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Abstract

Convolutional neural networks (CNNs) have been increasingly deployed to edge
devices. Hence, many efforts have been made towards efficient CNN inference
in resource-constrained platforms. This paper attempts to explore an orthogonal
direction: how to conduct more energy-efficient training of CNNs, so as to enable
on-device training? We strive to reduce the energy cost during training, by dropping
unnecessary computations, from three complementary levels: stochastic mini-batch
dropping on the data level; selective layer update on the model level; and sign
prediction for low-cost, low-precision back-propagation, on the algorithm level.
Extensive simulations and ablation studies, with real energy measurements from an
FPGA board, confirm the superiority of our proposed strategies and demonstrate
remarkable energy savings for training. For example, when training ResNet-74
on CIFAR-10, we achieve aggressive energy savings of >90% and >60%, while
incurring a top-1 accuracy loss of only about 2% and 1.2%, respectively. When
training ResNet-110 on CIFAR-100, an over 84% training energy saving is achieved
without degrading inference accuracy.

1 Introduction

The increasing penetration of intelligent sensors has revolutionized how Internet of Things (IoT)
works. For visual data analytics, we have witnessed the record-breaking predictive performance
achieved by convolutional neural networks (CNNs) [1, 2, 3]. Although such high performance CNN
models are initially learned in data centers and then deployed to IoT devices, we have witnessed
increasing necessity for the model to continue learning and updating itself in situ, such as for
personalization for different users, or incremental/lifelong learning. Ideally, this learning/retraining
process should take place on device. Comparing to cloud-based retraining, training locally helps
avoid transferring data back and forth between data centers and IoT devices, reduce communication
cost/latency, and enhance privacy.

However, training on IoT devices is non-trivial, more consuming yet much less explored than in-
ference. IoT devices, such as smart phones and wearables, have limited computation and energy
resources, that are even stringent for inference. Training CNNs consumes magnitudes higher com-
putations than one inference. For example, training ResNet-50 for only one 224 × 224 image can
take up to 12 GFLOPs (vs. 4GFLOPS for inference), which can easily drain a mobile phone battery
when training with batch images [4]. This mismatch between the limited resources of IoT devices
and the high complexity of CNNs is only getting worse because the network structures are getting
more complex as they are designed to solve harder and larger-scale tasks [5].
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This paper considers the most standard CNN training setting, assuming both the model structure
and the dataset to be given. This “basic” training setting is not usually the realistic IoT case, but
we address it as a starting point (with familiar benchmarks), and an opening door towards obtaining
a toolbox that may be later extended to online/transfer learning too (see Section 5). Our goal is
to reduce the total energy cost in training, which is complicated by a myriad of factors: from
per-sample (mini-batch) complexity (both feed-forward and backward computations), to the empirical
convergence rate (how many epochs it takes to converge), and more broadly, hardware/architecture
factors such as data access and movements [6, 7]. Despite a handful of works on efficient, accelerated
CNN training [8, 9, 10, 11, 12], they mostly focus on reducing the total training time in resource-rich
settings, such as by distributed training in large-scale GPU clusters. In contrast, our focus is to trim
down the total energy cost for in-situ, resource-constrained training. It represents an orthogonal
(and less studied) direction to [8, 9, 10, 11, 12, 13, 14], although the two can certainly be combined.

To unleash the potential of more energy-efficient in-situ training, we look at the full CNN training
lifecycle closely. With the goal to “squeeze out” unnecessary costs, we raise three curious questions:

• Q1: Are all samples always required throughout training: is it necessary to use all training samples
in all epochs?

• Q2: Are all parts of the entire model equally important during training: does every layer or filter
have to be updated every time?

• Q3: Are precise gradients indispensable for training: can we efficiently compute and update the
model with approximate gradients?

The above three questions only represent our “first stab” ideas to explore energy-efficient training,
whose full scope is much more profound. By no means do our above questions represent all possible
directions. We envision that many other recipes can be blended too, such as training on lower bit
precision or input resolution [15, 16]. We also recognize that energy-efficient CNN training should be
jointly considered with hardware/architecture co-design [17, 18], which is beyond the current work.

Motivated by the above questions, this paper proposes a novel energy efficient CNN training frame-
work dubbed E2-Train. It consists of three complementary aspects of efforts to trim down unnecessary
training computations and data movements, each addressing one of the above questions:

• Data-Level: Stochastic mini-batch dropping (SMD). We show that CNN training could be
accelerated by a “frustratingly easy” strategy: randomly skipping mini-batches with 0.5 probability
throughout training. This could be interpreted as data sampling with (limited) replacements, and is
found to incur minimal accuracy loss (sometimes even increase).

• Model-Level: Input-dependent selective layer update (SLU). For each minibatch, we select a
different subset of CNN layers to be updated. The input-adaptive selection is based on a low-cost
gating function jointly learned during training. While similar ideas were explored in efficient
inference [19], for the first time it is applied and evaluated for training.

• Algorithm-Level: Predictive sign gradient descent (PSG). We explore the usage of an ex-
tremely low-precision gradient descent algorithm called SignSGD, which has recently found both
theoretical and experimental grounds [20]. The original algorithm still requires the full gradient
computation and therefore does not save energy. We create a novel “predictive” variant, that could
obtain the sign without computing the full gradient, via low-cost, bit-level prediction. Combined
with mixed-precision design, it decreases computation and data-movement costs.

Besides mainly experimental explorations, we find E2-Train has many interesting links to recent CNN
training theories, e.g., [21, 22, 23, 24]. We evaluate E2-Train in comparison with its closest state-of-
the-art competitors. To measure its actual performance, E2-Train is also implemented and evaluated
on an FPGA board. The results show that the CNN model applied with E2-Train consistently
achieves higher training energy efficiency with marginal accuracy drops.

2 Related Work

Accelerated CNN training. A number of works have been devoted to accelerating training, in a
resource-rich setting, by utilizing communication-efficient distributed optimization and larger mini-
batch sizes [8, 9, 10, 11]. The latest work [12] combined distributed training with a mixed precision
framework, leading to training AlexNet within 4 minutes. However, their goals and settings are
distinct from ours - while the distributed training strategy can reduce time, it will actually incur more
total energy overhead, and is clearly not applicable to on-device resource-constrained training.
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Low-precision training. It is well known that CNN training can be performed under substantial
lower precision [15, 14, 13], rather than using full-precision floats. Specifically, training with
quantized gradients has been well studied in the distributed learning, whose main motivation is to
reduce the communication cost during gradient aggregations between workers [25, 26, 27, 28, 29, 20].
A few works considered to only transmit the coordinates of large magnitudes [30, 31, 32]. Recently,
the SignSGD algorithm [25, 20] even showed the feasibility of using one-bit gradients (signs) during
training, without notably hampering the convergence rate or final result. However, most algorithms
are optimized for distributed communication efficiency, rather than for reducing training energy costs.
Many of them, including [20], need first compute full-precision gradients and then quantize them.

Efficient CNN inference: Static and Dynamic. Compressing CNNs and speeding up their inference
have attracted major research interests in recent years. Representative methods include weight pruning,
weight sharing, layer factorization, bit quantization, to just name a few [33, 34, 35, 36, 37].

While model compression presents “static” solutions for improving inference efficiency, a more
interesting recent trend looks at dynamic inference [19, 38, 39, 40, 41] to reduce the latency, i,e,
selectively executing subsets of layers in the network conditioned on each input. That sequential
decision making process is usually controlled by low-cost gating or policy networks. This mechanism
was also applied to improve inference energy efficiency [42, 43].

In [44], a unique bit-level prediction framework called PredictiveNet was presented to accelerate
CNN inference at a lower level. Since CNN layer-wise activations are usually highly sparse, the
authors proposed to predict those zero locations using low-cost bit predictors, thereby bypassing a
large fraction of energy-dominant convolutions without modifying the CNN structure.

Energy-efficient training is different from and more complicated than its inference counterpart.
However, many insights gained from the latter can be lent to the former. For example, the recent
work [45] showed that performing active channel pruning during training can accelerate the empirical
convergence. Our proposed model-level SLU is inspired by [19]. The algorithm-level PSG also
inherits the idea of bit-level low-cost prediction from [44].

3 The Proposed Framework

3.1 Data-Level: Stochastic mini-batch dropping (SMD)

We first adopt a straightforward, seemingly naive, yet surprisingly effective stochastic mini-batch
dropping (SMD) strategy (see Fig. 1), to aggressively reduce the training cost by letting it see less
mini-batches. At each epoch, SMD simply skips every mini-batch with a default probability of 0.5.
All other training protocols, such as learning rate schedule, remain unchanged. Compared to the
normal training, SMD can directly half the training cost, if both were trained with the same number of
epochs. Yet amazingly, we observe in our experiments that SMD usually leads to negligible accuracy
decrease, sometimes even increase (see Sec. 4). Why? We discuss possible explanations below.

SMD can be interpreted as sampling with limited replacement. To understand this, think of combing
two consecutive SMD-enforced epochs into one, then it has the same number of mini-batches as one
full epoch; but within it each training sample now has 0.25, 0.5, and 0.25 probability, to be sampled 2,
1, and 0 times, respectively. The conventional wisdom is that for stochastic gradient descent (SGD),
in each epoch, the mini-batches are sampled i.i.d. from data without replacement (i.e., each sample
occurs exactly once per epoch) [46, 47, 48, 49, 50]. However, [21] proved that sampling mini-batches
with replacement has a large variance than sampling without replacement, and consequently SGD
may have better regularization properties.

Alternatively, SMD could also be viewed as a special data augmentation way that injects more
sampling noise to perturb training distribution every epoch. Past works [51, 52, 53] have shown
that specific kinds of random noise aid convergence through escaping from saddle points or less
generalizable minima. The structured sampling noise caused by SMD might aid the exploration.

Besides, [22, 54, 55] also showed that an importance sampling scheme that focuses on training more
with “informative” examples leads to faster convergence under resource budgets. They implied that
the mini-batch dropping can be selective based on certain information criterion instead of stochastic.
We use SMD because it has zero overhead, but more effective dropping options might be available if
low-cost indicators of mini-batch importance can be identified: we leave this as future work.
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Figure 1: Illustration of proposed framework. SLU: each blue circle G indicates an RNN gate and each blue
square under G indicates one block of layers in the base model. Green arrows denote the backward propagation.
To reduce the training cost, the RNN gates generate strategies to select which layers to train for each input.
In this specific example, the second and fourth blocks are “skipped” for both feedforward and backward
computations. Only the first and third blocks are updated. SMD and PSG: details are described in the main text.

3.2 Model-Level: Input-dependent selective layer update (SLU)

[19] proposed to dynamically skip a subset of layers for different inputs, in order to adaptively
accelerate the feed-forward inference. However, [19] called for a post process after supervised
training, i.e., to refine the dynamic skipping policy via reinforcement learning, thus causing undesired
extra training overhead. We propose to extend the idea of dynamic inference to the training stage,
i.e., dynamically skipping a subset of layers during both feed-forward and back-propagation.
Crucially, we show that by adding an auxiliary regularization, such dynamic skipping can be learned
from scratch and obtain satisfactory performance: no post refinement nor extra training iterations
is required. That is critical for dynamic layer skipping to be useful for energy-efficient training: we
term this extended scheme as input-dependent selective layer update (SLU).

As depicted in Fig. 1, given a base CNN to be trained, we follow [19] to add a light-weight RNN
gating network per layer block. Each gate takes the same input as its corresponding layer, and outputs
soft-gating outputs between [0,1] for the layer, which are then used as the skipping probability, in
which the higher the value is, more probably that layer will be selected. Therefore, each layer will be
adaptively selected or skipped, depending on the inputs. We will only select the layers activated by
gates. Those RNN gates cost less than 0.04% feed-forward FLOPs than the base models; hence their
energy overheads are negligible. More details can be found in the supplementary.

[19] first trained the gates in a supervised way together with the base model. Observing that such
learned routing policies were often not sufficiently efficient, they used reinforcement learning post-
processing to learn more aggressive skipping afterwards. While this is fine for the end goal of dynamic
inference, we hope to get rid of the post-processing overhead. We incorporate the computational
complexity regularization into the objective function to overcome this hurdle, defined as

min
W,G

L(W,G) + αC(W,G) (1)

Here, α is a weighting coefficient of the computational complexity regularization. W and G denote
the parameters of the base model and the gating network, respectively. Also, L(W,G) denotes
the prediction loss, and C(W,G) is calculated by accumulating the computational cost (FLOPs)
of the layers that are selected. The regularization explicitly encourages to learn more “parismous”
selections throughout the training. We find that such SLU-regularized training leads to almost
the same number of epochs to converge compared to standard training, i.e., SLU does not sacrifice
empirical convergence speed. As a side effect, SLU will naturally yield CNNs with dynamic inference
capability. Though not the focus of this paper, we find the CNN trained with SLU reaches comparable
accuracy-efficiency trade-off over one trained with the approach in [19].

The practice of SLU seems to align with several recent theories on CNN training. In [56], the authors
suggested that “not all layers are created equal” for training. Specifically, some layers are critical to be
intensively updated for improving final predictions, while others are insensitive along training. There
exist “non-critical” layers that barely change their weights throughout training: even resetting those
layers in a trained model to their initial value has few negative consequences. The more recent work
[24] further confirmed the phenomenon, though how to identify those non-critical model parts at the

4



early training stage remains unclear. [57, 58] also observed different samples might activate different
sub-models. Those inspiring theories, combined with the dynamic inference practice, motivate us to
propose SLU for more efficient training.

3.3 Algorithm-Level: Predictive sign gradient descent (PSG)

It is well recognized that low-precision fixed-point implementation is a very effective knob for
achieving energy efficient CNNs, because both CNNs’ computational and data movement costs are
approximately a quadratic function of their employed precision. For example, a state-of-the-art design
[59] shows that adopting 8-bit precision for a multiplication, adder, and data movement can reduce
the energy cost by 95%, 97%, and 75%, respectively, as compared to that of a 32-bit floating point
design when evaluated in a commercial 45nm CMOS technology.

The successful adoption of extremely low-precision (binary) gradients in SignSGD [20] is appealing,
as it might lead reducing both weight update computation and data movements. However, directly
applying the original SignSGD algorithm for training will not save energy, because it actually
computes the full-precision gradient first before taking the signs. We propose a novel predictive
sign gradient descent (PSG) algorithm, which predicts the sign of gradients using low-cost bit-level
predictors, therefore completely bypassing the costly full-gradient computation.

We next introduce how the gradients of weights are updated in PSG. Assume the following notations:
the full precision and most significant bits (the latter, MSB part, is adopted by PSG’s low-cost
predictors) of the input x and the gradient of the output gy are denoted as (Bx, Bg) and (Bmsb

x , Bmsb
g ),

respectively, where the corresponding input and the gradient of the output for PSG’s predictors are
denoted as xmsb and gmsb

y , respectively. As such, the quantization noise for the input and the gradient

of the output are qx = x−xmsb and qgy = gy−gmsb
y , respectively. Similarly, after back-propagation,

we denote the full-precision and low-precision (i.e., taking the most significant bits (MSBs)) gradient
of the weight as gw and gmsb

w , respectively, the latter of which is computed using xmsb and gmsb
y .

Then, with an empirically pre-selected threshold τ , PSG updates the i-th weight gradient as follows:

g̃w[i] =

{

sgn(gmsb
w [i]) , |gmsb

w [i]| ≥ τ

sgn(gw[i]) , otherwise
(2)

Note that in hardware implementation, the computation to obtain gmsb
w is embedded within that of gw.

Therefore, the PSG’s predictors do not incur energy overhead.

PSG for energy-efficient training. Recent work [15] has shown that most of the training process is
robust to reduced precision (e.g., 8 bits instead of 32 bits), except for the weight gradient calculations
and updates. Taking their learning, we similarly adopt a higher precision for the gradients than the
inputs and weights, i.e., Bgy > Bx=Bw. Specifically, when training with PSG, we first compute

the predictors using Bmsb
x (e.g., Bmsb

x =4) and Bmsb
gy

(e.g., Bmsb
gy

=10), and then update the weights’

gradients following Eq. (2). The further energy savings of training with PSG over the fixed-point
training [15] are resulted from the fact that the predictors computed using xmsb and gmsb

y require
exponentially less computational and data movement energy.

Prediction guarantee of PSG. We analyze the probability of PSG’s prediction failure to discuss its
performance guarantee. Specifically, if denoting the sign prediction failure produced by Eq. (2) as H ,
it can be proved that this probability is upbounded as follows,

P (H) ≤ ∆2
xE1 +∆2

gy
E2, (3)

where ∆x = 2−(Bmsb

x
−1) and ∆gy = 2

−(Bmsb

gy
−1)

are the quantization noise step sizes of xmsb

and gmsb
y , respectively. E1 and E2 are given in the Appendix along with the proof of Eq. (3).

Eq. (3) shows that the prediction failure probability of PSG is upbounded by a term that degrades
exponentially with the precision assigned to the predictors, indicating that this failure probability can
be very small if the predictors are designed properly.

Adaptive threshold. Training with PSG might lead to sign flips in the weight gradients as compared
to that of the floating point one, which only occurs when the latter has a small magnitude and thus the
quantization noise of the predictors causes the sign flips. Therefore, it is important to properly select
a threshold (e.g., τ in Eq.(2)) that can optimally balance this sign flip probability and the achieved
energy savings. We adopt an adaptive threshold selection strategy because the dynamic range of
gradients differ significantly from layers to layers: instead of using a fixed number, we will tune a
ratio β ∈ (0, 1) which yields the adaptive threshold as τ̃ = βmaxi{g

msb
w [i]}.
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standard training; (2) fine-tuning all layers using E2-Train. With all hyperparameters being tuned
to best efforts, the two fine-tuning methods improve over the pre-trained model top-1 accuracy by
[0.30%, 1.37%] respectively, while (2) saves 61.58% more energy (FPGA-measured) than (1). That
shows that E2-Train is the preferred option: higher accuracy and more energy savings

Table 4 evaluates E2-Train and its ablation baselines on various models and more datasets. The
conclusions are aligned with the ResNet-74 cases. Remarkably, on CIFAR-10 with ResNet-110,
E2-Train saves over 83% energy with only 0.56% accuracy loss. When saving over 91% (i.e., more
than 10×), the accuracy drop is still less than 2%. On CIFAR-100 with ResNet-110, E2-Train can
even surpass baseline on both top-1 and top5 accuracy while saving over 84% energy. More notably,
E2-Train is also effective for even compact networks: it saves about 90% energy cost while achieving
a comparable accuracy, when adopted for training MobileNetV2.

Table 4: Experiment results with ResNet-110 and MobileNetV2 on CIFAR-10/CIFAR-100.

Dataset Method Backbone Computational Savings Energy Savings Accuracy
(top-1)

Accuracy
(top-5)

CIFAR-10

SMB (original)
ResNet-110

- - 93.57% -
SD[66] 50% 46.03% 91.51% -

SMB (original) MobileNetV2[67] - - 92.47% -

E2-Train
(SMD+SLU+PSG)

ResNet-110
80.27% 83.40% 93.01% -
85.20% 87.42% 91.74% -
90.13% 91.34% 91.68% -

MobileNetV2[67] 75.34% 88.73% 92.06% -

CIFAR-100

SMB (original)
ResNet-110

- - 71.60% 91.50%
SD[66] 50% 48.34% 70.40% 92.58%

SMB (original) MobileNetV2[67] - - 71.91% -

E2-Train
(SMD+SLU+PSG)

ResNet-110
80.27% 84.17% 71.63% 91.72%
85.20% 88.72% 68.61% 89.84%
90.13% 92.90 % 67.94% 89.06%

MobileNetV2[67] 75.34% 88.17% 71.61% -

5 Discussion of Limitations and Future Work

We propose the E2-Train framework to achieve energy-efficient CNN training in resource-constrained
settings. Three complementary aspects of efforts to trim down training costs - from data, model and
algorithm levels, respectively, are carefully designed, justified, and integrated. Experiments on both
simulation and real FPGA demonstrate the promise of E2-Train. Despite the preliminary success, we
are aware of several limitations of E2-Train, which also points us to the future road map. For example,
E2-Train is currently designed and evaluated for standard off-line CNN training, with all training data
presented in batch, for simplicity. This is not scalable for many real-world IoT scenarios, where new
training data arrives sequentially in a stream form, with limited or no data buffer/storage leading to
the open challenge of “on-the-fly” CNN training [68]. In this case, while both SLU and PSG are still
applicable, SMD needs to be modified, e.g., by one-pass active selection of stream-in data samples.
Besides, SLU is not yet straightforward to be extended to plain CNNs without residual connections.
We expect finer-grained selective model updates, such as online channel pruning [45], to be useful
alternatives here. We also plan to optimize E2-Train for continuous adaptation or lifelong learning.
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