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Abstract

Depending on how much information an adversary can access
to, adversarial attacks can be classified as white-box attack
and black-box attack. For white-box attack, optimization-
based attack algorithms such as projected gradient descent
(PGD) can achieve relatively high attack success rates within
moderate iterates. However, they tend to generate adversarial
examples near or upon the boundary of the perturbation set,
resulting in large distortion. Furthermore, their corresponding
black-box attack algorithms also suffer from high query com-
plexities, thereby limiting their practical usefulness. In this
paper, we focus on the problem of developing efficient and
effective optimization-based adversarial attack algorithms. In
particular, we propose a novel adversarial attack framework
for both white-box and black-box settings based on a vari-
ant of Frank-Wolfe algorithm. We show in theory that the
proposed attack algorithms are efficient with an O(1/

√
T )

convergence rate. The empirical results of attacking the Im-
ageNet and MNIST datasets also verify the efficiency and
effectiveness of the proposed algorithms. More specifically,
our proposed algorithms attain the best attack performances
in both white-box and black-box attacks among all baselines,
and are more time and query efficient than the state-of-the-art.

1 Introduction
Deep Neural Networks (DNNs) have made many break-
throughs in different areas of artificial intelligence such
as image classification (Krizhevsky, Sutskever, and Hinton
2012; He et al. 2016), object detection (Ren et al. 2015; Gir-
shick 2015), and speech recognition (Mohamed et al. 2012;
Bahdanau et al. 2016). However, recent studies show that
deep neural networks are vulnerable to adversarial exam-
ples (Szegedy et al. 2013; Goodfellow, Shlens, and Szegedy
2015) – a tiny perturbation on an image that is almost invisi-
ble to human eyes could mislead a well-trained image classi-
fier towards misclassification. Soon later this is proved to be
not a coincidence in image classification: similar phenomena
have been observed in other problems such as speech recog-
nition (Carlini et al. 2016), visual QA (Xu et al. 2017), image
captioning (Chen et al. 2017a), machine translation (Cheng
et al. 2018), reinforcement learning (Pattanaik et al. 2018),
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and even on systems that operate in the physical world (Ku-
rakin, Goodfellow, and Bengio 2016).

Depending on how much information an adversary can
access to, adversarial attacks can be classified into two
classes: white-box attack (Szegedy et al. 2013; Goodfellow,
Shlens, and Szegedy 2015) and black-box attack (Papernot,
McDaniel, and Goodfellow 2016; Chen et al. 2017c). In the
white-box setting, the adversary has full access to the tar-
get model, while in the black-box setting, the adversary can
only access the input and output of the target model but not
its internal configurations.

Several optimization-based methods have been proposed
for the white-box attack. One of the first successful attempt
is the FGSM method (Goodfellow, Shlens, and Szegedy
2015), which works by linearizing the network loss function.
CW method (Carlini and Wagner 2017) further improves the
attack effectiveness by designing a regularized loss function
based on the logit-layer output of the network and optimiz-
ing the loss by Adam (Kingma and Ba 2015). Even though
CW largely improves the effectiveness, it requires a large
number of gradient iterations to optimize the distortion of
the adversarial examples. Iterative gradient (steepest) de-
scent based methods such as PGD (Madry et al. 2018) and I-
FGSM (Kurakin, Goodfellow, and Bengio 2016) can achieve
relatively high attack success rates within a moderate num-
ber of iterations. However, they tend to generate adversarial
examples near or upon the boundary of the perturbation set,
due to the projection nature of the algorithm. This leads to
large distortion in the resulting adversarial examples.

In the black-box attack, since one needs to make gradient
estimations in such setting, a large number of queries are re-
quired to perform a successful black-box attack, especially
when the data dimension is high. A naive way to estimate
gradient direction is to perform finite difference approxi-
mation on each dimension (Chen et al. 2017c). This would
take O(d) queries to performance one full gradient estima-
tion where d is the data dimension and therefore result in
inefficient attacks. For example, attacking a 299 × 299 × 3
ImageNet (Deng et al. 2009) image may take hundreds of
thousands of queries. This significantly limits the practi-
cal usefulness of such algorithms since they can be easily
defeated by limiting the number of queries that an adver-



sary can make to the target model. Although recent studies
(Ilyas et al. 2018; Ilyas, Engstrom, and Madry 2018) have
improved the query complexity by using Gaussian sensing
vectors or gradient priors, due to the inefficiencies of PGD
framework, there is still room for improvements.

In this paper, we propose efficient and effective
optimization-based adversarial attack algorithms based on
a variant of Frank-Wolfe algorithm. We show in theory that
the proposed attack algorithms are efficient with guaranteed
convergence rate. The empirical results also verify the effi-
ciency and effectiveness of our proposed algorithms.

In summary, we make the following main contributions:

1. We develop a new Frank-Wolfe based projection-free at-
tack framework with momentum mechanism. The frame-
work contains an iterative first-order white-box attack
algorithm which admits the fast gradient sign method
(FGSM) as a one-step special case, and also a correspond-
ing black-box attack algorithm which adopts zeroth-order
optimization with two sensing vector options (either from
the Euclidean unit sphere or from the standard Gaussian
distribution).

2. We prove that the proposed white-box and black-box at-
tack algorithms with momentum mechanism enjoy an
O(1/

√
T ) convergence rate in the nonconvex setting.

Compared with existing analyses of Frank-Wolfe for non-
convex optimization (Lacoste-Julien 2016; Reddi et al.
2016; Balasubramanian and Ghadimi 2018), we use mo-
mentum in our algorithm for both white-box and black-
box attacks and therefore our analysis is more involved.
To the best of our knowledge, the convergence of Frank-
Wolfe with momentum in the nonconvex setting has never
been established before, which is of independent interest.
We also show that the query complexity of the proposed
black-box attack algorithm is linear in data dimension d.

3. Our experiments on MNIST and ImageNet datasets show
that (i) the proposed white-box attack algorithm has bet-
ter distortion and is more efficient than all the state-of-
the-art white-box attack baseline algorithms, and (ii) the
proposed black-box attack algorithm is highly query effi-
cient and achieves the highest attack success rate among
other baselines.

The remainder of this paper is organized as follows: in
Section 2, we briefly review existing literature on adversarial
examples and Frank-Wolfe algorithm. We present our pro-
posed Frank-Wolfe framework in Section 3, and the main
theory in Section 4. In Section 5, we compare the pro-
posed algorithms with state-of-the-art adversarial attack al-
gorithms on ImageNet and MNIST datasets. Finally, we
conclude this paper in Section 6.

2 Related Work
There is a large body of work on adversarial attacks. In this
section, we review the most relevant work in both white-
box and black-box attack settings, as well as the non-convex
Frank-Wolfe optimization.
White-box Attacks: (Szegedy et al. 2013) proposed to use
box-constrained L-BFGS algorithm for conducting white-

box attacks. (Goodfellow, Shlens, and Szegedy 2015) pro-
posed the Fast Gradient Sign Method (FGSM) based on
linearization of the network as a simple alternative to L-
BFGS. (Kurakin, Goodfellow, and Bengio 2016) proposed
to iteratively perform one-step FGSM (Goodfellow, Shlens,
and Szegedy 2015) algorithm and clips the adversarial
point back to the distortion limit after every iteration. It is
called Basic Iterative Method (BIM) or I-FGM in the lit-
erature. (Madry et al. 2018) showed that for the L∞ norm
case, BIM/I-FGM is almost1 equivalent to Projected Gra-
dient Descent (PGD), which is a standard tool for con-
strained optimization. (Papernot et al. 2016) proposed JSMA
to greedily attack the most significant pixel based on the
Jacobian-based saliency map. (Moosavi-Dezfooli, Fawzi,
and Frossard 2016) proposed attack methods by project-
ing the data to the closest separating hyperplane. (Carlini
and Wagner 2017) introduced the so-called CW attack by
proposing multiple new loss functions for generating adver-
sarial examples. (Chen et al. 2017b) followed CW’s frame-
work and use an Elastic Net term as the distortion penalty.
(Dong et al. 2018) proposed MI-FGSM to boost the attack
performances using momentum.
Black-box Attacks: One popular family of black-box at-
tacks (Hu and Tan 2017; Papernot, McDaniel, and Goodfel-
low 2016; Papernot et al. 2017) is based on the transferabil-
ity of adversarial examples (Liu et al. 2018; Bhagoji et al.
2017), where an adversarial example generated for one DNN
may be reused to attack other neural networks. This allows
the adversary to construct a substitute model that mimics
the targeted DNN, and then attack the constructed substi-
tute model using white-box attack methods. However, this
type of attack algorithms usually suffer from large distor-
tions and relatively low success rates (Chen et al. 2017c). To
address this issue, (Chen et al. 2017c) proposed the Zeroth-
Order Optimization (ZOO) algorithm that extends the CW
attack to the black-box setting and uses a zeroth-order op-
timization approach to conduct the attack. Although ZOO
achieves much higher attack success rates than the substi-
tute model-based black-box attacks, it suffers from a poor
query complexity since its naive implementation requires to
estimate the gradients of all the coordinates (pixels) of the
image. To improve its query complexity, several approaches
have been proposed. For example, (Tu et al. 2018) intro-
duces an adaptive random gradient estimation algorithm and
a well-trained Autoencoder to speed up the attack process.
(Ilyas et al. 2018) and (Liu et al. 2018) improved ZOO’s
query complexity by using Natural Evolutionary Strategies
(NES) (Wierstra et al. 2014; Salimans et al. 2017) and active
learning, respectively. (Ilyas, Engstrom, and Madry 2018)
further improve the performance by considering the gradi-
ent priors. (Li et al. 2019) proposed to learn the distributions
of adversarial examples to achieve better black-box attack
performance. (Moon, An, and Song 2019) re-formulated the
black-box attack problem as a discrete surrogate optimiza-

1Standard PGD in the optimization literature uses the exact gra-
dient to perform the update step while PGD (Madry et al. 2018) is
actually the steepest descent (Boyd and Vandenberghe 2004) with
respect to L∞ norm.



tion problem and used combinatorial search algorithm to im-
prove the query efficiency.
Non-convex Frank-Wolfe Algorithms: The Frank-Wolfe
algorithm (Frank and Wolfe 1956), also known as the
conditional gradient method, is an iterative optimization
method for constrained optimization problem. (Jaggi 2013)
revisited Frank-Wolfe algorithm in 2013 and provided a
stronger and more general convergence analysis in the con-
vex setting. (Yu, Zhang, and Schuurmans 2017) proved the
first convergence rate for Frank-Wolfe type algorithm in
the non-convex setting. (Lacoste-Julien 2016) provided the
convergence guarantee for Frank-Wolfe algorithm in the
non-convex setting with adaptive step sizes. (Reddi et al.
2016) further studied the convergence rate of non-convex
stochastic Frank-Wolfe algorithm in the finite-sum opti-
mization setting. Very recently, (Staib and Jegelka 2017)
proposed to use Frank-Wolfe for distributionally robust
training (Sinha, Namkoong, and Duchi 2018). (Balasubra-
manian and Ghadimi 2018) proved the convergence rate for
zeroth-order nonconvex Frank-Wolfe algorithm using one-
side finite difference gradient estimator with standard Gaus-
sian sensing vectors.

3 Methodology
3.1 Notation
Throughout the paper, scalars are denoted by lower case let-
ters, vectors by lower case bold face letters and sets by cal-
ligraphy upper cae letters. For a vector x ∈ Rd, we denote
the Lp norm of x by ‖x‖p = (

∑d
i=1 x

p
i )

1/p. Specially, for
p =∞, the L∞ norm of x by ‖x‖∞ = maxdi=1 |θi|. We de-
note PX (x) as the projection operation of projecting vector
x into the set X .

3.2 Problem Formulation
According to the attack purposes, attacks can be divided into
two categories: untargeted attack and targeted attack.

In particular, untargeted attack aims to turn the predic-
tion into any incorrect label, while the targeted attack, re-
quires to mislead the classifier to a specific target class. In
this work, we focus on the strictly harder targeted attack set-
ting (Carlini and Wagner 2017; Ilyas et al. 2018). It is worth
noting that our proposed algorithm can be extended to un-
targeted attack straightforwardly. To be more specific, let us
define `(x, y) as the classification loss function of the tar-
geted DNN with an input x ∈ Rd and a corresponding label
y. For targeted attacks, we aim to minimize `(x, ytar) to learn
an adversarial example that will be misclassified to the target
class ytar. In the rest of this paper, let f(x) = `(x, ytar) be
the attack loss function for simplicity, and the corresponding
targeted attack problem 2 can be formulated as the following
optimization problem:

minx f(x)

subject to ‖x− xori‖p ≤ ε. (3.1)

2Note that there is usually an additional constraint on the input
variable x, e.g., x ∈ [0, 1]n for normalized image inputs.

Evidently, the constraint set X := {x | ‖x − xori‖p ≤ ε}
is a bounded convex set when p ≥ 1. Note that even though
we mainly focus on the most popular L∞ attack case in this
paper, our proposed methods can easily extend to general
p ≥ 1 case.

3.3 Frank-Wolfe vs. PGD
Although PGD can achieve relatively high attack success
rate within moderate iterates, the multi-step update formula
requires an additional projection step at each iteration to
keep the iterates within the constraint set. This tends to cause
the generated adversarial examples near or upon the bound-
ary of the constraint set, and leads to relatively large dis-
tortion. This motivates us to use Frank-Wolfe based opti-
mization algorithm (Frank and Wolfe 1956). Different from
PGD, Frank-Wolfe algorithm is projection-free as it calls a
Linear Minimization Oracle (LMO) over the constraint set
X at each iteration, i.e.,

LMO ∈ argmin
x∈X

〈x,∇f(xt)〉.

The LMO can be seen as the minimization of the first-order
Taylor expansion of f(·) at point xt:

min
x∈X

f(xt) + 〈x− xt,∇f(xt)〉.

By calling LMO, Frank Wolfe solves the linear problem in
X and then perform weighted average with previous iterate
to obtain the final update formula.

Comparing the two methods, PGD is a more “aggressive”
approach. It first takes a step towards the negative gradient
direction while ignoring the constraint to get a new point (of-
ten outside the constraint set), and then correct the new point
by projecting it back into the constraint set. In sharp contrast,
Frank-Wolfe is more “conservative” as it always keeps the
iterates within the constraint set. Therefore, it avoids projec-
tion and can lead to better distortion.

3.4 Frank-Wolfe White-box Attacks
The proposed Frank-Wolfe based white-box attack algo-
rithm is shown in Algorithm 1, which is built upon the clas-
sic Frank-Wolfe algorithm. The key difference between Al-
gorithm 1 and the classic Frank-Wolfe algorithm is in Line
4, where an additional momentum term mt is introduced.
The momentum term mt will help stabilize the LMO di-
rection and leads to empirically accelerated convergence of
Algorithm 1.

Algorithm 1 Frank-Wolfe White-box Attack Algorithm
1: input: number of iterations T , step sizes {γt};
2: x0 = xori,m−1 = ∇f(x0)
3: for t = 0, . . . , T − 1 do
4: mt = β ·mt−1 + (1− β) · ∇f(xt)
5: vt = argminx∈X 〈x,mt〉 // LMO
6: dt = vt − xt
7: xt+1 = xt + γtdt
8: end for
9: output: xT



The LMO solution itself can be expensive to obtain in
general. Fortunately, for the constraint setX defined in (3.1),
the corresponding LMO has a closed-form solution. Here we
provide the closed-form solution of LMO (Line 5 in Algo-
rithm 1) for L∞ norm case 3:

vt = −ε · sign(mt) + xori.

Note that if we write down the full update formula at each
iteration in Algorithm 1, it becomes

xt+1 = xt − γtε · sign(mt)− γt(xt − xori). (3.2)

Intuitively speaking, the term −γt(xt − xori) enforces xt to
be close to xori for all t = 1, . . . , T , which encourages the
adversarial example to have a small distortion. This is the
key advantage of Algorithm 1.
Comparison with FGSM: When T = 1, substituting the
above LMO solutions into Algorithm 1 yields the final up-
date of x1 = x0 − γtε · sign(∇f(x0)), which reduces to
FGSM 4 when γt = 1. Therefore, our proposed Frank-Wolfe
white-box attack also includes FGSM as a one-step special
instance.

3.5 Frank-Wolfe Black-box Attacks
Next we consider the black-box setting, where we cannot
perform back-propagation to calculate the gradient of the
loss function anymore. Instead, we can only query the DNN
system’s outputs with specific inputs. To clarify, here the
output refers to the logit layer’s output (confidence scores
for classification), not the final prediction label.

We propose a zeroth-order Frank-Wolfe based algorithm
to solve this problem in Algorithm 2. The key difference
between our proposed black-box attack and white-box at-
tack is one extra gradient estimation step, which is presented
in Line 4 in Algorithm 2. Also, the momentum term mt is
now defined as the exponential average of previous gradient
estimations {qt}T−1t=0 . This will help reduce the variance in
zeroth-order gradient estimation and empirically accelerate
the convergence of Algorithm 2.

Algorithm 2 Frank-Wolfe Black-box Attack Algorithm
1: input: number of iterations T , step sizes {γt}, sample

size for gradient estimation b, sampling parameter δ;
2: x0 = xori, m−1 = GRAD EST(x0, b, δ)
3: for t = 0, . . . , T − 1 do
4: qt = GRAD EST(xt, b, δ) // Alg 3
5: mt = β ·mt−1 + (1− β) · qt
6: vt = argminv∈X 〈v,mt〉
7: dt = vt − xt
8: xt+1 = xt + γtdt
9: end for

10: output: xT

3The derivation can be found in the Appendix.
4The extra clipping operation in FGSM is to project to the ad-

ditional box constraint for image classification task. We will also
need this clipping operation at the end of each iteration for specific
tasks such as image classification.

As in many other zeroth-order optimization algorithms
(Shamir 2017; Flaxman, Kalai, and McMahan 2005), Al-
gorithm 3 uses symmetric finite differences to estimate the
gradient and therefore, gets rid of the dependence on back-
propagation in white-box setting. Different from (Chen et
al. 2017c), here we do not utilize natural basis as our sens-
ing vectors, instead, we provide two options: one is to use
vectors uniformly sampled from Euclidean unit sphere and
the other is to use vectors uniformly sampled from standard
multivarite Gaussian distribution. This will greatly improve
the gradient estimation efficiency comparing to sensing with
natural basis as such option will only be able to estimate one
coordinate of the gradient vector per query. In practice, both
options here provide us competitive experimental results. It
is worth noting that NES method (Wierstra et al. 2014) with
antithetic sampling (Salimans et al. 2017) used in (Ilyas et
al. 2018) yields similar formula as our option II in Algorithm
3.

Algorithm 3 GRAD EST(x, b, δ)
1: q = 0
2: for i = 1, . . . , b do
3: option I: Sample ui uniformly from the Euclidean

unit sphere with ‖ui‖2 = 1
q = q+ d

2δb

(
f(x+ δui)− f(x− δui)

)
ui

4: option II: Sample ui uniformly from the standard
Gaussian distribution N(0, I)

q = q+ 1
2δb

(
f(x+ δui)− f(x− δui)

)
ui

5: end for
6: return q

4 Main Theory
In this section, we establish the convergence guarantees for
our proposed Frank-Wolfe adversarial attack algorithms de-
scribed in Section 3. The omitted proofs can be found in the
Appendix. First, we introduce the convergence criterion for
our Frank-Wolfe adversarial attack framework.

4.1 Convergence Criterion
The loss function for common DNN models are generally
nonconvex. In addition, (3.1) is a constrained optimization.
For such general nonconvex constrained optimization, we
typically adopt the Frank-Wolfe gap as the convergence cri-
terion (since gradient norm of f is no longer a proper crite-
rion for constrained optimization problems):

g(xt) = max
x∈X
〈x− xt,−∇f(xt)〉.

Note that we always have g(xt) ≥ 0 and xt is a stationary
point for the constrained optimization problem if and only if
g(xt) = 0, which makes g(xt) a perfect convergence crite-
rion for Frank-Wolfe based algorithms.

4.2 Convergence Guarantee for Frank-Wolfe
White-box Attack

Before we are going to provide the convergence guarantee of
Frank-Wolfe white-box attack (Algorithm 1), we introduce



the following assumptions that are essential to the conver-
gence analysis.
Assumption 4.1. Function f(·) is L-smooth with respect to
x, i.e., for any x,x′, it holds that

f(x′) ≤ f(x) +∇f(x)>(x′ − x) +
L

2
‖x′ − x‖22.

Assumption 4.1 is a standard assumption in nonconvex
optimization, and is also adopted in other Frank-Wolfe lit-
erature such as (Lacoste-Julien 2016; Reddi et al. 2016).
Note that even though the smoothness assumption does not
hold for general DNN models, a recent study (Santurkar
et al. 2018) shows that batch normalization that is used in
many modern DNNs such as Inception V3 model, actually
makes the optimization landscape significantly smoother 5.
In addition, recent studies (Allen-Zhu, Li, and Song 2019;
Du et al. 2019; Zou et al. 2019) also showed that the loss
function of overparameterized deep neural networks is semi-
smooth. This justifies the validity of Assumption 4.1.
Assumption 4.2. Set X is bounded with diameter D, i.e.,
‖x− x′‖2 ≤ D for all x,x′ ∈ X .

Assumption 4.2 implies that the input space is bounded.
For common tasks such as image classification, given the
fact that images have bounded pixel range and ε is a small
constant, this assumption trivially holds. Given the above as-
sumptions, the following lemma shows that the momentum
term mt will not deviate from the gradient direction signifi-
cantly.
Lemma 4.3. Under Assumptions 4.1 and 4.2, for mt in Al-
gorithm 1, it holds that

‖∇f(xt)−mt‖2 ≤
γβLD

1− β
.

Now we present the theorem, which characterizes the con-
vergence rate of our proposed Frank-Wolfe white-box adver-
sarial attack algorithm presented in Algorithm 1.
Theorem 4.4. Under Assumptions 4.1 and 4.2, let γt =
γ =

√
2(f(x0)− f(x∗))/(CβLD2T ), the output of Algo-

rithm 1 satisfies

g̃T ≤
√

2CβLD2(f(x0)− f(x∗))
T

,

where g̃T = min1≤k≤T g(xk), x∗ is the optimal solution to
(3.1) and Cβ = (1 + β)/(1− β).
Remark 4.5. Theorem 4.4 suggests that our proposed
Frank-Wolfe white-box attack algorithm achieves a
O(1/

√
T ) rate of convergence. Unlike previous work

(Lacoste-Julien 2016) which focuses on the convergence
rate of classic Frank-Wolfe method, our analysis shows
the convergence rate of the Frank-Wolfe method with
momentum mechanism.

5The original argument in (Santurkar et al. 2018) refers to the
smoothness with respect to each layer’s parameters. Note that the
first layer’s parameters are in the mirror position (in terms of back-
propagation) as the network inputs. Therefore, the argument in
(Santurkar et al. 2018) can also be applied here with respect to the
network inputs.

4.3 Convergence Guarantee for Frank-Wolfe
Black-box Attack

Next we analyze the convergence of our proposed Frank-
Wolfe black-box adversarial attack algorithm presented in
Algorithm 2.

In order to prove the convergence of our proposed Frank-
Wolfe black-box attack algorithm, we need the following ad-
ditional assumption that ‖∇f(0)‖2 is bounded.

Assumption 4.6. Gradient of f(·) at zero point ∇f(0) sat-
isfies maxy ‖∇f(0)‖2 ≤ G.

Following the analysis in (Shamir 2017), let fδ(x) =
Eu[f(x+δu)], which is the smoothed version of f(x). This
smoothed function value plays a central role in our theoreti-
cal analysis, since it bridges the finite difference gradient ap-
proximation with the actual gradient. The following lemma
shows this relationship.

Lemma 4.7. For any x and the gradient estimator q of
∇f(x) in Algorithm 3, its expectation and variance satisfy

E[q] = ∇fδ(x),

E‖q− E[q]‖22 ≤
1

b

(
2d(G+ LD)2 +

1

2
δ2L2d2

)
.

And also we have

E‖∇f(x)− q‖2 ≤
δLd

2
+

2
√
d(G+ LD) + δLd√

2b
.

Now we are going to present the theorem, which charac-
terizes the convergence rate of Algorithm 2.

Theorem 4.8. Under Assumptions 4.1, 4.2 and 4.6, let
γt = γ =

√
(f(x0)− f(x∗))/(CβLD2T ), b = Td and

δ =
√

1/(Td2), the output of Algorithm 2 satisfies

E[g̃T ]

≤ D√
T

(√
2CβL(f(x0)− f(x∗)) + Cβ(L+G+ LD)

)
,

where g̃T = min1≤k≤T g(xk), the expectation of g̃T is over
the randomness of the gradient estimator, x∗ is the optimal
solution to (3.1) and Cβ = (1 + β)/(1− β).
Remark 4.9. Theorem 4.8 suggests that Algorithm 2 also
enjoys a O(1/

√
T ) rate of convergence. Note that (Balasub-

ramanian and Ghadimi 2018) proves the convergence rate
for classic zeroth-order Frank-Wolfe algorithm. Our result is
different in several aspects. First, we prove the convergence
rate of zeroth-order Frank-Wolfe with momentum. Second,
we use symmetric finite difference gradient estimator with
two types of sensing vectors while they (Balasubramanian
and Ghadimi 2018) use one-side finite difference gradient
estimator with Gaussian sensing vectors. In terms of query
complexity, the total number of queries needed in Algorithm
2 is Tb = T 2d, which is linear in the data dimension d. In
fact, in the experiment part, we observe that this number can
be substantially smaller than d, e.g., b = 25.



5 Experiments
In this section, we present the experimental results for our
proposed Frank-Wolfe attack framework against other state-
of-the-art adversarial attack algorithms in both white-box
and black-box settings. All of our experiments are conducted
on Amazon AWS p3.2xlarge servers which come with In-
tel Xeon E5 CPU and one NVIDIA Tesla V100 GPU (16G
RAM). All experiments are implemented in Tensorflow plat-
form version 1.10.0 within Python 3.6.4.

5.1 Evaluation Setup
We compare the performance of all attack algorithms by
evaluating on both MNIST (LeCun 1998) and ImageNet
(Deng et al. 2009) datasets. For MNIST dataset, we attack
a pre-trained 6-layer CNN: 4 convolutional layers followed
by 2 dense layers with max-pooling and Relu activations ap-
plied after each convolutional layer. The pre-trained model
achieves 99.3% accuracy on MNIST test set. For ImageNet
experiments, we attack a pre-trained Inception V3 model
(Szegedy et al. 2016). The pre-trained Inception V3 model
is reported to have a 78.0% top-1 accuracy and a 93.9% top-
5 accuracy. For MNIST dataset, we randomly choose 1000
images from its test set that are verified to be correctly clas-
sified by the pre-trained model and also randomly choose a
target class for each image. Similarly, for ImageNet dataset,
we randomly choose 250 images from its validation set as
our attack examples. For our proposed black-box attack, we
test both options in Algorithm 3. We performed grid search
to tune the hyper-parameters for all algorithm to ensure a fair
comparison. Detailed description on hyperparameter tuning
and parameter settings can be found in the Appendix.

5.2 Baseline Methods
We compare the proposed algorithms with several state-of-
the-art baseline algorithms. Specifically, we compare the
proposed white-box attack algorithm with (i) FGSM (Good-
fellow, Shlens, and Szegedy 2015) (ii) PGD (Madry et al.
2018) (normalized steepest descent6) (iii) MI-FGSM (Dong
et al. 2018). We compare the proposed black-box attack al-
gorithm with (i) NES-PGD attack (Ilyas et al. 2018) and (ii)
Bandit attack (Ilyas, Engstrom, and Madry 2018). We did
not report the comparison with ZOO (Chen et al. 2017c)
here because it consistently underperforms NES-PGD and
Bandit attacks according to our experiments and prior work.
We also compare with (Li et al. 2019) on attacking the robust
model trained by adversarial training.

5.3 White-box Attack Experiments
In this subsection, we present the white-box attack experi-
ments on both MNIST and ImageNet datasets. We choose
ε = 0.3 for MNIST dataset and ε = 0.05 for ImageNet
dataset. For comparison, we report the attack success rate,

6standard PGD will need large step size to go anywhere since
the gradient around the true example is relatively small. On the
other hand, the large step size will cause the algorithm go out of the
constraint set quickly and basically stop moving since then because
of the projection step.

average number of iterations to complete the attack, as well
as average distortion for each method.

Tables 1 and 2 present our experimental results for the
white-box attack experiments. For experiments on both
datasets, while FGSM only needs 1 gradient update per at-
tack, it only achieves 21.5% attack success rate on MNIST
and 1.2% attack success rate on ImageNet in the targeted
attack setting. All the other methods achieve 100% attack
success rate. PGD needs in average 6.2 and 8.7 gradient it-
erations per attack on MNIST and ImageNet respectively.
MI-FGSM improves it to around 4.0 and 5.0 iterations per
attack on MNIST and ImageNet. However, the distortion of
both PGD and MI-FGSM is very close to the perturbation
limit ε, which indicates that their generated adversarial ex-
amples are near or upon the boundary of the constraint set.
On the other hand, our proposed Frank-Wolfe white-box at-
tack algorithm achieves not only the smallest average num-
ber of iterations per attack, but also the smallest distortion
among the baselines. This suggests the advantage of Frank-
Wolfe based projection-free algorithms for white-box attack.

Table 1: Comparison of targeted L∞ norm based white-box
attacks on MNIST dataset with ε = 0.3.

Methods ASR(%) # Iterations Distortion

FGSM 21.5 - 0.300
PGD 100.0 6.2 0.277
MI-FGSM 100.0 4.0 0.279
FW-white 100.0 3.3 0.256

Table 2: Comparison of targeted L∞ norm based white-box
attacks on ImageNet dataset with ε = 0.05.

Methods ASR(%) # Iterations Distortion

FGSM 1.2 - 0.050
PGD 100.0 8.7 0.049
MI-FGSM 100.0 5.0 0.049
FW-white 100.0 4.8 0.019

5.4 Black-box Attack Experiments
In this subsection, we present the black-box attack experi-
ments on both MNIST and ImageNet datasets. The maxi-
mum query limit is set to be 50, 000 per attack. We choose
ε = 0.3 for MNIST dataset and ε = 0.05 for ImageNet
dataset. For comparison, we report the attack success rate,
average attack time, average number of queries needed, as
well as average number of queries needed on successfully
attacked samples for each method.

Table 3 presents our experimental results for targeted
black-box attacks on both ImageNet and MNIST datasets.
We can see that on MNIST, NES-PGD method achieves
a relatively high attack success rate, but still takes quite
a lot queries per (successful) attack. Bandit method im-
proves the query complexity for successfully attacked sam-
ples but has lower attack success rate in this setting and



Table 3: Comparison of targeted L∞ norm based black-box attacks on MNIST and ImageNet datasets in terms of attack success
rate, average time and average number of queries (QUERIES: for all images including both successfully and unsuccessfully
attacked ones; QUERIES(SUCC): for successfully attacked ones only) needed per image.

METHODS
MNIST (ε = 0.3) IMAGENET (ε = 0.05)

ASR(%) TIME(S) QUERIES QUERIES(SUCC) ASR(%) TIME(S) QUERIES QUERIES(SUCC)

NES-PGD 96.8 0.2 5349.0 3871.3 88.0 85.1 26302.8 23064.5
BANDIT 86.1 4.8 8688.9 2019.7 72.0 148.7 27172.5 18295.2
FW (SPHERE) 99.9 0.1 1132.6 1083.6 97.2 62.1 15424.0 14430.8
FW (GAUSSIAN) 99.9 0.1 1144.4 1095.4 98.4 50.6 15099.4 14532.3

takes longer time to complete the attack. In sharp con-
trast, our proposed Frank-Wolfe black-box attack algorithms
(both sphere and Gaussian sensing vector options) achieve
the highest success rate in the targeted black-box attack set-
ting while greatly improve the query complexity by around
50% over the best baseline. On ImageNet, similar patterns
can be observed: our proposed Frank-Wolfe black-box at-
tack algorithms achieve the highest attack success rate and
further significantly improve the query efficiency against the
baselines. This suggests the advantage of Frank-Wolfe based
projection-free algorithms for black-box attack.

To provide more intuitive demonstrations, we also plot
the attack success rate against the number of queries for our
black-box experiments. Figure 1 shows the plots of the at-
tack success rate against the number of queries for different
algorithms on MNIST and ImageNet datasets respectively.
As we can see from the plots, Bandit attack achieves bet-
ter query efficiency for easy-to-attack examples (require less
queries to attack) compared with NES-PGD or even FW at
the early stages, but falls behind even to NES-PGD on hard-
to-attack examples (require more queries to attack). We con-
jecture that in targeted attack setting, the gradient/data priors
are not as accurate as in untargeted attack case, which makes
Bandit attack less effective especially on hard-to-attack ex-
amples. On the other hand, our proposed Frank-Wolfe black-
box attack algorithms achieve the highest attack success rate
and the best efficiency (least queries needed for achieving
the same success rate). This again confirm the advantage of
Frank-Wolfe based projection-free algorithms for black-box
attack.
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Figure 1: Attack success rate against the number of queries
plot for targeted black-box attacks on MNIST and ImageNet
datasets.

5.5 Experiments on Adversarially Trained Model
In this subsection, we further present the white-box and
black-box attack experiments on more challenging robust
CIFAR10 model. Specifically, we apply the proposed Frank-
Wolfe white-box and black-box attack algorithms to adver-
sarially trained WideResNet model using adversarial train-
ing (Madry et al. 2018) . Following (Madry et al. 2018),
we choose ε = 8/255. For black-box case, the maximum
query limit is set to be 20, 000 per attack. Table 4 presents
our experimental results for targeted white-box attacks on
robust CIFAR10 model. Specifically, in white-box case, the
proposed Frank-Wolfe attack achieves 24.3% attack success
rate 7 with the smallest L∞ distortion, while PGD and MI-
FGSM can only achieve lower attack success rates and also
larger distortions. Table 5 presents our experimental results
for targeted black-box attacks on robust CIFAR10 model.
In black-box setting, our algorithm achieves 19.0% attack
success rate with the smallest overall queries (also relatively
small number of queries for successful attempts) while NES
needs larger number of queries but achieves only 9.4% at-
tack success rate. Bandit improves the number of average
queries needed for successful attempts, yet its attack suc-
cess rate is only 9.6%. Nattack achieves an attack success
rate slightly better than Frank-Wolfe but requires the largest
number queries for successful attempts.

Table 4: Comparison of targeted L∞ norm based while-box
attacks on adversarially trained WideResNet on CIFAR10
with ε = 8/255.

Methods ASR(%) # Iterations Distortion

FGSM 21.5 - 8.00
PGD 24.0 15.6 7.49
MI-FGSM 24.1 15.8 7.60
FW-white 24.3 15.8 7.48

6 Conclusions and Future Work
In this work, we propose a Frank-Wolfe framework for effi-
cient and effective adversarial attacks. Our proposed white-
box and black-box attack algorithms enjoy an O(1/

√
T )

7note that it is targeted attack, so the number is much lower than
the original paper of (Madry et al. 2018)



Table 5: Comparison of targeted L∞ norm based black-
box attacks on adversarially trained WideResNet on CI-
FAR10 with ε = 8/255 in terms of attack success rate and
average number of queries (QUERIES: for all images in-
cluding both successfully and unsuccessfully attacked ones;
QUERIES(SUCC): for successfully attacked ones only)
needed per image.

Methods ASR(%) # Queries Queries(SUCC)

NES-PGD 9.4 18541.1 4480.1
Bandit 9.6 18174.2 981.5
Nattack 20.0 17135.0 5675.0
FW (Opt I) 19.0 16735.2 2816.8
FW (Opt II) 16.8 16748.2 2703.2

rate of convergence, and the query complexity of the pro-
posed black-box attack algorithm is linear in data dimension
d. Finally, our empirical study on attacking both ImageNet
dataset and MNIST dataset yield the best distortion in white-
box setting and highest attack success rate/query complexity
in black-box setting.

It would also be interesting to see the whether the per-
formance of our Frank-Wolfe adversarial framework can be
further improved by incorporating the idea of gradient/data
priors (Ilyas, Engstrom, and Madry 2018). We leave it as a
future work.
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