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Abstract

The resource-constrained and heterogeneous nature of Internet-of-Things (IoT) devices coupled with the placement of such devices
in publicly accessible venues complicate efforts to secure these devices and the networks they are connected to. The Internet-
wide deployment of IoT devices also makes it challenging to operate security solutions at strategic locations within the network
or to identify orchestrated activities from seemingly independent malicious events from such devices. Therefore, in this paper, we
initially seek to determine the magnitude of IoT exploitations by examining more than 1 TB of passive measurement data collected
from a /8 network telescope and by correlating it with 400 GB of information from the Shodan service. In the second phase
of the study, we conduct in-depth discussions with Internet Service Providers (ISPs) and backbone network operators, as well as
leverage geolocation databases to not only attribute such exploitations to their hosting environment (ISPs, countries, etc.) but also
to classify such inferred IoT devices based on their hosting sector type (financial, education, manufacturing, etc.) and most abused
IoT manufacturers. In the third phase, we automate the task of alerting realms that are determined to be hosting exploited IoT
devices. Additionally, to address the problem of inferring orchestrated IoT campaigns by solely observing their activities targeting
the network telescope, we further introduce a theoretically sound technique based on L1-norm PCA, and validate the utility of the
proposed data dimensionality reduction technique against the conventional L2-norm PCA. Specifically, we identify “in the wild”
IoT coordinated probing campaigns that are targeting generic ports and campaigns specifically searching for open resolvers (for
amplification purposes). The results reveal more than 120,000 Internet-scale exploited IoT devices, some of which are operating
in critical infrastructure sectors such as health and manufacturing. We also infer 140 large-scale IoT-centric probing campaigns;
a sample of which includes a worldwide distributed campaign where close to 40% of its population includes video surveillance
cameras from Dahua, and another very large inferred coordinated campaign consisting of more than 50,000 IoT devices. The
reported findings highlight the insecurity of the IoT paradigm at large and thus demonstrate the importance of understanding such
evolving threat landscape.

Keywords: 10T forensics, Big data, Probing, Network Telescopes, Network forensics, L.1-norm PCA

1. Introduction words, these devices can be both the target and the tool in a
cyber attack. For example, vulnerabilities in IoT devices can
be exploited to attack the system or their data, as well as al-
low the re-programming of a device to facilitate other cyber
attacks (i.e., distributed denial of service attacks or false data
injection attacks) or simply to fail (Rose et al. (2015)). Mal-
functioning devices can also create a number of serious secu-
rity vulnerabilities. When coupled with the highly intercon-
nected nature of IoT devices, every poorly secured Internet-
connected device could potentially have an impact on the se-
curity and the resiliency of the Internet at large. For example,
an infected or compromised smart home device physically lo-
cated in the United States can be (ab)used to send a large vol-
ume of malicious phishing emails to recipients worldwide or

The Internet of Things (IoT) paradigm is increasingly de-
ployed in critical infrastructure sectors, including sectors that
are typically not as technologically-advanced such as agricul-
ture. Most IoT devices are low-cost/inexpensive with limited
computational capabilities (i.e., battery life and processing or
storage capability). The competitive landscape (i.e., to drive
cost as low as possible) and technical constraints on IoT de-
vices also mean that it will be challenging for IoT device man-
ufacturers to design and incorporate sophisticated security fea-
tures in these devices. Intuitively, these devices can be targeted
by adversaries in order to gain access to the underpinning sys-
tem or the data sensed, collected or disseminated. In other
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to facilitate other attacks using the owner’s home Wi-Fi Inter-
net connection (Gupta et al. (2017); Do et al. (2018); Bertino
and Islam (2017)). Examples of noteworthy IoT-centric mal-
ware include Mirai (Antonakakis et al. (2017)), Hajime (Ed-
wards and Profetis (2016)), Brickerbot (Cimpanu (2017)),
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Reaper (Wired.com (2017)) and VPNFilter malware (Reg-
ister (2018)). Further, Soltan et al. (2018) have lately high-
lighted on a new class of IoT potential attacks on power grids
dubbed as MadIoT, which can leverage IoT-specific botnets of
high wattage devices to cause local power outages and large-
scale blackouts.

Existing mitigation strategies include IoT context-aware per-
mission models (Yu et al. (2015); Jia et al. (2017)) and those fo-
cusing on identifying and addressing protocol weaknesses (Ur
et al. (2013); Ronen and Shamir (2016)). However, mitigation
strategies focusing on Internet-scale issues appear to be a topic
that is understudied. This is indeed due to the challenge of ac-
quiring and curating large volumes of IoT-relevant empirical
data from a large range of (heterogeneous) IoT devices. In ad-
dition, acquiring IoT-centric malware and their signatures, for
example to train machine learning algorithms, is also challeng-
ing (Azmoodeh et al. (2018a,b)).

In this paper, we seek to contribute to existing IoT security
efforts by proposing a macroscopic approach to infer and char-
acterize Internet-scale unsolicited/malicious IoT devices and
campaigns. Specifically, the key contributions of this paper are
as follows:

e We seek to contribute to a better understanding of the IoT-
specific threat landscape by correlating more than 1 TB
of passive measurements with the results of active mea-
surements from the Shodan service. This allows us to in-
vestigate the magnitude of Internet-wide IoT exploitations.
We also report on the hosting environment of such IoT de-
vices, such as the type of the hosting sector (financial, edu-
cation, critical infrastructure, etc.) and most exploited IoT
manufacturers and device types. We also automate the pro-
posed methodology in near real-time and distribute alerts
to relevant stakeholders that are determined to be hosting
exploited IoT devices to facilitate early remediation. Fur-
ther, we make available the generated near real-time IoT
threat information through an indexed database and a se-
cure (authenticated) front-end service.

e We propose a novel data dimensionality reduction
technique, based on Ll-norm Principal Component
Analysis (PCA), which is robust against outliers and
noisy/corrupted data samples. To process the large vol-
ume of IoT-specific data and to mitigate the efficiency lim-
itation of L1-norm PCA, we present a sub-optimal greedy
algorithm. By relying on a ground truth related to a large-
scale orchestrated probing campaign, we validate the util-
ity of the proposed technique against the conventional L.2-
norm PCA in terms of clustering accuracy. We also make
the proposed technique publicly available to the research
community, which can be utilized for other data-intensive
applications including network forensics.

e We apply the proposed technique on passive measure-
ments data to infer, characterize and report on unsolicited
and malicious “in the wild” orchestrated IoT probing cam-
paigns. The results reveal 140 large-scale probing cam-
paigns that have exploited more than 120,000 IoT devices,

operating in a number of different countries and hosted by
ISPs in numerous countries. This allows us to identify
the sources of IoT insecurity and also pave the way for
further research exploration relating to such orchestrated
campaigns (malware attribution issues, microscopic reme-
diation methodologies, etc.).

The road-map of this paper is as follows. In the next section,
we review related literature on IoT security, passive measure-
ments and analysis, and PCA for dimensionality reduction. In
Section 3, we present the proposed approach designed to in-
fer unsolicited IoT network flows from darknet data, as well
as introduce the L1-norm PCA technique and its corresponding
validation. We will also explain how it can be applied to iden-
tify orchestrated IoT probing campaigns. Section 4 presents the
findings of applying the proposed approach on empirical dark-
net data to infer and characterize Internet-scale unsolicited IoT
devices and probing campaigns. A discussion is presented in
Section 5 while Section 6 provides the concluding remarks.

2. Related Work

IoT context-aware permission models. One particularly pop-
ular line of IoT security research is IoT context-aware per-
mission models, where collaborative models are designed to
secure IoT environment from malicious actors. For instance,
Yu et al. (2015) proposed a policy abstraction language that
is capable of capturing relevant environmental IoT factors,
security-relevant details, and cross-device interactions, to vet
ToT-specific network activities. Further, the authors proposed
a crowd-sourced repository where IoT operators can share de-
rived attack signatures, which deviate from the captured be-
nign policies. Along a similar research direction, Jia et al.
(2017) proposed ContextIoT, a system that is capable of sup-
porting complex IoT-relevant permission models by performing
program-flow and runtime taint analysis. In another closely re-
lated work, Fernandes et al. (2016) proposed an approach to
restrict generated traffic flows from an exploited IoT applica-
tion. The approach is based on taint arithmetic, which initially
tracks an application’s program flow to subsequently flag policy
violations. Further, He et al. (2018) also studied the problem of
access control and authentication for residential IoT settings, in
which multiple users with complex social relationships interact
with a single device.

IoT protocol vulnerabilities. Researchers have also analyzed
specific IoT security issues and protocol weaknesses. For in-
stance, Ronen and Shamir (2016) demonstrated information
leakage attacks using a set of IoT smart lights. The authors ex-
ploited protocol weaknesses to gain access to the connected lo-
cal network and subsequently exfiltrated sensitive data from an
air gapped office building. In a similar fashion, Ho et al. (2016)
investigated state consistency and unlocking attacks by explor-
ing protocol and system vulnerabilities in IoT smart locks. The
authors demonstrated how trust models, network designs and
replay activities can be instrumented to cause security issues
related to the revocation procedures of such locks in addition



to forcing secure locks to be accidentally unlocked. Other re-
lated work on IoT device insecurity and data exfiltration include
those of Do et al. (2018) and D’Orazio et al. (2017). The re-
lated research discussed so far (i.e., [oT context-aware permis-
sion models and IoT protocol vulnerabilities) are at a micro-
scopic level, focusing on specific devices or specific contexts.
In contrast, this paper develops and investigates an Internet-
scale, macroscopic perspective of IoT maliciousness by char-
acterizing and investigating Internet-scale traffic.

IoT data capturing initiatives. Obtaining IoT-relevant empir-
ical data is challenging, and so is sharing such datasets securely
(Banerjee et al. (2018)); it is thus not surprising that there has
been a few efforts to collect, curate and analyze such data. The
first IoT tailored honeypot, namely, IToTPOT, was designed and
deployed by Pa et al. (2016). IoTPOT emulates telnet services
of various IoT devices running on different CPU architectures.
The proposed honeypot demonstrated its capability to capture
various types of malware samples which can then be used for
subsequent in-depth analysis of IoT targeted attacks. Guarnizo
et al. (2017) also presented the Scalable high-Interaction Hon-
eypot (SIPHON) platform for IoT devices. The authors demon-
strated how by leveraging worldwide wormholes and few phys-
ical devices, they were able to mimic various IoT devices on
the Internet and to attract significant malicious traffic. The au-
thors further characterized such traffic by elaborating on attack-
ers’ frequency and their employed protocols. Vervier and Shen
(2018) elaborated on outcomes derived from low and high inter-
action IoT honeypots for a period of six months, to report on the
IoT botnet ecosystem. Additionally, several attempts to finger-
print IoT devices were executed. For instance, recently, Mei-
dan et al. (2017) leveraged network traffic analysis to classify
IoT devices connected to an organization’s network by applying
techniques rooted in supervised data classification. However,
unlike these approaches, we collect Internet-scale data gener-
ated from real-world devices, including those operating within
orchestrated IoT campaigns.

Empirical measurements for Internet-scale characteriza-
tion. In the context of empirical measurements for device
characterization and vulnerability analysis, Heidemann et al.
(2008); Cui and Stolfo (2010) presented empirical measure-
ments obtained from wide-area scans. Costin et al. (2014)
also statically analyzed more than 30,000 firmware images de-
rived from embedded IoT devices to understand their insecu-
rity, while Fachkha et al. (2017) conducted passive measure-
ments to analyze attackers’ intentions when targeting protocols
of Internet-facing cyber-physical systems. The latter approach
is quite similar to (Bodenheim et al. (2014)), where the authors
evaluated the Shodan service (Materly (2009)), a search en-
gine for Internet-connected devices, in terms of its capability in
scanning and indexing online industrial control systems. Husdk
et al. (2018) empirically assessed Internet-wide malicious ac-
tivities (e.g. DDoS attacks and cyber scanning) generated from
and targeted towards business sectors and critical infrastructure.
Different from these existing works, the proposed work intends
to explore, develop and deploy non-intrusive passive methods
and algorithms that aim at inferring and attributing Internet-
wide compromised IoT devices.

Network Telescope: Measurements and Analysis. The idea
of leveraging network telescopes (darknet) to monitor unused
IP addresses for security purposes was first proposed in the
early 1990’s by Bellovin (1993) for AT&T’s Bell Labs Internet-
connected computers. Since then, the focus of network tele-
scope studies has shifted; for example to facilitate discovery of
the relationship between backscattered traffic and DDoS attacks
(Moore et al. (2006)), worm propagation analysis (Bailey et al.
(2005)), the use of time series and data mining techniques on
telescope traffic (Limthong et al. (2008)), study of large-scale
orchestrated probing activities (Bou-Harb et al. (2013, 2014a)),
the monitoring of large-scale cyber events through telescopes
(Dainotti et al. (2015); Bou-Harb et al. (2014c)), and more re-
cently the study of amplification DDoS attacks using telescope
sensors (Fachkha et al. (2014); Rossow (2014)). Additionally,
Pour and Bou-Harb (2018) provided formal stochastic analysis
to compare different detection systems employed on network
telescopes based on their parameters such as darknet size, at-
tacker behavior, minimum detection time and probability. This
paper extends network telescope research to specially address
the problem of IoT security, and at the time of this research this
is a yet to be attempted approach. We will also formally analyze
the orchestration behavior of compromised IoT devices by scru-
tinizing their network traffic extracted from passive measure-
ments to infer and report on evolving IoT campaigns. Further-
more, the proposed and envisioned effort will be geared towards
providing operational/actionable cyber security and forensic ca-
pabilities through the development of an IoT-centric cyberin-
frastructure to facilitate IoT threat sharing.

Botnet detection systems. Different botnet detection systems
have been proposed in the literature, such as those of Gu et al.
(2007); Karasaridis et al. (2007); Gu et al. (2008); Zhao et al.
(2013); Bou-Harb et al. (2016); Meidan et al. (2018). Some in-
vestigate specific protocol channels, others might require deep
packet inspection or training periods, while the majority de-
pends on malware infections and/or attack life-cycles. In this
paper, we focus on inferring large-scale orchestrated IoT bot-
nets, a yet to be investigated topic. Specifically, we analyze
artifacts/features extracted from network telescope traffic, with-
out requiring content analysis or training periods.
Applications of L1-PCA. The L1-PCA method has been uti-
lized in a broad range of applications such as Direction of Ar-
rival (DoA) estimation (Markopoulos et al. (2014a)), robust
face recognition (Johnson and Savakis (2014); Maritato et al.
(2016)), extraction of compressed-sensing surveillance of video
sequences (Liu and Pados (2015); Pierantozzi et al. (2016)), in-
door monitoring of patients and the elderly (Markopoulos and
Ahmad (2017)), and radar-based indoor human motion classi-
fier (Markopoulos and Ahmad (2018)). Khalid et al. (2015)
also demonstrated the effectiveness of L1-PCA for dimension-
ality reduction in intrusion detection systems with the presence
of outliers and compared it with the conventional L2-PCA. In
this work, we address the efficiency issue related to the use
of L1-PCA by introducing a sub-optimal, fast greedy algo-
rithm. This allows us to evaluate the application of the L1-PCA
on large network telescope datasets to infer orchestrated IoT
probing campaigns. We also validate the effectiveness of L1-



PCA against the traditional L2-PCA on a (ground-truth) prob-
ing campaign, in the presence of other non-orchestrated events
and outliers.

3. Proposed Approach

In this section, we detail the proposed approach to extract
IoT-relevant unsolicited flows from network telescope data.
Additionally, we introduce the theory behind LI1-PCA in-
cluding the proposed sub-optimal solution, and validate its
effectiveness against the typical L2-PCA in the context of
detecting coordinated probing campaigns.

3.1. Inferring and characterizing Internet-scale Exploited loT
Devices

Network telescopes (also referred to as darknets) are a collec-
tion of routable, allocated, yet unused IP addresses which op-
erate no legitimate hosts (Fachkha and Debbabi (2016)). They
are used solely to passively gather and amalgamate Internet-
scale incoming traffic. Unsolicited/malicious IoT devices that
attempt to probe the Internet space (searching for other devices
or to exploit certain Internet-wide vulnerabilities) would in-
evitably target the network telescope space. Therefore, to have
a broad vantage point into Internet-wide, IoT-specific probing
activities, we draw upon near real-time data from a /8 net-
work telescope that is operated by the Center for Applied In-
ternet Data Analysis (CAIDA (2018)); /8 represents 1/256 of
all the routable IPv4 address space. We operate a probing de-
tection algorithm which generates darknet flows representing
consecutive packets originating from each unique source IP ad-
dress. The algorithm operates similar to the probing detection
component embedded in Bro (Paxson (1999)); by receiving a
packet from source i, the algorithm waits for the next packet.
If the flow timeout expires before the arrival of the following
packet from the same source i, the algorithm resets the thresh-
old counter; otherwise, it increments it and compares it with a
threshold to deem it as a probing event. The algorithm adopts
typical parameters for scan detection, including the common
probing threshold of 64 and minimum duration for a flow of 300
seconds (Rossow (2014)). Packets scanning open resolvers (for
amplification purposes) which target the network telescope are
analyzed with deep packet inspection to distinguish them from
typical scans and attribute them to an amplification protocol
(i.e., DNS, SSDP, etc.). From a performance perspective, the
deployed algorithm can process close to 20,000 darknet flows
per minute.

To infer unsolicited IoT devices, there is a need for identify-
ing scans originating from IoT nodes versus those that are gen-
erated by typical hosts. Given that fingerprinting of IoT de-
vices by solely observing network traffic is still at its infancy,
we rely on the Shodan service (Materly (2009)) in this work,
which indexes Internet-facing IoT devices. We retrieve entire
IoT databases provided daily by Shodan and execute correla-
tions on source IP addresses between the darknet probing ses-
sions and Shodan indexed information. We automate such an

approach to generate near real-time email alerts to realms host-
ing inferred unsolicited IoT nodes, empowered by an ELK back-
end stack and the ELK Watcher (Elastic (2018)).

For characterization purposes, we initially leverage a geoloca-
tion database provided by Maxmind to attribute the inferred un-
solicited IoT sources to their hosted ISPs, ASN, cities, coun-
tries, etc. Additionally, for the past year, we have been in-
volved in a collaborative large-scale effort, conducting discus-
sions with numerous Internet entities across the globe to obtain
rare and private information related to allocated IP blocks per-
taining to certain sectors and critical infrastructure. To this end,
we employ such information to further attribute such Internet-
scale IoT nodes to such sectors and realms, in an attempt to
provide an in-depth analysis of the global IoT cyber situational
posture.

Further, given the lack of real, empirical IoT threat informa-
tion, we believe that it is also very important to make the ex-
tracted threat intelligence publicly accessible to the wider re-
search and operational communities. Along these lines, we
are currently developing an IoT threat sharing facility to pro-
vide access to (i) raw IoT unsolicited traffic traces to support
large-scale IoT data analytics, and (ii) generate signatures to al-
low further forensic investigations as well as to be employed
at local realms for proactive IoT inference and mitigation. In
particular, we make available the generated IoT threat insights
via a front-end service at http://faculty.eng.fau.edu/
ebouharb/floridasoar/index.html, which includes near
real-time information related to Internet-scale compromised
IoT devices (and geo-location and sector information) as well
as basic Snort signatures (Roesch et al. (1999)) (automatically
extracted from IoT-relevant darknet flows). As this setup re-
quires authentication, interested parties are encouraged to con-
tact the authors to gain free access to such information. Note
that this database will be made publicly available after the con-
ference notification date.

3.2. Feature engineering

The aim herein is to generate feature vectors related to the in-
ferred IoT probing sources to facilitate the initial application of
L1-PCA and subsequently the application of unsupervised data
clustering on darknet data to infer orchestrated IoT campaigns.
Clearly, the intuition here is that IoT bots operating within or-
chestrated campaigns share similar network traffic characteris-
tics, which is a common “in the wild” observation (Heo and
Shin (2018); Silva et al. (2013)). To this end, we select a set
of features by extracting behavioral and statistical information
from IoT probing events to capture the machinery of the IoT
probing sources. The selected features are discussed next.
Probing Rate is the average number of received packets di-
vided by the event duration. Protocol shows the Internet pro-
tocol of the IoT scan event and could take one of the follow-
ing categorical values (TCP, UDP or ICMP). Scan Type deter-
mines whether the IoT source performs a horizontal scan, a ver-
tical scan or a strobe scan. Scan Trend shows how the targets
are being probed. There exists several probing strategies such
as IP-sequential, reverse IP-sequential or non-sequential (Bou-
Harb et al. (2014b)) (typically referred to as permutation prob-
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ing). To this end, we apply the Man-Kendall statistical trend
test (Kendall (1955)) on the sequence of targeted IP addresses
for each IoT scanning event. Man-Kendall is a non-parametric
hypothesis statistical test which checks for monotonicity in the
sequence. By setting the significance level to 0.5%, we can
avoid a high false positive rate. This can also distinguish be-
tween a positive and a negative slope of the trend which respec-
tively reveals the IP-sequential and reverse IP-sequential strate-
gies. Another behavioral property of an IoT scan event can be a
metric to characterize how much the probing traffic is dispersed
or focused towards the network telescope. We capture this with
entropy and dispersion features. Entropy can be calculated by
binning the set of darknet IP addresses, counting the number of
target IP addresses in each bin in the intended scan event, and
calculating the entropy of the resulting distribution. Therefore,
an entropy which equals O indicates that the scan event is not
targeted but in contrast hits all the bins with approximately the
same frequency. Based on the minimum number of packets in
the scan events, we chose the number of bins to have enough
samples (Li et al. (2009)). Dispersion measures the level of
dispersion of the target IP addresses in a scan. For this purpose,
we calculate the number of non-constant least significant bits
which are not mutual among all the destination IP addresses of
a scan. For instance, in a given scan event, if all the destina-
tion IP addresses are of the form 108.32.x.x, the dispersion
would then be equal to 16. Hence, a dispersion which equals
to 0 (minimum dispersion) refers to a scanner who is trying to
scan just one target host (probably vertically), and a dispersion
which equals to 32 (maximum dispersion) refers to a scanner
that tries to scan all the IPv4 Internet space. This metric can
aid in clustering orchestrated probing campaigns in scenarios
when stealthy botnets assign a distinct, small sub-part of the
cyber space to each of the bots to scan. It is worthy to note that
this metric is very efficient in comparison with other typically
employed statistical methods in terms of required memory and
computation since it can be applied without the need to store all
the packet information for every scan event. Targeted Port is
the most probed port in the scan event. This value reports the
targeted service that the scanner was most interested in.

We should state the feature engineering is highly dependent on
the application domain and the expertise of the data analysis
and thus we do not claim that the aforementioned set of features
are comprehensive. Nevertheless, for the sake of the proposed
work which employs darknet data for addressing the problem
of inferring IoT probing campaigns, and as validated in Section
3.4, these set of features seem to be valid in practice.

3.3. Dimensionality reduction using L1-PCA

Principal component analysis (PCA) is a powerful dimen-
sionality reduction tool for analyzing datasets which are formu-
lated in the language of linear algebra and has been used for
more than a century (Pearson (1901)). Broadly, PCA involves
finding the orthonormal basis (the principal axes of the data)
over which the variance of the projected data points is maxi-
mized. The basis is a low-dimensional subspace by which the
original input space data structure can be effectively captured.

Despite the historical success of the traditional L2-norm
PCA, it is well known that PCA is sensitive to outlier data val-
ues since the effect of outliers is exaggerated due to the square
operation of the L2-norm (Ke and Kanade (2003)). On nom-
inal, clean training data, L1-PCA is almost indistinguishable
from L2-PCA. However, L1-PCA shows remarkable relative re-
sistance to faulty data contamination in the dataset, due to the
linear emphasis placed by the L1-norm optimization metric on
each data point (Markopoulos et al. (2014b, 2017)). Hence, it
is quite desirable as a prior methodology to data clustering.

In order to maximize the aggregate absolute magnitude of the
projected data points, the works in (Markopoulos et al. (2013,
2014b)) proved that L1-PCA is not NP hard for a fixed data di-
mension D and offered two optimal algorithms for exact com-
putation. The two methods presented in (Markopoulos et al.
(2014b)) compute the L1-optimal principal components of a
dataset of size N, X € Rp,y with exact complexity of O(2VX)
or O(N™@KXOK=K+1y “where K < rank(X) is the desired num-
ber of principal components. Nevertheless, such optimal algo-
rithms are still of high complexity, especially given the problem
at hand which deals with significant network data. To this end,
we propose in this paper a fast greedy approximation algorithm
with complexity O(min{ND?, N’>D}+N?(K + 1)+ ND), which is
similar to the standard Singular Vector Decomposition (SVD)
(Golub and Van Loan (2012)).

3.3.1. Problem Formulation:

Consider our dataset
X = [X1,...,XN] € Rpxy with rank d < min{D, N}, where

1
X, £ Xpun(Iy — 1\_]11T). )

Here, 1 is the all ones’ vector of dimension N and X, is the
mean centered of normalized data matrix X (features are nor-
malized to the [0 1] range). Now, we are interested in calculat-
ing a low rank data subspace (K dimensions) in the form of the
orthonormal basis Q;; € Rpxx which solves

K
Q = arg max XT (2)
L1 Q:[q],%,(Ik]ERDxK ; H c qk“1
Q"Q=Ix

where ||.||; represents the L1-norm of the vector/matrix argu-
ment and returns the sum of absolute values of the individual
entries.

3.3.2. Sub-optimal solution:
Assume K = 1; (2) reduces to

qu = arg maX”Xch“1 3)
qin
q-=

which can be rewritten as
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The optimal solution can be achieved by exhaustive search in
the space of the binary antipodal vector b'. This approach can
be generalized for K > 1. For a matrix A € R,,x,, considering
the Singular Vector Decomposition (SVD), A = UX,, V7, de-
fine U(A) £ UV’. In Markopoulos et al. (2013, 2014b), it is
shown that if

B, = arg max | XB|. Q)
Be{+1}VxK

then Q1 = U(XBgp) is a solution to (2). Additionally,

||Q{1X”1 = HXB(,,,, , Where ||.||, represents the nuclear norm.

Consider the compact SVD of X, X = prddedV;X , Where
d = rank(X) < min{D, N}. Define Y = [y;,...,yn] = ZV” €
R such that for any B € {+1}"*K | XB||, = |[YB]|..

The first step from here is to find B,,,. To accomplish this, we
introduce the L1-PCA Algorithm 1 (Markopoulos et al. (2017)),
which begins from an initial matrix B and employs bit flipping
iterations (Johnson and Savakis (2014)) (inspired from the im-
age recognition literature) to reach an approximation to B,
say Bys. The algorithm returns Q,¢ = U(XBjy) to be used as
a low complexity, near optimal solution to the L1-PCA prob-
lem of Eq. (2). According to our problem dataset, the resulting
reduced data matrix is given by

D= Q,ffXL. (6)

Algorithm 1: L1-BF for calculating K L1-norm princi-
pal components of X,

Input: X, € RPN of rank d, k < d
(U.E.V) — svd(X,)

Y—XVl vV, B= sgn(vl%)
By — bf(Y,B,K)

(Opxicr Ekxcs Vi) svd(XBy )
th — ﬁVT

Output: Qf

In the sequel, we demonstrate that (1) the selected features
(of Section 3.2) are effective for inferring probing campaigns
and (2) that the proposed L1-PCA exceeds the typical L2-PCA
when it comes to data clustering accuracy using big network
telescope data and a known probing campaign (as ground truth).
The latter point is quite important to make at this stage of the

'If b € {+1}" is an optimal solution, —b is another optimal solution. By
leveraging this, the complexity can be reduced.

paper, before we proceed in applying the methodology on large-
scale network telescope data for clustering “in the wild” IoT-
centric probing campaigns, which are typically hard to validate,
given the lack of their corresponding ground truth.

3.4. Accuracy validation using the SIP scan campaign

We aim herein to validate the proposed dimensionality-
reduction technique on a probing campaign with a known
ground truth in the presence of outliers. To this end, in the se-
quel, we first describe the creation of the test datasets, followed
by demonstrating the results of applying L1-PCA and the typi-
cal L2-PCA using the simplistic k-means clustering method to
compare and contrast the obtained results.

3.4.1. Creating the test dataset

We created 10 different test datasets based on merging empir-
ical scan events extracted from (1) a known orchestrated prob-
ing campaign (i.e., the SIP/VoIP scan campaign (Dainotti et al.
(2012))), (2) recent scan events targeting the same destination
port as the SIP campaign and (3) other scan events. Note that
all the scan events target the same network telescope.

Dainotti et al. (2012) investigated and presented, through the
lens of CAIDA’s network telescope, a horizontal scan of the
entire IPv4 address space conducted by the Sality botnet in a
heavily coordinated and covert manner to discover and compro-
mise VoIP-related (SIP) infrastructure. CAIDA has published
the dataset of this SIP scan campaign. We use such dataset to
infer the scanning events of this SIP scan (targeting UDP port
5060) and then extract the features as detailed in Section 3.2.
Further, we obtain scan events targeting the same port 5060
by analyzing one day (May 2™, 2018) of packets arriving at
CAIDA’s darknet and extracting the same features. These scan
events, may or may not be orchestrated, however, they are def-
initely not part of the SIP scan campaign which we consider as
the ground truth campaign. Additionally, we randomly selected
a different number of scan events targeting different ports from
May 2", 2018. We proceeded by mixing 53 flows related to the
orchestrated SIP scan events with 67 scan events targeting port
5060 and N random scan events (N ranging from O to 4,500
flows) to create 10 test datasets, in order to examine the pro-
posed approach under different scenarios.

3.4.2. Executing the test dataset for validation purposes

For each dataset, we apply L1-PCA and L2-PCA to reduce
the dimension of the feature space by projecting them on 3 main
principal components. By leveraging the Silhouette Coefficient
on the dimensionality-reduced data, we compute the optimal
number of clusters to use in k-means clustering. Further, we
pinpoint the cluster which contains the orchestrated SIP scan
events and label all of its members accordingly. We also label
those events that are not related to the SIP scan campaign. This
allows us to compare the results with the true labels and calcu-
late the confusion matrix of this binary classification. For each
test dataset, we repeat this procedure 100 times and calculate
the average confusion matrix to remove the effect of random
centroid selection in k-means.



Consequently, to compare the effect of L1-PCA and L2-PCA
on the detection of the SIP scan campaign, we consider 3 typical
metrics, namely, precision, recall and F-measure. Precision is
the ratio of correctly clustered SIP scan events over all the scan
events with true SIP scan label (53 in the analyzed dataset).
Recall is the ratio of correctly clustered SIP scan events over
all the events predicted as members of the SIP scan campaign.
Therefore, values closer to one for precision and recall are more
desirable. F-measure combines these two metrics as defined by
F-measure = 2 x % which is the square of the geo-
metric mean divided by the arithmetic mean. These metrics are
calculated for all the 10 test datasets and the results are reported
in Table 1.

Considering the F-measure value in Table 1 for all the test
datasets, we can infer that the introduced L1-PCA with its sub-
optimal algorithm significantly outperforms the conventional
L2-PCA in terms of clustering the orchestrated SIP scan cam-
paign. This indicates that the proposed L1-PCA is not only
significantly less computationally intensive than the typical L2-
PCA, but is also more accurate in distinguishing orchestrated
events, and quite robust against other non-orchestrated events
and outliers; thus, highly applicable to the problem at hand.

Table 1: The results for L1-PCA and L2-PCA to compare their effectiveness on
network data dimensionality reduction for the application of probing campaign
detection using different datasets

L1-PCA + k-means L2-PCA + k-means

Precision Recall F-measure

0.8649 0.9724 0.9155
0.9460 0.3206 0.4790
0.9811 0.2798 0.4354
0.9728 0.3413 0.5053
0.9811 0.2870 0.4441
0.9811 0.1609 0.2764
0.9811 0.6122 0.7540
0.9719 0.5844 0.7299
0.9794 0.7919 0.8757
0.9811 0.4898 0.6534

Dataset Precision Recall F-measure

N=0 0.8649 09724 009155
N =500 0.9434 0.8758 0.9083
N =1000 0.9811 0.5798 0.7289
N =1500 0.9811 0.8769 0.9261
N =2000 0.9777 0.6055 0.7479
N =2500 0.9811 0.3104 0.4716
N =3000 0.9766 0.7478 0.8470
N =3500 0.9811 0.7715 0.8638
N =4000 0.9811 0.8773 0.9263
N =4500 0.9811 0.8745 0.9248

4. Empirical Evaluation

The aim of this section is to highlight the severity of the inse-
curity of the IoT paradigm by reporting on the exploitations of
Internet-scale IoT devices. Further, we report on the existence
of “in the wild” coordinated IoT-specific probing campaigns by
applying the proposed L1-PCA technique. To achieve this, we
analyze more than 1 TB of network telescope data captured on
May 5%, 2018 from CAIDA’s network telescope. We also lever-
age daily, entire [oT databases from the Shodan service. In
terms of implementation details, the probing inference compo-
nent is implemented in C using the 1ibpcap library in a multi-
threaded fashion, the correlation between darknet IP header in-
formation and Shodan data is invoked using python scripts,
while the proposed L1-PCA in conjunction with its sub-optimal
algorithm are both implemented in Matlab and are executed
on a cluster of 3 nodes consisting of 20 cores each with a total
available memory of 128 GB.

4.1. Inferring and characterizing unsolicited loT devices

By analyzing 10 hours of CAIDA’s darknet traffic on May
51, 2018, we were able to infer unsolicited probing activities
from 129,713 unique IoT devices, distributed in 199 countries,
hosted by 43 various sectors, and hosted/operated by 8,540
ISPs. The top countries hosting such compromised devices
were found to be Mexico (14%), Brazil (12%), China (9%),
Indonesia (5%), Russia (4%), United States (4%), and Vietnam
(4%). These countries hosted 52% of the inferred devices. Fig-
ure 1 illustrates the most affected sectors and their correspond-
ing number of generated IoT-specific probes.

INTERNET SERVICE PROVIDER _
TELECOMMUNICATIONS _
PROFESSIONAL SERVICE -

INTERNET HOSTING SERVICES - m

EDUCATION - m
INTERNET COLOCATION SERVICES - m
RETAIL .
INFORMATION SERVICES . ,
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MANUFACTURING l I
HEALTHCARE l I

Figure 1: Top sectors generating loT-specific probes

Note the existence of compromised IoT devices in critical
environments such as the medical sector (101 devices, mostly
generated by AVTECH sensors that are typically used for moni-
toring environmental factors such as temperature and humidity,
and located in Iran, China and the U.S.), manufacturing and fac-
tory automation facilities (104 devices, mostly generated from
IP cameras and routers, and located in China and the U.S.) and
various governmental entities (110 devices, mostly generated
from MikroTik routers and located in China, U.S. and the UK).

For the sake of further characterization, Table 2 summarizes
the leading ISPs hosting unsolicited IoT devices which were
inferred to be generating lIoT-specific probes. We also char-
acterize the entire set of inferred IoT probing events; 95% of
them employed TCP, 91.3% adopted permutation probing, and
8.7% are scanning in a sequential manner (6.5% IP-sequential
and 2.2% reverse IP-sequential). In addition, only 1.5% of the
events are scanning small blocks of IP addresses, while oth-
ers are not limited to some IP block. We also detected around
500 benign IoT-related scanning events from known entities
such as Shadowserver, Team Cymru, Rapid7, and the Univer-
sity of Michigan (mostly generated from edge routers, flagged
by Shodan as IoT and D-Link routers).

By investigating additional information returned from
Shodan, and by contacting a few IoT operators, we gather some
interesting information (depicted in Figure 2) related to well-
known IoT manufacturers, in which their devices were deemed
to be exploited.

We also made an auxiliary effort to contact some U.S. IoT
operators, in which we observed probes from their devices.
We generated automated emails to 250 realms by using their
listed emails in WHOIS (Documented in RFC 3912). 169 did



Table 2: Top ISPs hosting unsolicited devices and generating IoT-specific
probes

ISP Country Number of probes
Telmex Mexico 17,622
Vivo Brazil 6,130
PT Telkom Indonesia  Indonesia 3,468
VDC Vietnam 2,453
Telefonica de Argentina Argentina 2,243
HiNet Taiwan 2,069
Turk Telekom Turkey 2,043
Korea Telecom Korea 1,777
China Unicom Liaoning China 1,406
Viettel Corporation Vietnam 1,284

not reply; our emails bounced to 27 recipients; 32 replied us-
ing automated emails that the issue will be investigated but we
never heard from them again; and 22 acknowledged that their
Internet-facing IoT device(s) might be compromised.
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Figure 2: IoT probes generated from well-known manufacturers

4.2. Inferring and reporting on orchestrated loT Probing Cam-
paigns

We applied the proposed L1-PCA on the detected IoT-centric
probing events and leveraged the Silhouette coefficient to esti-
mate the optimal number of clusters to use with k-means. The
output revealed 921 orchestrated, IoT-centric campaigns, 142
of which posses more than 50 IoT bots. Table 3 summarizes
the top 15 largest campaigns, shows their widespread distri-
bution related to the involved number of ISPs, countries, and
sectors, in addition to pinpointing some insights related to their
employed protocols and strategies, and most probed target port.
We found some interesting characteristics by investigating these
campaigns. For instance, campaign 2 seems to be quite dis-
tributed worldwide, involving 114 countries and 1,168 ISPs,
where further analysis revealed that close to 40% of its IoT bots
are related to video surveillance cameras from Dahua. Cam-
paign 8 is also noteworthy, given that it had adopted the rare
reverse [P-sequential probing strategy with the lowest probing
rate relative to others. Most of the members of this campaign
were exclusively operating from manufacturing sectors. Inter-
esting also, we inferred a very large IoT probing campaign (C15

of Table 3) consisting of more than 50,000 IoT bots, distributed
over 172 countries and 5,006 ISPs. We summarize some of the
insights related to this campaign, which targeted the Telnet port
in Figure 3.

IoT probing campaign targeting open resolvers. While ini-
tially analyzing the probing events, we noticed scans targeting
the network telescope searching for open resolvers that have
been specifically generated from IoT devices. Motivated by
this phenomena, we applied our proposed clustering method-
ology on such inferred scans. To this end, we were able to in-
fer 11 IoT coordinated probing campaigns searching for ampli-
fiers as summarized in Table 4. Interestingly, we observe scans
for Memcached servers from IoT cameras in campaign 3, high
rate probing for DNS resolvers in campaign 8 by MikroTik
routers, and co-occurring probes towards Chargen and QoTD
from AvTech sensors. Future work will further explore such
intriguing events.

5. Discussion

In this section, we discuss the following topics of interest.
Comprehensively inferring Internet-scale unsolicited IoT
devices. While this work leveraged the Shodan service to
gather a large dataset of IP information related to deployed IoT
devices in order to facilitate their correlation with passive mea-
surements, identifying technical information for Internet-wide
IoT devices remains challenging. In addition, IoT malware
often disable common outward facing services upon infection
(Antonakakis et al. (2017)). Consequently, this makes index-
ing the infected IoT devices even more challenging for Internet
scanning services such as Shodan and Censys (Team (2017)).
Indeed, without addressing this limitation, approaches similar
to the one presented in this paper would remain partially ef-
fective (at least operationally). In this context, we posit the
following two potential solutions. The first is of a technical na-
ture, rendered by exploring fuzzy matching algorithms, fuzzy
hashes/signatures and machine learning techniques to extend
the set of IoT devices (previously not indexed by Shodan) as
perceived by the network telescope, by leveraging IoT-relevant
darknet traffic (from previously inferred IoT devices). The sec-
ond is a non-technical approach, requiring ISPs, local IoT oper-
ators and industry to collaborate to make such IoT information
available. The sharing of this information can be performed se-
curely, for example using permissioned blockchains (Banerjee
et al. (2018)). We are also currently in touch with Cisco Sys-
tems to have access to Jasper, their IoT platform, to obtain
access to a larger corpus of IoT device information.
Long-term analysis challenges. For a long-term investigation
of this topic, challenges such as the effect of dynamic behav-
iors of IoT botnets and DHCP IP churn (Vu et al. (2014)) need
to be taken into account. This will allow us to have a more
sound estimation of compromised IoT devices within each in-
ferred probing campaign.

Malware attribution for tailored remediation. With the con-
tinuous rise of new malware variants which specifically target
IoT devices in consumer and critical sectors, the objective to
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Figure 3: Characterization of a very large IoT probing campaign (C15 of Table 3)

attribute such exploitations to certain malware variants is cru-
cial. Thus, we are currently exploring formal correlation ap-
proaches between passive measurements and malware network
traffic samples to provide an attribution evidence.

Feature extraction. Intuitively, as noted earlier in this paper, it
is possible to extract other features besides the ones employed
in Section 3.2. Nevertheless, given that the validation of the
L1-PCA methodology was conducted using a ground truth data
set provided by CAIDA, which did not provide complete packet
details but rather limited their information to certain data (i.e.,
timestamp, source port, etc.), the mentioned features were thus
solely utilized.

6. Concluding Remarks

In this paper, we contributed towards the IoT security liter-
ature by proposing a macroscopic, data-driven methodology to
shed light on the large-scale IoT threat landscape. We corre-
lated large volumes of network telescope data with IoT-specific
information to infer and characterize Internet-scale IoT ex-
ploitations. We attributed such exploitations to their hosting
realms, including sectors and manufacturers. Further, moti-
vated by the potential application of big data in network foren-
sics, we proposed the L1-PCA technique in conjunction with
a sub-optimal algorithm to significantly reduce its complexity



Table 4: Inferred “in the wild” IoT Probing Campaigns searching for Amplifiers

& & z‘b& S & &
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SRS £ & > SR ¢ &
e % K QL & DA % %%
C1 151 NTP 4147 Horizontal UDP  Permutation 8 31 5
C2 137 SSDP 5,741 Horizontal UDP  IP Seq. 15 52 7
C3 75 MEMCACHED 3,188 Horizontal UDP  Permutation 7 30 7
C4 70 QOTD 2,617  Strobe UDP  Permutation 10 42 5
C5 58 SSDP 2,713 Horizontal UDP  Permutation 9 32 4
Cé 34 SSDP 2,689  Horizontal UDP  IP Seq. 6 20 3
C7 31 QOTD 2,852 Strobe UDP Rev. IP Seq. 2 19 2
C8 24 DNS 3,320 Strobe UDP Permutation 6 20 5
Cc9 22 CHARGEN, QOTD 260 Strobe UDP IP Seq. 4 18 3
C10 11 CHARGEN, QOTD 488 Strobe UDP  Permutation 4 10 2
C11 11 MEMCACHED 303 Horizontal UDP  Rev. IP Seq. 4 8 4

while maintaining its superior clustering capabilities. We in-
ferred a large number of exploited IoT devices and more than
140 coordinated IoT probing events, where a large inferred
campaign consisted of more than 50,000 IoT devices. Inter-
estingly, we also identified IoT orchestrated campaigns search-
ing for open resolvers that can be abused for performing am-
plification attacks. Future work will include comprehensively
fingerprinting IoT devices to automate the proposed clustering
approaches and exploring malware forensics to strengthen the
attribution evidence.
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