
A Software Debugger for E-textiles and Arduino
Microcontrollers

Michael Schneider
Michael.J.Schneider@colorado.edu
University of Colorado, Boulder

Boulder, Colorado

Chris Hill
Christian.N.Hill@colorado.edu
University of Colorado, Boulder

Boulder, Colorado

Ann Eisenberg
eisenbea@colorado.edu

University of Colorado, Boulder
Boulder, Colorado

Mark Gross
mdgross@colorado.edu

University of Colorado, Boulder
Boulder, Colorado

Arielle Blum
amblum@colorado.edu

University of Colorado, Boulder
Boulder, Colorado

ABSTRACT
Today’s STEM classrooms have expanded the domain of computer
science education from a basic two-toned terminal screen to now
include helpful Integrated Development Environments(IDE) (BlueJ,
Eclipse), block-based programming (MIT Scratch, Greenfoot), and
even physical computing with embedded systems (Arduino, LEGO
Mindstorm). But no matter which environment a student starts
programming in, all students will eventually need help in finding
and fixing bugs in their code. While the helpful IDE’s have debug-
ger tools built in (breakpoints for pausing your program, ways to
view/modify variable values, and "stepping" through code execu-
tion), in many of the other programming environments, students
are limited to using print statements to try and "see" what is hap-
pening inside their program.

Most students who learn to write code for Arduino microcon-
trollers will start within the Arduino IDE, but the official Arduino
IDE does not currently provide any debugging tools. Instead, a stu-
dent would have to move on to a professional IDE such as Atmel Stu-
dio or acquire a hardware debugger in order to add breakpoints or
view their program’s variables. But each of these options has a steep
learning curve, additional costs, and can require complex configu-
rations. Based on research of student debugging practices[3, 7] and
our own classroom observations, we have developed an Arduino
software library, called Arduino Debugger, which provides some
of these debugging tools (ex. breakpoints) while staying within
the official Arduino IDE. This work continues a previous library,
(redacted), which focused on features specific to e-textiles develop-
ment boards. The Arduino Debugger library has been modified to
support not only e-textile boards (Lilypad, Adafruit Circuit Play-
ground) but most AVR and ARM based Arduino boards. We are also
in the process of testing a set of Debugging Code Templates to see
how they might increase student adoption of debugging tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FabLearn ’20, October 10–11, 2020, New York, NY, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7543-6/20/04. . . $15.00
https://doi.org/10.1145/3386201.3386222

CCS CONCEPTS
• Social and professional topics → Computing education; •
Software and its engineering→ Software testing and debugging.

KEYWORDS
Debugging, Arduino, Serial Monitor, Computer Science Education
ACM Reference Format:
Michael Schneider, Chris Hill, Ann Eisenberg, Mark Gross, and Arielle Blum.
2020. A Software Debugger for E-textiles and Arduino Microcontrollers. In
FabLearn 2020 - 9th Annual Conference on Maker Education (FabLearn ’20),
October 10–11, 2020, New York, NY, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3386201.3386222

1 PROBLEM & MOTIVATION
Current tools for debugging embedded systems are intended for
experienced programmers and engineers. These tools consist of
IDEs which provide code breakpoints, code tracing (aka “stepping
through code”), and viewing or modifying variable values. Engi-
neers also have access to hardware debuggers, physical devices
which can connect to a development board and provide more de-
tailed information about the embedded system, such as register
values and memory. High school students do not usually use the
professional tools when working with Arduino devices. Instead,
they usually start with the offical Arduino IDE, which provides a
basic text editor, library manager, serial monitor, and can compile
and upload code onto the Arduino microcontroller. This basic IDE
works well to start with but lacks the necessary debugging tools
for students as they expand their knowledge and skills.

It is possible for instructors to provide professional debugging
tools such as Atmel Studio [10], Visual Micro (plug-in for Visual
Studio) [8], or a hardware debugger like J-Link [13] or Atmel ICE
[9]. These tools would allow students to create breakpoints and
view system information such as variables, registers, and memory.
Unfortunately these tools are not always ideal for K-12 classrooms
or introductory undergraduate classes because of expensive licens-
ing, complex configurations, and a learning curve that may not
fit within shorter lesson plans (a few weeks vs a whole semester
of programming). There needs to be an intermediary that helps
beginners to gain basic debugging skills for fixing their novice code
and then prepares them to move toward more advance tools when
they are ready. The Arduino Debugger library aims to be this in-
termediary by providing methods which emulate debugger tools,

https://doi.org/10.1145/3386201.3386222
https://doi.org/10.1145/3386201.3386222

FabLearn ’20, October 10–11, 2020, New York, NY, USA Michael Schneider, Chris Hill, Ann Eisenberg, Mark Gross, and Arielle Blum

breakpoints and variable “watching”, while keeping the students
within the Arduino IDE and not requiring additional hardware. To
help encourage students to use the Arduino Debugger, we have
paired it with a series of Debugging Coding Templates which pro-
vide guidelines for how students can place breakpoints in different
types of coding structures (loops, if/else, methods) which we believe
can help encourage students to regularly use debugging tools.

2 BACKGROUND & RELATEDWORK
The lack of beginner friendly debugger tools for Arduino is a known
concern [2, 15] and tools have been created that provide debugging
features via plug-ins to Visual Studio or Atmel Studio [2, 8, 14].
These plug-ins allow the student to use the IDE’s debugger tools
with the Arduino core library they are familiar with and do not
require a hardware debugger (on supported Arduino boards). This
pairing of the familiar Arduino libraries with a advance IDE, makes
these plug-ins a great option for more advanced undergraduates
and professional engineers. But these tools still require costly li-
censes and more intensive setup than the Arduino IDE. Also, these
plug-ins provide features that are not needed by or accessible to
novice programmers, such as viewing registers and memory. In-
stead of providing a complex toolbox to work with, Yago et al.[15]
created a customized version of the Arduino IDE and its drivers to
provide breakpoints and allow students to step through their code .
This is similar to our approach except Yago et al. did not allow for
students to view their variables and required students to work with
a customized Arduino IDE, which lacks long-term support.

Our tool was designed to avoid the shortcomings of the profes-
sional tools (cost and complexity) and other research tools (GDB
plugin [2] or modified Arduino IDE [15]). Instead, our tool has been
designed to work with the standard Arduino IDE and support as
many Arduino-based devices as possible.

3 APPROACH & UNIQUENESS
The design of the Arduino Debugger is based not only on our re-
search of past works, but also on our classroom observations of
novice programmers. Classroom observations were taken in an
undergraduate embedded systems class where students created
projects with an Arduino-based device. Students were not required
to have coding experience for the course, with many of the students
learning to program for the first time. As the students created their
projects, we offered assistance when they ran into problems. In our
observations, we noticed a trend in the project errors. When an
error arose, students would often start with the assumption that
the error was hardware related (wire is not connected or there
is not enough power running to the connected devices). In our
discussions with the students, many of the students had a false
assumption that if the code compiled then it must be working cor-
rectly. This misconception often led the students to painstakingly
take their projects apart and re-wire them back together. These
unnecessary teardowns could have been avoided if the students
had more thoroughly tested their code.

Even though students considered the hardware to be a likely
starting point for system errors, nearly all of the errors we assisted
in debugging ended up being software related. For this reason we

have created a software library that focuses on assisting students
with known issues of debugging. These issues are as follows:

• Error Location
The process of actually locating a bug in their program is
considered the most difficult part of debugging. [4, 6] Our
tool helps students to quickly narrow down potential bug
sources.

• Adding New Errors
When debugging, students will often add new errors that in
turn require more debugging [12]. The Arduino Library’s
code is meant to beminimally intrusive with very few lines of
new code required, thereby limiting the potential of adding
new bugs to the student’s program.

• Common Errors
Some of the most common bugs students create in their
programs are assignment errors, iteration errors, and array
errors[5]. By observing these errors in our students’ code,
we have adapted the Arduino Debugger to provide helpful
information so that students can recognize when one of these
errors is occurring.

3.1 Library Features
The three main features of the debug library are as follows:

• Breakpoints & Pausing
A call to the breakpoint() method allows students to pause a
running application and view program information.

• Hardware Pins
Students view the current state of hardware pins (digital &
analog) and also update the state of the digital pins.

• Variable Watch List
Students can add program variables to "watch list" which
allows them to view and update a variable’s value.

Additional features are provided by the Arduino Debugger li-
brary, but they cannot all be detailed here. To review the library’s
code, documentation, and guides, please follow the link to the
Github repository (redacted).

Example Code 1: Buggy Student Sketch

1 #include <Debugger.h>
2 //Standard configuration for Arduino Uno.
3 ArduinoDebugger debugger =

Debugger::initialize(false, true, false);↪→

4 void setup() {
5 Serial.begin(9600);
6 while(!Serial) {}
7 }
8 void loop() {
9 /*
10 Intended program behavior:
11 The program is meant to turn on a set of LEDs

which are connected via the pin #'s in the
pins array.

↪→

↪→

12 Actual Behavior:
13 The program only turns on every other LED
14 Error:

A Software Debugger for E-textiles and Arduino Microcontrollers FabLearn ’20, October 10–11, 2020, New York, NY, USA

15 The for loop contains an update to the for
loop counter i, causing it to update by 2,
instead of 1.

↪→

↪→

16 */
17 byte pins[] = {3,4,5,6};//Pins connected to LEDs
18 byte i = 0;//for loop counter
19 //add variables to the watch list
20 debugger.add(&i, BYTE, "i");
21 debugger.add(&pins, BYTE_ARRAY, "pins_4");
22 debugger.breakpoint("Before For Loop");
23 for(i; i < sizeof(pins)/sizeof(pins[0]); i++){
24 debugger.breakpoint("Start For Loop");
25 digitalWrite(i, HIGH);//Turn on the chosen LED
26 i++;//Error!
27 debugger.breakpoint("End For Loop");
28 }
29 }

3.1.1 Breakpoints. In a standard IDE, a breakpoint allows a pro-
grammer to pause a running application at a specific line of code.
This can be done to pause the program once a desired condition has
been met (for example, inside a conditional statement) and/or to
evaluate the current values of variables. The Arduino Debugger’s
breakpoint() method offers similar functionality. When called, it
will pause the running Arduino program and present a menu via
the Serial Monitor, as seen in Figure 1. The menu allows a student
to choose between viewing and updating variables in the watch
list or the microcontroller’s hardware pins. In Example Code 1,
two breakpoints have been added on lines 24 & 29. In each, an
optional character array has been passed which defines the name
for the breakpoint. The name helps to identify which breakpoint
has been reached, in case multiple breakpoints have been added to
a program.

3.1.2 Hardware Pins. Selecting “Hardware Pins” will display the
current state of the board’s digital & analog pins, as seen in Figure
2. The state of a pin refers to the current value retrieved via digi-
talRead() or analogRead(). For Arduino, digital pins have only two
states (HIGH/LOW), but the library expands this to three:

HIGH This means the pin is ON and providing POWER OUT
LOW This means the pin is OFF
HIGH(Power In) This means the pin is receiving POWER IN

from an external power source

After displaying the digital & analog pin states, the Arduino
Debugger will allow the student to update a digital pin to either
HIGH or LOW.

3.1.3 Variables. Selecting “Variables” will display the current value
of the variables that have been added to the watch list and allow
the student to update any variable’s value. To add a variable to
the watch list, a student will use the add() method which accepts
the variable’s memory address, data type, and the variable’s name.
Examples of using the add method can be found in code example 1
on lines 22 & 23. Currently, the Arduino Debugger only supports
the data primitives byte, int, long, float, char, bool, and arrays of
those data primitives.

3.2 Debugging Code Templates
The Arduino Debugger can help students analyze their code, but
only if they use it. Murphy et. al. found that even though their
students had access to an IDE’s debugger, only a only a few used it.
Worse yet, not many students used print statements [11]. We found
similar behavior in our own observations, where students did not
regularly use print statements to help evaluate their buggy code.
For this reason, we created the code templates to help students see
potential ways of using the debugger in their programs.

Figure 1: Main menu

Figure 2: Hardware Pins

Figure 3: Variable Watch List

The debugging code templates have been designed to help over-
come common issues when students are attempting to debug their
programs:

FabLearn ’20, October 10–11, 2020, New York, NY, USA Michael Schneider, Chris Hill, Ann Eisenberg, Mark Gross, and Arielle Blum

• Not enough detail
When using print statements for debugging, students will
leave out important information (not display a necessary
variable’s value) or even create more confusion (using the
same print message within if-else statements) [11].

• Under utilization of debugger tools
Whether the tool is an IDE enabled debugger (breakpoints,
variable watch list) or print statements, only a minority of
students utilize these tools to assist in debugging. [11]

• Sporadic debugging behavior
Students will often jump around their code in a haphazard
fashion trying to find the source of a bug without trying to
methodically test specific regions of their code. [1, 11, 16]

Our initial tests of the coding templates focused on showing
students where they should place breakpoints in and around differ-
ent coding structures. The coding structures we are testing with
are loops, conditional statements, and methods. Besides breakpoint
locations, the coding templates remind students of important vari-
ables they should add to the variable watch list. Please note that
these coding templates are not meant to be all encompassing, but
should be viewed as "general rules". The intent is to first encourage
use of breakpoints and adding variables to the watch list. Over time,
we hope to see how students start to expand beyond these starter
coding templates.

Example Code 2: Coding Template - If/Else

1 //Add variables for conditional statements
2 //debugger.add(&var; TYPE; "var");
3 if(condition){
4 debugger.breakpoint("Condition 1 True");
5 //Your code here
6 }
7 else if(other_condition){
8 debugger.breakpoint("Condition 2 True");
9 //Your code here
10 }
11 else{
12 debugger.breakpoint("All Conditions False");
13 //Your code here
14 }

4 DISCUSSION
The pairing of the Arduino Debugger with the Debugging Code
Templates endeavors to encourage students to regularly use debug-
ging tools. During the next stage of classroom observations, we
will gather data on how students follow the code templates, modify
them, and if any common debugging strategies can be found within
the students’ code.

We do not believe the Debugging Code Templates encourage
students move away from the depth-first bug search patterns of
novices to the breadth-first bug search patterns of experts [16].
The code templates only show potential areas to place breakpoints
and remind students of important variables they should add to
their watch lists. For students who have short programs (similar
to example code 1), the code templates should be fine. We hope
our observations show how the students use the code templates in

progressively larger programs. Do the students use the debugger
breakpoints in a haphazard way, do they methodically place them
inside EVERY code block, or do they start to use the breakpoints in
new ways that we hadn’t intended or thought of?

We hope our observations of students will help us better under-
stand:

• How does student use of the Arduino Debugger differs from
our intended vision?

• Does use of the Arduino Debugger and the Debugger Code
Templates change over time?

• Is there a common type of bug(s) that the students use the
Arduino Debugger to find?

• How can the Arduino Debugger and Debugger Code Tem-
plates bemodified to improve students debugging techniques?

5 ACKNOWLEDGEMENTS
This work was supported by grant #1742081 from the National
Science Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the National Science
Foundation or the University of Colorado, Boulder. Special thanks to
the PI’s Ann Eisenberg andMark Gross, my adviser Tamara Sumner,
as well as the other members of the Craft Tech Lab - Christian Hill,
Arielle Blum, and Rona Sadan.

REFERENCES
[1] Ryan Chmiel and Michael C Loui. 2004. Debugging: from novice to expert. In

ACM SIGCSE Bulletin, Vol. 36. ACM, 17–21.
[2] Jan Dolinay, Petr Dostálek, and Vladimír Vašek. 2016. Arduino Debugger. IEEE

Embedded Systems Letters 8, 4 (2016), 85–88.
[3] Deborah A Fields, Kristin A Searle, Yasmin B Kafai, and Hannah S Min. 2012.

Debuggems to assess student learning in e-textiles. In Proceedings of the 43rd
ACM technical symposium on Computer Science Education. 699–699.

[4] Sue Fitzgerald, Renée McCauley, Brian Hanks, Laurie Murphy, Beth Simon, and
Carol Zander. 2009. Debugging from the student perspective. IEEE Transactions
on Education 53, 3 (2009), 390–396.

[5] John D Gould. 1975. Some psychological evidence on how people debug computer
programs. International Journal of Man-Machine Studies 7, 2 (1975), 151–182.

[6] Irvin R Katz and John R Anderson. 1987. Debugging: An analysis of bug-location
strategies. Human-Computer Interaction 3, 4 (1987), 351–399.

[7] Debora Lui, Emma Anderson, Yasmin B Kafai, and Gayithri Jayathirtha. 2017.
Learning by fixing and designing problems: A reconstruction kit for debugging e-
textiles. In Proceedings of the 7th Annual Conference on Creativity and Fabrication
in Education. 1–8.

[8] Visual Micro. 2019. Arduino for Visual Studio. Retrieved January 5, 2020 from
https://www.visualmicro.com/

[9] Microchip. 2020. Atmel-ICE. Retrieved January 5, 2020 from https://www.
microchip.com/DevelopmentTools/ProductDetails/ATATMEL-ICE

[10] Microchip. 2020. Atmel Studio 7. Retrieved January 5, 2020 from https://www.
microchip.com/mplab/avr-support/atmel-studio-7

[11] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky–a
qualitative analysis of novices’ strategies. In ACM SIGCSE Bulletin, Vol. 40. ACM,
163–167.

[12] Murthi Nanja and Curtis R Cook. 1987. An analysis of the on-line debugging
process. In Empirical studies of programmers: second workshop. Ablex Publishing
Corp., 172–184.

[13] Segger. 2020. J-Link Debug Probes. Retrieved January 5, 2020 from https://www.
segger.com/products/debug-probes/j-link/

[14] SysProgs. 2020. VisualGDB. Retrieved January 5, 2020 from https://visualgdb.
com/

[15] Yago Torroja, Alejandro López, Jorge Portilla, and Teresa Riesgo. 2015. A serial
port based debugging tool to improve learning with arduino. In 2015 Conference
on Design of Circuits and Integrated Systems (DCIS). IEEE, 1–4.

[16] Iris Vessey. 1985. Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies 23, 5 (1985), 459–494.

https://www.visualmicro.com/
https://www.microchip.com/DevelopmentTools/ProductDetails/ATATMEL-ICE
https://www.microchip.com/DevelopmentTools/ProductDetails/ATATMEL-ICE
https://www.microchip.com/mplab/avr-support/atmel-studio-7
https://www.microchip.com/mplab/avr-support/atmel-studio-7
https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/products/debug-probes/j-link/
https://visualgdb.com/
https://visualgdb.com/

	Abstract
	1 Problem & Motivation
	2 Background & Related Work
	3 Approach & Uniqueness
	3.1 Library Features
	3.2 Debugging Code Templates

	4 Discussion
	5 Acknowledgements
	References

