
Cache-Version Selection and Content Placement
for Multi-Resolution Video Streaming in

Information-Centric Networks

Abstract—Information-centric networking (ICN) is a novel
concept that focuses on the retrieval of information rather
than establishing end-to-end network connection. In this
paper, we study the problem of optimizing multi-resolution
video streaming in an ICN with multiple network caches and
a large number of heterogeneous users. We propose simple
algorithms that determine (i) the selection of network cache
and video version at the user level, and (ii) the decision
of which video versions to store at the cache level. In
addition to proving that our algorithms indeed achieve
the optimal performance, we also demonstrate that our
algorithms can be implemented in a fully distributed and
standard-compliant fashion under a popular ICN standard
called Named Data Networking (NDN). Simulations based
on ndnSIM demonstrate that our algorithms significantly
outperform other standard solutions for multi-resolution
video streaming.

I. INTRODUCTION

Video streaming has become the dominant application
for modern network traffic. In order to alleviate the bur-
den of backbone network and to reduce latency, content
delivery networks (CDNs) have been deployed to store
popular videos at content servers close to the users. Si-
multaneously, as users are accessing videos from a variety
of devices, ranging from smart phones to 4K televisions,
multi-resolution video streaming, which encodes the same
video into versions with different resolutions, has been
used to deliver the most appropriate version to each user
based on its service requirement and network congestion.
For example, YouTube currently encodes each video into
five different versions.

In this paper, we study the interplay between three
important components in multi-resolution video stream-
ing: cache selection, where each user determines which
content server to retrieve videos from, version selection,
which determines the version that each user watches, and
content placement, which entails the caching strategy of
each content server. We formulate CaVe-CoP: a Cache-
Version selection and Content Placement problem that
jointly optimizes these three components by taking into
account the preferred resolutions of users, the commu-
nication capacities of links, and the storage capacities of
content servers. Our goal is to develop a new network
algorithm for CaVe-CoP that is not only provably optimal,
but also practical and implementable.

Our proposed solution is based on the observation that
there is a practical timescale separation between cache-
version selection (CaVe) and content placement (CoP),
as the former can be updated much more frequently.
Hence, we first solve the CaVe problem by fixing the
solution to the CoP problem. We then solve the CoP
problem by considering its influence to solutions for the
CaVe problem. For both problems, we propose simple
algorithms and prove that they converge to the optimal
solutions.

We further study the implementation of our algorithms
on Named Data Networking (NDN), one of the most
popular implementations of information-centric network-
ing (ICN). We demonstrate that our algorithms can be
implemented in a fully distributed and fully standards-
compliant fashion. In particular, while NDN does not
allow users to explicitly specify its selected content server,
our implementation contains a distributed routing proto-
col that ensures users always obtain their selected video
versions from the optimal content server. Moreover, we
show that the overhead of our algorithms is minimal since
the update of many parameters can be directly inferred
by the local information at each node under the NDN
standard.

We also implement and evaluate our algorithms in
ndnSIM, the standard network simulator for NDN. To
demonstrate the utility of our algorithms, we evaluate
two other policies. One policy uses our optimal solution
for CaVe and a standard policy for CoP. The other policy
users a standard policy for CaVe and our optimal solution
for CoP. Simulation results show that our algorithms
significantly outperform these two policies.

The rest of the paper is organized as follows. Section II
introduces our system model and the formulation of CaVe-
CoP. Solutions to the two problems CaVe and CoP are
introduced in Section III and IV, respectively. In Sec-
tion V, we discuss the implementation of our algorithms
in NDN. Section VI demonstrates the simulation results.
Section VII reviews some related literature. Finally, Sec-
tion VIII concludes the paper.

II. SYSTEM MODEL

We consider an information-centric network (ICN),
where a group of network caches and routers jointly host

a set of videos and serve a set of video streaming users.
We use C to denote the set of network caches, S to denote
the set of users, and L to denote the set of communication
links that connect the network caches, routers, and users.
Fig. 1 illustrates an example of such a network. There is
a route between each user s and each network cache c,
and we define H l

s,c as the indicator function that link l is
on the route between s and c.

Fig. 1. An illustration of an ICN.

We consider multi-resolution video streaming where
each video is encoded into multiple different versions,
with different versions corresponding to different reso-
lutions of the same video content. We use V to denote
the set of all versions of all videos. For each video version
v ∈ V, we use Xv to denote the bit rate of v and Yv to
denote the file size of v, which can be computed as the
product of Xv and the duration of the video. Obviously,
low-resolution versions have small Xv and Yv, and high-
resolution versions have large Xv and Yv. For the ease
of theoretical analysis, we also assume that there exists
a null version v0 with Xv0 = 0 and Yv0 = 0. If a user
decides not to watch any video, then we say that the
user watches the null version v0. With the introduction
of the null version, we can assume that each user always
watches a video version.

Each network cache c ∈ C has a storage of size Bc
to store some video versions. Specifically, let pc,v be the
indicator function that v is present in the storage of c,
then we have

∑
v Yvpc,v ≤ Bc, for all c. Each network

cache c determines which video versions to store, and
thereby determines the values of pc,v, subject to its storage
constraint. We also assume that there exists at least a
network cache c with infinite storage, Bc =∞, and stores
all video versions. Such an assumption is to ensure that
at least one copy of each video version exists in the ICN.
We refer to the problem of determining pc,v as the content
placement (CoP) problem.

At the user end, each user s is interested in watching a
video. Let Is be the set of video versions that correspond
to the interested video of user s. Each user s needs
to determine which video version to watch, as well as

which network cache to obtain the video version from.
Let zs,c,v be the indicator function that user s decides
to watch video version v, and to obtain it from network
cache c. We refer to the problem of determining zs,c,v
as the cache-version selection (CaVe) problem. Since user
s needs to obtain exactly one video version, we require
that

∑
c,v∈Is zs,c,v = 1, for all s. Moreover, user s can

only obtain video version v from network cache c if c
indeed stores v, that is, pc,v = 1. Hence, we also need
zs,c,v ≤ pc,v, for all s, c, v.

Recall that the bit rate of video version v is Xv and
H l
s,c = 1 if link l is on the route between s and c.

When user s obtains v from c, it incurs an amount of
Xv traffic on each link along the route between s and
c. The total amount of traffic on link l can then be
expressed as

∑
s,c,vXvH

l
s,czs,c,v. We consider that each

link l has a finite capacity of Rl, and hence we require
that

∑
s,c,vXvH

l
s,czs,c,v ≤ Rl, for all l ∈ L.

Finally, each user obtains some utility based on its
perceived video quality. In particular, we consider that
each user s has a utility function Us(·) and it obtains a
utility of Us(Xv) when it is watching a video version with
bit rate Xv. We assume that Us(·) is a non-decreasing
and concave function. Different users may have different
utility functions since they may be watching videos on
different types of devices. For example, users watching
videos on smartphones are much less sensitive to low
resolutions than those watching videos on televisions.

We aim to maximize the total utility in the ICN by
choosing the optimal ~p := [pc,v] and ~z := [zs,c,v], subject
to all aforementioned constraints. Specifically, we aim to
solve the following optimization problem:

CaVe-CoP:

max
∑

s,c,v∈Is

Us(Xv)zs,c,v (1)

s.t.
∑
v

Yvpc,v ≤ Bc,∀c ∈ C, (2)∑
c,v∈Is

zs,c,v = 1,∀s ∈ S, (3)

zs,c,v ≤ pc,v,∀s ∈ S, c ∈ C, v ∈ V, (4)∑
s,c,v

XvH
l
s,czs,c,v ≤ Rl,∀l ∈ L, (5)

pc,v ∈ {0, 1}, zs,c,v ∈ {0, 1},∀s ∈ S, c ∈ C, v ∈ V. (6)

While the utility maximization problem studied in this
paper may look similar to many existing studies on net-
work utility maximization (NUM), we note that there are
two major challenges that distinguish our problem from
other NUM problems: First, most existing studies on NUM
problems assume that the source and destination of each
flow is fixed and given. In contrast, multiple network
caches may store the same video version in ICN depending
on the solution to the content placement problem. Hence,
not only does a user have multiple choices of network

caches to obtain the video version from, but the prob-
lem of selecting cache is fundamentally intertwined with
the problem of content placement. Second, although the
problem of version selection may seem to be a special case
of the rate control problem, we note that the problem of
version selection is fundamentally intertwined with the
problem of selecting cache since each cache may only
store a subset of versions for a given video. The possibility
of placing different versions of the same video at different
caches also distinguishes this work from some recent
studies on throughput-optimal algorithms with caches. To
the best of our knowledge, there are no existing studies
that explore the interaction between content placement,
cache selection, and version selection.

The decision variable in (1) – (6) are ~p and ~z. We note
that there is a practical timescale separation between the
update for ~p and that for ~z. When a user changes its values
for ~z, it simply establishes a connection to a different
network cache and adjusts its own playback resolution.
Hence, ~z can be updated as frequent as, for example,
once every 100 milliseconds. On the other hand, when
a network cache changes its values for pc,v, it needs to
obtain all video versions with pc,v = 1. Hence, ~p can only
be updated infrequently.

Our proposed solution for CaVe-CoP is based on the ob-
servation of the timescale separation between the update
for ~p and that for ~z. In Section III, we will first consider the
CaVe problem by finding the optimal ~z for given ~p. Next,
in Section IV, we will consider the CoP problem. In order
to find the optimal ~p, we will introduce pseudo-variables
~z′ := [z′s,c,v] that are updated at the same frequency as ~p
to address the issue with timescale separation.

Finally, we note that (1) – (6) is an integer program-
ming problem since pc,v and zs,c,v are integers. To obtain
tractable results, we will relax (6) and allow pc,v and
zs,c,v to be any real number between 0 and 1. As we
will demonstrate in Section III, our solution to the CaVe
problem will always yield integer values for zs,c,v. We will
also discuss how to obtain integer solutions for pc,v in
Section IV.

III. THE CACHE-VERSION SELECTION PROBLEM (CAVE)

In this section, we study the CaVe problem. We consider
that the contents that each network cache store are given
and fixed, and aims to determine both the video version
to watch and the network cache to obtain contents from
for each user. In terms of the optimization problem (1)
– (6), we focus on finding the optimal ~z := [zs,c,v] to
maximize total utility in the ICN when ~p := [pc,v] is given
and fixed.

A. Overview of the Solution

We begin by rewriting the optimization problem (1)
– (6) for the CaVe problem. Since ~p is given and fixed,
constraint (2) no longer applies. Further, we relax the
constraint (6) by allowing zs,c,v to be any real number

between 0 and 1. The resulting optimization problem,
which we call CaVe-Primal, can then be described as
follows:

CaVe-Primal:

max
∑

s,c,v∈Is

Us(Xv)zs,c,v (7)

s.t.
∑
c,v∈Is

zs,c,v = 1,∀s ∈ S, (8)

zs,c,v ≤ pc,v,∀s ∈ S, c ∈ C, v ∈ V, (9)∑
s,c,v

XvH
l
s,czs,c,v ≤ Rl,∀l ∈ L, (10)

0 ≤ zs,c,v ≤ 1,∀s ∈ S, c ∈ C, v ∈ V. (11)

We will consider a dual problem to CaVe-Primal. We
associate a Lagrange multiplier, λl, for each link capacity
constraint (10), for all l ∈ L. Let ~λ := [λl] be the vector
of Lagrange multipliers. The Lagrangian is obtained as
follows:

L(~z,~λ)

=
∑

s,c,v∈Is

Us(Xv)zs,c,v −
∑
l

λl(
∑
s,c,v

zs,c,vH
l
s,cXv −Rl)

(12)

The dual objective function, which we call CaVe-
Lagrangian, is to maximize the Lagrangian with the con-
straints (8),(9) and (11). The CaVe-Lagrangian can thus
be written as follows:

CaVe-Lagrangian:

max L(~z,~λ) (13)

s.t.
∑
c,v

zs,c,v = 1 ∀s ∈ S, (14)

zs,c,v ≤ pc,v,∀s ∈ S, c ∈ C, v ∈ V, (15)

0 ≤ zs,c,v ≤ 1,∀s ∈ S, c ∈ C, v ∈ V. (16)

Remark 1: We note that, in defining the CaVe-
Lagrangian problem, we only relax the constraint (10)
by associating Lagrange multipliers for it, and we keep
other constraints (8), (9) and (11) intact. This is because
constraint (10) specifies the constraint of link capacity.
It can be temporarily violated as packets that cannot be
served immediately will simply wait in the queue for
service. On the other hand, constraint (8) states that
each user needs to obtain exactly one video version, and
constraint (9) states that each user can only obtain a video
version from a network cache that stores it. These two
constraints need to be satisfied at all time in practical
systems, and hence we do not relax them. 2

Let D(~λ) be the maximum value of L(~z,~λ) under the
constraints (14) – (16). The dual problem is to minimize
D(~λ) while ensuring that all Lagrange multipliers λl are
non-negative. We call this the CaVe-Dual and mathemat-
ically write it as:

CaVe-Dual:

min D(~λ) (17)

s.t.λl ≥ 0,∀λl ∈ L. (18)

We first show that strong duality holds for CaVe-Primal
and CaVe-Dual.

Theorem 1: CaVe-Primal and CaVe-Dual have the same
optimal value.

Proof: The objective function of CaVe-Primal is a
linear function, and hence is convex. It is straightfor-
ward to verify that the set of ~z that satisfies the three
constraints that are not relaxed in the formulation of
CaVe-Lagrangian, namely, (8), (9), and (11), is convex.
Furthermore, the relaxed constraint (10) is a linear one,
and strict inequality holds for the constraint if all users
decide to watch the null version v0 with Xv0 = 0, which
is equivalent to setting zs,c,v = 0 if Xv > 0. Hence, this
theorem holds following Theorem 6.2, Chapter 6 in [1].

Based on Theorem 1, we aim to solve the cache-version
selection problem by solving CaVe-Dual. Solving CaVe-
Dual involves two steps: First, for a given vector ~λ, we
need to find D(~λ) by solving CaVe-Lagrangian. Second,
we need to find the optimal ~λ to solve CaVe-Dual. We
introduce our solutions to these two steps below.

B. The Solution to CaVe-Lagrangian

We rewrite (12) as:

L(~z,~λ)

=
∑

s,c,v∈Is

Us(Xv)zs,c,v −
∑
l

λl(
∑
s,c,v

zs,c,vH
l
s,cXv −Rl)

=
∑
s

 ∑
c,v∈Is

zs,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1

λl]

+
∑
l

λlRl

(19)

We note that the above expression provides a natural
user-by-user decomposition. Specifically, by defining ~zs as
the vector containing all [zs,c,v], for a given s, and

Ls(~zs, ~λ) :=
∑
c,v∈Is

zs,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1

λl], (20)

then we have

L(~z,~λ) =
∑
s

Ls(~zs, ~λ) +
∑
l

λlRl. (21)

As ~λ is given in CaVe-Lagrangian, the last term
∑
l λlRl

is a constant. Hence, L(~z,~λ) is maximized if one can max-
imize Ls(~zs, ~λ) for each user s. Moreover, recall that pc,v
is the indicator function that network cache c stores video
version v. Therefore, the constraint (15) is equivalent to
saying that zs,c,v needs to be 0 if pc,v = 0. We can now
define CaVe-Users as follows:

Algorithm 1 CaVe-Users Algorithm

1: Obtain ~p and ~λ
2: zs,c,v ← 0,∀c, v
3: (c∗, v∗) ← arg maxc,v∈Is:pc,v≥0(Us(Xv) −
Xv

∑
l:Hl

s,c=1 λl)
4: zs,c∗,v∗ ← 1.

Algorithm 2 CaVe-Linkl Algorithm
1: t← 0, λl ← 0
2: while true do
3: Obtain ~z from Alg. 1

4: λl ←
(
λl + ht[

∑
s,c,vXvH

l
s,czs,c,v −Rl]

)+
5: t← t+ 1

CaVe-Users:

max
∑

c,v:v∈Is,pc,v=1

zs,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1

λl] (22)

s.t.
∑

c,v:v∈Is,pc,v=1

zs,c,v = 1, (23)

0 ≤ zs,c,v ≤ 1,∀c ∈ C, v ∈ V. (24)

It is clear that the optimal vector ~z that solves CaVe-
Users, for all s, is also the optimal vector that solves CaVe-
Lagrangian.

Also, note that the only control variable in CaVe-
Users is the vector ~zs, and all other variables, includ-
ing Us(Xv), Xv, and λl are fixed. Hence, the following
algorithm solves CaVe-Users: First, find (c∗, v∗) that has
the maximum value of Us(Xv) − Xv

∑
l:Hl

s,c=1 λl among
all (c, v) with v ∈ Is and pc,v = 1. Ties can be broken
arbitrarily. Second, set zs,c∗,v∗ = 1, and zs,c,v = 0 for all
other (c, v). Alg. 1 describes the algorithm. We note that,
even though we have relaxed the constraint and allowed
zs,c,v to be any real number between 0 and 1, Alg. 1 shows
that the optimal solution to CaVe-Lagrangian is always an
integer solution.

C. The Solution to CaVe-Dual

Our solution to CaVe-Dual is shown in Alg. 2, where
each link l updates its own λl. We have the following
lemma and theorem. The proofs of both of them are
virtually identical to Lemma 2 and Theorem 2 in [2], and
are hence omitted.

Lemma 1: Given ~λ, let ~z∗ be the vector that solves CaVe-
Users, then [

∑
s,c,vXvH

l
s,cz
∗
s,c,v − Rl] is a subgradient of

D(~λ).
Theorem 2: Let {ht} be a sequence of non-negative

numbers with
∑∞
t=1 ht = ∞ and limt→∞ ht = 0, then

Alg. 2 solves CaVe-Dual.

IV. THE CONTENT PLACEMENT PROBLEM (COP)

We now discuss the content placement (CoP) problem,
which entails deciding pc,v, the indicator function that

network cache c stores video version v, for all c and
v. As discussed in Section II, a major challenge to our
optimization problem (1) – (6) is that the vector ~p needs
to be updated much less frequently than the vector ~z.
To address this challenge, we introduce a pseudo-variable
~z′ := [z′s,c,v], which can be updated as frequently as ~p, to
replace ~z. Also, we relax (6) by allowing pc,v and z′s,c,v to
be any real number between 0 and 1. We can now rewrite
(1) – (6) as:

CoP-Primal

max
∑

s,c,v∈Is

Us(Xv)z
′
s,c,v (25)

s.t.
∑
v

Yvpc,v ≤ Bc,∀c ∈ C, (26)∑
c,v∈Is

z′s,c,v = 1,∀s ∈ S, (27)

z′s,c,v ≤ pc,v,∀s ∈ S, c ∈ C, v ∈ V, (28)∑
s,c,v

XvH
l
s,cz
′
s,c,v ≤ Rl,∀l ∈ L, (29)

0 ≤ pc,v ≤ 1, 0 ≤ z′s,c,v ≤ 1,∀s, c, v. (30)

A. Overview of the Solution

Similar to our solution to the CaVe problem, we will
also consider a dual problem to the CoP-Primal problem.
Let ~µ′ := [µ′s,c,v], and ~λ′ := [λ′l] be the vectors of Lagrange
multipliers associated with each constraint in (28), and
(29), respectively. The Lagrangian is then

L′(~p, ~z′, ~λ′, ~µ′)

:=
∑

s,c,v∈Is

Us(Xv)z
′
s,c,v −

∑
l

λ′l(
∑
s,c,v

XvH
l
s,cz
′
s,c,v −Rl)

−
∑
s,c,v

µ′s,c,v(z
′
s,c,v − pc,v). (31)

The dual objective function, which we call CoP-
Lagrangian, is to maximize L′(~p, ~z′, ~λ′, ~µ′) subject to con-
straints (26), (27) and (30), for given vectors ~λ′ and ~µ′:

CoP-Lagrangian

maxL′(~p, ~z′, ~λ′, ~µ′) (32)

s.t.
∑
v

Yvpc,v ≤ Bc,∀c ∈ C, (33)∑
c,v∈Is

z′s,c,v = 1,∀s ∈ S, (34)

0 ≤ pc,v ≤ 1, 0 ≤ z′s,c,v ≤ 1,∀s, c, v. (35)

Remark 2: We note that an important difference be-
tween Cop-Lagrangian and Cave-Lagrangian is that Cop-
Lagrangian relaxes the constraint (28) as well. Since CP-
Primal uses the pseudo-variable z′s,c,v that has no direct
physical meaning to replace zs,c,v, this constraint can now
be temporarily violated. 2

Let D′(~λ′, ~µ′) be the maximum value of L′(~p, ~z′, ~λ′, ~µ′)
subject to constraints (33), (34) and (35). The dual

problem, which we call CoP-Dual, is to find the Lagrange
multipliers that minimize D′(~λ′, ~µ′):

CoP-Dual

minD′(~λ′, ~µ′) (36)

s.t. λ′l ≥ 0,∀l ∈ L., (37)

µ′s,c,v ≥ 0,∀s ∈ S, c ∈ C, v ∈ V. (38)

Similar to Theorem 1, it is straightforward to show the
following theorem:

Theorem 3: CoP-Primal and CoP-Dual have the same
optimal value.

We will solve CoP-Primal by solving CoP-Dual. We dis-
cuss our solutions to CoP-Lagrangian and CoP-Dual below.

B. The Solution to CoP-Lagrangian

We first rewrite L′(~p, ~z′, ~λ′, ~µ′) as:

L′(~p, ~z′, ~λ′, ~µ′)

=
∑
s

∑
c,v

z′s,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1

λ′l − µ′s,c,v]


+
∑
c

[
∑
v

pc,v(
∑
s

µ′s,c,v)] +
∑
l

λ′lRl. (39)

Let ~z′s be the vector containing all [z′s,c,v] for a given s
and ~pc be the vector containing all [pc,v] for a given c. Also,
let L̄s(~z′s, ~λ′, ~µ′) :=

∑
c,v z

′
s,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1 λ
′
l −

µ′s,c,v], L̂c(~pc, ~µ′) :=
∑
v pc,v(

∑
s µ
′
s,c,v), and B(~λ′) :=∑

l λlRl. Then, we have

L′(~p, ~z′, ~λ′, ~µ′)

=
∑
s

L̄s(~z′s,
~λ′, ~µ′) +

∑
c

L̂c(~pc, ~µ′) +B(~λ′), (40)

which gives rise to a natural decomposition among all
users and network caches. Specifically, consider the two
subproblems, namely, CoP-Users and CoP-Cachec, below.
For fixed vectors ~λ′ and ~µ′, CoP-Lagrangian can be solved
by solving CoP-Users for each s and CoP-Cachec for each
c.

CoP-Users

max
∑
c,v

z′s,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1

λ′l − µ′s,c,v] (41)

s.t.
∑
c,v∈Is

z′s,c,v = 1,∀s ∈ S, (42)

0 ≤ z′s,c,v ≤ 1,∀c ∈ C, v ∈ V. (43)

CoP-Cachec

max
∑
v

pc,v(
∑
s

µ′s,c,v) (44)

s.t.
∑
v

Yvpc,v ≤ Bc,∀c ∈ C, (45)

0 ≤ pc,v ≤ 1,∀v ∈ V. (46)

Algorithm 3 CoP-Users Algorithm

1: Obtain ~p, ~µ′ and ~λ′

2: z′s,c,v ← 0,∀c, v
3: (c∗, v∗) ← arg maxc,v∈Is Us(Xv) − Xv

∑
l:Hl

s,c=1 λ
′
l −

µ′s,c,v
4: z′s,c∗,v∗ ← 1.

Algorithm 4 Cop-Linkl Algorithm
1: t← 0, λ′l ← 0
2: while true do
3: Obtain ~z′ from Alg. 3

4: λ′l ←
(
λ′l + ht[

∑
s,c,vXvH

l
s,cz
′
s,c,v −Rl]

)+
5: t← t+ 1

CoP-Users can be solved by the following algorithm:
First, find (c∗, v∗) that has the maximum value of
Us(Xv)−Xv

∑
l:Hl

s,c=1 λ
′
l−µ′s,c,v among all (c, v) with v ∈

Is. Ties can be broken arbitrarily. Second, set z′s,c∗,v∗ = 1,
and z′s,c,v = 0 for all other (c, v). Alg. 3 shows the
algorithm.

On the other hand, CoP-Cachec can be solved by the fol-
lowing greedy algorithm: First, sort all video versions v in
decreasing order of

∑
s µ
′
s,c,v

Yv
so that

∑
s µ
′
s,c,1

Y1
≥

∑
s µ
′
s,c,2

Y2
≥

. . . . Second, starting from v = 1, set pc,v to be the
largest possible value without violating any constraints.
Specifically, set pc,v = min{1, (Bc −

∑
v′<v Yv′pc,v′)/Yv}.

It is straightforward to verify that this greedy algorithm
achieves the optimal solution for CoP-Cachec.

Remark 3: Recall that pc,v is the indicator function that
c stores v, which needs to be an integer. The optimal
solution to CoP-Cachec may not be integer. However, from
the description of our greedy algorithm, it is obvious that,
for each c, there is at most one v with non-integer pc,v.
In practice, we make each network cache c store only
video versions with pc,v = 1. Since all but one versions
have integer pc,v, this approach is close to the optimal
solution. 2

C. The Solution to CoP-Dual

The CoP-Dual problem involves two Lagrange multipli-
ers, ~λ′ and ~µ′. They are updated as in Alg. 4 and 5. The
following lemma and theorem, whose proofs are omitted
due to space constraint, show that these algorithms solve
CoP-Dual.

Lemma 2: Given ~λ′ and ~µ′, let ~z′∗ and ~p∗ be the
vectors that solve CoP-Users and CoP-Cachec, then the
vector containing [

∑
s,c,vXvH

l
s,cz
′∗
s,c,v − Rl] for all l and

[z′∗s,c,v − pc,v] for all c and v is a subgradient of D′(~λ′, ~µ′).
Theorem 4: Let {ht} be a sequence of non-negative

numbers with
∑∞
t=1 ht = ∞ and limt→∞ ht = 0, then

Alg. 4 and 5 together solve CoP-Dual.

Algorithm 5 CoP-Cachec Algorithm
1: t← 0, µ′s,c,v ← 0
2: while true do
3: Obtain ~z′ from Alg. 3
4: µ′s,c,v ←

(
µ′s,c,v + ht[z

′
s,c,v − pc,v]

)+ ∀s, v
5: Sort all versions so that

∑
s µ
′
s,c,1

Y1
≥

∑
s µ
′
s,c,2

Y2
≥ . . .

6: B′ ← Bc
7: for v = 1→ |V| do
8: pc,v ← min{1, B

′

Yv
}

9: B′ ← B′ − Yvpc,v
10: t← t+ 1

V. IMPLEMENTATION ON NAMED DATA NETWORKING

In this section, we discuss our implementations under
Named Data Networking (NDN). NDN is one of the
most popular standards for information-centric network-
ing (ICN), which focuses on retrieving information rather
than establishing end-to-end connections. In NDN, every
piece of information, such as a packet of video content
is associated with a name, and is hence called a piece
of named data. When a user wants to obtain a piece
of named data, it sends out an interest packet, which
contains the address of the user and the name of the
data. Note that the interest packet does not specify the
destination address. Routing decisions are solely based on
the names in interest packets, and routers aim to forward
each interest packet to the closest network cache that
stores the data. When a network cache receives an interest
packet for a piece of data that it stores, the network cache
replies with the data. The data packet follows the reverse
route of the interest packet to the user.

In this section, we demonstrate that our solution to
CaVe-CoP can be directly implemented under NDN with-
out any changes to the standard. Moreover, we show
that the updates of all Lagrange multipliers can be done
by simply counting the number of interest packets that
the corresponding entities receive without the need of
additional messages exchange.

A. Placement of Data

In our implementation, there are three types of data:
packets of video contents, decision variables (zs,c,v, z′s,c,v,
and pc,v), and Lagrange multipliers (λl, λ′l, and µ′s,c,v).
Each of these pieces of data is associated with a unique
name. Obviously, packets of video contents are stored
at network caches that store the corresponding video
versions. Decision variables zs,c,v and z′s,c,v are stored and
updated at the corresponding user s. Decision variable
pc,v and Lagrange multiplier µ′s,c,v are stored and updated
at the corresponding network cache c. Finally, Lagrange
multipliers λl and λ′l are stored and updated at the sender
of link l. Hence, the names of decision variables and
Lagrange multipliers indicate the entities that store them.

In addition, each network cache also maintains a pseudo-
data with name p′c,v, for each v.

B. Implementation of User Algorithms

From Alg. 1 and 3, we can see that each user s needs to
know the values of pc,v, λl, λ′l, and µ′s,c,v. It periodically
sends out interest packets for these named data. Since
the names of these data indicate the entities that store
them, routers can easily route the interest packets to the
correct destinations. Further, as data packets traverse in
the reverse route of their corresponding interest packets,
each router can store all values of pc,v and λl that pass
through it.

After deciding zs,c,v, user s sends out interest packets
for video version v at a rate indicated by Xv. Note that this
interest packet only contains information about the video
version v, and the user cannot specify the destination v
under NDN. When a router receives an interest packet
for video version v, it finds the network cache c∗ that
has the smallest distance, where the distance is defined
as the sum of λl over all links on the path, among those
that store v, i.e., pc,v = 1, and then forwards the interest
packet to the next router on the path toward c∗. Since
routers store all values of pc,v and λl that pass through
it, routers can easily find c∗.

After deciding z′s,c,v, user s sends out an interest packet
for the pseudo-data p′c,v. Since the name indicates the
corresponding c, routers can forward the interest packet
to c. On the other hand, when a network cache c receives
an interest for p′c,v, it does not reply with a data packet,
since p′c,v is a pseudo-data.

C. Implementations for Routers and Caches

We now discuss the implementations of Alg. 2, 4, and 5.
We note that interest packets are typically much smaller
than their corresponding data packets. Therefore, interest
packets alone cannot cause severe network congestion
and packet delays/losses. Based on this observation, we
assume that all interest packets reach their destinations
immediately. As we shall see in the next section, our im-
plementation based on this assumption offers the optimal
performance.

In Alg. 2, each router only needs to know∑
s,c,vXvH

l
c,vzs,c,v to update λl for its links. We

note that
∑
s,c,vXvH

l
c,vzs,c,v can be estimated by (the

rate of interest packets going through l)× (the size of a
data packet). As the router obviously knows the rate of
interest packets going through l, it can update λl directly
without the need for requesting further information.
Likewise, Alg. 4, and 5 can be carried out if one knows
z′s,c,v. As user s sends out an interest packet for the
pseudo-data p′c,v when z′s,c,v = 1, the network cache
c and all routers between c and s can infer z′s,c,v by
observing the presence of interest packets for p′c,v.

VI. SIMULATION

We present our simulation results in this section. All
simulations are conducted on ndnSIM [3], the standard
NDN simulator that is running on top of NS-3.

A. Simulation Set-up

We consider systems with 20 different videos. The
popularity of these videos follow the Zipf distribution
with parameter 1. Each video has 5 available versions
with data rates of 1Mbps, 2.5Mbps, 5Mbps, 8Mbps and
16Mbps, which are the standard data rates for streaming
videos of resolutions 360p, 480p,720p, 1080p and 1440p,
respectively. Each video is one-hour long, and the file sizes
of video versions are calculated accordingly. The size of
each of network cache is 43875MB.

We consider that users can be of three types: smart
phones, laptops, or televisions. The resolution of a smart
phone screen is 720p. Even if a smart phone user receives
a video version with resolution higher than 720p, it still
only experiences 720p quality due to the limitation of its
screen. Hence, we set the utility function of a smart phone
user to be 20 ln(min(Xv, 5)). The resolution of a laptop is
1080p, and its utility function is 40 ln(min(Xv, 8)). Finally,
the resolution of a television is 1440p and its utility
function is 60 lnXv.

We consider two topologies as shown in Figure 2 and
Figure 3. Each topology consists of a root node that stores
all video versions and three network caches, each of which
is connected to different group of users. The number of
smart phones, laptops, and televisions in each group is
marked in the figures.

Fig. 2. Simulation Topology 1

Fig. 3. Simulation Topology 2

We simulate and compare the following four policies:

• Optimal: This is the optimal solution to the CaVe-
CoP problem by directly solving it as a linear pro-
gramming problem.

• CaVe-CoP: This is our proposed solution to the CaVe-
CoP problem.

• Cache All Versions: In this policy, if a network cache
stores a video version, it needs to store all versions
of the same video. As a result, each network cache
simply stores the most popular videos, subject to
its storage constraint. This is the standard approach
of CDN. Each user employs our solution for cache-
version selection. In other words, this is a policy that
employs the optimal solution to CaVe and a standard
but suboptimal solution to CoP.

• Greedy Version: In this policy, each user chooses the
version that matches its screen resolution. Network
caches employs our solution for content placement.
In other words, this is a policy that employs the op-
timal solution to CoP and a standard but suboptimal
solution to CaVe.

For each simulation, we use the video contents that
each user actually receives to calculate two performance
metrics: the utility that each user obtains and the amount
of time that each user suffers from video stall in each
second.

Fig. 4 - 7 shows the simulation results for the two
topologies. It can be easily observed that our solution
significantly outperforms Cache All Versions and Greedy
Version. Moreover, our solution converges in less than
15 seconds, which suggests our solution is adaptive to
network dynamics when users may change the videos they
are watching.

The Cache All Versions policy performs poorly because
it makes content placement decisions solely based on the
popularities of videos, but has no considerations about
the various versions of the same video. As users are
accessing videos with a variety of devices, it becomes
increasing important to treat different versions differently.
For example, a network cache whose users are mostly
using smart phones should not waste its storage by storing
1440p video versions.

The Greedy Version policy always chooses the version
that matches users’ screen resolutions. It is not adaptive
to network congestion. As a result, not only does it have
low utility, it also suffers from high video stall times.

VII. RELATED WORK

Information-centric network (ICN) has been a hot re-
search topic in recent years. Several architectures for ICN
have been proposed, including named-data networking
(NDN) [4], [5] and MobilityFirst [6]. A comprehensive
survey on ICN has been conducted by Xylomenos et
al. [7].

Content caching is a crucial part of ICN and is fun-
damentally coupled with packet forwarding and rout-
ing.Yeh et al. [8] proposed a framework for joint for-

0 5000 10000 15000 20000 25000 30000
Time (ms)

0

2000

4000

6000

8000

10000

12000

U
ti

lit
y

Utility vs Time

CaVe-CoP Cache All Versions Greedy Version Optimal

Fig. 4. Utility vs Time Graph for Topology 1

0 5000 10000 15000 20000 25000 30000
Time (ms)

0

20

40

60

80

100

%
S
ta

ll
T
im

e

%Stall Time vs Time

CaVe-CoP Cache All Versions Greedy Version

Fig. 5. %Stall Time vs Time Graph for Topology 1

0 5000 10000 15000 20000 25000 30000
Time (ms)

0

1000

2000

3000

4000

5000

6000

7000

8000

U
ti

lit
y

Utility vs Time

CaVe-CoP Cache All Versions Greedy Version Optimal

Fig. 6. Utility vs Time Graph for Topology 2

warding and caching in named data networks (NDN).
The framework has been extended to deal with interest
suppression in NDN in Lai et al. [9]. Wang et al. [10]
employed stochastic network utility maximization and
developed a distributed forwarding and caching algo-
rithm. Ioannidis and Yeh [11] studied the routing cost
minimization problem of joint routing and caching, where
the cost is incurred per link. These studies are not directly
applicable to multi-resolution video streaming since dif-
ferent versions of the same video can be stored in different
caches.

Regarding content version selection, there has been rich
literature on adaptive video streaming in various net-

0 5000 10000 15000 20000 25000 30000
Time (ms)

0

20

40

60

80

100

%
S
ta

ll
T
im

e

%Stall Time vs Time

CaVe-CoP Cache All Versions Greedy Version

Fig. 7. %Stall Time vs Time Graph for Topology 2

works. An early work identified a cross layer framework
for adaptive video streaming in IP networks [12]. Jurca et
al. [13] has presented media delivery architectures over
P2P networks for adaptive video streaming. More recently,
experiment-based investigations have been conducted on
content delivery networks (CDN) run by Akamai [14] and
Netflix [15] respectively.

Our work formulates the joint cache-version selection
and content placement problem as a network utility
maximization (NUM) problem, and uses the well-known
primal dual approach and dual decomposition [16], [17].
However, there are notable differences between our work
and traditional NUM research. Existing studies have ex-
plored various scenarios including time varying channel
with delay constraints [2], spatio-temporally coupled con-
straints [18], multiple flow classes [19], multiple gate-
ways [20], multiple protocols [21] and so on, while
assuming a static source-destination pair per user (flow).
In contrast, in our work, a user could obtain its desired
content from in-network caches as well as the content
producer.

VIII. CONCLUSION

In this paper, we studied the problem of joint opti-
mization of CaVe-CoP, cache-version selection and content
placement, for multi-resolution video streaming. We for-
mulated the problem as a network utility maximization
problem. Realizing that there is a practical timescale
separation between CaVe and CoP, we proposed a two
solutions that update CaVe and CoP at their respective
timescales and prove that the overall utility is maximized
under our solutions. In addition, we demonstrated that
our solutions can be easily implemented in NDN. Sim-
ulation results based on ndnSIM demonstrated that our
solutions significantly outperform others.

REFERENCES

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear program-
ming: theory and algorithms. John Wiley & Sons, 2013.

[2] I.-H. Hou and P. R. Kumar, “Utility-optimal scheduling in time-
varying wireless networks with delay constraints,” in Proc. 11th
ACM Int. Symp. Mobile Ad Hoc Networking and Computing.
Chicago, Illinois, USA: ACM, 2010, pp. 31–40.

[3] S. Mastorakis, A. Afanasyev, and L. Zhang, “On the evolution
of ndnSIM: an open-source simulator for NDN experimentation,”
ACM Computer Communication Review, Jul. 2017.

[4] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, kc claffy, D. Krioukov, D. Massey,
C. Papadopoulos, T. Abdelzaher, L. Wang, P. Crowley, and E. Yeh,
“Named data networking (NDN) project,” Palo Alto Research
Center (PARC), Tech. Rep., 2010.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data network-
ing,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 66–73, jul 2014.

[6] I. Seskar, K. Nagaraja, S. Nelson, and D. Raychaudhuri, “Mobil-
ityFirst future internet architecture project,” in Proc. 7th Asian
Internet Engineering Conference (AINTEC ’11). ACM Press, 2011.

[7] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” IEEE Commun. Surveys
Tuts., vol. 16, no. 2, pp. 1024–1049, 2014.

[8] E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “VIP: A frame-
work for joint dynamic forwarding and caching in named data
networks,” in Proc. 1st Int. Conf. Information-Centric Networking
(ICN ’14). ACM Press, 2014.

[9] F. Lai, F. Qiu, W. Bian, Y. Cui, and E. Yeh, “Scaled VIP al-
gorithms for joint dynamic forwarding and caching in named
data networks,” in Proc. 2016 3rd ACM Conf. Information-Centric
Networking (ICN ’16). ACM Press, 2016.

[10] Y. Wang, W. Wang, Y. Cui, K. G. Shin, and Z. Zhang, “Distributed
packet forwarding and caching based on stochastic network utility
maximization,” IEEE/ACM Trans. Netw., vol. 26, no. 3, pp. 1264–
1277, Jun. 2018.

[11] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” in Proc. 4th ACM Conf. Information-
Centric Networking (ICN ’17). ACM Press, 2017.

[12] T. Ahmed, A. Mehaoua, R. Boutaba, and Y. Iraqi, “Adaptive packet
video streaming over IP networks: a cross-layer approach,” IEEE
J. Sel. Areas Commun., vol. 23, no. 2, pp. 385–401, feb 2005.

[13] D. Jurca, J. Chakareski, J.-P. Wagner, and P. Frossard, “Enabling
adaptive video streaming in p2p systems [peer-to-peer multimedia
streaming],” IEEE Commun. Mag., vol. 45, no. 6, pp. 108–114, jun
2007.

[14] L. De Cicco and S. Mascolo, “An experimental investigation of the
Akamai adaptive video streaming,” in HCI in Work and Learning,
Life and Leisure, G. Leitner, M. Hitz, and A. Holzinger, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 447–464.

[15] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner,
and Z.-L. Zhang, “Unreeling netflix: Understanding and improving
multi-CDN movie delivery,” in Proc. IEEE INFOCOM. IEEE, mar
2012.

[16] D. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE J. Sel. Areas Commun.,
vol. 24, no. 8, pp. 1439–1451, aug 2006.

[17] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for
communication networks: shadow prices, proportional fairness
and stability,” Journal of the Operational Research Society, vol. 49,
no. 3, pp. 237–252, Mar. 1998.

[18] R. Deng, Y. Zhang, S. He, J. Chen, and X. Shen, “Maximizing net-
work utility of rechargeable sensor networks with spatiotemporally
coupled constraints,” IEEE J. Sel. Areas Commun., vol. 34, no. 5,
pp. 1307–1319, may 2016.

[19] R. Gupta, L. Vandenberghe, and M. Gerla, “Centralized network
utility maximization over aggregate flows,” in 2016 14th Int.
Symp. Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt), May 2016.

[20] A. Zhou, M. Liu, Z. Li, and E. Dutkiewicz, “Joint traffic splitting,
rate control, routing, and scheduling algorithm for maximizing
network utility in wireless mesh networks,” IEEE Trans. Veh.
Technol., vol. 65, no. 4, pp. 2688–2702, apr 2016.

[21] V. Ramaswamy, D. Choudhury, and S. Shakkottai, “Which proto-
col? mutual interaction of heterogeneous congestion controllers,”
IEEE/ACM Trans. Netw., vol. 22, no. 2, pp. 457–469, Apr. 2014.

