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RIGOROUS DERIVATION OF A MEAN FIELD MODEL FOR
THE OSTWALD RIPENING OF THIN FILMS∗

SHIBIN DAI†

Abstract. In the late stage of thin liquid films, liquid droplets are connected by an ultra thin
residual film. Experimental studies and numerical simulations show that the size distributions of liquid
droplets approach a self-similar form. However, theoretical study of the size distributions is lacking
because it has been a challenge to retrieve statistical information from the mathematical PDE model
of thin films. To facilitate the study of the statistical information, we rigorously derive a mean field
model for the Ostwald ripening of thin liquid films through homogenization. This model corresponds
to the dilute limit when the droplets are far away from each other and occupy a very small part of
the thin film. Our analysis captures the screening effect of the droplets and shows that the mean field
spatially varies in a length scale proportional to the screening length.
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1. Introduction
Thin liquid films on a solid substrate can be driven by the dewetting effect into com-

plex nonlinear patterns which are localized quasi-stationary liquid droplets connected
by an ultra-thin residual film. The dewetting effect is a result of the balance between
surface tension and intermolecular forces. When there is no evaporation, the total mass
of droplets is conserved since the mass of the ultra-thin residual film can be ignored.
The total number of droplets is observed to decrease and the typical size of droplets
increases. Such a phenomenon is called coarsening. There are two mechanisms for the
coarsening to occur. One mechanism is the migration and collision of droplets. The
other is the exchange of mass between droplets through a diffusive field in the ultra-thin
residual film. Bigger droplets grow while smaller ones shrink and disappear. The second
mechanism is called Ostwald ripening, as it is similar to what happens in the late stage
of phase transitions (see, e.g., [13]).

Experimental studies and numerical simulations show that generically the distribu-
tion of droplet sizes approaches a self-similar form and there is a simple relation called
the coarsening rate between time and the typical size of droplets (see [7] and references
therein). Such a spatio-temporal relation can also be deduced heuristically by asymp-
totic analysis [3–7] under the assumption that the size distribution is self-similar. But
a rigorous justification of the existence of self-similar distributions is lacking. Part of
the reason is, it is a challenge to retrieve statistical information from the mathematical
model of thin films, which is the lubrication theory [11]. Suppose the thin film is on a
substrate Ω⊂R

2 and h(x,t)≥0 is the thickness of the thin film. Then h satisfies the
following thin film equation

ht=∇·(m(h)∇(−Δh+U ′(h))). (1.1)

Here U is a van der Waals attraction-repulsion potential. The diffusion mobility m(h)=
hq depends on the boundary condition for the fluid velocity at the substrate. Different
types of boundary conditions give different q>0 values. See for example [3, 4, 6] for
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discussions about the effect of m(h) on the coarsening mechanisms. There are also
estimates of the coarsening rate by directly studying the thin film equation [12]. This
approach gives rigorous proofs on the universal upper bound of the coarsening rate,
which is true independent of the statistical information.

In two dimensional thin films, the shapes of liquid droplets are paraboloids [3, 4].
The contact angle, which is the angle between the surface of the droplets and the
uniform ultra thin residual film, is solely determined by the intermolecular potential
and independent of the sizes of the droplets. Because of this feature, the droplets are
totally determined by their circular bases. The dynamics of the thin film is hence
reduced to the dynamics of the radii of the bases. Suppose at time t, there are N(t)
droplets on a square substrate Ω=[0,L]2. Let Bi :={x∈Ω: |x−xi|≤Ri(t)} be the basis
with center xi and radius Ri(t), i=1, . . . ,N(t). Suppose further that the droplets are
well-separated. The motion of the centers xi are affected by the form of the mobility
m(h). Under the no-slip boundary condition for the fluid at the substrate, we have
m(h)=h3. In this case the motion of the centers xi are minor effects [4]. Thus we
may assume they are fixed in space. Using asymptotic analysis it is derived in [4] that,
under a proper rescaling, the evolution of the droplets is determined by the following
equations.

−Δu(x,t)=0 if x∈Ω\
N(t)⋃
i=1

B̄i, (1.2)

u=
1

Ri
if x∈ B̄i, (1.3)

Ṙi=
1

R2
i

∫
Γi

[∇u ·n]ds on Γi :=∂Bi. (1.4)

For simplicity we take periodic boundary condition on ∂Ω. Here u is the rescaled
pressure field, Γi :=∂Bi is the boundary of the base of the ith droplet, n is the outer
normal vector of Γi, [∇u ·n] is the jump of the normal gradient of u across the boundary.
Equations (1.2)–(1.4) is a quasi-stationary model for the evolution of droplets. Being
quasi-stationary means that even though the pressure field u depends on time, at each
moment the evolution of u does not explicitly depend on t, rather it is determined by the
boundary condition (1.3) on the boundary of droplets and the boundary condition on
∂Ω. The motion of the droplet boundary is then determined by (1.4), which guarantees
that the total volume of droplets is preserved during the ripening process. Because of
the parabolic shapes, volumes of droplets are proportional to the cube of the radii of
their bases. We assume droplets are far away from each other so that collisions do not
occur. Using the same technique as in [8], it can be shown that for any given initial
configuration {Ri(0)}, there exists T >0 such that (1.2)–(1.4) has a unique solution in
[0,T ], where Ri are smooth and u∈L2(0,T ;H1(Ω)). The solution can be extended to
some time t1 when some droplets disappear (radii become 0). After this moment, we
can remove those droplets with radii 0 and restart the evolution.

The first observation is that the total volume of droplets is preserved since

N∑
i=1

R2
i Ṙi=

N∑
i=1

∫
Γi

[∇u ·n]ds=−
∫
Ω\∪iB̄(xi,Ri)

Δudx=0. (1.5)

In addition, the surface energy, which is proportional to the total surface area of droplets
and hence to

∑N
i=1R

2
i , is decreasing. This can be seen by the following estimate.
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Multiplying Equation (1.2) by u and integrating over Ω, we have

0=

∫
Ω

−uΔudx=

∫
Ω

|∇u|2dx+
N∑
i=1

∫
Γi

u[∇u ·n]ds

=

∫
Ω

|∇u|2dxdt+
N∑
i=1

RiṘi. (1.6)

Integrating over t1<t2, we get

∫ t2

t1

∫
Ω

|∇u|2dxdt+ 1

2

N∑
i=1

Ri(t2)
2=

1

2

N∑
i=1

Ri(t1)
2. (1.7)

Immediately we have

N∑
i=1

R2
i (t2)≤

N∑
i=1

R2
i (t1) for all t1<t2. (1.8)

To facilitate the study of size distributions, recently mean field descriptions of the
Ostwald ripening of thin films were proposed for the simplified case of one dimensional
thin films [7] (see also [1]) and the physically realistic two dimensional case [2]. These
mean field models were derived using heuristic arguments. Although information about
the delicate relations between droplet size, distance between droplets, and the domain
size were not accurately captured, these mean field models prove to be useful in pre-
dicting the existence and describing the properties of self-similar distributions.

The purpose of this paper is to give a rigorous derivation of a mean field model for
thin films on two dimensional solid substrates, and capture the delicate information that
is missing in those heuristic mean field models. The study of our new model will provide
us more accurate information about the coarsening dynamics of thin liquid films. To
make the paper accessible for a wider readership, in Subsection 1.1 we introduce our
main result in an informal form, and in Subsection 1.2 we give a heuristic derivation
of the mean field model. Also in Subsection 1.2 we state the similarity and difference
between our problem and the two-dimensional Mullins-Sekerka model considered in [9].
Starting from Subsection 1.3 we introduce our result in a rigorous form. In Subsection
1.3 we describe the spatial and temporal rescaling under which we can study the homog-
enization, and also state the main result in a rigorous form. In Section 2 we describe
the details about our time scalings. In Section 3 we consider the homogenization limit
and derive the necessary estimates. In Section 4 we prove our main theorems. Sections
3 and 4 closely follow the structure of [9], with necessary adaptation for the derivation
of our main result. We also provided more details that make the arguments easier for
readers to follow. One difference from [9] is that in Subsection 3.4 we use a different
approach to prove two lemmas (Lemmas 3.4, and 3.5) that can fulfill the same role as
Lemma 3.6, which is proved in [9]. Finally in Section 5 we give some discussion about
further investigations.

1.1. Main result in an informal form. Since the total volume of all droplets
is conserved, we define R to be the radius of the droplet whose volume is the average
volume of all droplets. Suppose initially there are N0 droplets with radii Ri(0). Then

N0R3
0=

N0∑
i=1

Ri(0)
3, or R0=

(∑N0

i=1Ri(0)
3

N0

)1/3

.
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Taking R0 as a characteristic droplet size, we nondimensionalize the radii Ri(t) into
R̂i(t) :=Ri(t)/R0. The space locations of the droplets are as important as their sizes.
Let f(t,x,R̂) be the joint distribution of the locations and the nondimensionalized sizes
of droplets. Our main result is that f(t,x,R̂) satisfies the following system of equations
in the weak sense.

−Δû∗+2πδ

∫ ∞

0

(
û∗− 1

R̂

)
f(t,x,R̂)dR̂=0, (1.9)

∂

∂t
f(t,x,R̂)+

∂

∂R̂

(
− 2π

R̂2 lnφ−1/2

(
1

R̂
− û∗

)
f(t,x,R̂)

)
=0. (1.10)

Here φ is the fraction of the substrate covered by the droplet bases, which is decreasing
in time, and δ>0 is a scaling parameter describing the ratio between the domain size
L and the screening length, denoted by Ls. For a specific droplet, its neighbor droplets
have a screening effect that blocks the influence from droplets that are far away. A
droplet can only receive influence from droplets within the distance of the screening
length. For discussion about screening length, we refer to [10] for 3D systems and [9] for
2D systems. Roughly speaking, the screening length is determined by the size of droplets
and the distance between droplets. Equation (1.18) gives an approximate formula of
the screening length in the scenario that all droplets are of similar size and the distances
between droplets are roughly the same. The scaling parameter δ is then defined by

δ :=
L2

L2
s

.

So δ connects the domain size, the typical droplet radius, and the typical distance be-
tween droplets. In Subsection 1.2 we will give a heuristic description of the mean field
model, and in Subsection 1.3 we will rigorously describe the setting and the mathemat-
ical meaning of a weak solution for (1.9)–(1.10).

1.2. Heuristic description of the mean field model. Now we give some
heuristic argument about the behavior of u. Assume the distance between droplets is
much bigger than the size of droplets. Then at a given time, near the droplets, the
pressure u should be similar to the fundamental solution to the 2D Laplacian operator.
Away from droplets, u should be approaching a slowly-varying mean field u∗ which is the
average of the hydrodynamic pressure of neighbor droplets. Consequently u∗ depends
on the spatial distribution of the droplets. This indicates a “cutoff” of the fundamental
solution. Assume d is the cutoff distance, that is, d is a number bigger than droplet
sizes but smaller than, or at most comparable to, the distance between droplets so that
u becomes the mean field u∗ at points x when |x−xi|�d for all i. Then because of
boundary condition (1.3), u should have the following form near the ith droplet,

u(x)≈
(

1
Ri
−u∗

)
ln Ri

d

ln
|x−xi|

d
+u∗ for |x−xi|≤d. (1.11)

From the boundary condition (1.4), we obtain an evolution law for Ri.

Ṙi≈ 2π

R2
i

1

ln Ri

d

(
1

Ri
−u∗

)
. (1.12)
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Note that the cutoff distance d is artificial. We assume that d is comparable to the
average distance between the droplets. So heuristically we may take d to be the average
distance, that is, d=L/√N , or Nd2=L2. In addition, without changing the leading
order behavior of the model, we may replace Ri by the characteristic radius R of all
droplets. Define R=R(t) to be the radius of the droplet whose volume is the average
volume of all droplets at time t. That is,

R(t)=

(∑N(t)
i=1 Ri(t)

3

N(t)

)1/3

.

Then roughly speaking, NR2∼∑N
i=1R

2
i and the coefficient (ln Ri

d )−1 is replaced by

(
ln
R
d

)−1

=

(
ln

√
NR√
Nd

)−1

∼
(
1

2
ln

∑N
i=1R

2
i

L2

)−1

=− 1

lnφ−1/2
(1.13)

where

φ(t) :=

∑N
i=1R

2
i

L2
(1.14)

is the fraction of the substrate covered by the bases of all droplets. After the above
simplifications, we obtain the following mean field model.

Ṙi=− 2π

R2
i lnφ(t)

−1/2

(
1

Ri
−u∗

)
for all i=1, · · · ,N. (1.15)

Next we consider the evolution of the distribution of radii. Since the evolution of
droplets depends on their spatial positions, the radius distribution is not independent of
the spatial distribution of their centers. Let f(t,x,R) be the joint distribution of centers
and radii at time t. Given the evolution law for radii (1.15), the transport equation for
f is

∂

∂t
f(t,x,R)+

∂

∂R

(
− 2π

R2 lnφ−1/2

(
1

R
−u∗

)
f(t,x,R)

)
=0. (1.16)

Here

φ=

∫
Ω

∫∞
0

R2f(t,x,R)dRdx

L2
. (1.17)

The minimum requirement on f(t,x,R) is
∫
Ω

∫∞
0

R2f(t,x,R)dRdx<<L2 since the
droplets can not occupy all the substrate. In addition, the conservation of total volume
of droplets translates into

∫
Ω

∫∞
0

R3f(t,x,R)dRdx=const.
The mean field u∗ “slowly varies” on the scale of screening length, denoted by Ls.

According to [9], if R is the typical radius of droplets and d is the average distance
between droplets, then

L2
s≈d2 ln(d/R). (1.18)

So if R is much smaller than d, Ls is much bigger than d and it can even be much bigger
than the system size L. When Ls>>L, since u∗ varies on a scale Ls, it is approximately
constant in Ω.
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In [2], u∗ was taken to be a spatial constant and it corresponds to the case Ls>>L.
In this case, the spatial positions of droplets do not matter and the joint distribution
f(t,x,R) is simplified into just a distribution of radii, f(t,R). The value of u∗ is then
determined by the conservation of total volume of droplets. Hence

u∗(t)=
∑N

i=1R
−1
i

N
=

∫∞
0

R−1f(t,R)dR∫∞
0

f(t,R)dR
. (1.19)

In the case when Ls is comparable with L, u∗ is no longer a spatial constant.
Furthermore, the evolution of droplets also depends on their spatial locations. In [9],
Niethammer and Otto studied a similar problem of the two-dimensional Mullins-Sekerka
model for phase transitions of a two-phase mixture. In the dilute limit, the minor phase
consists of disjoint circular islands. They considered the effect of screening length and
derived a transport equation for the joint distribution of location and size of the circular
particles. Our thin liquid film problem has some similarity to the problem in [9] since the
substrate is two-dimensional. Indeed this paper is motivated by [9], and our approach
closely follows the framework of [9]. However there are some differences that require
extra care and different treatment.

(i) The liquid droplets are three dimensional objects while the substrate is two di-
mensional, hence our problem bears a feature of a mixture of dimensions.

(ii) In [9], the total area covered by the 2D islands is preserved, resulting in a constant
φ. In our situation, the total volume of the 3D liquid droplets is preserved, while
the total area covered by the 3D liquid droplets is decreasing. As a result, our
φ(t) defined by (1.14) is decreasing in time.

(iii) In [9], the authors consider the case when the screening length is comparable
with the system size. Under the simplified assumption that Ls=L and the initial
characteristic radius is one, they derived a limiting model. In our problem, to
signify the importance of various situations, we describe in details how the system
should be rescaled based on the relations between the characteristic radius, the
distance between droplets, the domain size, and the screening length. Specifically
we introduce and keep track of a parameter δ that describes the relation between
the typical radius of droplets, the average distance between droplets, and the
domain size. δ can also be considered as a measure of the system size relative to
the screening length.

1.3. Homogenization and the main result. Mathematically, a mean field
model corresponds to the dilute limit of the evolution equations (1.2)–(1.4). The dilute
limit is the limiting behavior of the system when the fraction of the substrate covered
by the droplets is disappearing, while the total number of droplets is increasing toward
infinity. To study the dilute limit, we need to consider a sequence of domains with bigger
and bigger average droplet distances. Let Ωk := (0,Lk)

2 be a sequence of domains in
which initially there are Nk(0) droplets of radii {Rk,i,i=1, . . . ,Nk(0)}, whose centers of
bases are on the lattice of spacing dk. Thus L2

k=Nk(0)d
2
k. We require Nk(0)→∞ and

dk→∞ , while φk(0) :=

∑Nk(0)
i=1 R2

k,i

L2
k

→0 as k→∞. Also we takeRk as the characteristic

radius of the initial distribution of droplets, defined by

Rk=

(∑Nk(0)
i=1 R3

k,i

Nk(0)

)1/3

. (1.20)
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By (1.18), the screening length is defined by

L2
k,s :=d2k ln

(
dk
Rk

)
. (1.21)

In such a system, there are three dimensionless ratios,

ε :=
dk
Lk

, aε :=
Rk

Lk
, δ :=

L2
k

L2
k,s

.

Only two of these ratios are independent. Indeed,

δ−1=
d2k
L2
k

ln

(
dk
Rk

)
=ε2 ln

(
ε

aε

)
. (1.22)

The homogenization limit corresponds to

ε=
dk
Lk

=
1√

Nk(0)
→0 as k→∞.

Since we want to capture the effect of screening length, we keep δ>0 as a positive
constant. Thus

aε=εe−1/(δε2) (1.23)

decays to zero exponentially as ε→0+.
We rescale the sequence of domains Ωk into the reference domain

Ω0 := (0,1)2

by taking x=y/Lk for y∈Ωk and x∈Ω0. Then the radii are rescaled into

Rk,i

Lk
=
Rk

Lk

Rk,i

Rk
=aε

Rk,i

Rk
. (1.24)

Equation (1.24) indicates that it is the normalized radii

R̂k,i :=
Rk,i

Rk
(1.25)

that we should study the distribution of. By (1.20) we see that∑Nk(0)
i=1 R̂3

k,i(0)

Nk(0)
=1. (1.26)

In summary, after the nondimensionalization and normalization, we get a domain
Ω0=(0,1)2, in which we have a lattice grid of size ε. At each lattice point xi there is a
circle

Bε
i (t) :=B(xi,aεR̂k,i(t)),

which is the base of a liquid droplet.
Next we consider the rescaling in time. According to (1.15), the logarithmic factor

1

lnφ(t)−1/2
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determines the time scale on which the radius Rk,i varies. Since φ is decreasing in time,
and is disappearing as ε→0 (see Section 2 for a proof), it is natural to consider the
following nonlinear rescaling of time

t̃ :=

∫ t

0

1

lnφ−1/2(s)
ds. (1.27)

In Section 2 it is shown that

t̃

δε2t
→1 uniformly for t∈ (0,∞) as ε→0.

Thus it suffices to consider the following linear rescaling of time

t̂=R−4
k δε2t. (1.28)

The appearance of R−4
k not only simplifies notations but also is consistent with the

spatio-temporal relation derived in [2].
The pressure field u(t,y), y∈Ωk, correspondingly is rescaled into

u(t,y)=
1

Rk
ûε(t̂,x), where x=y/Lk and t̂= δε2t.

Then

∇yu(t,y)=
1

RkLk
∇xûε(t̂,x) (1.29)

and

dR̂k,i

dt̂
=
R3

k

δε2
dRk,i

dt
=
R3

k

δε2
1

R2
k,i

∫
Γi

∇yu(t,y) ·nds(y)

=
1

δε2
1

R̂2
i

∫
Γε
i

∇xûε(t̂,x) ·nds(x). (1.30)

Here Γε
i =∂Bε

i . According to (1.2)–(1.4), ûε satisfies

−Δûε(t̂,x)=0 in Ω0 \∪iB̄
ε
i , (1.31)

ûε=
1

R̂k,i

in B̄ε
i , (1.32)

dR̂k,i

dt̂
=

1

δε2R̂2
k,i

∫
Γε
i

[∇ûε ·n]ds on Γε
i . (1.33)

Our main result is the following theorem.

Theorem 1.1. Consider the system (1.31)–(1.33). Suppose δ>0 is a fixed constant.
Then for any 0<λ≤1/2, there exists ε0>0 such that for any 0<ε<ε0, the droplets
B(xi,aεR̂k,i(t̂)) do not collide. More precisely, we have

B(xi,aεR̂k,i(t̂))⊂B(xi,λε) for all t̂∈ [0,∞). (1.34)

Furthermore, if we assume that initially the total volume is not concentrated on the
few biggest droplets, that is∑

i:R̂k,i(0)�R R̂3
k,i(0)∑N0

i=1 R̂
3
k,i(0)

→0 uniformly in ε as R→∞, (1.35)
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then the diffusion field ûε converges as ε→0 to a mean field û∗, which satisfies the
following system of equations together with the joint distribution dνt̂(x,r):∫ ∞

0

∫
Ω0

ψ(t)∇ζ(x) ·∇û∗dxdt̂

+2πδ

∫ ∞

0

∫
Ω0×(0,∞)

ψ(t)ζ(x)

(
û∗− 1

r

)
dνt̂(x,r)dt̂=0, (1.36)

∫ ∞

0

∫
Ω0×(0,∞)

(
ψ′(t)ζ−2πψ(t)

∂ζ

∂r

1

r2

(
1

r
− û∗

))
dνt̂(x,r)dt̂=0, (1.37)

for all ψ∈C∞
0 (0,∞) and ζ ∈C0

p . The function space C0
p is defined by (3.9).

Remark 1.1. If dνt̂(x,r) has a density f(t̂,x,r), then û∗ and f(t̂,x,r) are weak
solutions for

−Δû∗+2πδ

∫ ∞

0

(
û∗− 1

r

)
f(t̂,x,r)dr=0, (1.38)

and

∂

∂t̂
f(t̂,x,r)+

∂

∂r

(
−2π

r2

(
1

r
− û∗

)
f(t̂,x,r)

)
=0. (1.39)

The topology in which ûε converges to û∗ will be made clear in Section 4. Apparently
(1.38) is a generalization of (1.19). In addition, in the regime when L<<Ls, δ≈0 and
heuristically (1.38) reduces to Δû∗≈0. Combined with the periodic boundary condition,
u∗ is a constant in Ω0 and (1.38) heuristically implies (1.19). To make this argument
rigorous, we may consider the situation that δ depends on ε and δ→0 as ε→0. It will
be studied in further explorations. Equation (1.39) is of the same form as (1.16), except

that (1.39) is in the t̂=R−4
k δε2t≈R−4

k

∫ t

0
1

lnφ−1/2(s)
ds time scale.

As was pointed out in [9], it is not necessary for xi to be the grid points. It suffices to
assume the minimum distance between droplets is a fixed portion of the average distance.
In that sense, we need only to find 0<λ<1/2 such that B(xi,λε)∩B(xj ,λε)=∅ if i �= j.
For Assumption (1.35), if initially all droplets are bounded uniformly in ε, then this
assumption is automatically true.

2. The time scalings
In this section we explain the relation between the two time scalings: the nonlinear

rescaling t̃ :=
∫ t

0
1

lnφ−1/2(s)
ds and the linear rescaling t̂=R−4

k δε2t. For t̃, by (1.27),

dt̃

dt
=

1

lnφ−1/2(t)
. (2.1)

Let’s estimate dt̃/dt.

lnφ(t)= ln

(∑N
i=1R

2
k,i

L2
k

)
=ln

(
R2

k

L2
k

N∑
i=1

R̂2
k,i

)
=ln

(
a2ε

N∑
i=1

R̂2
k,i

)

=ln
a2ε
ε2

+ln

(
ε2

N∑
i=1

R̂2
k,i

)
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=

(
ln

a2ε
ε2

)⎛
⎝1+

ln
(
ε2
∑N

i=1 R̂
2
k,i

)
ln

a2
ε

ε2

⎞
⎠

=−2
(
ln

ε

aε

)⎛
⎝1−

ln
(
ε2
∑N

i=1 R̂
2
k,i

)
2ln ε

aε

⎞
⎠ ,

1

lnφ(t)−1/2
=

(
ln

ε

aε

)−1
⎛
⎝1−

ln
(
ε2
∑N

i=1 R̂
2
k,i

)
2ln ε

aε

⎞
⎠

−1

= δε2

(
1− 1

2
δε2 ln

(
ε2

N∑
i=1

R̂2
k,i

))−1

by (1.23)

= δε2βε(t). (2.2)

Here

βε(t) :=

(
1− 1

2
δε2 ln

(
ε2

N∑
i=1

R̂2
k,i

))−1

. (2.3)

So

t̃= δε2
∫ t

0

βε(s)ds, (2.4)

φ(t)=e−2/(δε2βε(t)). (2.5)

Lemma 2.1. βε(t) uniformly converges to 1 for all t∈ (0,∞) as ε→0. Consequently

φ(t)→0 and
t̃

δε2t
→1 uniformly in t∈ (0,∞) as ε→0. (2.6)

Proof. By (1.26) we have

Nk(0)∑
i=1

R̂3
k,i(0)=Nk(0)=:N0=ε−2.

Then by Hölder’s inequality, the conservation of mass, and the fact that Nk(t)≤Nk(0)

ε2
Nk(t)∑
i=1

R̂2
k,i(t)≤ε2Nk(t)

1/3

⎛
⎝Nk(t)∑

i=1

R̂3
k,i(t)

⎞
⎠

2/3

≤ε2N
1/3
0

⎛
⎝Nk(0)∑

i=1

R̂3
k,i(0)

⎞
⎠

2/3

=ε2N0≤1. (2.7)

On the other hand, since the surface area
∑N(t)

i=1 R̂2
k,i is decreasing, it is bigger than or

equal to the surface area of the eventual stable equilibrium state when there remains
just one droplet, whose volume equals the preserved total volume of droplets, and thus

the radius is R̂k,f :=
(∑Nk(0)

i=1 R̂3
k,i(0)

)1/3

=ε−2/3. So

ε2
N(t)∑
i=1

R̂2
k,i�ε2R̂2

k,f =ε2/3. (2.8)
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Combining (2.7) and (2.8), we have

1≤1− 1

2
δε2 ln

(
ε2

N∑
i=1

R̂2
k,i

)
≤1− 1

2
δε2 lnε2/3=1− 1

3
δε2 lnε. (2.9)

By (2.3)

1

1− 1
3δε

2 lnε
≤βε(t)≤1. (2.10)

Letting ε→0, we obtain βε(t)→1 uniformly for all t∈ [0,∞). Hence φ(t)→0 uniformly
for all t∈ [0,∞) by (2.5). In addition,

t̃

δε2t
=

1

t

∫ t

0

βε(s)ds→1 uniformly in t∈ (0,∞) as ε→0. (2.11)

Because of Lemma 2.1, and since we only consider the limiting behavior when ε→0,
it suffices to consider the following linear rescaling of time

t̂=R−4
k δε2t. (2.12)

The following a priori estimate is similar to (1.7).

∫ t̂

0

∫
Ω0

|∇ûε|2dxdt̂+ 1

2
δε2

N(t̂)∑
i=1

R̂2
k,i(t̂)=

1

2
δε2

N0∑
i=1

R̂2
k,i(0). (2.13)

So according to (2.13) and (2.7),

∫ ∞

0

∫
Ω0

|∇ûε|2dxdt̂≤ 1

2
δε2

N0∑
i=1

R2
k,i(0)≤

1

2
δ. (2.14)

By (2.14), if δ≈0, then ∫ ∞

0

∫
Ω0

|∇ûε|2dxdt̂≈0 (2.15)

and ûε is approximately a spatial constant. This is consistent with the screening
length argument given in Section 1. If δ is a nonzero constant, then we do not ex-
pect

∫∞
0

∫
Ω0
|∇ûε|2dxdt̂ to be small and uε will not be a spatial constant.

3. Homogenization
Our goal is to consider the homogenization of the system (1.31)–(1.33). To simplify

notations, from now on we omit the hat and the subscript k, and rewrite t̂ as t, R̂k,i as
Ri, and ûε as uε. Also we drop the subscript of Ω0 and just write Ω=(0,1)2. So the
system we are working on is

−Δuε(t,x)=0 in Ω\∪iB̄
ε
i , (3.1)

uε=
1

Ri
in B̄ε

i , (3.2)

dRi

dt
=

1

δε2R2
i

∫
Γε
i

[∇uε ·n]ds on Γε
i =∂Bε

i . (3.3)
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The natural space for the pressure uε is L2(0,∞;H1
p ), where

H1
p :={u∈H1

loc(R
2) :u is periodic with respect to Ω}. (3.4)

Recall that the initial distribution of Ri satisfies

∑N(0)
i=1 R3

i (0)

N(0)
=1. (3.5)

As is done when estimating (2.8), the biggest possible radius is attained when there
remains only one droplet, of radius Rf =ε−2/3. Thus we have the following estimate on
the size of droplets.

Ri(t)≤ε−2/3 for all t≥0, i=1, . . . ,N(t). (3.6)

Then by (1.23),

aεRi(t)≤ε1/3e−1/(δε2) for all t≥0, i=1, . . . ,N(t). (3.7)

Since δ>0 is a fixed constant, it is easily seen that

ε−2/3e−1/(δε2)→0 as ε→0.

Hence for any λ>0, there exists ε0 such that

ε1/3e−1/(δε2)<λε for any 0<ε<ε0.

Combined with (3.7), we get aεRi(t)<λε for all t>0 and all indices i, which is (1.34),
the first conclusion of Theorem 1.1.

Similar to what is done in [9], we introduce the rescaled empirical joint distribution
of {(xi,Ri(t)) : i=1, . . . ,N(t)}

∫
Ω×(0,∞)

ζ dνεt =
1

N0

N(t)∑
i=1

ζ(xi,Ri(t))=ε2
N(t)∑
i=1

ζ(xi,Ri(t)) for ζ ∈C0
p (3.8)

where

C0
p :=

⎧⎨
⎩

ζ= ζ(x,r) : ζ ∈C0(R2×(0,∞)),
ζ is periodic with respect to Ω=(0,1)2

and has compact support in r∈ (0,∞)

⎫⎬
⎭ . (3.9)

From here on, to simplify notations we omit the domain Ω×(0,∞) when writing inte-
grals with respect to dνεt , unless specified otherwise. That is,

∫
ζ dνεt :=

∫
Ω×(0,∞)

ζ dνεt .

The rest of this section is devoted to estimates related to νεt and uε. They are
analogous to the estimates in [9]. However, since our problem has the distinctive feature
that the droplets are three dimensional while the diffusion field is two dimensional, and
since we want to capture the effect of the screening length through the parameter δ, we
give detailed proofs for some of the results.
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3.1. A priori estimates. By taking ζ smooth and

ζ(x,r)=

{
1 if mini{Ri(t)}≤ r≤maxi{Ri(t)},
0 if r�2maxi{Ri(t)} or r≤ 1

2mini{Ri(t)}, (3.10)

we translate N(t)≤N0=ε−2 into∫
dνεt ≤1 for all t∈ (0,∞). (3.11)

Similarly by taking ζ smooth and

ζ(x,r)=

{
r3 if mini{Ri(t)}≤ r≤maxi{Ri(t)},
0 if r�2maxi{Ri(t)} or r≤ 1

2mini{Ri(t)}, (3.12)

the conservation of volume is written as∫
r3dνεt =1 for all t∈ (0,∞). (3.13)

The condition (1.35) on the initial distribution of volumes translates into∫
r>R

r3dνε0→0 uniformly in ε as R→∞. (3.14)

In addition, using uε as a test function for (3.1)–(3.3), we get

δε2
N(t)∑
i=1

RiṘi=−
∫
Ω

|∇uε|2dx (3.15)

and thus for any t>0 we have∫ t

0

∫
Ω

|∇uε|2dxdt+ δ

2

∫
r2dνεt =

δ

2

∫
r2dνε0≤

δ

2
(3.16)

by (3.11) and (3.13).

3.2. Control of Ṙi and the Hölder continuity of νεt . Since uε satisfies the
non-homogeneous Dirichlet condition (3.2), for each i we define the following auxiliary
function wi as the solution for

−Δwi=0 in Bλε(xi)\B̄i (3.17)

wi=0 on ∂Bλε(xi) (3.18)

wi=1 in Bε
i . (3.19)

Then wi can be extended by zero outside of Bλε(xi) into a function w̃i∈H1
p (Ω). Using

w̃i as a test function for (3.1)–(3.3), we derive the following lemma concerning the
growth rate of the volume of droplets, in terms of Ṙi.

Lemma 3.1. For any ε>0 and t>0 we have

δε2
N(t)∑
i=1

{(
1−δε2 ln

(
Ri

λ

))
R4

i Ṙ
2
i

}
≤2π

∫
Ω

|∇uε|2dx. (3.20)
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In addition, there exists ε1>0 depending only on λ and δ such that for all t>0 and all
ε<ε1, we have

∫ t

0

⎛
⎝N(s)∑

i=1

R4
i (s)Ṙ

2
i (s)

⎞
⎠ds≤ 2π

ε2
. (3.21)

Proof. wi can be solved explicitly

wi(x)=
ln( |x−xi|

λε )

ln(aεRi

λε )
=

ln( |x−xi|
λε )

ln(aε

ε )+ln
(
Ri

λ

) = ln( |x−xi|
λε )

−δ−1ε−2+ln
(
Ri

λ

)
=−δε2 ln( |x−xi|

λε )

1−δε2 ln
(
Ri

λ

) , (3.22)

∇wi=
1

ln(aεRi

λε )

x−xi

|x−xi|2 , (3.23)

∫
Bλε(xi)

|∇wi|2dx= 2π

ln( λε
aεRi

)
=

2πδε2

1−δε2 ln
(
Ri

λ

) . (3.24)

By (3.3),

δε2R2
i Ṙi=

∫
∂Bε

i

∇uε ·nds=
∫
∂Bε

i

wi∇uε ·nds=−
∫
Bλε(xi)\Bε

i

∇uε ·∇widx. (3.25)

Hence

δ2ε4R4
i Ṙ

2
i ≤

(∫
Bλε(xi)\Bε

i

|∇uε|2dx
)(∫

Bλε(xi)\Bε
i

|∇wi|2dx
)

≤
(∫

Bλε(xi)\Bε
i

|∇uε|2dx
)

2πδε2

1−δε2 ln
(
Ri

λ

) (3.26)

and

δε2
(
1−δε2 ln

(
Ri

λ

))
R4

i Ṙ
2
i ≤2π

∫
Bλε(xi)\Bε

i

|∇uε|2dx.

Since Bλε(xi) are disjoint, summation over all i gives

δε2
N(t)∑
i=1

{(
1−δε2 ln

(
Ri

λ

))
R4

i Ṙ
2
i

}
≤2π

∫
Ω

|∇uε|2dx. (3.27)

Since Ri≤ε−2/3, we have

1−δε2 ln

(
Ri

λ

)
�1−δε2 ln

(
1

ε2/3λ

)
=1+δε2 ln(ε2/3λ). (3.28)

Let ε1=ε1(λ,δ) be small enough so that

1+δε2 ln(ε2/3λ)>
1

2
for all ε≤ε1.
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Then by (3.27), for all ε<ε1 we have

δε2
N(t)∑
i=1

R4
i Ṙ

2
i ≤4π

∫
Ω

|∇uε|2dx,

and by (3.16), for any t>0 we have

∫ t

0

⎛
⎝N(s)∑

i=1

R4
i (s)Ṙ

2
i (s)

⎞
⎠ds≤ 4π

δε2

∫ t

0

∫
Ω

|∇uε|2dxdt≤ 2π

ε2
.

Lemma 3.2. For any 0<ε<ε1 and any ζ ∈C0
p , we have the following Hölder continuity

of
∫
ζ dνεt in t.

∣∣∣∣
∫

ζ dνεt1−
∫

ζ dνεt2

∣∣∣∣≤√2π

(
sup
x,r

|∂rζ|
r2

)
|t1− t2|1/2. (3.29)

Proof. For any given ζ ∈C0
p , we have ∂rζ ∈C0

p and

sup
x,r

|∂rζ|
r2

<∞.

Then

∣∣∣∣
∫

ζ dνεt1−
∫

ζ dνεt2

∣∣∣∣≤|t1− t2|1/2
(∫ ∞

0

∣∣∣∣ ddt
∫

ζ dνεt

∣∣∣∣
2

dt

)1/2

≤|t1− t2|1/2
⎛
⎝∫ ∞

0

∣∣∣∣∣ε2
N∑
i=1

∂rζ(Ri)Ṙi

∣∣∣∣∣
2

dt

⎞
⎠

1/2

≤|t1− t2|1/2
(
sup
x,r

|∂rζ|
r2

)⎛
⎝∫ ∞

0

∣∣∣∣∣ε2
N∑
i=1

R2
i Ṙi

∣∣∣∣∣
2

dt

⎞
⎠

1/2

≤|t1− t2|1/2
(
sup
x,r

|∂rζ|
r2

)(∫ ∞

0

∣∣∣∣∣ε2
N∑
i=1

1

∣∣∣∣∣
∣∣∣∣∣ε2

N∑
i=1

R4
i Ṙ

2
i

∣∣∣∣∣ dt
)1/2

≤|t1− t2|1/2
(
sup
x,r

|∂rζ|
r2

)(∫ ∞

0

ε2
N∑
i=1

R4
i Ṙ

2
i dt

)1/2

≤ δ−1/2|t1− t2|1/2
(
sup
x,r

|∂rζ|
r2

)(∫ ∞

0

δε2
N∑
i=1

R4
i Ṙ

2
i dt

)1/2

≤
√
2π

(
sup
x,r

|∂rζ|
r2

)
|t1− t2|1/2 by (3.21). (3.30)

3.3. Tightness of νεt . Now we show that if initially the total volume is not
concentrated on the few biggest droplets, neither will it in later times.
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Lemma 3.3. For all η>0 and T >0 there exists R1>0 such that

sup
t∈(0,T )

∫
r>R1

r3dνεt <η uniformly in ε. (3.31)

Proof. This Lemma mimics Lemma 3.2 in [9]. Let R be a parameter to be
determined and let ϕ be a smooth cutoff function on (0,∞) such that ϕ(r)=0 for
r<R/2, ϕ(r)=1 for r>R and that 0≤ϕ′(r)≤3/R. Then for any t∈ (0,T ) we have

∫
r>R

r3dνεt ≤
∫

ϕ(r)r3dνεt =

∫
ϕ(r)r3dνε0+

∫ t

0

(
d

dt

∫
ϕ(r)r3dνεt

)
dt

≤
∫
r>R/2

r3dνε0+

∫ t

0

(
d

dt

N∑
i=1

ε2ϕ(Ri)R
3
i

)
dt

≤
∫
r>R/2

r3dνε0+

∫ t

0

(
ε2

N∑
i=1

(
ϕ′(Ri)Ri+3ϕ(Ri)

)
R2

i Ṙi

)
dt

≤
∫
r>R/2

r3dνε0+

∫ t

0

(
ε2

N∑
i=1

R4
i Ṙ

2
i

)1/2(
2ε2

N∑
i=1

(
ϕ′(Ri)

2R2
i +9ϕ(Ri)

2
))1/2

dt

≤
∫
r>R/2

r3dνε0+

∫ t

0

(
ε2

N∑
i=1

R4
i Ṙ

2
i

)1/2
⎛
⎝2ε2

∑
i:Ri�R/2

( 9

R2
R2

i +36
R2

i

R2

)⎞⎠
1/2

dt

≤
∫
r>R/2

r3dνε0+

√
90

R

∫ t

0

(
ε2

N∑
i=1

R4
i Ṙ

2
i

)1/2(
ε2

N∑
i=1

R2
i

)1/2

dt

≤
∫
r>R/2

r3dνε0+
(90t)1/2

R

(∫ t

0

ε2
N∑
i=1

R4
i Ṙ

2
i dt

)1/2

≤
∫
r>R/2

r3dνε0+
(180πT )1/2

R
by (3.21).

For any given η>0, because of (3.14), we can choose R1>0 depending on T and η such
that ∫

r>R/2

r3dνε0+
(180πT )1/2

R
<η uniformly in ε

for all R>R1.

3.4. The regularity of uε and νεt . To obtain the necessary compact-
ness, we need the boundedness of uε in L2

loc(0,∞;H1(Ω)). Since we already have the
boundedness of ∇uε in L2(0,∞;L2(Ω)) by (3.16), to obtain the boundedness of uε in
L2
loc(0,∞;H1(Ω)), we need to estimate

∫∞
0

∫
Ω
|uε|2dxdt. By Poincaré’s inequality, we

need only to get a bound on −
∫
Ω
uεdx :=

1
|Ω|

∫
Ω
uεdx. In fact we will do such estimates

locally and then patch them together.
For each i, consider an auxiliary function φi that satisfies the following equation for

some constant ci,

−Δφi= ci in Bλε(xi)\B̄i, (3.32)
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∂φi

∂n
=1 on ∂Bi, (3.33)

∂φi

∂n
=0 on ∂Bλε(xi). (3.34)

We will use φi to help us estimate the average of uε in Bλε \B̄i. The solvability of
(3.32)–(3.34) requires

ci=
|∂Bi|

|Bλε(xi)\B̄i| =
2aεRi

λ2ε2−a2εR
2
i

.

Due to symmetry, φi depends only on the radial coordinate r := |x−xi|. Solving it in
polar coordinates, we get

φi(r)=−ci
4
r2+αi lnr+βi,

φ′
i(r)=−

ci
2
r+

αi

r
,

where

αi :=
λ2ε2aεRi

λ2ε2−a2εR
2
i

>0, βi is an arbitrary constant. (3.35)

So∫
Bλε(xi)\B̄i

|∇φi|2dx=2π

∫ λε

aεRi

|φ′
i(r)|2rdr≤2π

∫ λε

aεRi

(
c2i
4
r3+

α2
i

r

)
dr

=2π

(
α2
i ln(

λε

αεRi
)+

c2i
16

(λ4ε4−a4εR
4
i )

)

=2πa2εR
2
i

(
λ4ε4

(λ2ε2−a2εR
2
i )

2
ln(

λε

aεRi
)+

λ2ε2+a2εR
2
i

4(λ2ε2−a2εR
2
i )

)
. (3.36)

By (1.23), we have

ln(
λε

aεRi
)=

1

δε2

(
1−δε2 ln(

Ri

λ
)

)
.

In addition, since Ri≤ε−2/3 for all t>0, we have

lim
ε→0+

λ4ε4

(λ2ε2−a2εR
2
i )

2
=1, lim

ε→0+

λ2ε2+a2εR
2
i

4(λ2ε2−a2εR
2
i )

=
1

4

uniformly in i and t>0. Thus by (3.36), there exists ε2=ε2(λ,δ)>0 such that for all
0<ε<ε2, we have

∫
Bλε(xi)\B̄i

|∇φi|2dx≤3πa2εR
2
i

(
1−δε2 ln(Ri

λ )

δε2
+

1

4

)

≤4πa2εR
2
i

(
1−δε2 ln(Ri

λ )

δε2

)
. (3.37)
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Multiplying (3.32) by uε and integrating over Bλε \B̄i, we get

2aεRi

λ2ε2−a2εR
2
i

∫
Bλε(xi)\B̄i

uεdx=

∫
Bλε(xi)\B̄i

∇uε ·∇φidx+

∫
∂Bi

uεds

=

∫
Bλε(xi)\B̄i

∇uε ·∇φidx+2πaε. (3.38)

Writing

−
∫
Bλε(xi)\B̄i

uεdx=
1

π(λ2ε2−a2εR
2
i )

∫
Bλε(xi)\B̄i

uεdx,

we get

−
∫
Bλε(xi)\B̄i

uεdx− 1

Ri
=

1

2πaεRi

∫
Bλε(xi)\B̄i

∇uε ·∇φidx. (3.39)

So ∣∣∣∣∣−
∫
Bλε(xi)\B̄i

uεdx− 1

Ri

∣∣∣∣∣
2

≤ 1

4π2a2εR
2
i

(∫
Bλε(xi)\B̄i

|∇uε|2dx
)(∫

Bλε(xi)\B̄i

|∇φi|2dx
)

≤ 1

π

(
1−δε2 ln(Ri

λ )

δε2

)(∫
Bλε(xi)\B̄i

|∇uε|2dx
)

by (3.37). (3.40)

Multiplying both sides by δε2

1−δε2 ln
Ri
λ

and summing over all i, we obtain the following

lemma.

Lemma 3.4. There exists a constant C such that for all ε>0 sufficiently small and
all t>0 we have

N∑
i=1

δε2

1−δε2 ln Ri

λ

∣∣∣∣∣ 1Ri
−−
∫
Bλε(xi)\B̄i

uεdx

∣∣∣∣∣
2

≤ 1

π

∫
Ω

|∇uε|2dx. (3.41)

The average over Bλε(xi)\B̄i can be replaced by the average over Bλε. Indeed, by
the triangle inequality, we have

1

π(λ2ε2−a2εR
2
i )

∣∣∣∣∣
∫
Bλε(xi)

uεdx

∣∣∣∣∣
=

∣∣∣∣∣−
∫
Bλε(xi)\B̄i

uεdx− 1

Ri
+

1

π(λ2ε2−a2εR
2
i )

∫
Bi

uεdx+
1

Ri

∣∣∣∣∣
≤
∣∣∣∣∣−
∫
Bλε(xi)\B̄i

uεdx− 1

Ri

∣∣∣∣∣+ 1

π(λ2ε2−a2εR
2
i )

∫
Bi

uεdx+
1

Ri

≤ 1√
π

(
1−δε2 ln(Ri

λ )

δε2

)1/2(∫
Bλε(xi)\B̄i

|∇uε|2dx
)1/2

+
a2εRi

λ2ε2−a2εR
2
i

+
1

Ri
. (3.42)
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Thus ∣∣∣∣∣−
∫
Bλε(xi)\B̄i

uεdx−−
∫
Bλε(xi)

uεdx

∣∣∣∣∣
=

1

π

∣∣∣∣∣
(

1

λ2ε2−a2εR
2
i

− 1

λ2ε2

)∫
Bλε(xi)

uεdx− 1

λ2ε2−a2εR
2
i

∫
Bi

uεdx

∣∣∣∣∣
≤ 1

π

a2εR
2
i

λ2ε2−a2εR
2
i

1

λ2ε2

∣∣∣∣∣
∫
Bλε(xi)

uεdx

∣∣∣∣∣+ a2εRi

λ2ε2−a2εR
2
i

≤ a2εR
2
i

λ2ε2
1√
π

(
1−δε2 ln(Ri

λ )

δε2

)1/2(∫
Bλε(xi)\B̄i

|∇uε|2dx
)1/2

+
a2εR

2
i

λ2ε2

(
a2εRi

λ2ε2−a2εR
2
i

+
1

Ri

)
+

a2εRi

λ2ε2−a2εR
2
i

≤ε

(
1−δε2 ln(Ri

λ )

δε2

)1/2(∫
Bλε(xi)\B̄i

|∇uε|2dx+ε3

)1/2

(3.43)

for ε sufficiently small. Then

δε2

1−δε2 ln Ri

λ

∣∣∣∣∣ 1Ri
−−
∫
Bλε(xi)

uεdx

∣∣∣∣∣
2

≤ 2δε2

1−δε2 ln Ri

λ

⎛
⎝
∣∣∣∣∣−
∫
Bλε(xi)\B̄i

uεdx− 1

Ri

∣∣∣∣∣
2

+

∣∣∣∣∣−
∫
Bλε(xi)\B̄i

uεdx−−
∫
Bλε(xi)

uεdx

∣∣∣∣∣
2
⎞
⎠

≤C

(∫
Bλε(xi)\B̄i

|∇uε|2dx+ε3

)
. (3.44)

Here C=C(δ,λ)>0 is a generic constant. Summing up all i, since N(t)≤ε−2, we get
the following bound.

Lemma 3.5. There exists a constant C=C(δ,λ) such that for all ε>0 sufficiently
small and all t>0 we have

N∑
i=1

δε2

1−δε2 ln Ri

λ

∣∣∣∣∣ 1Ri
−−
∫
Bλε(xi)

uεdx

∣∣∣∣∣
2

≤C

(∫
Ω

|∇uε|2dx+ε

)
. (3.45)

Inequality (3.45) can be improved using a different approach as in [9], so that ε is
removed from the right-hand side. We write down the result as the following lemma
but omit the proof here.

Lemma 3.6. There exists a constant C=C(δ,λ)>0 such that for all ε>0 sufficiently
small and all t>0 we have

N∑
i=1

δε2

1−δε2 ln Ri

λ

∣∣∣∣∣ 1Ri
−−
∫
Bλε(xi)

uεdx

∣∣∣∣∣
2

≤C

∫
Ω

|∇uε|2dx. (3.46)
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Lemmas 3.4, 3.5, and 3.6 fulfill the same role. We only need one of them to carry
out our later analysis. For instance, we will use Lemma 3.4 to prove the following lemma
about νεt , which can also be proved using the other two lemmas.

Lemma 3.7. There exists a constant C=C(δ,λ)>0 such that for all ε>0 sufficiently
small and all t>0 we have∫

δ

1−δε2 ln(r/λ)

1

r2
dνεt ≤C

(
δ

λ2

∫
Ω

|uε|2dx+
∫
Ω

|∇uε|2dx
)
. (3.47)

Proof.

∫
δ

1−δε2 ln(r/λ)

1

r2
dνεt =

N∑
i=1

δε2

1−δε2 ln Ri

λ

1

R2
i

≤2

N∑
i=1

δε2

1−δε2 ln Ri

λ

∣∣∣∣∣ 1Ri
−−
∫
Bλε(xi)\Bi

uεdx

∣∣∣∣∣
2

+2

N∑
i=1

δε2

1−δε2 ln Ri

λ

∣∣∣∣∣−
∫
Bλε(xi)\Bi

uεdx

∣∣∣∣∣
2

≤C

∫
Ω

|∇uε|2dx+ 2

π

N∑
i=1

δε2

(1−δε2 ln Ri

λ )

1

(λ2ε2−a2εR
2
i )

∫
Bλε(xi)\Bi

|uε|2dx

≤C

∫
Ω

|∇uε|2dx+ δ

λ2
max

i

{
1

(1−δε2 ln Ri

λ )

1

(1−λ−2ε−2a2εR
2
i )

}∫
Ω

|uε|2dx

≤C

(∫
Ω

|∇uε|2dx+ δ

λ2

∫
Ω

|uε|2dx
)

when ε is sufficiently small.

Now it is time to prove the L2 bound of uε.

Lemma 3.8. There exists a constant C=C(λ,δ) such that for all ε sufficiently small
and all t>0 we have

∫
Ω

|uε|2dx≤C

⎧⎨
⎩‖∇uε‖2L2(Ω)+

(
1+(λ−1+δ−1/2)‖∇uε‖L2(Ω)∫

r
1−δε2 ln r

λ
dνεt

)2
⎫⎬
⎭ . (3.48)

Proof.

N∑
i=1

δε2

1−δε2 ln Ri

λ

∣∣∣∣∣Ri−
∫
Bλε(xi)

uε−1

∣∣∣∣∣=
N∑
i=1

δε2

1−δε2 ln Ri

λ

Ri

∣∣∣∣∣−
∫
Bλε(xi)

uε− 1

Ri

∣∣∣∣∣
≤max

i

(
δ

1−δε2 ln Ri

λ

)1/2( N∑
i=1

ε2R2
i

)1/2

·
⎛
⎝ N∑

i=1

δε2

1−δε2 ln Ri

λ

∣∣∣∣∣ 1Ri
−−
∫
Bλε(xi)

uεdx

∣∣∣∣∣
2
⎞
⎠

1/2

≤Cδ1/2‖∇uε‖L2(Ω). (3.49)

N∑
i=1

δ

1−δε2 ln Ri

λ

Ri

∣∣∣∣∣
∫
Bλε(xi)

uε

∣∣∣∣∣=πλ2
N∑
i=1

δε2

1−δε2 ln Ri

λ

Ri

∣∣∣∣∣−
∫
Bλε(xi)

uε

∣∣∣∣∣
≤πλ2

N∑
i=1

δε2

1−δε2 ln Ri

λ

∣∣∣∣∣Ri−
∫
Bλε(xi)

uε−1

∣∣∣∣∣+πλ2
N∑
i=1

δε2

1−δε2 ln Ri

λ
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≤Cλ2δ1/2‖∇uε‖L2(Ω)+Cλ2δ. (3.50)

Let ūε :=−
∫
Ω
uεdx. Then

(∫
δr

1−δε2 ln r
λ

dνεt

)
|ūε|=

N∑
i=1

δε2

1−δε2 ln Ri

λ

∣∣∣∣∣Ri−
∫
Bλε(xi)

ūε

∣∣∣∣∣
≤

N∑
i=1

δε2

1−δε2 ln Ri

λ

Ri

πλ2ε2

(∫
Bλε(xi)

|uε− ūε|+
∣∣∣∣∣
∫
Bλε(xi)

uε

∣∣∣∣∣
)

≤
N∑
i=1

δε2

1−δε2 ln Ri

λ

Ri√
πλε

(∫
Bλε(xi)

|uε− ūε|2
)1/2

+

N∑
i=1

δε2

1−δε2 ln Ri

λ

Ri

πλ2ε2

∣∣∣∣∣
∫
Bλε(xi)

uε

∣∣∣∣∣
≤C

δ

λ

(
N∑
i=1

ε2R2
i

)(
N∑
i=1

∫
Bλε(xi)

|uε− ūε|2
)1/2

+Cδ1/2
(
‖∇uε‖L2(Ω)+δ1/2

)

≤C
δ

λ
‖∇uε‖L2(Ω)+Cδ1/2‖∇uε‖L2(Ω)+Cδ. (3.51)

So

|ūε|≤C

(∫
r

1−δε2 ln r
λ

dνεt

)−1(
1+(λ−1+δ−1/2)‖∇uε‖L2(Ω)

)
,

and ∫
Ω

|uε|2dx≤2

∫
Ω

|uε− ūε|2+2

∫
Ω

|ūε|2

≤C‖∇uε‖2L2(Ω)+C

(∫
r

1−δε2 ln r
λ

dνεt

)−2(
1+(λ−1+δ−1/2)‖∇uε‖L2(Ω)

)2

.

Corollary 3.1. For all T <∞ there exists CT,δ,λ=C(T,δ,λ)<∞ such that

∫ T

0

∫
δ

1−δε2 ln(r/λ)

1

r2
dνεt +

∫ T

0

∫
Ω

|uε|2dxdt≤CT,δ,λ. (3.52)

Proof. Combining Lemma 3.7 and Lemma 3.8, we only need to prove that for any
T <∞, there exists a constant c(T,δ,λ) such that

inf
t∈(0,T )

∫
r

1−δε2 ln r
λ

dνεt � c(T,δ,λ) (3.53)

uniformly as ε→0.

1=

∫
r3dνεt =

∫
r≤R0

r3dνεt +

∫
R0<r≤R1

r3dνεt +

∫
r>R1

r3dνεt

≤R3
0+R2

1(1−δε2 ln
R0

λ
)

∫
R0<r≤R1

r

1−δε2 ln r
λ

dνεt +

∫
r>R1

r3dνεt . (3.54)

According to Lemma 3.3, we can choose R1 big enough so that
∫
r>R1

r3dνεt <
1
4 for all

ε. In addition, we choose R3
0<

1
4 .
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Remark 3.1. Combining Corollary 3.1 and the fact that
∫
r3dνεt =1, a simple appli-

cation of Hölder’s inequality shows that

∫ T

0

∫
1

r
dνεt dt≤CT,δ,λ. (3.55)

This indicates that
∫
r−1dνεt exists almost everywhere in t∈ [0,∞) and it is in

L1
loc([0,∞)).

4. The limit as ε→0

4.1. The existence of the limit of νεt . As is in [9], according to (3.11) and
(3.29), the Arzela-Ascoli theorem guarantees that there exists a family of nonnegative
Borel measures {νt}t and a subsequence of νεt , still denoted by νεt , such that∫

ζ dνεt →
∫

ζ dνt locally uniformly in t∈ [0,∞). (4.1)

for any ζ in a countable dense subset of C0
p ∩C1. Again by the uniform boundedness of

νεt (3.11), we can extend (4.1) to all ζ ∈C0
p .

Since
∫
dνεt ≤1, the weak lower semicontinuity guarantees the uniform boundedness

of νt, ∫
dνt≤1. (4.2)

By the tightness of νεt (Lemma 3.3), we have∫
r>M

r3dνεt →0 uniformly in ε as M→∞. (4.3)

On the other hand, (3.11) indicates that∫
r<σ

r3dνεt →0 uniformly in ε as σ→0. (4.4)

So the conservation of volume (3.13) is preserved by νt,∫
r3dνt=1 for all t∈ [0,∞). (4.5)

4.2. The limit of uε. First we observe that, according to (3.16) and (3.52),
for any given T , uε is bounded in L2(0,T ;H1(Ω)). So there exists u∗∈L2(0,T ;H1(Ω))
and a subsequence of uε, still denoted by uε, such that uε⇀u∗ in L2(0,T ;H1(Ω)). In
addition, the trace theorem indicates that u∗ is spatially periodic in space with respect
to Ω.

Let C0(0,T ) denote continuous functions in t with compact support in (0,T ) and
C1

p(Ω) denote continuously differentiable functions that are periodic with respect to Ω.
Theorem 4.1. For any ψ(t)∈C0(0,T ) and any ζ ∈C1

p(Ω), we have

∫ T

0

∫
ψ(t)∇ζ(x) ·∇u∗dxdt+2πδ

∫ T

0

∫
ψ(t)ζ(x)

(
u∗− 1

r

)
dνtdt=0. (4.6)



S. DAI 315

Before proving Theorem 4.1, we state the following lemma, which is a fact used
in [9] but we think it deserves to be singled out as a lemma. It is essential when we
need to exchange integrals in a ball into an integral on the boundary of that ball.
Lemma 4.1. For any u∈H1(Br(0)), we have∣∣∣∣

∫
Br

udx− r

2

∫
∂Br

uds

∣∣∣∣≤√2πr2‖∇u‖L2(Br). (4.7)

Proof. The idea is to use integration by parts to transform the volume integral into
a boundary integral.

Let ϕ(x)=− 1
4 |x|2. Then

−Δϕ=1 in Br(0),

∇ϕ ·n=−1

2
r on ∂Br.

∫
Br

udx=

∫
Br

(−Δϕ)udx=

∫
Br

∇u ·∇ϕ−
∫
∂Br

u∇ϕ ·n

=

∫
Br

∇u ·∇ϕ+
1

2
r

∫
∂Br

uds.

Hence ∣∣∣∣
∫
Br

udx− r

2

∫
∂Br

uds

∣∣∣∣≤‖∇u‖L2(Br)‖∇ϕ‖L2(Br)=
√
2πr2‖∇u‖L2(Br). (4.8)

Remark 4.1. A special case of Lemma 4.1 is when u is harmonic in Br. The mean
value property says

u(0)=
1

2πr

∫
∂Br

uds=
1

πr2

∫
Br

udx. (4.9)

Hence ∫
Br

udx=
r

2

∫
∂Br

uds (4.10)

Lemma 4.2. For wi defined by (3.17)–(3.19), we have

∫ T

0

ψ(t)

N∑
i=1

ζ(xi,Ri)

∫
∂Bλε(xi)

uε (−∇wi ·n) dt→2π

∫ T

0

ψ(t)

∫
ζu∗dνtdt. (4.11)

Proof. This is exactly Lemma 4.1 in [9].

Proof. (Proof of Theorem 4.1.) For any ψ(t) and ζ(x),

0=

∫ T

0

ψ(t)

∫
Ω

ζ ·(−Δuε)dxdt

=

∫ T

0

ψ(t)

∫
Ω

∇ζ ·∇uε−∇·(ζ∇uε)dxdt
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=

∫ T

0

ψ(t)

(∫
Ω

∇ζ ·∇uεdxdt+

N∑
i=1

∫
∂Bε

i

ζ∇uε ·nds
)
dt

=

∫ T

0

ψ(t)

∫
Ω

∇ζ ·∇uεdxdt+

N∑
i=1

∫ T

0

ψ(t)

∫
∂Bε

i

ζ∇uε ·ndsdt. (4.12)

Apparently

∫ T

0

ψ(t)

∫
Ω

∇ζ ·∇uεdxdt→
∫ T

0

ψ(t)

∫
Ω

∇ζ ·∇u∗dxdt as ε→0. (4.13)

We only need to consider the limit of

N∑
i=1

∫ T

0

ψ(t)

∫
∂Bε

i

ζ∇uε ·ndsdt as ε→0.

Because of the definition of νεt , we want to replace ζ by ζ(xi) on ∂Bε
i . Since Δwi=0,

wi=1 on ∂Bε
i , and wi=0 on ∂Bλε(xi),∫

∂Bε
i

ζ∇uε ·nds

=

∫
∂Bε

i

ζ(xi)wi∇uε ·nds+
∫
∂Bε

i

(ζ−ζ(xi))wi∇uε ·nds

=−ζ(xi)

∫
Bλε(xi)\Bε

i

∇·(wi∇uε)dx−
∫
Bλε(xi)\Bε

i

∇·
(
(ζ−ζ(xi))wi∇uε

)
dx

=−ζ(xi)

∫
Bλε(xi)\Bε

i

∇·(uε∇wi)dx−
∫
Bλε(xi)\Bε

i

∇·
(
(ζ−ζ(xi))wi∇uε

)
dx

= ζ(xi)

∫
∂Bε

i

uε∇wi ·nds−ζ(xi)

∫
∂Bλε(xi)

uε∇wi ·nds

−
∫
Bλε(xi)\Bε

i

(
wi∇ζ ·∇uε+(ζ−ζ(xi))∇wi ·∇uε

)
dx

=:J i
1+J i

2+J i
3. (4.14)

We analyze the above equation term by term. J i
1 is simple.

J i
1= ζ(xi)

∫
∂Bε

i

uε∇wi ·nds= ζ(xi)
1

R i

∫
∂Bε

i

∇wi ·nds

=− δε2

1−δε2 ln
(
Ri

λ

)2πζ(xi)
1

R i
,

N∑
i=1

∫ T

0

ψ(t)J i
1dt=−2πδ

∫ T

0

ε2
N∑
i=1

ψ(t)ζ(xi)
1

Ri

1

1−δε2 ln
(
Ri

λ

)
=−2πδ

∫ T

0

ψ(t)ζ(x)
1

1−δε2 ln r
λ

1

r
dνεt dt

→−2πδ
∫ T

0

ψ(t)

(∫
ζ(x)

1

r
dνt

)
dt as ε→0. (4.15)
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For J i
2 and J i

3, we have the following lemma, which completes the proof of Theorem
4.1.

Lemma 4.3.

N∑
i=1

∫ T

0

ψ(t)J i
2dt→2πδ

∫ T

0

ψ(t)

(∫
ζ(x)u∗(x)dνt

)
dt, (4.16)

N∑
i=1

∫ T

0

ψ(t)J i
3dt→0. (4.17)

Proof. For J i
2, we further split it into two terms using Lemma 4.1.

J i
2=−ζ(xi)

∫
∂Bλε(xi)

uε∇wi ·nds= δε2

1−δε2 ln
(
Ri

λ

)ζ(xi)
1

λε

∫
∂Bλε(xi)

uεds

=
δε2

1−δε2 ln
(
Ri

λ

)ζ(xi)
2

λ2ε2

∫
Bλε(xi)

uεdx+Ii1 by (4.7).

|Ii1|≤
∣∣∣∣∣ δε2

1−δε2 ln
(
Ri

λ

)ζ(xi)

∣∣∣∣∣2
√
2π‖∇uε‖L2(Bλε(xi)). (4.18)

So ∣∣∣∣∣
N∑
i=1

∫ T

0

ψ(t)Ii1dt

∣∣∣∣∣≤C (sup |ζ|)δε2
∫ T

0

|ψ(t)|
N∑
i=1

‖∇uε‖L2(Bλε(xi))dt

≤C (sup |ζ|)δε2
∫ T

0

|ψ(t)|
(

N∑
i=1

1

)1/2( N∑
i=1

‖∇uε‖2L2(Bλε(xi))

)1/2

dt

≤C (sup |ζ|)δε
∫ T

0

|ψ(t)|
(
ε2

N∑
i=1

1

)1/2(∫
Ω

|∇uε|2dx
)1/2

dt

≤C (sup |ζ|)δε‖ψ‖L2(0,T )

(∫ T

0

∫
Ω

|∇uε|2dx
)1/2

≤C (sup |ζ|)δ3/2ε‖ψ‖L2(0,T ) by (3.16)

→0 as ε→0.

Thus

lim
ε→0

N∑
i=1

∫ T

0

ψ(t)J i
2dt

= lim
ε→0

∫ T

0

ψ(t)

(
N∑
i=1

δε2

1−δε2 ln
(
Ri

λ

)ζ(xi)
2

λ2ε2

∫
Bλε(xi)

uεdx

)
dt. (4.19)

Let

ϕε(x)=

{
ε2

1−δε2 ln(Ri
λ )

ζ(xi)
1

πλ2ε2 , if |x−xi|≤λε,

0, otherwise.
(4.20)
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Then for any v∈C∞
0 ((0,T )×Ω),

∫ T

0

∫
Ω

ϕε(x)v(t,x)dxdt=

∫ T

0

(
N∑
i=1

ε2

1−δε2 ln
(
Ri

λ

)ζ(xi)
1

πλ2ε2

∫
Bλε(xi)

v(x)dx

)
dt

=

∫ T

0

(
N∑
i=1

ε2

1−δε2 ln
(
Ri

λ

)ζ(xi)v(xi)

)
dt+Iε

=

∫ T

0

∫
ζ(x)v(t,x)dνεt dt+Iε

→
∫ T

0

∫
ζ(x)v(t,x)dνtdt. (4.21)

Here we used the fact that Iε→0 as ε→0.
So by the strong convergence of uε→u∗ in L2(0,T ;L2(Ω)) and the boundedness of

ϕε in L2(0,T ;L2(Ω)), we have

lim
ε→0

N∑
i=1

∫ T

0

ψ(t)J i
2dt= lim

ε→0
2πδ

∫ T

0

∫
Ω

ψ(t)uε(x)ϕε(x)dxdt

=2πδ

∫ T

0

(∫
ψ(t)ζ(x)u∗(x)dνt

)
dt. (4.22)

Now we consider J i
3. For x∈Bλε(xi), since

|ζ(x)−ζ(xi)|=
∣∣∣∣
∫ 1

0

∇ζ(xi+ t(x−xi)) ·(x−xi)dt

∣∣∣∣≤λε(sup |∇ζ|) ,

we have

|J i
3|=

∣∣∣∣∣−
∫
Bλε(xi)\Bε

i

(wi∇ζ ·∇uε+(ζ−ζ(xi))∇wi ·∇uε ) dx

∣∣∣∣∣
≤ (sup |∇ζ|)

(
‖wi‖L2(Bλε(xi)\Bε

i )
+λε‖∇wi‖L2(Bλε(xi))

)
‖∇uε‖L2(Bλε(xi)),

≤ (sup |∇ζ|)λε
⎛
⎝√

π

2

δε2

1−δε2 ln
(
Ri

λ

)+
(
2π

δε2

1−δε2 ln
(
Ri

λ

)
)1/2

⎞
⎠

·‖∇uε‖L2(Bλε(xi))

≤C (sup |∇ζ|)δ1/2ε2(δ1/2ε+1)‖∇uε‖L2(Bλε(xi)). (4.23)

Here we used Equation (3.24) and the following estimate

‖wi‖2L2(Bλε(xi)\Bε
i )
=2π

1

ln2(aεRi

λε )

∫ λε

aεRi

r
(
ln(

r

λε
)
)2

dr

=2π
1

ln2(aεRi

λε )

{
− (aεRi)

2

2

(
ln(

aεRi

λε
)

)2

−
∫ λε

aεRi

r ln(
r

λε
)dr

}

≤2π
1

ln2(aεRi

λε )

{
−
∫ λε

aεRi

r ln(
r

λε
)dr

}
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=2π
1

ln2(aεRi

λε )

{
(aεRi)

2

2
ln(

aεRi

λε
)+

λ2ε2

4
− (aεRi)

2

4

}

≤ πλ2ε2

2

(
δε2

1−δε2 ln(Ri

λ )

)2

. (4.24)

So ∣∣∣∣∣
N∑
i=1

∫ T

0

ψ(t)J i
3dt

∣∣∣∣∣
≤C (sup |∇ζ|)‖ψ‖L2(0,T )δ

1/2ε2(δ1/2ε+1)

⎛
⎝∫ T

0

(
N∑
i=1

‖∇uε‖L2(Bλε(xi))

)2
⎞
⎠

1/2

≤C (sup |∇ζ|)‖ψ‖L2(0,T )δ
1/2ε(δ1/2ε+1) ·

(∫ T

0

(
ε2

N∑
i=1

1

)(
N∑
i=1

‖∇uε‖2L2(Bλε(xi))

))1/2

≤C (sup |∇ζ|)‖ψ‖L2(0,T )δ
1/2ε(δ1/2ε+1)

(∫ T

0

∫
Ω

|∇uε|2dxdt
)1/2

≤C (sup |∇ζ|)‖ψ‖L2(0,T )δε(δ
1/2ε+1) by (3.16)

→0 as ε→0. (4.25)

4.3. The limit equation for the droplet distribution. Finally we state the
following theorem about the droplet distribution.

Theorem 4.2. For all ψ∈C∞
0 (0,∞) and ζ ∈C0

p with ∂ζ/∂r∈C0
p , we have∫ T

0

∫ (
ψ′(t)ζ+2πψ(t)

∂ζ

∂r

1

r3
(ru∗−1)

)
dνtdt=0. (4.26)

Proof. For a given ψ, let T >0 be big enough so that suppψ⊂ (0,T ). Then

0=

∫ T

0

d

dt
ε2

N∑
i=1

ψ(t)ζ(xi,Ri)dt

=

∫ T

0

ε2
N∑
i=1

{
ψ′(t)ζ(xi,Ri)+ψ(t)

∂ζ

∂r
(xi,Ri)Ṙi

}
dt

=

∫ T

0

ε2
N∑
i=1

{
ψ′(t)ζ(xi,Ri)+ψ(t)

∂ζ

∂r
(xi,Ri)

1

δε2R2
i

∫
∂Bε

i

∇uε ·nds
}
dt

=

∫ T

0

ε2
N∑
i=1

{
ψ′(t)ζ(xi,Ri)+ψ(t)

∂ζ

∂r
(xi,Ri)

1

δε2R2
i(

−2π δε2

1−δε2 ln
(
Ri

λ

) 1

Ri
−
∫
∂Bλε(xi)

uε∇wi ·nds
)}

dt

→
∫ T

0

∫ (
ψ′(t)ζ+2πψ(t)

∂ζ

∂r

1

r3
(−1+ru∗)

)
dνtdt. (4.27)

Here we used Lemma 4.2.
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5. Discussions and conclusions
We have derived a mean field model for the Ostwald ripening of thin liquid films. In

this model, the system size L and the screening length Ls induced by the droplets are
involved through a parameter δ≈L2/L2

s, which we assume to be a positive constant.
This model is a generalization of the mean field model proposed in [2], which heuristically
corresponds to the case when L<<Ls, or δ≈0. The result in this paper promotes the
understanding of the delicate relations between the domain size, the distance between
droplets, and the characteristic size of the droplets. In the case when the system size L
is much bigger than Ls, i.e., when δ≈∞, little is known about a mean field approach
and we are currently investigating this possibility. On the other hand, both the mean
field model in this paper and that in [2] (and that for 1D thin films [1,7]) only consider
the Ostwald ripening mechanism in thin liquid films. The migration and collision of
liquid droplets are ignored. We expect to derive a model that includes the migration and
collisions. Such a model will likely have some terms similar to those in the Smoluchowski
coagulation models.
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