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ABSTRACT

Generative Adversarial Networks (GANs), though powerful, is hard to train. Sev-
eral recent works (Brock et al., 2016; Miyato et al., 2018) suggest that controlling
the spectra of weight matrices in the discriminator can significantly improve the
training of GANs. Motivated by their discovery, we propose a new framework
for training GANs, which allows more flexible spectrum control (e.g., making the
weight matrices of the discriminator have slow singular value decays). Specifically,
we propose a new reparameterization approach for the weight matrices of the
discriminator in GANs, which allows us to directly manipulate the spectra of the
weight matrices through various regularizers and constraints, without intensively
computing singular value decompositions. Theoretically, we further show that the
spectrum control improves the generalization ability of GANs. Our experiments
on CIFAR-10, STL-10, and ImgaeNet datasets confirm that compared to other
methods, our proposed method is capable of generating images with competitive
quality by utilizing spectral normalization and encouraging the slow singular value
decay.

1 INTRODUCTION

Many efforts have been recently devoted to studying Generative Adversarial Networks (GANs, Good-
fellow et al. (2014)). GANs provide a general unsupervised framework to learn a generative model
from unlabeled real data. Successful applications of GANs include many unsupervised learning
tasks, such as image generation, dialogue generation, and image inpainting (Abadi & Andersen,
2016; Goodfellow, 2016; Ho & Ermon, 2016; Li et al., 2017; Yu et al., 2018). Different from other
unsupervised learning methods, which directly maximize the likelihood of deep generative models
(e.g., Variational Auto-encoder, Nonlinear ICA, and Restricted Boltzmann Machine), GANs introduce
a competition between two neural networks. Specifically, one neural network serves as the generator
that yields artificial samples, and the other serves as the discriminator that distinguishes the artificial
samples from the real data.

Mathematically, GANs can be formulated as the following min-max optimization problem:

min
θ

max
W

f(θ,W) :=
1

n

n∑

i=1

φ (A(DW(xi))) + Ex∼DGθ
[φ (1−A(DW(x)))], (1)

where {xi}ni=1 are n real data points, Gθ denotes the generative deep neural network parameterized by
θ, DW denotes the discriminative neural network parameterized by W , DGθ

denotes the distribution

∗Tuo Zhao is the corresponding author.
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generated by Gθ, φ(·) : [0, 1] → R is a properly chosen monotone function, and A(·) denotes a
monotone function related to the function φ(·). There have been many options for φ(·) and A(·) in
existing literature. For example, the original GAN proposed in Goodfellow et al. (2014) chooses
φ(x) = log(x), A = 1

1+exp(−x) ; Arjovsky et al. (2017) use φ(x) = x, A(x) = x, and (1) becomes

the Wasserstein GAN. Min-max problem (1) has a natural interpretation: The minimization problem
aims to find a discriminator DW , which can distinguish between the real data and the artificial
samples generated by Gθ, while the maximization problem aims to find a generator Gθ, which can
fool the discriminator DW . From the perspective of game theory, the generator and discriminator are
essentially two players competing with each other and eventually achieving some equilibrium.

From an optimization perspective, problem (1) is a nonconvex-nonconcave min-max problem, that is,
f(θ,W) is nonconvex in θ given a fixed W and nonconcave in W given a fixed θ. Unlike convex-
concave min-max problems, which have been well studied in existing optimization literature, there
is very limited understanding of general nonconvex-nonconcave min-max problems. Thus, most of
existing algorithms for training GANs are heuristics. Although some theoretical guarantees have been
established for a few algorithms, they all require very strong assumptions, which are not satisfied in
practice (Heusel et al., 2017).

Despite of the lack of theoretical justifications, significant progress has been made in empirical studies
of training GANs. Numerous empirical evidence has suggested several approaches for stabilizing the
training of the discriminator, which can eventually improve the training of the generator. For example,
Goodfellow et al. (2014) adopt a simple algorithmic trick that updates W for multiple iterations
after updating θ for one iteration, i.e., training the discriminator more frequently than the generator.
Besides, Xiang & Li (2017) suggest that the weight normalization approach proposed in Salimans
& Kingma (2016) can also stabilize the training of the discriminator. More recently, Miyato et al.
(2018) propose a spectral normalization approach to control the spectral norm of the weight matrix in
each layer. Specifically, in each forward step, they normalize the weight matrix by the approximation
of its spectral norm, which is obtained by the one-step power method. They further show that spectral
normalization essentially controls the Lipschitz constant of the discriminator with respect to the input.
Compared to other methods for controlling the Lipschitz constant of the discriminator, e.g., gradient
penalty (Gulrajani et al., 2017; Gao et al., 2017), the experiments in Miyato et al. (2018) show
that the spectral normalization approach achieves better performance with fairly low computational
cost. Moreover, Miyato et al. (2018) show that spectral normalization suffers less from the mode
collapse, that is, the generator outputs only over a fairly small support. Such a phenomenon, though
not well understood, suggests that the spectral normalization will balance the discrimination and
representation well.

Besides the aforementioned algorithmic tricks and normalization approaches, regularization can also
stabilize the training of the discriminator (Brock et al., 2016; Roth et al., 2017; Nagarajan & Kolter,
2017; Liu et al., 2018). For instance, orthogonal regularization, proposed by Brock et al. (2016),
forces the columns of weight matrices in the discriminator to be orthonormal by augmenting the

objective function f(θ,W) with λ
∑L

i=1‖W>
i Wi− I‖F, where λ > 0 is the regularization parameter,

Wi denotes the weight matrix of the i-th layer in the discriminator, I denotes the identity matrix, and
L is the depth of the discriminator. The experimental results in Brock et al. (2016) show that the
orthogonal regularization improves the performance and generalization ability of GANs. However,
the empirical evidence in Miyato et al. (2018) shows that the orthogonal regularization is still less
competitive than the spectral normalization approach. One possible explanation is that the orthogonal
normalization, forcing all non-zero singular values to be 1, is more restrictive than the spectral
normalization, which only forces the largest singular value of each weight matrix to be 1.

Motivated by the spectral normalization, we propose a novel training framework, which provides
more flexible and precise control over the spectra of weight matrices in the discriminator. Specifically,
we reparameterize each weight matrix Wi ∈ R

di×di+1 as Wi = UiEiV
>
i , where Ui and Vi are

required to have orthonormal columns, Ei = diag(ei1, ..., e
i
ri) denotes a diagonal matrix with ri =

min(di, di+1), and ei1 ≥ · · · ≥ eiri ≥ 0 are singular values of Wi. With such a reparameterization,
an L-layer discriminator becomes

D(x;U , E ,V) = ULELV
>
L σL−1(· · ·σ1(U1E1V

>
1 x) · · · ),

where σi(·) is the entry-wise activation operator of the i-th layer, U := {U1, ..., UL}, E :=
{E1, ..., EL}, and V := {V1, ..., VL} denote the parameters of the discriminator D, and x denotes the
input vector. This reparameterization allows us to control the spectra of the original weight matrix Wi
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by manipulating Ei. For example, we can rescale Ei by its largest diagonal element, which essentially
is the spectral normalization. Besides, we can also manipulate the diagonal entries of Ei to control
the decays in singular values (e.g., fast or slow decays). Recall that our reparameterization requires
Ui and Vi to have orthonormal columns. This requirement can be achieved by several methods in
the existing literature, such as the stiefel manifold gradient method. However, Huang et al. (2017)
show that the stochastic stiefel manifold gradient method is unstable. Moreover, other methods, such
as cayley transformation and householder transformation, suffer from several disadvantages: (I).
High computational cost1; (II). Sophisticated implementation (Shepard et al., 2015). Different from
the methods mentioned above, our framework applies the orthogonal regularization to all Ui’s and
Vi’s. Such a regularization suffices to guarantee the approximate orthogonality of Ui’s and Vi’s in
practice, which is supported by our experiments. Moreover, our experimental results on CIFAR-10,
STL-10 and ImageNet datasets show that our proposed method achieves competitive performance on
CIFAR-10 and better performance than the spectral normalization and other competing approaches
on STL-10 and ImageNet. Besides the empirical studies, we provide theoretical analysis, which
characterizes how the spectrum control benefits the generalization ability of GANs. Specifically,
denote µ as the underlying data distribution and νn as the distribution given by the well trained
generator. We establish a generalization bound under spectrum control as follows (informal):

dF,φ(µ, νn) ≤ inf
ν∈DG

dF,φ(µ, ν) + Õ

(√
d2L

n

)
,

where d = max{d1, . . . , dL}, dF,φ(·, ·) is the F-distance, and DG denotes the class of distributions
generated by generators. Compared to the results in Zhang et al. (2017), our result improves the
generalization bound up to an exponential factor of the depth of the discriminator. More details will
be discussed in Section 3.

The rest of the paper is organized as follows: Section 2 introduces our proposed training framework
in detail; Section 3 presents the generalization bound for GANs under spectrum control; Section 4
presents numerical experiments on CIFAR-10, STL-10, and ImageNet datasets.

Notations: Given an integer d > 0, we denote [d] = {1, 2, ..., d}. Given a vector v ∈ R
d, we denote

‖v‖22 =
∑d

i=1 |vi|2 as its Euclidean norm. Given a matrix M ∈ R
m×n, we denote the spectral norm

by ‖M‖2 as the largest singular value of M . We adopt the standard O(·) notation, which is defined
as f(x) = O (g(x)) as x → ∞, if and only if there exists M > 0 and x0, such that |f(x)| ≤ Mg(x)

for x ≥ x0. We use Õ(·) to denote O(·) with hidden logarithmic factors.

2 METHODOLOGY

We present a new framework for flexibly controlling the spectra of weight matrices. We first consider
an L-layer discriminator D as follows:

D(x;W) = WLσL−1(WL−1 · · ·σ1(W1x) · · · ), (2)

where σi(·) denotes the entry-wise activation operator of the i-th layer, Wi ∈ R
di+1×di denotes the

weight matrix of the i-th layer, x ∈ R
d1 denotes the input feature, W := {W1, ...,WL} denotes the

parameters of the discriminator D, and dL+1 = 1.

2.1 SVD REPARAMETERIZATION

Our framework directly applies an SVD reparameterization to each weight matrix Wi in the discrim-
inator D, i.e., Wi = UiEiV

>
i , where ri = min(di, di+1), Ui ∈ R

di+1×ri and Vi ∈ R
di×ri denote

two matrices with orthonormal columns, Ei = diag(ei1, · · · , eiri) denotes a diagonal matrix, and

ei1 ≥ · · · ≥ eiri ≥ 0 are the singular values of Wi. The discriminator can be rewritten as follows:

D(x;U , E ,V) = ULELV
>
L σL−1(UL−1EL−1VL−1 · · ·σ1(U1E1V

>
1 x) · · · )), (3)

where U := {U1, ..., UL}, E := {E1, ..., EL}, and V := {V1, ..., VL}2 denote the parameters of the
discriminator D. Throughout the rest of the paper, if not clear specified, we denote D(x;U , E ,V)

1Without a sparse matrix implementation, these methods are highly unscalable and inefficient (not supported
by the existing deep learning libraries such as TensorFlow and PyTorch in GPU).

2WL essentially is a vector. To be consistent, we still use ULELV
>

L to reparametrize WL. Actually, it is not
necessary. We can directly control the norm of WL in practice.
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by D(x) for notational simplicity. The motivation behind this reparameterization is to control the
singular values of each weight matrix Wi by explicitly manipulating Ei. We then consider a new
min-max problem as follows:

min
θ

max
E,U,V

{ 1

n

n∑

i=1

φ (A(D(xi))) + Ex∼DGθ
[φ (1−A(D(x)))]

︸ ︷︷ ︸
f(θ,E,U,V)

−γR(E)
}
,

subject to E ∈ Ω, U>
i Ui = Ii, and V >

i Vi = Ii ∀ i ∈ [L], (4)

where Ii denotes the identity matrix of size ri, R(E) is the regularizer with a regularization parameter
γ > 0, and Ω denotes a feasible set. By choosing different Ω and R(E), (4) can control the spectrum
of the weight matrix Wi flexibly. For example, if we take the feasible set Ω = {E : eij = 1 ∀eij ∈
Ei, Ei ∈ E} and R(E) = 0, then our method essentially is the orthogonal regularization. We will
discuss some options of Ω and R(E) later in detail.

As mentioned earlier, the orthogonal constraints in (4) suffer from the high computational cost
and sophisticated implementation. To address these drawbacks, we directly apply the orthogonal
regularization to all Ui’s and Vi’s. Therefore, problem (4) becomes

min
θ

max
E,U,V

f(θ, E ,U ,V)− λ

L∑

i=1

(‖U>
i Ui − Ii‖2F + ‖V >

i Vi − Ii‖2F)− γR(E), s.t. E ∈ Ω, (5)

where λ > 0 is a regularization parameter. A relative large λ (e.g., λ = 1), ensures the orthogonality
of Ui and Vi. See more details in Section 4.1. Moreover, (5) can be efficiently solved by stochastic
gradient algorithms. Projection may be needed to handle the constraint Ω. See more details later.

2.2 SPECTRUM CONTROL

We provide a few options of Ω and R(E) for controlling the spectra of weight matrices in the
discriminator, which is motivated by Miyato et al. (2018). Miyato et al. (2018) have shown that for
an L-layer discriminator D, we have:

|D(x)−D(y)| ≤ ‖WL‖2
(

L−1∏

i=1

‖Wi‖2 · ρi
)
‖x− y‖2 = eL1

(
L−1∏

i=1

ei1 · ρi
)
‖x− y‖2, (6)

where ρi is the Lipschitz constant of σi(·). The last equation holds for our proposed reparameteriza-
tion. For commonly used activation operators, such as the sigmoid, ReLU, and leak-ReLU functions,

ρi ≤ 1. Therefore,
∏L

i=1 e
i
1 is essentially an upper bound for the Lipschitz constant, which can be

controlled by our proposed Ω and R(E). Note that WL is a vector with only one singular value. For
simplicity, we set eL1 = 1 in the following analysis.

2.2.1 FLEXIBLE SPECTRAL CONTROL

Comparing to the orthogonal regularization, Miyato et al. (2018) suggest that we should allow more
flexibility by using spectral normalization, which only bounds the largest singular value. They
implement spectral normalization by one-step power iteration.

• Spectrum Normalization: We can also easily implement spectral normalization under our SVD
reparameterization framework. Specifically, the spectral normalization rescales the weight matrix Ei

by its spectral norm ei1, which is equivalent to solving the following problem:

min
θ

max
Q(E),U,V

f(θ,Q(E),U ,V)− λ
L∑

i=1

(‖U>
i Ui − Ii‖2F + ‖V >

i Vi − Ii‖2F),

where Q := {E1

e1
1

, . . . , EL

eL
1

}.

• Spectrum Constraint: Note that the spectral normalization essentially reparameterize the Lipschitz
constraint Ω:

Ω =
{
E : 0 ≤ ei1 ≤ 1 ∀i ∈ [L]

}
. (7)

This essentially controls
∏L

i=1 e
i
1 by forcing each ei1 ≤ 1. Instead of spectral normalization, we

consider directly solving the problem with the Lipschitz constraint. To maintain the feasibility of E ,
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Note that commonly used functions A, such as the sigmoid function, satisfy the assumption. We
denote by µ the underlying data distribution, and by µ̂n the empirical data distribution. We further
denote νn as the distribution given by the generator that minimizes the loss (1) up to accuracy ε, i.e.,

dF,φ(µ̂n, νn) ≤ inf
ν∈DG

dF,φ(µ̂n, ν) + ε,

where DG is the class of distributions generated by generators. Then we give the generalization
bound based on the PAC-learning framework as follows.

Theorem 2. Under Assumption 1, assume that the input data xi ∈ R
d1 is bounded, i.e., ‖xi‖2 ≤ Bx

for i ∈ [n]. Then given activation operators σ1, . . . , σL−1, A, and φ, with probability at least 1− δ
over the joint distribution of x1, . . . , xn, we have

dF,φ(µ, νn) ≤ inf
ν∈DG

dF,φ(µ, ν) +O



ρφβ

√
d2L log

(√
dnLβ

)

√
n

+ ρφβ

√
log 1

δ

n


+ ε,

where β = Bx

∏L
i=1 BWi

and d = max(d1, . . . , dL).

The detailed proof is provided in Appendix A.1. By constraining each BWi
= 1, the generalization

bound is reduced to of the order Õ
(√

d2L/n
)

, which is polynomial in d and L. On the contrary,

without such spectrum constraints, the bound can be exponentially dependent on L. For example,
if BWi

≥ 1 + r with some constant r > 0 for any i = 1, . . . , L, we have β ≥ Bx(1 + r)L, which
implies that GANs cannot generalize with polynomial number of samples.

Remark 3. Empirical Rademacher complexity (ERC) is adopted to derive our generalization bound,

which is of the order Õ
(
β
√
d2L/n

)
. Directly applying the ERC based generalization bound in

Bartlett et al. (2017) yields a bound of the order Õ
(
β
√

d2L3/n
)

. Our bound is tighter, and is

derived by exploiting the Lipschitz continuity of the discriminator with respect to its model parameters
(weight matrices). Similar idea is used in Zhang et al. (2017), however, we derive sharper Lipschitz
constants 3 by the key step of decoupling the spectral norms of weight matrices and the number of
parameters, i.e., separating β and d2L.

Remark 4. Theorem 2 shows the advantage of spectrum control in generalization by constraining
the class of discriminators. However, as suggested in Arora et al. (2017), the class of discriminators
needs to be large enough to detect lack of diversity. Despite of a lack of theoretical justifications,
empirical results in Miyato et al. (2018) show that discriminators with spectral normalization are
powerful in distinguishing νn from µ, and suffer less from the mode collapse. We conjecture that the
observed singular value decay (as illustrated in Figure 1) contributes to preventing mode collapse.
We leave this for future theoretical investigation.

4 EXPERIMENT

To demonstrate our proposed new methods, we conduct experiments on CIFAR-10 (Krizhevsky &
Hinton, 2009), STL-10 (Coates et al., 2011), and ImageNet (Russakovsky et al., 2015). We illustrate
the importance of spectrum control in GANs training by revealing a close relation between the
performance and the singular value decays.

All implementations are done in Chainer as the official implementation of the SN-GAN (Miyato et al.,
2018). Note that SN-GAN is using power iteration. If not specified, all orther Spectral Normalization
(SN) methods are under SVD framework. For quantitative assessment of generated examples, we use
inception score (Salimans et al., 2016) and Fréchet inception distance (FID, Heusel et al. (2017)).
All reported results correspond to 10 runs of the GAN training with different random initializations.
The discussion of this paper is based on fully connected layer. When dealing with convolutional
layer, we only need to reshape the 4D weight tensor to a 2D matrix. Denote the weight tensor of
a convolutional layer as WC ∈ R

co,ci,kh,kw , where co, ci, (kh, kw) denotes the output channel, the
input channel and the kernel size. We reshape WC as W ∈ R

co,ci×kh×kw (Huang et al., 2017), i.e.,
merging the last three dimensions while preserving the first dimension. See more implementation
details in Appendix C.1.

3The Lipschitz constant in Zhang et al. (2017) can be of the order dL.
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4.1 DC-GAN

We test our methods on DC-GANs with two datasets, CIFAR-10 and STL-10. Specifically, we adopt
a 5-layer CNN as the generator and a 7-layer CNN as the discriminator. Recall that our proposed
training framework tries to solve the equilibrium for equation (5). We set φ(·) = log(·) and A being
the sigmoid function. Denote fD(E ,U ,V) = f(θ, E ,U ,V) − λLorth − γR(E) for a fixed θ and

fG(θ) = −Ex∼DGθ
[A(D(x))] for fixed U ,V , and E , where Lorth(U ,V) =

∑L
i=1(‖U>

i Ui − Ii‖2F +

‖V >
i Vi − Ii‖2F). We maximize fD(E ,U ,V) for ndis iterations (ndis ≥ 1) followed by minimizing

fG(θ) for one iteration. Note that we use a logD trick (Goodfellow et al., 2014) to ease the
computation of minimizing fG(θ). Detailed implementations are provided in Appendices B and C.2.
We choose tuning parameters λ = 10 and γ = 1 in all the experiments except for the Divergence
regularizer, where we pick λ = 10 and γ = 0.054. γ is chosen according to the output range of
different regularizers. We set a smaller gamma for Divergence Regularizer, since its output is much
larger than other regularizers. We take 100K iterations in all the experiments on CIFAR-10 and 200K
iterations on STL-10 as suggested in Miyato et al. (2018).

To solve (5), we adopt the setting in Radford et al. (2015), which has been shown to be robust for
different GANs by Miyato et al. (2018). Specifically, we use the Adam optimizer (Kingma & Ba,
2014) with the following hyperparameters: (1) ndis = 1; (2) α = 0.0002, the initial learning rate; (3)
β1 = 0.5, β2 = 0.999, the first and second order momentum parameters of Adam respectively.

Before we present our results, we show the effectiveness of our proposed reparameterization,
which aims to approximate the singular values of weight matrices while avoiding direct SVDs.
As can be seen, in Table 1, Ui and Vi have nearly orthonormal columns respectively, i.e.,
‖U>

i Ui − Ii‖2F, ‖V >
i Vi − Ii‖2F ≤ 10−4. Although the reparameterization introduces more model

parameters, it maintains comparable computational efficiency. See more details in Appendix D.2.

Table 1: The sub-orthogonality of Ui’s and Vi’s in the discriminator with the divergence regularizer
on CIFAR-10 after 100K iterations. For other settings, we also observe that all Ui’s and Vi’s have
nearly orthonormal columns.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

‖U>U − I‖2F 2.3e-5 1.2e-5 1.5e-5 1.6e-5 2.7e-5 2.5e-5 2.1e-5

‖V >V − I‖2F 7.9e-5 1.0e-5 1.7e-5 2.5e-5 4.1e-5 7.1e-5 3.9e-5

Figure 3: Inception scores on ImageNet.
We can see that our method outperforms
SN-GAN.

Figure 4 shows that the singular value decays of weight
matrices with two different methods: SN-GAN and D-
optimal regularizer with spectral normalization. As can
be seen, our method achieves a slower decay in singular
values than that of SN-GAN. See more results of other
methods in Appendix D.3. Such a slower decay improves
the performance of GANs. Specifically, Table 2 presents
the inception scores and FIDs of our proposed methods
as well as other methods on CIFAR-10 and STL-10. As
can be seen, under CNN architecture, our methods achieve
significant improvements on STL-10. Compared with
STL-10, CIFAR-10 is easy to learn, and thus GAN train-
ing can only limitedly benefits from encouraging the slow
singular value decay. As a result, on CIFAR-10, our meth-
ods slightly improve the result of SN-GAN. Moreover, as
shown in Figure 4, at the early stage (5k iteration), our method achieves slow decay while SN-GAN
still decays fast. Thus, it converge faster than SN-GAN as shown in Figure 5.

4In fact, the performance is not sensitive to these hyperparameters, since we only observe negligible difference
by fine tuning these parameters. Specifically, when λ ∈ [1, 100] and γ ∈ [0.2, 5] (γ ∈ [0.01, 0.1] for Divergence
regularizer), the algorithm yields similar results.
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Table 2: The inception scores and FIDs on CIFAR-10 and STL-10. For consistency, we reimplement
baselines under our Chainer environment.

Method
Inception Score FID

CIFAR-10 STL-10 CIFAR-10 STL-10

Real Data 11.24± .12 26.08± .26 7.8 7.9
CNN Baseline
WGAN-GP 6.72± .11 8.42± .09 39.0± .29 54.1± .35
Orthogonal Reg. 7.31± .09 8.77± .07 25.7± .33 44.5± .30
SN-GAN (Power Iter.) 7.39± .05 8.83± .07 24.7± .25 45.5± .34
Ours CNN (Under SVD)
Spectral Norm. 7.35± .05 8.69± .08 25.2± .22 44.8± .39
Spectral Constraint 7.43± .08 8.97± .05 24.8± .30 44.0± .42
Lipschitz Reg. 7.43± .08 8.99± .06 24.1± .28 45.3± .38
SC + Divergence Reg. 7.44± .05 9.21± .09 24.3± .21 41.9± .37
SN + D-Optimal Reg. 7.48± .06 9.25± .08 23.0± .27 40.5± .41
ResNet Structure
Orthogonal Reg. 7.90± .05 8.83± .05 22.3± .26 44.9± .35
SN-GAN (Power Iter.) 8.21± .05 9.15± .06 19.5± .22 43.0± .44
SN + D-Optimal Reg. 8.06± .06 9.65± .06 20.5± .18 39.9± .33

5 CONCLUSION

In this paper, we propose a new SVD-type reparameterization for weight matrices of the discriminator
in GANs, allowing us to efficiently manipulate the spectra of weight matrices. We than establish a
new generalization bound of GAN to justify the importance of spectrum control on weight matrices.
Moreover, we propose new regularizers to encourage the slow singular value decay. Our experi-
ments on CIFAR-10, STL-10, and ImageNet datasets support our proposed methods, theory, and
discoveries.
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A PROOF IN SECTION 3

A.1 PROOF OF THEOREM 2

Proof. We bound the output of D(·) as follows,

∣∣D(x)
∣∣ ≤ ‖WL‖2‖σL−1(· · ·σ1(W1x) · · · )‖2 ≤ · · · ≤ Bx

L∏

i=1

BWi
.

Consider dF,φ(µ, νn)− infν∈DG
dF,φ(µ, ν). We have

dF,φ(µ, νn)− inf
ν∈DG

dF,φ(µ, ν)

=dF,φ(µ, νn)− dF,φ(µ̂n, νn) + dF,φ(µ̂n, νn)− inf
ν∈DG

dF,φ(µ̂n, ν)

+ inf
ν∈DG

dF,φ(µ̂n, ν)− inf
ν∈DG

dF,φ(µ, ν)

≤2

(
sup

AD(·)∈F
Ex∼µ[φ(A(D(x)))]− Ex∼µn

[φ(A(D(x)))]

)
+ ε. (10)

Note that given x1, . . . , xi, . . . , xn and x1, . . . , x
′
i, . . . , xn, we have∣∣∣∣ sup

AD(·)∈F
Ex∼µ[φ(A(D(x)))] + Ex∼µn

[φ(A(D(x)))]

− sup
AD(·)∈F

Ex∼µ[φ(A(D(x)))] + Ex∼µ′

n
[φ(A(D(x)))]

∣∣∣∣

≤
∣∣φ(A(D(xi)))− φ(A(D(x′

i)))
∣∣

n

≤ρφ

∣∣D(xi)−D(x′
i)
∣∣

n

≤ 2

n
ρφBx

L∏

i=1

BWi
.

Then McDiarmid’s inequality gives us, with probability at least 1− δ/2,

sup
AD(·)∈F

Ex∼µ[φ(A(D(x)))]− Ex∼µn
[φ(A(D(x)))]

≤E

[
sup

AD(·)∈F
Ex∼µ[φ(A(D(x)))]− Ex∼µn

[φ(A(D(x)))]

]
+ 2ρφBx

L∏

i=1

BWi

√
log 2

δ

2n
. (11)

By the argument of symmetrization, we have

E

[
sup

AD(·)∈F
Ex∼µ[φ(A(D(x)))]− Ex∼µn

[φ(A(D(x)))]

]

≤2Exi∼µ,ε

[
1

n
sup

AD(·)∈F

n∑

i=1

εiφ(A(D(xi)))

]
, (12)

where εi’s are i.i.d. Rademacher random variables, i.e., P(εi = 1) = P(εi = −1) = 1/2. McDi-
armid’s inequality again gives us, with probability at least 1− δ/2, we have

Exi∼µ,ε

[
1

n
sup

AD(·)∈F

n∑

i=1

εiφ(A(D(xi)))

]

≤Eε

[
1

n
sup

AD(·)∈F

n∑

i=1

εiφ(A(D(xi)))

]
+ 2ρφBx

L∏

i=1

BWi

√
log 2

δ

2n
. (13)

Note that Eε

[
1
n supAD(·)∈F

∑n
i=1 εiφ(A(D(x)))

]
is essentially the empirical Rademacher com-

plexity of φ(A(D(·))). Since φ and A are both Lipschitz, by Talagrand’s lemma, we have

Eε

[
1

n
sup

AD(·)∈F

n∑

i=1

εiφ(A(D(xi)))

]
≤ ρφEε

[
1

n
sup
D

n∑

i=1

εiD(xi)

]
.
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We then use the standard Dudley’s entropy integral to bound Eε

[
1
n supD

∑n
i=1 εiD(xi)

]
. We exploit

the parametric form of discriminators to find a tight covering number. We have to investigate
the Lipschitz continuity of D(·) with respect to the weight matrices W1, . . . ,WL. We based our
argument on telescoping. Given two sets of weight matrices W1, . . . ,WL and W ′

1, . . . ,W
′
L and fix

the activation operators and A, we have

‖D(x)−D′(x)‖∞
≤ ‖WLσL−1(· · ·σ1(W1x) · · · )−W ′

LσL−1(· · ·σ1(W
′
1x) · · · )‖2

= ‖WLσL−1(· · ·σ1(W1x) · · · )−W ′
LσL−1(· · ·σ1(W1x) · · · )‖2

+ ‖W ′
LσL−1(· · ·σ1(W1x) · · · )W ′

LσL−1(· · ·σ1(W
′
1x) · · · )‖2

≤ ‖WL −W ′
L‖2‖σL−1(· · ·σ1(W1x) · · · )‖2

+ ‖W ′
L‖2‖σL−1(· · ·σ1(W1x) · · · )− σL−1(· · ·σ1(W

′
1x) · · · )‖2

≤ ‖WL −W ′
L‖2Bx

L−1∏

i=1

BWi
+ ‖W ′

L‖2‖σL−1(· · ·σ1(W1x) · · · )− σL−1(· · ·σ1(W
′
1x) · · · )‖2

≤ · · · · · ·

≤
L∑

i=1

Bx

∏L
j=1 BWj

BWi

‖Wi −W ′
i‖2.

For notational simplicity, we denote LWi
=

B
∏L

j=1
BWi

BWi

. When the activation operators and A
are given, function D has a one to one correspondence to weight matrices W1, . . . ,WL. Thus, to
construct a covering of F , it is enough to construct matrix coverings of W1, . . . ,WL, and their
Cartesian product gives us a covering of F . The standard argument of volume ratio gives us an upper
bound of the covering number of matrices with bounded spectral norms. Suppose M = {M ∈
R

d×h : ‖M‖2 ≤ λ}, the covering number N (M, ε, ‖·‖2) at scale ε with respect to spectral norm is
bounded by

N (M, ε, ‖·‖2) ≤
(
1 +

min(
√
d,
√
h)λ

ε

)dh

.

Therefore, the covering number N (F , ε, ‖·‖∞) is bounded by

N (F , ε, ‖·‖∞) ≤
L∏

i=1

N (Wi,
ε

LLW−i
, ‖·‖2)

≤
L∏

i=1

(
1 +

LLWi
min(

√
di,

√
di+1)BWi

ε

)didi+1

.

Take d = max{d1, . . . , dL}. We get

N (F , ε, ‖·‖∞) ≤
(
1 +

√
dLBx

∏L
i=1 BWi

ε

)d2L

.

Then Dudley’s entropy integral gives us

Eε

[
1

n
sup
D

n∑

i=1

εiD(xi)

]
≤ 4α√

n
+

12

n

∫ Bx

∏L
i=1

BWi

√
n

α

√
logN (F , ε, ‖·‖∞)dε

≤ 4α√
n
+

12

n
Bx

L∏

i=1

BWi

√
n

√√√√d2L log

(
1 +

√
dLBx

∏L
i=1 BWi

α

)
.

It is enough to pick α = 1√
n

, which yields

Eε

[
1

n
sup
D

n∑

i=1

εiD(xi)

]
≤ 4

n
+

12Bx

∏L
i=1 BWi

√
d2L log

(
2
√
dnLBx

∏L
i=1 BWi

)

√
n

.
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Thus, we immediately have,

Eε

[
1

n
sup

AD(·)∈F

n∑

i=1

εiφ(A(D(xi)))

]

≤4ρφ
n

+

12ρφBx

∏L
i=1 BWi

√
d2L log

(
2
√
dnLBx

∏L
i=1 BWi

)

√
n

. (14)

Now, combining equations (10), (11), (12), (13), and (14) together, we get

dF,φ(µ, νn) ≤ inf
ν∈DG

dF,φ(µ, νn) +
16ρφ
n

+

48ρφβ

√
d2L log

(
2
√
dnLβ

)

√
n

+ 12ρφβ

√
log 1

δ

n
,

where β = Bx

∏L
i=1 BWi

. On the other hand, naively applying the argument from Bartlett et al.
(2017) yields the generalization bound

dF,φ(µ, νn) ≤ inf
ν∈DG

dF,φ(µ, νn) +O



ρφβ

√
dL3 log

(√
dnLβ

)

√
n

+ ρφβ

√
log 1

δ

n


 .

Combining the two generalization bound together, we get

dF,φ(µ, νn)

≤ inf
ν∈DG

dF,φ(µ, νn) +O



ρφβ

√
dLmin(d, L2) log

(√
dnLβ

)

√
n

+ ρφβ

√
log 1

δ

n


 . (15)
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B ALGORITHM

Recall that we are maximizing the following objective function fD(E ,U ,V) for discriminator D in
Section 4.1:

fD(E ,U ,V) = f(θ, E ,U ,V)− λLorth(U ,V)− γR(E).
The detailed training algorithm is described in Algorithm 1:

Algorithm 1 Adversarial training with Spectrum Control of Discriminator, D

Initialization
1: for l = 1, .., L do
2: Determine the rank of l-layer: ri = min{di, di+1}.
3: Initialize Ui ∈ R

di×ri and Vi ∈ R
di+1×ri with orthonormal columns.

4: Initialize Ei = Iri .
5: end for

Forward pass
Input: mini-batch input Hi ∈ R

m×di from previous layer
Output: mini-batch output Si+1 ∈ R

m×di+1

Parameters: Ui, Vi, and Ei

1: Perform Singluar value update on Ei

2: Calculate weight matrix: Wi = UiEiV
>
i ∈ R

di×di+1 .
3: Calculate output: Si+1 = HiWi.

Backward pass
Input: activation derivative ∇Si+1f
Output: ∇Hi

f,∇Ui
fD,∇Vi

fD,∇Ei
fD

1: Calculate: ∇Hi
f = ∇Si+1

fW>
i as standard linear module.

2: Calculate: ∇Wi
f = H>

i ∇Si+1
f as standard linear module.

3: Calculate: ∇Ui
f,∇Vi

f,∇Ei
f based on ∇Wi

f .
4: Calculate: ∇Ui

fD = ∇Ui
f − λ∇Ui

Lorth, ∇Vi
fD = ∇Vi

f − λ∇Vi
Lorth.

5: Calculate: ∇Ei
fD = ∇Ei

f − γ∇Ei
R(E).

6: Update Ui, Vi, and Ei with the Adam Optimizer.

Singluar value update
Input: Ei

Output: Ei with ei1 ∈ [0, 1], i.e. the largest singular value is bounded by 1
1: If use spectrum constraint: Ei = g(Ei), where g(·) is the clipping operator defined in (8).
2: If use spectrum normalization: Ei = Ei/e

i
1.

3: If use Lipschitz regularizer: do nothing, since we do not need to layer-wisely control the Lipschitz
constant in this case.

Note that we omit the bias term for simplicity.
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C EXPERIMENT SETTING

C.1 PERFORMANCE MEASURE

Inception score is introduced by Salimans et al. (2016):

I({xi}ni=1) := exp(E[DKL[p(y|x)||p(y)]]),
where p(y) is estimated by 1

n

∑n
i=1 p(y|xi) and p(y|x) is estimated by a pretrained Inception Net,

fincept Szegedy et al. (2015). Following the procedure in Salimans et al. (2016), we calculated the
score for randomly generated 5000 examples from generator for 10 times. The average and the
standard deviation of the inception scores are reported.

Fréchet inception distance (FID) is introduced by Heusel et al. (2017). FID uses 2nd order information
of the final layer of the inception model applied to the examples. To begin with, Fréchet distance (FD,
Dowson & Landau (1982)) is 2-Wasserstein distance between two Gaussian distribution p1 and p2:

F (p1, p2) = ‖µ1 − µ2‖22 + tr[Σ1 +Σ2 − 2(Σ1Σ2)
1/2],

where {µ1,Σ1} and {µ2,Σ2} are the mean and covariance of p1 and p2 respectively. FID between
two image distribution p1 and p2 is the FD between fincept(p1) and fincept(p2), i.e., the distribution
after the inception net transformation. The emperical FID is calculated by sampling 10000 true
images and 5000 images from generator, DGθ

. Different from inception score, multiple repetition of
the experiments did not exhibit any notable variations on this score.

Acknowledging that different realizations of Inception Net results in different inception scores (Barratt
& Sharma, 2018), we test inception scores with the standard tensorflow inception net for consistency.
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C.2 NETWORK ARCHITECTURE

Table 3: The standard CNN architecture for CIFAR-10 and STL-10. For CIFAR-10, M = 32,Mg =
4. While for STL-10, M = 48,Mg = 6. The slopes coefficient is 0.1 for all LeakyReLU activations.

(a) Generator

Input: z ∈ R
128 ∼ N (0, I )

Linear: 128 →Mg × Mg× 512

Deconv: [4 × 4, 256, stride = 2] BN, ReLU

Deconv: [4 × 4, 128, stride = 2] BN, ReLU

Deconv: [4 × 4, 64, stride = 2] BN, ReLU

Conv: [3 × 3, 3, stride = 1] Tanh

(b) Discriminator

Input: Image x ∈ R
M×M×3

Conv: [3 × 3, 64, stride = 1] LeakyReLU

Conv: [4 × 4, 64, stride = 2] LeakyReLU

Conv: [3 × 3, 128, stride = 1] LeakyReLU

Conv: [4 × 4, 128, stride = 2] LeakyReLU

Conv: [3 × 3, 256, stride = 1] LeakyReLU

Conv: [4 × 4, 256, stride = 2] LeakyReLU

Conv: [3 × 3, 512, stride = 1] LeakyReLU

Linear: Mg × Mg× 512 → 1

Table 4: The ResNet architectures for CIFAR-10 and STL-10 datasets.

(a) CIFAR-10 Generator

Input: z ∈ R
128 ∼ N (0, I )

Linear: 128 → 4 × 4× 256

ResBlocks: [256, Up-sampling] ×3
BN,ReLU

Conv: [3 × 3, 3, stride = 1], Tanh

(b) CIFAR-10 Discriminator

Input: Image x ∈ R
32×32×3

ResBlocks: [128, Down-Sampling] ×2
ResBlocks: [128] ×2

ReLU, Global sum pooling

Linear: 4 × 4× 128 → 1

(c) STL-10 Generator

Input: z ∈ R
128 ∼ N (0, I )

Linear: 128 → 6 × 6× 512

ResBlock: [256, Up-sampling]

ResBlock: [128, Up-sampling]

ResBlock: [64, Up-sampling]

BN,ReLU

Conv: [3 × 3, 3, stride = 1], Tanh

(d) STL-10 Discriminator

Input: Image x ∈ R
48×48×3

ResBlock: [64, Down-Sampling]

ResBlock: [128, Down-Sampling]

ResBlock: [256, Down-Sampling]

ResBlock: [512, Down-Sampling]

ResBlock: [1024]

ReLU, Global sum pooling

Linear: 3 × 3× 128 → 1
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Table 5: The ResNet architectures for ImageNet dataset. Recall that we adopts conditional GAN
framework with projection discriminator. The ResBlock is implemented with the conditional batch
normalization for the generator. 〈Embed(y), h〉 is the inner product of label embedding, Embed(y),
and the hidden state, h, after the global sum pooling. (Miyato & Koyama, 2018). We use the same
Residual Block as Gulrajani et al. (2017) describes.

(a) Generator

Input: z ∈ R
128 ∼ N (0, I )

Linear: 128 → 4 × 4× 1024

ResBlock: [1024, Up-sampling]

ResBlock: [512, Up-sampling]

ResBlock: [128, Up-sampling]

ResBlock: [64, Up-sampling]

BN,ReLU

Conv: [3 × 3, 3, stride = 1], Tanh

(b) Discriminator

Input: Image x ∈ R
64×64×3

Label y ∈ {1, 2, 3, ..., 1000}
ResBlock: [64, Down-Sampling]

ResBlock: [128, Down-Sampling]

ResBlock: [256, Down-Sampling]

ResBlock: [512, Down-Sampling]

ResBlock: [1024, Down-Sampling]

ReLU, Global sum pooling

Projection+
: 〈Embed(y), h〉+ [1024 → 1]

Linear

19











Published as a conference paper at ICLR 2019

(a) Orthonormal (b) SN-GAN (c) Spectrum Normalization

(d) Spectrum Constraint (e) Lipschitz Regularization (f) SC+Divergence Regularizer

(g) SN+D-Optimal Regularizer

Figure 9: Image generation on CIFAR-10 dataset.
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(a) SN-GAN (b) Spectrum Normalization

(c) Spectrum Constraint (d) Lipschitz Regularization

(e) SC+Divergence Regularizer (f) SN+D-Optimal Regularizer

Figure 10: Image generation on STL-10 dataset.
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(a) SN-GAN (b) SN+D-Optimal Regularizer

Figure 11: Image generation on ImageNet.

(a) Valley (b) Jellyfish (c) Pizza

(d) Sea Anemone (e) Shoji (f) Brain Coral

(g) Cardoon (h) Altar (i) Jack-o’-lantern

Figure 12: Conditional Image generation on ImageNet (SN+D-Optimal Regularizer)
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