Enabling TCP Pacing using Programmable Data
Plane Switches

Elie F. Kfoury*, Jorge Crichigno*, Elias Bou-Harb!, David Khoury?, and Gautam Srivastava’
*Integrated Information Technology, University of South Carolina, Columbia, U.S.A.
fCyber Threat Intelligence Lab, Florida Atlantic University (FAU), Florida, U.S.A.
fComputer Science Department, American University of Science and Technology (AUST), Lebanon.
$Department of Mathematics and Computer Science, Brandon University, Canada.
Email: ekfoury @email.sc.edu, jcrichigno@cec.sc.edu, ebouharb@fau.edu, dkhoury @aust.edu.lb, srivastavag@brandonu.ca

Abstract—Previous studies have observed that TCP pacing -
evenly spacing out packets- minimizes traffic burstiness, reduces
packet losses, and increases throughput. However, the main
drawback of pacing is that the number of flows and the
bottleneck link capacity must be known in advance. With this
information, pacing is achieved by manually tuning sender nodes
to send at rates that aggregate to the bottleneck capacity. This
paper proposes a scheme based on programmable switches by
which rates are dynamically adjusted. These switches store the
network’s state in the data plane and notify sender nodes to
update their pacing rates when the network’s state changes, e.g.,
a new flow joins or leaves the network. The scheme uses a custom
protocol that is encapsulated inside the IP Options header field
and thus is compatible with legacy switches (i.e., the scheme does
not require all switches to be programmable). Furthermore, the
processing overhead at programmable switches is minimal, as
custom packets are only generated when a flow joins or leaves the
network. Simulation results conducted in Mininet demonstrate
that the proposed scheme is capable of dynamically notifying
hosts to adapt the pacing rate with a minimum delay, increasing
throughput, mitigating the TCP sawtooth behavior, and achieving
better fairness among concurrent flows. The proposed scheme
and preliminary results are particularly attractive to applications
such as Science DMZ, where typically a small number of large
flows must share the bandwidth capacity.

Keywords—TCP pacing; programmable switches; P4 language;
fairness

I. INTRODUCTION

Bandwidth is a constrained resource that measures the
transmission capacity over a path in a given amount of
time. Carefully provisioning and consuming bandwidth af-
fect network’s performance and end-hosts’ communications.
Carefully provisioning and consuming bandwidth affect net-
work’s performance and end-hosts’ communications. Research
centers, governments, and educational institutions are facing
difficulties transferring tremendous amounts of data [1] via
existing network protocols.

The majority of network applications rely on the Trans-
mission Control Protocol (TCP) as the TCP/IP protocol stack
dominates current communication systems [1]. Overall TCP
throughput is tainted by its bursty transmissions which in-
crease packet losses. Previous studies observed that pacing,

This work was supported by the U.S. National Science Foundation, award
1829698.

which is a technique used to evenly space packets into
the network over an entire RTT, can minimize the packet
burstiness, especially in high-speed networks [2].

Notably, the first TCP congestion control algorithm based
upon pacing has been recently proposed, namely, the Bottle-
neck Bandwidth and Round-Trip Time (BBR) algorithm [3].
Furthermore, the Energy Science Network (ESnet), which con-
nects the U.S. national laboratories and hundreds of research
institutions across the world, has recently demonstrated [4] that
pacing produces more stable throughput in networks such as
Science Demilitarized Zones (Science DMZs). The Science
DMZ is a network designed to facilitate the transfer of big
science data. In these environments, typically there is a small
number of large concurrent flows. This scenario contrasts with
regular enterprise networks, where there is a large number of
small flows [5].

While pacing reduces burstiness and improves performance,
it is still being manually configured on end-hosts as there is
no effective mechanism to adaptively determine the desired
pacing rate that aggregates to the overall bandwidth.

In this paper, we propose a scheme for adapting the trans-
mission rate of end-hosts with the help of programmable
data planes. The switches preserve the network’s state by
maintaining the number of active connections. When new hosts
join the network, the switches automatically inform all hosts
about the new bottleneck-link consumption. Consequently,
end-hosts adjust their transmission rate according to the values
specified by the switches.

Specifically, we frame the paper’s contributions as follows:

o Storing the network state in a custom header inserted in
the IP options field of a packet.

« Demonstrating the capability of storing the network state
in the switches’ registers.

o Defining a new mechanism for notifying previously con-
nected hosts about network changes.

o Validating the proposed mechanism by illustrating the
simulation results which compare the observed through-
put via pacing against regular TCP.

The proposed scheme is particularly attractive to appli-
cations such as Science DMZ, where a handful of large
flows must share the network capacity. Using programmable

switches provides an automated mechanism to dynamically
share the available bandwidth.

The rest of the paper is divided as follows: Section II
provides a short background on programmable data planes
and TCP pacing. Section III describes the proposed system.
Section IV demonstrates and compares the simulation results
against regular TCP. Finally, section V concludes the outlined
system with the intended future work.

II. BACKGROUND
A. Programmable Data Plane and P4

Although Software Defined Networking (SDN) offers nu-
merous advantages compared to traditional network architec-
tures [6], it still lacks full programmability as the forwarding
plane is embedded on a fixed Application-Specific Integrated
Circuit (ASIC) chip [7]. Once the ASIC is designed, it cannot
be changed; this approach raised several limitations in terms
of time, cost, and feasibility. Protocol Independent Switch Ar-
chitecture (PISA) is a single pipeline forwarding architecture
(Figure 1) that allows full programmability in the data plane.
The architecture consists of a parser, an ingress pipeline, a
scheduler (buffer), egress pipeline, and deparser. Programming
Protocol-independent Packet Processors (P4) is a programming
language that defines the processing logic of packets on
data planes [8]. It allows programmers to describe packets’
headers (fields and sizes) and program a parser which defines
the sequence of allowed headers in packets. P4 introduced
tables, which can be used for storing routing entries, access-
control lists (ACLs), flow lookup, etc. follow a match-action
strategy, where keys are matched against table entries, and
their corresponding actions are executed. Most P4 constructs
are stateless by design: information is not retained across
packets. As stateless constructs require less packet processing
and storage, they are attractive for high-performance devices
operating at very high rates (e.g., 10/100 Gbps). However,
extern objects like counters and registers can be used
by the switches to store values and states [9]. Specifically,
registers declared in a P4 program can be modified or read
during run-time by both data and control planes. Other useful
features in P4 and programmable switches include packet
cloning and packet recirculating. Packet cloning is a mech-
anism where replicas of an incoming packet can be redirected
to specified ports after ingress and/or egress pipelines, while
packet recirculating restarts the ingress processing of a packet
after finishing the egress pipeline.

B. TCP Pacing

TCP pacing is a technique performed by the network
scheduler to evenly space, or “pace”, TCP packets transmitted
to a network. It is known from the literature that pacing renders
TCP traffic less bursty. In Linux-based systems, network
traffic can be controlled by several Queueing Disciplines
(gdisc) used in conjunction with the tc (Traffic Control)
tool. In this work we focus on the most two commonly

e2eclone

Ingress g’ |: Egress o
1 o
—> [m[a] o [m[a] i =
—] Sy e | A R e B S
—] c mia > =
—> i — = g
' ’* , o e =

Recirculate

Fig. 1: Protocol Independent Switch Architecture (PISA).

used disciplines: Fair Queueing (FQ) and Hierarchical Token
Bucket (HTB). In these queueing disciplines, aggregate
queues are used to associate token buckets in order to limit
the transmission rate.

1) Fair Queueing (FQ): FQ performs flow separation to
achieve pacing; it is designed to follow the requirements set
by the TCP stack [10]. Generally, a flow is considered all
packets pertaining to a particular socket. FQ uses the red-black
tree data structure [11] to index and track the state of single
flows. A red-black tree is a binary search tree that ensures that
no path in the tree is more than twice as long as any other.
This property ensures that tree operations have a logarithmic
complexity. FQ achieves fairness through the Deficit Round
Robin (DRR) algorithm [12] illustrated in Figure 2. The
DRR is an algorithm that allows each flow passing through a
network device to have a nearly perfect fairness and requires
only O(1) operations per packet.

FQ wuses the leaky bucket queue where transmitting
timestamps (indexed on the RB tree) are derived from the
pacing rate specified by the user and the packet size. FQ is
a non-work conserving scheduler, therefore, it can have idle
scheduled resources idle even if there are jobs ready to be
scheduled.

2) Hierarchy Token Bucket (HTB): HTB is a classful qdic
that follows a tree-based data structure (Figure 3) to represent
traffic shapers [13]. Incoming packets to an HTB-enabled
network scheduler are classified into classes, where each class
contains a token bucket shaper in the leaf node. HTB follows
a top-down approach to determine which class should be used
for shaping traffic, while child nodes can borrow from parent
nodes. According to [14], CPU usage of HTB grows linearly

Fig. 2: Deficit Round Robin (DRR) algorithm.

root qdisc

Fig. 3: Hierarchy Token Bucket (HTB) organization.

with the packets per second (PPS) rate. FQ and HTB pacing
provide good rate conformance (i.e., how close the measured
throughput deviates from the paced rate), deviating at most
5% to 6% from the target rate, but at the expense of CPU
cost.

III. PROPOSED SYSTEM AND DESIGN PRINCIPLES

Our work began with the observation that pacing, which
requires transmitting nodes to send at a fixed rate, minimizes
the burstiness of transmission rate. Pacing is achieved by
manually tuning end hosts to send at constant rates that
aggregate to the maximum available bandwidth (bottleneck).
A core challenge is to determine the number of active flows
in order to evenly split the bottleneck bandwidth. Another
major challenge is to instantly adapt the transmission rate
of previously connected hosts whenever new hosts join the
network.

Our proposed system aims at solving the aforementioned
challenges by storing the network’s current state in pro-
grammable switches. These switches instantly notify end hosts
to update their transmission rates when the network’s state
changes, i.e., a new host joined the network. As our focus
in this work is on TCP as the transport-layer protocol, we
rely on the flags (SYN, SYN-ACK, and ACK) used in its
3-way handshake to determine the state of the connection.
Figure 4 demonstrates a high-level architecture of the system.
To initiate a TCP connection (1), an end-host inserts a custom
header in the IP-Options field [15] of the IP header, indicating
its will to establish a new connection. This custom header is
inserted once during the 3-way handshake, particularly, when

TCP Server

ey,

Fig. 4: High-level network architecture.

sending the TCP-SYN flag. The switches on the other hand
parse the headers of the received packets, and check if a
new flow is requested by the end-host. In such case, each
switch stores the new state S’ of the network (2), and inserts
its bottleneck link capacity and the current total number of
hosts in the SYN-ACK message. Afterwards, the switches
broadcast S’ to all previously connected hosts. Finally, when
the hosts receive the SYN-ACK message (i.e., the second
message in the handshake), they adjust their transmission rates
according to the values present in the IP options header (4).
Upon receiving a TCP packet on the port used for initiating its
TCP connection, the end-host parses the custom header, and
adjusts its transmission rate by applying pacing with a rate
derived from the values of the custom header fields. The rate
is adjusted according to Equation (1).

R’:i[

m

i S[C)] —1)

Where R’ is the newly adjusted rate, S is a variable-
sized array that holds the list of all switch traces. Each trace
describes a link capacity C' and the number of hosts m
currently connected to the switch. The amount of bandwidth
to be subtracted from the total bandwidth is described as [;
preserving this small portion of the bandwidth is advantageous
for maintaining the stability of the paced flows.

IV. SIMULATION RESULTS

In this section, we demonstrate and compare the simulation
results of the custom header against regular TCP in Mininet
[16]. We use the P4 programming language [8] to define the
proposed header on the bmv2 switch [17] (software switch),
and iperf tool [18] to measure the throughput of the network.
Moreover, we evaluate the approach using the commonly used
queuing disciplines explained in Section II-B (FQ and HTB).
Traffic Control (f¢) Linux command [19] is used to configure
the queueing disciplines on the hosts’ packet schedulers, while
the netem tool [20] is used to configure bottleneck bandwidth
and inject delay.

The simulated scenario consists of four hosts connected to a
server through a P4 programmable switch as shown in Figure
5. We ran the simulation 10 times and averaged the results
in two different scenarios: 1) the link connecting the server
to the switch is pre-configured to a maximum bandwidth of
300 Mbps with no injected delay, and 2) The same link is
pre-configured to a maximum bandwidth of 100 Mbps with

Programmable

Fig. 5: Simulation topology.

300

250 [~

200 -

150

100

TCP Throughput (Mpbs)

0
40

100

80 -

T 300 T 300 T
Host 1 Host1 —— Host1 ——
Host 2 Host2 —— Host2 ——
Host 3 = 250 Host 3 7 = 250 - Host 3 7
Host 4 2 Host 4 2 Host 4
2 200 - S 200
5 E
a 2
o 150 5 150 -
El =
] e
= =
e = 100 . £ 100 —
50 - v » 50 50 -
I I I I I I 0 I I I I I I 0 I I I I I
50 00 10 20 30 40 50 00 10 20 30 40 50 00 10 10 20 30 40 50 00 10
Time (sec) Time (sec) Time (sec)
(a) Regular TCP (b) HTB (c) FQ
T T 100 T 100 T
Host 1 Host1 —— Host1 ——
Host 2 Host2 —— Host2 ——
Host 3 80 - Host 3 80 F Host 3
Host 4 Host 4 Host 4

60 -

@
S
T

40 -

TCP Throughput (Mpbs)
IS
S
T

TCP Throughput (Mpbs)

20 -

N
S
T

/W \ s

60

40 1

TCP Throughput (Mpbs)

20

I I I I 0 I I
50 00 10 20 20 30 40
Time (sec)

(d) Regular TCP, 20 ms RTT scenario

0 I I
20 30 40 30

I
50

Time (sec)

(e) HTB, 20 ms RTT scenario

I I I I
40 50 00 10
Time (sec)

(f) FQ, 20 ms RTT scenario

I I I 0 I I
00 10 20 30 10 20 30 20

Fig. 6: TCP throughput.

a 20 ms delay. The second scenario is to emulate a WAN
where variable delay, loss, duplication and re-ordering occur.
To verify that the system notifies previously connected hosts
about network changes, we configured hosts to join 15 seconds
after each other.

The above scenario reflects networks such as Science
DMZs, where a small number of end devices (data-transfer
nodes) evenly shares the bandwidth capacity [4]. In such
network, the operator controls the end hosts and switches, thus
allowing the cooperation between these devices.

To verify that the system notifies previously connected hosts
about network changes, we configured hosts to join 15 seconds
after each other. Figure 6 illustrates the throughput of the
transmitting hosts in regular TCP, HTB and FQ modes in
both scenarios. The upper sub-figures correspond to the first
scenario (300 Mbps, less than 1 ms RTT) while the lower ones
correspond to the second scenario (100 Mbps, 20 ms RTT).
Table I lists the mean throughput of all hosts in all modes
grouped by time periods (P;: 01 - 15 sec, P»: 16-30 sec, P3:
31-45 sec, and P4 46-60 sec) in scenario 2.

Consider Figure 6(a), which shows the throughput of regular
TCP, and Figures 6(b) and 6(c), which show the throughput
of TCP pacing using HTB and FQ respectively. While the
throughput performance is similar, the fairness and reduced
variation achieved with pacing can be noted graphically as the
number of active flows increases. The performance difference
between non-paced and paced flows is exacerbated as the RTT
increases to 20 milliseconds, as seen in Figures 6(d)-(f) and
summarized in Tables I and II. With one active flow only
in the network, HTB pacing produces the highest throughput
(see Table 1) (81.25 Mbps), followed by FQ pacing (66.59
Mbps) and regular TCP (33.62 Mbps). When two flows are

active between times 16 - 30, pacing continues to produce
higher throughput (HTB: 93.1 Mbps, FQ: 89.81 Mbps, regular
TCP: 67.27 Mbps). When more flows join the network, the
performance of regular TCP becomes more competitive.

Consider now Table II, which lists measurements of coeffi-
cient of variation (CV) of each flow and fairness index (F). The
CV is calculated as the standard deviation of the host’s average
throughput divided by the average throughput, and multiplied
by 100. Thus, the CV is given in percentage. The fairness
index for a set of flows is calculated using Jain’s equation
[21]:

— 2

where T; is the throughput of flow ¢ (in our simulated scenario,
n=4andi=1,2,...,4).

The coefficient of variation reflects how much the through-
put of a flow varies with respect to its average. For many
applications (e.g., large flows observed in Science DMZs), a
minimum variation is highly desirable. One of the main results
of the proposed scheme is achieved with HTB pacing. Note the
minimal variation, in particular when multiple flows are active.
E.g., with HTB, when Hosts 1 and 2 are transmitting, their
corresponding CVs are 3.773 and 2.998. On the other hand,
with regular TCP, the CVs of Hosts 1 and 2 are 22.63 and
30.08 respectively. When all hosts are active, HTB produces
CVs of less than 2% (1.168, 1.138, 0.755, and 0.684 for Hosts
1, 2, 3, and 4 respectively). In contrast, regular TCP produces
CVs of 7.806, 5.260, 6.447, and 17.27 for Hosts 1, 2, 3, and
4 respectively. Thus, the throughput variation is substantially
reduced.

TABLE I: THROUGHPUT (1) in Mbps (average over time) for Hosts i = 1, ..., 4 (see Figure 5). Hosts start transmitting at
times t = 1 (Host 1), t = 16 (Host 2), t = 31 (Host 3), and t = 46 (Host 4) seconds. The RTT between the sender Hosts 1-4

and the receiver server is 20 milliseconds.

Regular TCP HTB FQ
Period o, M T, T; T, > T T T, T; T, > T T T, T; Ty
P; (01-15sec) 33.62 3362 NA NA NA 8125 8125 NA NA NA 6659 6659 NA NA NA
P, (16-30 sec) 6727 3606 3121 N/A NA 931 4640 4670 N/A N/A 8991 4585 4406 N/A N/A
P; (31-45sec) 88.83 3127 3061 2695 N/A 9442 3140 3137 3165 NA 9372 3140 3136 3096 N/A
P4 (46-60 sec) 91.86 2532 2463 2532 1659 9512 2378 2375 2373 2386 9452 2371 2371 2367 2343

TABLE II: COEFFICIENT OF VARIATION (C'V;) IN PERCENTAGE AND FAIRNESS INDEX F, for Hosts i = 1, ..., 4 (see Figure
5). The ideal fairness index value is 1. Hosts start transmitting at times t = 1 (Host 1), t = 16 (Host 2), t = 31 (Host 3), and t
= 46 (Host 4) seconds. The RTT between the sender Hosts 1-4 and the receiver server is 20 milliseconds.

Regular TCP HTB FQ
Period F CV1 CVZ CV3 CV4 F CV] CVZ CV3 CV4 F CV] CVZ CV3 CV4
P; (01-15sec) 1.00 32.32 N/A N/A N/A 1.0000 8.188 N/A N/A N/A 1.0000 28.427 N/A N/A N/A
P, (16-30 sec) .994 22.63 30.08 N/A N/A 99998 3.773 2998 N/A N/A 99960 4.351 14.142 N/A N/A
P3; (31-45 sec) .994 9349 1090 19.69 N/A 99998 2.065 2.081 1985 N/A .99960 1.618 1.317 3879 N/A
P4 (46-60 sec) 974 7.806 5260 6.447 1727 99999 1.168 1.138 755 684 .99997 1.022 1.020 996 3.336

V. CONCLUSION

In this paper, we have proposed a mechanism for instantly
adapting the transmission rate of TCP flows using a custom
header processed by programmable data switches. Our aim
is to automate end hosts TCP pacing to enhance throughput
and minimize variations. The solution offers a novel way to
store the network state in a P4 switch and to notify previously
connected hosts about a change in the network, particularly,
when a new host joins.

Our implementation on Mininet showed that the solution
has indeed achieved the desired goals while increasing the
overall mean throughput. For future work, we intend to modify
the custom header to support more complex topologies and
interwork with dynamic reroutes performed by the switches
whenever congestion occurs. We also plan to extend the
sharing bandwidth scheme for scenarios where an uneven
allocation is desirable (priorities).

REFERENCES

[1] B. A. Forouzan and S. C. Fegan, TCP/IP protocol suite. McGraw-Hill
Higher Education, 2002.

[2] N. Hanford, B. Tierney, and D. Ghosal, “Optimizing data transfer
nodes using packet pacing,” in Proceedings of the Second Workshop on
Innovating the Network for Data-Intensive Science, p. 4, ACM, 2015.

[3] N. Cardwell, Y. Cheng, S. Yeganeh, and V. Jacobson, “Bbr congestion
control,” Working Draft, IETF Secretariat, Internet-Draft draft-cardwell-
iccrg-bbr-congestion-control-00, 2017.

[4] E.Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The science
dmz: A network design pattern for data-intensive science,” Scientific
Programming, vol. 22, no. 2, pp. 173-185, 2014.

[5] J. Crichigno, E. Bou-Harb, and N. Ghani, “A comprehensive tutorial on
science dmz,” IEEE Communications Surveys & Tutorials, 2018.

[6] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114-119, 2013.

[71 M. J.S. Smith, Application-specific integrated circuits, vol. 7. Addison-
Wesley Reading, MA, 1997.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.

[9] M. Budiu and C. Dodd, “The p416 programming language,” ACM

SIGOPS Operating Systems Review, vol. 51, no. 1, pp. 5-14, 2017.

A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a

fair queueing algorithm,” in ACM SIGCOMM Computer Communication

Review, vol. 19, pp. 1-12, ACM, 1989.

S. Hanke, “The performance of concurrent red-black tree algorithms,”

in International Workshop on Algorithm Engineering, pp. 286-300,

Springer, 1999.

M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit

round-robin,” IEEE/ACM Transactions on networking, no. 3, pp. 375—

385, 1996.

D. G. Balan and D. A. Potorac, “Linux htb queuing discipline imple-

mentations,” in Networked Digital Technologies, 2009. NDT’09. First

International Conference on, pp. 122—126, IEEE, 2009.

A. Saeed, N. Dukkipati, V. Valancius, C. Contavalli, A. Vahdat, et al.,

“Carousel: Scalable traffic shaping at end hosts,” in Proceedings of the

Conference of the ACM Special Interest Group on Data Communication,

pp. 404417, ACM, 2017.

R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica, “Ip options are

not an option,” University of California at Berkeley, Technical Report

UCB/EECS-2005-24, 2005.

R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R.

Prete, “Using mininet for emulation and prototyping software-defined

networks,” in 2014 IEEE Colombian Conference on Communications

and Computing (COLCOM), pp. 1-6, IEEE, 2014.

P. L. Consortium et al., “Behavioral model (bmv2),” 2014.

A. Tirumala, “Iperf: The tcp/udp bandwidth measurement tool,”

http://dast. nlanr. net/Projects/Iperf/, 1999.

B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout,

P. Schroeder, J. Spaans, and P. Larroy, “Linux advanced routing & traffic

control,” in Ottawa Linux Symposium, vol. 213, 2002.

S. Hemminger et al., “Network emulation with netem,” in Linux conf

au, pp. 18-23, 2005.

R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: An

explanation,” 1999.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

https://www.researchgate.net/publication/333296538

