p 1)d2P 2} exp (—7%7(1 + C\/E)
setn’ =landnt =n < min{Mi, 1} for t > 1. We have that

1 2
meaxexp —yi(z; +6i)T9t) =0 ( Og;) . (11)

§;EA tn'yQ’q

We point out here that (6) is a special case of (11). In particular, by the definition of v, 4(c), we have
that -y 2(¢) = 2 — ¢, which recovers bound (6) from (11).

Parameter Convergence. We show that if we set ¢ < ~y, in the GDAT algorithm with stepsizes
specified in Theorem 3.3, with ¢, perturbation, the algorithm still possesses implicit bias property,
i.e., B¢ still has directional convergence, and the limiting direction depends on the perturbation set A.

Theorem 3.4 (Implicit Bias of GDAT with £,-norm Perturbation). Under the same conditions in
Theorem 3.3, define ?t = |\9%t||2 , then we have:
—t logn
1— <9 , > —0
2 < logt >
Combining Theorem 3.4 and Lemma 3.4, we conclude that GDAT with £ -norm perturbation indeed
promotes robustness against ¢, perturbation. Using GDAT with £,-norm perturbation will result in a
classifier which is the maximum ¢»>-norm margin classifier under worst case £,-norm perturbations to

the samples bounded by c. The learned classifier will have £,-norm margin at least c. As we increase
perturbation level c to 7y,, the learned classifier will converge to maximum £,-norm margin classifier.

4 NUMERICAL EXPERIMENT

In this section, we first conduct numerical experiments on linear classifiers to backup our theoretical
findings. We further empirically extend our method to neural networks, where our numerical results
demonstrate that our theoretical results can be potentially generalized.

Linear Classifiers. We investigate the empirical performance of the GDAT algorithm on linear classi-
fiers, with training set S = {((—0.5,1),+1), ((—-0.5,—1),—-1),((—0.75,-1),—1),((2,1),+1)}.
It is straightforward to verify that the maximum ¢5-norm margin classifier is uo = (0, 1).

Considering ¢>-norm perturbations, we first run standard clean training with GD, and GDAT with
¢5-norm perturbation (¢ = 0.9573), for 2.5 x 10* number of iterations. In both GD and GDAT
we take constant stepsizes, with 7 = 1 and = 0.1, respectively. By Figure 1(a), we see that the
convergence rate of adversarial loss using GDAT is similar to the convergence rate of clean loss
using GD. However, when we directly compare the clean losses of GDAT and GD, GDAT clearly
demonstrates an exponential speed-up in comparison with GD, which is consistent with Corollary 3.2.
Additionally, as pointed out by Theorem 3.2, GDAT also enjoys significant speed-up in terms of
the directional convergence of 6% to uy. We also compare the norm growth ||6¢ ||, and observe that
the norm generated by GDAT grows much faster than the norm generated by GD, which is also in
alignment with our discussions in Section 3.1.

We further run GDAT with {,-norm perturbation (¢ = 0.5). By Lemma 3.4, we have that us oo =
(0,1). Note that the Hausdorff distance between ¢,-norm ball and /,,-norm ball distance goes to
zero as ¢ goes to infinity. Thus, we have that (10) for ¢ = 1000 is a close approximation of (10) for
g = co. We run two versions of GDAT, where one uses /,-norm perturbation with ¢ = 1000, and
the other uses /,-norm perturbation. We run both algorithms with stepsize 1 = 0.1 for 5.0 x 10°
number of iterations, and we present the results in Figure 1(b). We find that the two training methods
behave similarly. In addition, the empirical directional convergence rates of #* just differ slightly.

Neural Networks. It is seen above that GDAT with />-norm perturbations converges significantly
faster than GD for linear classifiers in adversarial training. A natural question is whether this is still the
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Figure 1: GDAT of Linear Classifiers.

case on adversarial training of more complicated neural networks. We conduct experiments on neural
network with one hidden layer. We take the two classes from MNIST dataset with label 2" and “9" to
form our training set S. We also vary the width of the hidden layer in {64 x 64, 128 x 128,256 x 256}.

One major difference from the case of linear classifiers is that we cannot solve the inner maximization
problem of (2) exactly as it does not admits a closed-form solution. Instead, we solve the inner
problem approximately using projected gradient descent with 20 iterations and stepsize 0.01. We test
two versions of GDAT, where one adopts ¢5-norm perturbations (¢ = 2.8), and the other uses .-
norm perturbations (¢ = 0.1). For standard clean training and the outer minimization problem in (2),
we use the stochastic gradient descent algorithm with batch size 128 and constant stepsize 1075.

We compare the loss and classification accuracy, which are evaluated using the clean training
samples, of standard clean training and GDAT. By Figure 2, we see that GDAT indeed accelerates the
convergence of both loss and classification accuracy on clean training samples. The performance gap
is most obvious when the width of the hidden layer is small, and reduces gradually as we increase the
width of the hidden layer. We argue that such reduction comes from the fact that as network width
increases, the margin on the samples outputted by the hidden layer also increases. As suggested
by Theorem 3.2, in this case, a larger perturbation level ¢ should be used. We conduct additional
experiments with various perturbation level in Appendix E to empirically verify our argument.

12
= Clean Training
1.0} == (5 Perturbation
] ——— ~ loo Perturbation
< 08 S~
5 -
L 06
o
% oa
Z o
=
0275100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Iterations Iterations Iterations Iterations
100%
e g . B S S
g P ,“W—M ‘,/",,_',.
= 90% ‘ i
=1
g so%
<
. i
5‘ 70% i
3 H
£
S 60%
<o
< 4
%0%5 160 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Iterations Iterations Iterations Iterations

(a). Width =64 x 64 (b). Width = 128 x 128 (). Width = 256 x 256 (d). Width = 512 x 512

Figure 2: GDAT of Neural Network on MNIST Dataset.
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5 DISCUSSIONS

We investigate the implicit bias of GDAT for linear classifier. There are several plausible natural
extensions. For example, we can represent a linear classifier using a deep linear network, which
is significantly overparameterized. Some recent results characterize the implicit bias of gradient
descent for training deep linear networks (Ji and Telgarsky, 2019) and linear convolutional networks
(Gunasekar et al., 2018b). Motivated by these results, investigating the implicit bias of GDAT in
training deep linear networks worths future investigations.

Meanwhile, investigating implicit bias in deep nonlinear networks is a more important and chal-
lenging direction: (1) For linear classifiers, adding adversarial perturbations during training can be
understood as a form of regularization, which explains the faster convergence in training. Although
observed empirically, the potential acceleration of adversarial training is not yet understood in the
current literature, to the best of our knowledge. (2) The notion of margin for neural networks still
lacks proper definition, which we need to define to facilitate investigations on the effect of adversarial
training in promoting robustness. (3) Ultrawide nonlinear networks have been shown to evolve
similarly to linear networks using gradient descent (Ghorbani et al., 2019; Lee et al., 2019). We shall
further investigate if our results on linear classifiers can be extended to wide nonlinear networks.
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A PROOF OF PROPOSITION 3.1

Proof. Suppose ¢ < 7,. Letting 0, = auq for o > 0, we have
Eadv(ea) = - Z GXp —YiZ; 9a + C||9(XHI))

= Z exp (—ayix:uq + ca)

1 n
<=3 - .
P exp (—ayq + car)

Letting « — 0o, we obtain lim,—, oo Ladv (o) = 0, which implies infgepe Laav(6) = 0. Note that
L(0) does not admit any finite minimizer since L4y (f) > 0 for any € R,

If ¢ > 74, by the definition of maximum ¢,-norm margin, for any 6 € R?, there exists (y;,x;) € S
for some i € [n] such that y;z 6 < 74||6||,. Hence, Laav(0) = exp (R (c — 74)|[0]],). Then it is

easy to see that £,q,(6) has bounded sublevel set and hence a finite minimizer 9. Since Laav(0) is
convex, we examine its ﬁrst order KKT condition, given by

- Z exp (—ying—i— c||§\|p) (—yixi + c@||§|\p) 5 0. (12)
Consider the regularlzed problem with regularlzatlon parameter 7):

-
- 0) + 1/l
errelﬁ{gnzem —yiz] 0) +nl|0]],.

Its first-order KKT condmon is
= Zexp —yiz] 0) (—yiz;) +nd|0]], 3 0. (13)

Looking at (12) and (13) together, by takingn = £ 37" | exp (—yixiTa—i— c||6| \p), we have that the
solution to the adversarial training problem d is also the solution to the regularized problem. O
To facilitate our later discussions, we point out that by the conjugacy of £,,-norm and £,-norm, (4)
has the following equivalent form that

min L4y (0) = mln — Z exp yimTﬁ + c||0||p) . (14)

gcR4 €RI M
In fact, one can verify that the GDAT algorlthm is equlvalent to gradient descent algorithm on (14).
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B PROOFS FOR SECTION 3.1

Proof of Lemma 3.1. Recall we have Laqy(0) = + 37" | max|s),<c exp (—yi(z; + 6;)"0). For
each sample (z;,y;) € S, given a classifier 6, the worse case perturbation is §; =
argmax| |||, <. exp (—yi(z; +0)70) = argmin 5|, <. ;0 0. The corresponding loss is Laqy (0) =
% Z?:l exp (_yi(xi + gi)Tg)-

Since for a fixed &;, the function exp (—y;(x; + ;) ' 6) is convex in 6, hence the gradient of L,y (6)
is

~VLaav(0 ZeXp ( yi(wi +07) 9) yi(wi + 03).
Then from the definition of us (5) we have
(—V Laae (0 Zexp( yi(wi +8)70) (yil: +30), w2 ) (1s)
> zexp( il +3)78) (v, ua) — ) (16)

> Zexp (i@ +3)70) (2= ) = L O)(2 =), (17D
where in the second inequality holds since [|0;]|2 < cand ||ug||z = 1. O

Proof of Corollary C.1. Since L,q4v(6) is not differentiable at 6% = 0, we use subgradient (note that
Laav(0) is convex) at 0. Spemﬁcally, we take VLaqy (0°) = L 3% | 2; € 0Laqy(6°). Then we have

<91, U9 > = % > (ziug) > n°,, where the last 1nequa11ty uses the definition of 5.

By Lemma 3.1, we have (0%, us) > 1%y, for all t > 1, which also implies (v, u2) > 1%y2 and hence
|[vt]]2 = 0%y for v € [67,6F1]. O

Proof of Theorem 3.1. For simplicity, we let z; = y;x;, where we have ||z;||2 < 1 as we assume
|zi]]2 < 1. We have

1 0
Vﬁadv(ﬁ):;Zexp (—z:9+c|9||2)< ZZ+CH0|| )
V2 Ladv( Zexp T(9+C|9||2>< 2 + o )( —I—ce)—r
16112 16112

60"
+2>ep (—2T0lllle) e (101~ o) /161
i=1

1< ez 0
= > e (=20 +clld]l2) [T = 25 00T /6113 + eI/ 6]l — 00 /1013
i=1
Note that the Hessian expression indicates that the objective is highly non-smooth around origin, and
the loss is not even differentiable at origin. However, we shall prove that starting from origin, every
iteration generated by GADT stays away from the origin with distance bounded below.

Using Taylor’s expansion, and by definition §'*1 = ! — 'V L,q,(6?), we have
1 t t iz, (M1VLaav (09)]1)
‘Cadv(e + ) S ACadv(e ) -1 ||v£adv(9 )HQ + 2 [I(gflaéX+ ])\(H(U))maxa (18)
Ve t7 t4+1

where A\(H (v))max denotes the largest eigenvalue of H ( ), where

I
1
= Z nexp (—z;rv + c\|v||2) 2z —
i=1

7 || || T/Hv||2+c'[/||v‘|2_CUUT/HUH2

To upper bound H (v), we need a lower bound on ||v||, which is readily given by Corollary C.1. That
is, [[vfl2 = n"ye.

12
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We now analyze (18) for ¢ > 1, where we show that £,q,(0?) is locally smooth with parameter
proportional to £,q4,(6%), and with proper stepsize, the risk is monotonely decreasing. Note that

~
zizf < I, =2cqim < 2l c 2ov T /||v]|3 < 1. Now since ||vt||2 > 1%y2, we have ¢l /||v]|z —

cov’ /|[v]|3 < WQCQI Plugglng them in, we have

5
2c
H(v) < - zi:exp (=2 v+ c||v]]2) ( 072> I
9 2c
= Laav(v) | 1 +2c+c"+ —-— ) I,
72
and (18) reduces to
Laav(0"") <Laav(0°) = n'[|V Laav (0[5
t o (092 2 19
+ (T’ HVL"; ( )||) |:(1 —|—C)2 + Tloj/:| max {Eadv(at),ﬁadv(0t+1)} . ( )
2
Suppose Laqy (0171) > Laqy(0?), and let M = {(1 +e)2 + nﬁgz . We have

(1Y Laav (%))

Eadv(aﬂ_l) < ﬁadV(gt) - nt||v£adV(9t)H§ + 9

which implies
M(n')? o
/v‘adV(‘gH_l) < (1 - 9 ||v£adV(9t)|g> (ﬁadet) - 77t||v£adV<9t)H§) : (20)
Meanwhile, if we choose 7! satisfying
2
n'M = n'Laq.(0Y) [(1 +c)? + ﬁ
2
then we have the right hand side of (20) is upper bounded by Eddv(dt), and we have

M»Cadv (0t+1 )a

<1, @21)

M _
L0+ < (1= M0 |mdv<et>||2) (Cate (6) = 1111V Lot (0)3) < Laas (61,
which is clearly a contradlctlon. Hence, if n* satisfies (21), by (19) we have

|V Laav (01)]])? 2
Laael81) < Laae (8) ||V Lagy (63 + IV Ete D [<1+c>2+nofy]£adv<et>
2

t
< Laa(8) = L1V Laare (63, @2)

where the last inequality holds by the choice of ¢ in (21).
Note that if (21) holds for ¢ = 1 for ! = 7, by induction it is easy to see that with constant
stepsize nt = 7 for ¢t > 1, (21) holds for all ¢ > 1. Hence for t > 1, we choose stepsize 71 such
that nL.q, (01) [(1 +c)? + ﬁ} < 1. Note that L,q,(0%) = % Sor . exp (—ziTﬁl + c||91||2) <
exp ((1 + ¢)n°) since ||61]| < n°. Then we only require

0
2

< exp (—(1+ c)n®) -
n < exp (—( 1) (14 ¢)2n0y9 + 2¢
n°(L+c)72/(1+¢)

(L4 ¢)*n°y2 + 2¢

= exp (—(1 + c)no) .

Y2/e
~ 1+ 0)372 +2c¢(1+¢)’
where in the last inequality we take 17 = 1 and use basic inequality exp(—z)x < e ! forxz > 1. In
1} for ¢ > 1, then by previous

summary, we choose n° = 1 and n* = n =
argument, we have (22) holds for all ¢ > 1.

v2/e
mll’l{ (14c¢)3v2+2c(1+c)?

Now we are ready to apply the standard smoothness-based analysis of gradient descent using (22),
take any 6 € R%, we have
1671 613 = 116" — 6112 — 20" (VLaar (67,6 — ) + (1")2[|V Lae (69)] 3

< ||9t - 9”% - 277 ( adv ( at adV(e)) + (nt)QHv‘CadV(et)H%
< ||9t - 9”% - 277t ( adv at adv(9>) + 277t (Cadv(at) — ﬁadv(9t+1))
= 16" = 0[5 — 21" (Laav(0""") = Laav(0)) ,
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where the first inequality holds by the convexity of £,4.(6), and the second inequality holds by (22).
Now sum up the above inequality from s = 1tot — 1. By n' = n < 1 = 1% and L.q,(0°T1) <
Laav(6°), we have

1 1
Laav(6°) — Eadv(t?) < —||91 —0)13 < n (11613 + [16"113) -

Now since 6 is arbitrary, letting 0 = P og(t ) - U9, we have

log t

9 2+ 01 2 S 7_*_ 1+C 27
1011z + 116711 s — o) (1+¢)
and
logt logt 1
Lagv exp (zTu +c- ) < -,
() ; > m-c Y2 —¢C t
which yields

1 log? ¢ log? ¢
Ladv (0 §+<+ 1+c2> :O( )
)< \Gpogr PO tn(y2 — c)?

O
Proof of Lemma 3.2. For simplicity, we let z; = y;x; and £;(6) = exp (—z; 6 + ||f]|2). Define

a= min max <€7zz>
[|€]]2=1,¢£€span(uz)L 1€SV(S)

where SV(S) denotes the set of support vectors. It has been shown in Ji and Telgarsky (2019) (Lemma
2.10) that o > 0 with probability 1 if the data is sampled from absolutely continuous distribution.

We have
t
(VLaav(0%),0 ) = <Zexp T0t+c|0t||2)( zl+c||9t” >,01>
t 9t
1 n
> = (6)
_n;a(e —2;,0%)

> = |00 (=200 )+ > 40" (—z,0") ], (23)

(2:,0% ) >0,i#]

where 2} € S is arbitrary, by definition of a: (—2}, 6 L) > a6 2.

1
n

‘We bound the first term as
05(0%) (25, 0% ) = exp (—(25) 0" + cl|0"]]2) ol |02
= exp (—(5) T0% = (£5) 703, + cl|0[]2) ][0 []2
> exp (= (0", 72u2)) exp (a0, [[2) a0, ||z exp (cl6]]2) ,
where the second inequality uses <z§, uz> > .

On the other hand, we can bound the second term in (23) as
1

1
S @m0z S e (=20 o)) (—=,00)
(2,04 )>0,i#] (20,01 )20,i#]
1
= > e (a0, — 50+ cllff]]2) (=, 04)
(2,04 )>0,ij
> exp (— (0", v2uz)) exp(c||6"||2) exp(—2 0%) (~z:. 6% )
(

1

> exp (= (0", 72u2)) exp(el|6']2) (— ),
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where in the last inequality holds since (6, us) > 0, (z;,6% ) = 2 (uJ ") ug > v2 (6", uz) and
—xexp(—x) > —% for x > 0.

Plugging the two bounds above into (23), we have

1 1
<V£adv(9t),6’ﬁ_> > exp (— <€t,fyqu>) exp(c||0*]|2) |~ —€xXp (aHQ |2 ) all0h |2 — -1
which is non-negative when ||6" || > K' = H'log Sreen

Supposing |6 ||2 > K, by gradlent descent update, we have,
|I9t+1|\2 = 101113 = 20" (V.Laav (0°), 0°) + (n")[|V Laav (")

< 102113 + 20" |1V Laav (0113

< H9 H2 +2 (ﬁadet) - EadV(atJrl)) ; (24)
where the last inequality uses (22).

Now let t satisfy || !||2 < K’ and ||}~ "||s > K. Define t; = min{s >t : [|6% |2 < K'},
when |65 ||2 > K’ for all s > t, we define ¢t; = oo. That is for any ¢ € {to,...,t1 — 1} we have
||0% ||2 > K. then for any s such that ty < s < ¢, summing (24) up from ( to s — 1 yields:
HQJ_||2 < ||9tf||2 +2 (‘CadV(etO) - ‘CadV(es))
< |160% 113 + 2 exp(1 + ¢)

< [0 [13 + 18,
where we use Laqy(0') < Lagv(0') < exp(l + ¢) and ¢ < 1. This inequality shows that for
befflo,....0n 1y C{0:]|0L]2 > K'},
10112 < [107]2 + 18.
Then, we only need to bound ||6%°||2 to conclude the proof, where t, is the first time 6" enters
{6:1|0L]]2 > K'}. We have
eto—l

~ - 1< _
93? _ 93? 1 nto 1PJ_ (TL} :&(Gto 1)(Zi — CM>
i=1

where P, (-) denotes the projection onto span(ug)L. Note that tg is the first time 6 (re)-enters the
region {6 : ||0 || > K'}, and thus || !||2 < K’. We have

0% < K"+ 0o (1 4+¢) <K' +1+c¢< K' +2,
where the last inequality we use ¢ < vy < 1.

In summary, we have shown that for any ¢ such that ||6% || > K’, we have |0’ ||2 < K’ + 20, and
we conclude that ||6" || = K’ + 20 = K for all ¢ > 0. Note that K only depends «(S) and sample
size n. O

Proof of Lemma 3.3. To obtain a lower bound on ||6?||2, we first denote §' = 6! + 6, where 6,
denotes the projection of # onto span(us), and 6% denotes the projection of 6 onto span(us)t. We

have
2

- ZeXp Tgt _ ZTgt t) < logit
tn(y2 —c)?
Let us assume that ||9 || is bounded so that exp(||6% ||) < M, which will be verified immediately.
Choosing an arbitrary support vector z;, we have 0 < (2;,0%) = (z;, uz) (0%, uz) = 72 (0%, us) =
¥2|16% |2 < ~2]|0t||2, hence the previous inequality becomes:

5 exp(—c[[0"]|2)-

nlog?t :
exp(—2][0* _7exp709 M
- (=72l10°]2) o P (=cllo"]]2)
which is equivalent to
tn(%—c)Q)
6|5 > 1o — ). 25
16%]]2 = g( Ul /(2 —c) (25)

Now we only need to show that ||6° || < M for all ¢ for some M. Since we have shown in Lemma 3.2
that ||0||2 < K, we choose M = ef < exp (%) = O(n=), and the lower bound (25)

becomes

(2 — ¢)?
0t > 1 —_— — 26
116°[|2 > log (n1+1/a g 1 /(72 =), (26)

which concludes our proof. O
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Proof of Theorem 3.2. We denote 6" = 0! + 6 , where 0!, denotes the projection of 6 onto span(usz),
and 0% denotes the projection of 6 onto span(uz)~. Combine Lemma 3.2 and Lemma 3.3, we have

t t t t
1_<||09t|| u2>:1_ <0u2’u2>+<0L7u2> <1 <9u27u2> K
2

167> =1 e e
el KB K
o T ST e e
A
EEREE
< K2 n K
RIS

1
plt1/« log?> T

/2
By our choice of c and 7" that y3 — ¢ = (T) , together Lemma 3.3, the Theorem holds
as desired. O

Proof of Corollary 3.2. By Lemma 3.3 and the the choice of parameters that 7 — ¢ =

[e3 1/2
(M) _ we have:
T 1/2
01> (el )

nT
n(+1/e) Jog? T
Together with Theorem 3.1, we have

L(OT) = Laav(07) exp (—c[|07|2)

< log? T . . nT 1/2
SHm7——wexp| | —— =
Toys — )2 " n(+1/0) Jog? T

1/2
- T
=0 (exp ( ¢ <n(1+1/a) log2T> )) .

npltl/e log?> T

1/2
where the last equality holds by the parameter choice v — ¢ = ( T ) . Finally, letting

p=c (ﬁ) Y ?, the claim follows immediately. O

C PROOFS FOR SECTION 3.2

In this section, we consider general £,-norm perturbations. In short, we show that no matter how
small the perturbation is, adversarial training changes the implicit bias of standard clean training
using gradient descent, and adapt it to specific norm we choose for adversarial training.

Intuitively, we might expect that under the £,-norm perturbation the implicit bias of gradient descent
algorithm changes to converging in direction to £,-norm max margin solution %,. We provide a
counter example here. Consider S = {z1 = (z1,y1),22 = (z2,y2)} with 27 = (10,1),29 =
(—10, —1) and Yy = 1,y2 =—1.

It is easy to see that the ¢,,-norm max margin solution is T, = (1,0) with 7o, = 10, and the
£o-norm max margin solution is Ty = (\/%, ﬁ) with v = v/101.

Without perturbation, we have that the gradient descent initialized at the origin converges in direction
to £2-norm max margin solution us with one step. Now we take [..-norm perturbation with ¢ = 0.5,
the negative gradient is given by: —Vﬂ'ad.V(Q).: %ﬂ(zl —c- sign(?)) + [22&(22 — ¢ - sign(6)).
We initialize gradient descent at the origin with any constant step size. By the symmetry of the

training data, we have that ¢ always stays always inside quadrant I, and converges in direction to
— A /361 1 . . . — — . . . . —_ —
u=( V62 —\/3672), which is neither @, or s, but inside the interior of convex hull of 7%, and us. In

fact, w exactly equals to the us o, defined in (10).

16
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Proof of Lemma 3.4. We prove that solutions to (10) and the robust SVM against £,-norm pertur-
bation parameterized by c (8) are equal up to a constant factor. We first have that 2 4(c) in (10) is
equivalent to

Y2, = H]ér‘l‘ax min y;x z] 0 — |0, 27)
2
We denote the unique solution t'(r) (27) as ug 4. It is not difficulty to see that
Yi; U2q — c||u2 al2 Z72.Vi=1,....n

We define o ; = v —4 then:

v, Us,q — c||Us, q&g >1,Vi=1,.
It is now clear that %y , is a feasfble solutlon 0 (8). We denote the 0pt1mal solution to (8) as wu, then

we have by the optimality of @ that |[T||2 < ||T2,4]]2 < H“i .all2 and feasibility of u that

yit; (2,40) = ¢||72,q7]|5 > ?2
Then from previous two 1nequal1tles we have v Juis a ea51ble solutlon to (27) with objective value
equal to the optimal objective value of (27). Since the optimal solution to (27) is unique, this implies

that w = Zz" , which concludes our proof. O
»q

We extend Lemma 3.1 to bounded £,-norm perturbation set.
Lemma C.1. Recall the definition of 3,4 in (10). For any ¢ < 7y,, we have that (—V Lqv(0), u2 4) >
Lady(0)72,4 for all € RY,

Proof. Recall that we have Laqy(f) = L37" maxs),<cexp (—yi(z; +6;)'6). For
each sample (z;,y;) € S, given a classifier 6, the worst case perturbation is 6 =
argmax| 5| <. exp (—yi(z; +06)'0) = argmins . y;6' 0. The corresponding loss is then

Eadv(e) = % Z,?:l exp (—yz(:cz + 5~2)T0

Since for a fixed d;, the function exp (—y;(z; + ;) " 0) is convex in 6, hence the gradient of L,y (6)
is

—VLaav (0 Zexp ( yi(zi + ;) 9) yi(zi + 0;).
Then by the definition of uy 4, we have
<_v£adv ZGXP ( xl + 6 9) <yl($z + 8;)7 ’U/27q> (28)
( 1'1 + 5 9) V2,q = ['adv (0)727117 (29)
i=1_
where the second inequality holds by ||d;||; < ¢, and the definitions of us 4 and 2 , in Lemma 3.4.
O

Note that for ¢ = 2, by the fact that v2 2(¢) = 2 — ¢, we immediately have Lemma 3.1 holds.

As a direct corollary of Lemma C.1, we have |02 is bounded away from 0 for all ¢ > 1.
Corollary C.1. Let 6° = 0 in Algorithm 1, we have: ||0*||2 > n°a 4 foral t > 1.

Proof. The proof is similar to Corollary 3.1, we omit the details here. O

Proof of Theorem 3.3. For simplicity, we define z; = y;x; and have ||z;||2 < 1 since ||z;[|2 < 1. We
have for 6 # 0

1 n
VLaa(0) = — > exp (=2 0+ l|0]]p) (—z + col|6],) .
=1

1 n
V2Laae(8) = — 3" exp (=270 -+ cllBlly) (—2: + cOllBll,) (~2i + clloll) "

1 & N N ~ . i
+5Zexp (=2 0+ cll0]]p) c (L= p)|I6], > (@P~10)(@P10) T + (p — 1)||0]|, Pdiag(©P20)),

17
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where ©P 16 denotes taking element-wise (p — 1)-th power of 6.

Note that we have ||0]|6]],||; = 1. By the conjugacy of ¢,-norm and ¢,-norm with % + % =1, we
have||6|], = max)j,||, <1 (6, s). Hence we upper bound the first term in Hessian V2 L,q,(¢) above
by

1 n
=D oxp (=2 0+ cll6lly) (—2 + cdlloll,) (~z + cal6ll,)" (30)
1 n
< g;exp (== 0+ cll6ll,) (1 + eVdl[6]]2)”. 31

‘We further have:
diag(®P~20)

(p = DIOIp diag(©"~20) < (p — 1) FES

I
— 1)dr-1
®= D g
3p—2
<(p—1)dz>—=2 .
116]2
Together with the fact that p > 1, we bound the Hessian V2L, 4, (6) as:
3 2
V2 Loan(0) < Lan(0) (1 Vi) + clp = 1) | 1
2

Note that the Hessian expression indicates that the objective is highly non-smooth around origin.
However, as shown in Corollary C.1, starting from origin, 6% always stays away from the origin with
distance bounded below.

Using Taylor expansion, and by §'*1 = 6! — n!'V L4, ("), we have

t t 2
Eadv(0t+1) S Eadv(gt) - T]tHvACadv(gt)Hg + (77 HVL:HSV(Q )H) [1’911&9)(+ ])\ (H(v))max7 (32)
velht,ot+1

where A (H (v)),.... denotes the largest eigenvalue of H (v), and
-2 1
H(v) = Laay(v) [(1 +eVd)? +c(p — 1)d? 2 ol
Ul|2
Since 1° = 1, by Corollary C.1, for any t > 1, we have ||0*||2 > 72 4. Letting m, = (1 + cv/d)? +
-
c(p — l)dg‘pif2 WZ—lq, and since that £, 4, (6) is a convex function, we obtain that

(n'[|V Laav (0°)]])*
2

We then show by contradiction that we have L.q, (6'11) < L.4,(0%). Assume this is not the case,
then we have:

Eadv(9t+1) < (1 -

1.

‘Cadv (9t+1) S Eadv(et) - ntHv‘cadv(et)H% + mp max{ﬁadv(9t+la ‘Cadv(et)}-

M(n')? o
MO 9 0 0013)  (Lae(®) — 1119 Laan (0)1)
However, if we choose ' satisfying 1t < m, we have the right hand side of previous
inequality strictly smaller than L4, (6%), which is clearly a constradiction. Hence when we choose
nt < m, we have L4, (0171) < Laqv(6%) and

HIV Laay
Eadv(oH»l) < quv(at) *ntHVL:adv(at)H% + (77 || ; ( )H) adv(et) (33)

Now by induction, if we choose ! = 5 < m for t > 1, then we have (33) holds for all

t > 1. Note that we have an upper bound of L,qy(61), which is

ﬁadv(el) = Zexp( yi (2 +5 )TG ))

:—Zexp( il +3) 0} — yils + ;)01 )

IN

- Z exp (7737,1 + (14 C\/g)) = exp (f'y%,q +(1+ c\/g)) , 34)
i=1

18
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where &; denotes the worst case perturbation to z;, and 6, denotes projection of #* onto span(us ),
and 6, denotes projection of §* onto span(ug,)*.

In summary, we have ttiat if
nt=n< min{ﬁ, 1} for all t > 1, where M,, = m,, exp (_73,11 +(1+ cx/g)) , (35)

p
we have

(77|‘V£adV(9t)||)2
2

< Laau (0) = 311V Laa (0] (37)
where the last inequality holds since nm, Laqy (0%) < nmyLagy(0') < 1. Now for any 0 € R4, we

’Cadeﬂ_l) < Eadet) - n||V£adV(9t)||g + mpﬁad\'(et) (36)

ve
105 = 0115 = 110 = 0113 — 21" (VLaav(6°), 0" = 0) + (n")[|V Laav (0")]13
< (10" = 0113 — 20" (Laav(0) = Laav(0)) + (1)?||V Laav (0°)]13
< 10" = 0113 — 20" (Laav(0) = Laav(6)) + 20" (Laav(0') = Laav(0))

= ||0t - 0”% - 277t (Ladv(6t+1) - ‘Cadv(o)) )
where the first inequality holds by the convexity of £,4y(6), and the second inequality holds by (37).

adv

adv

Summing up the above inequality from s = 1tot — 1 and by n* = n < 1 = 7" together with
Lagy (05T1) < L,44(0%), we have

Laav(0") = Laav (0) < 3 H91 —0l3 < (||9H2 +116'13) (38)
Since @ is arbitrary, by choosing 6 = i(:) u2 .q» We have
log® ¢
161 -+ 116"113 < 5+ (1+ evid)?
2,
and N !
1 logt 1
Laav(0) = — exp< min (z; +6;) " u )g,
v(6) n; (e 89 Tua T ) < 5
which yields
1 1 [log’t log” t
Loaan(0") <~ + — Og + (14 eVd)? s, (39)
t 2] 2,q t77727q

O

Parameter Convergence: Intuition. Before we formally prove the implicit bias of GDAT, we
provide some intuitions here for better understanding. We claim that Ty, = lim;_, ﬁ is in the
same direction as the solutjon to

mein §H9||2 +0())0|lp, st z'0>1,Vi=1,...n. (40)

Note that 6" is a conic combination of {z; — ca||6"||,};c[n], and ||6"||, only depends on the
direction of #*. Hence by normalizing the norm of #* and using lim;_,« ||6%|]2 = oo, if the limit

. t . . . . . . .
Uoo = limMy—00 HHOW exists, it satisfies the following condition under proper scaling that
n

6= ai(z —cd|l§']],),

i=1
st a; >0,2/0>1,Vi=1,.
ai(z T9—1)_0v2_1

Defining a = (ax,...,a,) and (6,a) = ((||8]|,¢ + 1), (||9||pc +1 ), it is easy to see that (6, a)
is a solution to the following system

0=> ai(z — cd||0"]],), (41)
i=1

st oa; >0,z 0>cllf]l, +1,Vi=1,...n. (42)

ai(z 60— |0, —1) =0,Vi=1,...n. (43)
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Notice that the above set of equations (41)-(43) is exactly the first-order KKT condition of the
following optimization problem

1
nbiniHHHS stz 0> ¢l|0]], +1,Vi=1,...n. (44)

(44) has a robust reformulation as maximizing the ¢>-norm margin under the worse case {,-norm
perturbation bounded by c that
1
mein §||9||§ s.t. ||5Iir|1|i;1§0(2i +6)'0>1,¥i=1,...n,
or equivalently
. iz +6:)"0
max min min ————————
0 i=1,..,n ||6;|]oo<c 116114
We note that (45) is a Support Vector Machine problem over an uncoutable data set that is generated
by norm-bounded perturbation S(c, q) = {(x,y) : where 3i € [n], ||z — z4|[; < ¢,y = y;}. By the
separability and ¢ < 7, we have that Sc, q) is well defined.

(45)

By the first-order KKT condition we have that (44) is equivalent to
mein||9\|2 +n())0|l, st z'0>1,Vi=1,...n.
for some proper 7(c) that depends on c. Hence in summary, if Ty, = lim;—, ﬁ exists, it is in
the same direction as the solution to the mixed (¢2, ¢ )-norm max margin solution of (40).
Claim: In general, for £,-norm perturbation bounded by ¢, #* converges in direction to the solution to
1
mgin§||9||§ s.t. min (2 +6;)'0>1,Vi=1,...n.

[19:llq<e
or

main||9\|2 +n())0|l, st z'0>1,Vi=1,...n.

for some proper 7)(c) that depends on c.

Proof of Theorem 3.4. Recall that in Theorem 3.3 we showed in (36) the following recursion

(lIV Laav (0°)1])?
2

> ty(]2
TV a1 )

Laav(0F") < Laae(07) = nl|VLaav (013 +

_ 9L (0913
»Cadv(et)

2
< exp (g IV Laan (OOl + my 7L O] )
where the last inequality holds by Lemma C.1.

mp/:adv (et)

Applying the previous inequality recursively from s = 1 to ¢t — 1, we have

t—1 t—1 2
Lo (') < exp (—nm S IV Laan )]l + Zmp’gwcadv(w%) .
s=1 s=1

Now since in the proof of Theorem 3.3 we showed that nm,, < 1 (35), combining the above inequality
this with (37), we have

t—1 2 t—1
>y VLot (6913 = - 21V Laaw (B3 = Laaw (6") = Laav(6) < Laan(6").
s=1 s=1

Combining this inequality with the upper bound on L4, (01) in (34), we have

t—1

Loae(6%) < exp <m2,q SV Laae (0912 — 224 + (1 + cm) .
s=0

Now for all ¢ € [n], we have:

t—1
exp (— min  y;(x; + (5i)T9t> < nexp (—77’72,11 Z [IV Laav(0%)|]2 — 7§’q +(1+ cﬁ)) ,

l16illq<e pors
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which yields
t—1

min  y;(z; 4 0;) 108 > nya, Z IV Laay (0%)]2 + 73, — (1 + eVd) — logn.

il <e —
Dividing both sides by ||6||2, and since hmt%oo Laav(0%) = 0, we have lim;_, , ||0%||2 = oo. Hence,

t—1 .
s 1 1
lim M2.q Z HVﬁadv(G )||2 _ + C\/g+ ogn (46)

.
lim  min y;(z; +6;) 116¢]]2 11612

=00 |[3] 4 <c 0|2 —

>
where the last inequality holds by ||0¢] lj;q;] ZZ;B |V Laav (0%)]]2-
Hence in summary, we have ot
i i@+ 80 B, e 2
Hence, we have lim;_, ., 0¢/[|0||2 is a solution to (10), but notice that the solution to (10) is unique
since a multiple of its o;l)tlmal solution would be the solution to (8) that
mln ||9H2 s.t. mln( )yz(x,+5) 0>1,vi=1,.

[2S 6; €A (q
which is a convex program with strongly convex objective. By this fact, we conclude that

lim; o0 s 9tH2 = ug4. To further get the rate of convergence, we use the convergence of ad-

versarial risk in (39), and establish the lower bound on |[|6¢|]2: ||6¢||2 = Q (logt). Combining this
with (46), the claim follows immediately. [

D /(,.-NORM PERTURBATION

Recall that the robust SVM against £.,-norm perturbation parameterlzed by c is formulated as
yi(xi +6;)70
=max min min —————— 47
, _ oo = A ol <e P @7
and its associated max-margin classifier is

Ug,oo = argmax min  min  y;(z; + 6; )
[16]]o=1 #=L-m[[8i]loc <e
It is easy to see that for ¢ < o, both 2 o and us o, are well defined, and v2 o > 0.

Before showing parameter convergence, we first prove that the adversarial risk goes to zero. To
avoid analyzing /., -perturbation directly, which can go messy. For A > 0, we define a smooth
approximation of ¢;-norm that

ha(0;) = \/02+ X, and H\(0 qu

Note that as A — 0, Hy(6) — ||0||1 uniformly. We then define 2 smoothlﬁed version of (47) that
we let perturbation set be A;(A\) = {J : Vj € [d], |§;] < ch‘*e(ﬂ )}, and the corresponding 72 . and
J

U2, become

yi(w; +6,)70

= max mm min —————, 48

72, 0 - §;€A(N) 110]]2 4%

Ug ) = argmax mm min  y;(z; + 0; )TQ (49)
6l|o=1 t=1,-mdieAi(N)

I
Note that the Hausdorff distance between Al( )and {J : ||§]|cc < c} converges to 0 as A\ goes
to 0. It can be seen that when A — 0, the smoothified problem (48) reduces to (47). That is,
limy 0 72,0 = V2,00 and limy g u2 \ = U2 0.
Theorem D.1. Let perturbation set be A;(\) = {6 : Vj € [d],|d;| <
adversarial risk be

Laav(0) = 1 Z max exp( yi(z; + (5i)T9) .

§:€A:(N)
For c < g, letting n = m we have
log? t(1 4 2cA~1/2)2
Eadv(9t>§0<0g ( +2c ))
ty2,x
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Proof. By the definition of perturbation set that A; = {6 : Vj € [d],|d;| < ¢ | 9 | } we have

Lagy( Z exp ( yisc;'—@ + cH)(9)) .

By some simple calculation, we have

0, 0 , _ A A
H H = .
= (W Jm>v N0 =iy (G5 G )

Then, it holds that
1
VLaav(0) = - > exp (=2 0+ cHA(0)) (—2; + cVHA(0)),

V2L i ( Zexp (=2 0+ cHA\(0)) (22 + EVHANO)VHA(0)" — 22 VH\(0) + cV2H,(9)) .
It can be verified that V2Laav(0) < (1 + f)Qﬁadv( )I. By Talyer expansion, we have

2¢
EadV(et—H) < ‘Cadet) 77|‘V£adV(9t)||2 +(1+ \?)\)2172 max{ﬁadet)7‘CadV(GH_IH‘Vﬁadet)”%‘
(50

Now we show that L4, (0°1) > L.4,(0") does not hold when 1 < Suppose
the contrary holds. By (50), we have

VL (OB, 2¢ 5\
Laantt) < (1= TIRES O 1y Z2) (a0 (6) 1920 (0)1B) < Lo (61
1

where the last inequality holds by n = (T2 122 207

1
(I 2eA—172)2 L0y (07)

Hence we obtain a contradiction.

Note that £.q,(0°) = 1, and if n < m, n < (1+26>\71/%)2£ad\,(9t) holds for ¢t = 0,

and L,q,(0') < 1. Consequently, we can inductively show that £.q,(0%) < 1 for all ¢, and
1

n < always holds if we let n = m

(1+2C)‘71/2)2['adv(6t)

By the choice of 1, we obtain the following recursion taht

2Laav(0Y)
t+1y t t 27 d
Laav(0°7) < Laav(0") — 0|V Laav (0 )||2 (1 ﬁ) 5

= Laav(6) = TV Laav (6] 3 (52)
Using the previous recursion we have that for any § € R?,
1671 = 0113 = 116° — 0113 — 2 (V Laav (6"), 0" — ) + n*|IV Laav (6)]13
< 16" = 0]13 — 21 (Laav(0") — Laav(0)) + 20 (Laav(0") — Laav (0))

= Het - 0”3 - 27] (Ladv(atJrl) - Eadv(o)) )
where the second inequality holds by convexity and (51). Summing up the previous inequality from
s=0tos=t—1and by L.q,(0°!) < Laav(0%), we have

Eadv (Hf) - Ladv (9)

IVLaav(0")]I5 (51

0
< 5= 1.

Taking 0 = we have

n

1
avez* i\Li 51T9
Lad (0) Zérerg%)eXp(y(ﬂc+ )"6)

1 & logt

S Z max exp <—yi($i + 51‘)TWU2A) <

1
n = 58 (N) t

)

where the last inequality holds by maxgs,ca, yi(2; + 52')Tu27 A = 7¥2,». Hence we obtain

1 log?t log? t(1 + 2cA~1/2)2
‘Cadv(et) <-4 257 Og —0 ( 0g ( + 2c ) ) ]
t tyaan 12,2
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Before showing parameter convergence, we need the following lemma which is a generalization of
Lemma 10 in Gunasekar et al. (2018a), but with much simpler proof.

Lemma D.1. Fix c < 2 ), for any 0 € RR%, we have
|V Laav(0)]l2 > Laav(0)y2 1.

Proof.

1 ~ -
—VLuav(0) = - Z exp (—y;i%;) YiTi.
=1
where ; = argmin, I mieA(N) yi(x )TQ Then by the definition of 72 ) and u2 y (48), we have

(YiZi, u2.2) > 2,0

From which we obtain (—V Laqy (0), u2,x) > Ladv(0)7y2,, the claim follows by Cauchy-Schwarz

inequality. O
Theorem D.2. Under the same setting as in Theorem D.1, we have
et
A g = Uz

Proof. Recall that in Theorem D.1 we showed in (51) that
Laay (0") < Laav(07) = 0|V Laav (0°)[3 + (1 + 7)

7
VLt @B |, (2 o7 o
< - = /< iy
< exp (—n e 4 14 22 9 L )18
2c

2
< exp (“malIVLan (02 + (1 + 2 19 Lua (0)]R).

where the last inequality holds by Lemma D.1. Applying the previous inequality recursively from
s=0tot— 1, we have

t—1 n?
Eadv(et) < exp <_77727/\ Z HVﬁadv HQ + Z 1 + = 2 ||V£ddV(95)|§> .

t=0

27 EadV( )

21V Laav (013

Now by (51), we have
t—1 t—1

2c 772 2 n 2 0 t
14+ )21 || VL (092 = =||VLaav(0°)]]5 = Laav(0”) — Laav(0") <1,
s§:o< ﬁ) 5 [V Laav (0°)I12 SEZOQH av(0°)112 av(607) av(60%)

which yields

t—1
Laav(0") < exp <—77’Y2,,\ Z IV Laav (0°)]]2 + 1) :
s=0
Next for all 7 € [n], we have

exp (— 5, énalrt )yz(a:, +4; )T9t> = exp (—yiz; 0+ cH\(0"))

t—1

< nexp (—nvu > IV Laav (0712 + 1) ;
s=0

which implies

t—1
5 énn% )yz(xl +6;) 70" > n'yg)\z [|VLaav(0%)]]2 — 1 — logn.
A s=0

Dividing both sides by ||6]]2, and since lim;_, oo Laqy(0) = 0, we have lim;_,, ||0||2 = oo. Hence,
¢

-1
. [IVLaav(0%)|]2  1+1logn

> 1 —
im 7772)\2 |\9t||2 H9t||2 = V2,0

where the last inequality holds by ||6%||a < 73020 ||V Ladv (8°)|]2-

lim min y(z; +6;) " ——
MAm i wi ) o 2
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In summary, we have
t

0
min  y;(z; +6;) 7 lim —— > .
s, EAT Vi + 00 1, T, =728
Hence limg: ||0!]|2 is a solution to (48). Note that the solution to (48) is unique since it is equivalent
to
min l||9||§ s.t. min (2 +6;,) 0> 1,Vi=1,...,n.
fcRe 2 5i€EA;(N) o
We thus conclude that lim;_, o, ﬁ = U ). O

. . t .
To summarize, we have shown that for all A > 0, lim;_, o II:W = ug,). The {-norm perturbation

corresponds to the case when A — 0, it is natural to conclude that for /., perturbation, we have
. t . . . . .
lim; oo H:W = U2 0. The discussion for ¢ = 1 follows similar argument, hence we omit the
details here.

E ADDITIONAL EXPERIMENTS ON PERTURBATION LEVEL AND SPEED-UP

We provide additional experiments on the connection of perturbation level ¢ and the speed-up effect
of adversarial training for neural networkds. We run GDAT with ¢.,-norm perturbation. The setup of
the experiments is exactly the same as the setup in Section 4. We will vary the perturbation level ¢
used in GDAT algorithm in {0.1,0.15,0.2}.

From Figure 3 we could see that GDAT indeed accelerates convergence of loss and accuracy on clean
training samples. Moreoever, the acceleration effect is stronger when we use larger perturbation level,
and this relationship is consistent across different width of hidden layer.

Similar speed-up effects on the test loss and test accuracy evaluated on clean test samples are also
observed for GDAT. From Figure 4, we see that the speed-up effects become stronger when we
use larger perturbation level, and this relationship is consistent across different width of hidden
layer. Traditionally, the benefit of adversarial training is understood as two fold: 1. it improves the
robustness of the learning algorithm, i.e., the solution has better loss toward adversarilly perturbed
seample; 2. it has better generalization ability. Our experiments demonstrate a third property
of adverserial training that is not known in literature before, i.e., adversarial training accelerates
convergence.
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Figure 3: GDAT with Different Perturbation Level: Clean Training Loss
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