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ABSTRACT

Deep neural networks are vulnerable to adversarial attacks. Among
different attack settings, the most challenging yet the most practical
one is the hard-label setting where the attacker only has access to
the hard-label output (prediction label) of the target model. Previ-
ous attempts are neither effective enough in terms of attack success
rate nor efficient enough in terms of query complexity under the
widely used Lo, norm threat model. In this paper, we present the
Ray Searching attack (RayS), which greatly improves the hard-label
attack effectiveness as well as efficiency. Unlike previous works,
we reformulate the continuous problem of finding the closest de-
cision boundary into a discrete problem that does not require any
zeroth-order gradient estimation. In the meantime, all unnecessary
searches are eliminated via a fast check step. This significantly
reduces the number of queries needed for our hard-label attack.
Moreover, interestingly, we found that the proposed RayS attack
can also be used as a sanity check for possible “falsely robust” mod-
els. On several recently proposed defenses that claim to achieve the
state-of-the-art robust accuracy, our attack method demonstrates
that the current white-box/black-box attacks could still give a false
sense of security and the robust accuracy drop between the most
popular PGD attack and RayS attack could be as large as 28%. We
believe that our proposed RayS attack could help identify falsely
robust models that beat most white-box/black-box attacks.
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1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success
on many machine learning tasks such as computer vision [15, 36],
and speech recognition [17] in the last decade. Despite the great
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success, recent studies have shown that DNNs are vulnerable to ad-
versarial examples, i.e., even imperceptible (specially designed not
random) perturbations could cause the state-of-the-art classifiers to
make wrong predictions [13, 38]. This intriguing phenomenon has
soon led to an arms race between adversarial attacks [3, 5, 7] that
are trying to break the DNN models with such small perturbations
and adversarial defenses methods [27, 33, 40, 41, 46] that tries to de-
fend against existing attacks. During this arm race, many heuristic
defenses [12, 14, 26, 33-35, 42] are later proved to be not effective
under harder attacks. One exception is adversarial training [13, 27],
which was demonstrated as an effective defense approach.

A large body of adversarial attacks has been proposed during
this arm race. According to the different amounts of information
the attacker could access, adversarial attacks can be generally di-
vided into three categories: white-box attacks, black-box attacks,
and hard-label attacks. White-box attacks [5, 27] refer to the case
where the attacker has access to all information regarding the tar-
get model, including the model weights, structures, parameters,
and possible defense mechanisms. Since white-box attackers could
access all model details, it can efficiently perform back-propagation
on the target model and compute gradients. In black-box attacks,
the attacker only has access to the queried soft label output (logits
or probability distribution of different classes) of the target model,
and the other parts are treated as a black-box. The black-box setting
is much more practical compared with the white-box case, however,
in such a setting, the attacker cannot perform back-propagation
and direct gradient computation. Therefore, many turn to transfer
the gradient from a known model [30] or estimate the true gradient
via zeroth-order optimization methods [1, 7, 19, 20].

Hard-label attacks, also known as decision-based attacks, on
the other hand, only allow the attacker to query the target model
and get hard-label output (prediction label). Obviously, the hard-
label setting is the most challenging one, yet it is also the most
practical one, as in reality, there is little chance that the attacker
could know all the information about the target model in advance
or get the probability prediction of all classes. The hard-label-only
access also means that the attacker cannot tell the subtle changes
in the target model’s output when feeding a slightly perturbed
input sample (assuming this slight perturbation will not change the
model prediction). Therefore, the attacker can only find informative
clues around the decision boundary of the target model where tiny
perturbations could cause the model to have different prediction
labels. Previous works [4, 6, 9, 10] mostly follow this idea to tackle
the hard-label adversarial attack problem. However, [4, 6, 9, 10]
are all originally proposed for Ly norm threat model while Le
norm threat models [21, 27, 44-46] are currently the most popular
and widely used. Even though [6, 9, 10] provide extensions to Leo
norm case, none of them has been optimized for the Lo, norm case
and consequently, their attack performance falls largely behind
traditional Lo, norm based white-box and black-box attacks, making
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them inapplicable in real world scenarios. This leads to a natural
question that,

Can we design a hard-label attack that could greatly improve upon
previous hard-label attacks and provide practical attacks for the most
widely used Lo, norm threat model?

In this paper, we answer this question affirmatively. We summa-
rize our main contributions as follows

e We propose the Ray Searching attack, which only relies on
the hard-label output of the target model. We show that
the proposed hard-label attack is much more effective and
efficient than previous hard-label attacks in the Lo norm
threat model.

o Unlike previous works, most of which solve the hard-label
attack problem via zeroth-order optimization methods, we
reformulate the continuous optimization problem of finding
the closest decision boundary into a discrete one and directly
search for the closest decision boundary along a discrete set
of ray directions. A fast check step is also utilized to skip
unnecessary searches. This significantly saves the number
of queries needed for the hard-label attack. Our proposed
attack is also free of hyperparameter tuning such as step size
or finite difference constant, making itself very stable and
easy to apply.

e Moreover, our proposed RayS attack can also be used as a
strong attack to detect possible “falsely robust” models. By
evaluating several recently proposed defenses that claim to
achieve the state-of-the-art robust accuracy with RayS attack,
we show that the current white-box/black-box attacks can
be deceived and give a false sense of security. Specifically,
the RayS attack significantly decrease the robust accuracy
of the most popular PGD attack on several robust models
and the difference could be as large as 28%. We believe that
our proposed RayS attack could help identify falsely robust
models that deceive current white-box/black-box attacks.

The remainder of this paper is organized as follows: in Section 2, we
briefly review existing literature on adversarial attacks. We present
our proposed Ray Searching attack (RayS) in Section 3. In Section 4,
we show the proposed RayS attack is more efficient than other hard-
label attacks and can be used as a sanity check for detecting falsely
robust models by evaluating several recently proposed defenses.
Finally, we conclude this paper and provide discussions in Section
5.

Notation. For a d-dimensional vector x = [x1, ..., X4] T we use
lIxllo = 2; 1{x; # 0} to denote its £p-norm, use ||x||2 = (Z;jzl |xl-|2)1/2
to denote its fo-norm and use ||x|lcc = max; |x;| to denote its fo-
norm, where 1(-) denotes the indicator function.

2 RELATED WORK

There is a large body of works on evaluating model robustness
and generating adversarial examples. In this section, we review the
most relevant works with ours.

White-box attacks: Szegedy et al. [38] first brought up the con-
cept of adversarial examples and adopt the L-BFGS algorithm for
attacks. Goodfellow et al. [13] proposed the Fast Gradient Sign
Method (FGSM) method via linearizing the network loss function.

Kurakin et al. [23] proposed to iteratively perform FGSM and con-
duct projection afterward, which is equivalent to Projected Gradient
Descent (PGD) [27]. Papernot et al. [32] proposed JSMA method
based on the Jacobian saliency map and Moosavi-Dezfooli et al.
[29] proposed DeepFool attack by projecting the data to the clos-
est separating hyper-plane. Carlini and Wagner [5] introduced the
CW attack with a margin-based loss function and show that defen-
sive distillation [33] is not truly robust. Chen et al. [7] proposed
a projection-free attack based on the Frank-Wolfe method with
momentum. Athalye et al. [3] identified the effect of obfuscated gra-
dients and proposed the BPDA attack for breaking those obfuscated
gradient defenses.

Black-box attacks: Other than the aforementioned white-box
attack algorithms, there also exists a large body of literature [7, 8, 18-
20, 25, 30, 31] focusing on the black-box attack case where the
information is limited to the logits output of the model rather
than every detail of the model. Transfer-based black-box attacks
[18, 30, 31] try to transfer the gradient from a known model to the
black-box target model and then apply the same technique as in the
white-box case. However, their attack effectiveness is often not quite
satisfactory. Optimization-based black-box attacks aim to estimate
the true gradient via zeroth-order optimization methods. Chen et al.
[8] proposed to estimate the gradient via finite-difference on each
dimension. Ilyas et al. [19] proposed to improve the query efficiency
of [8] via Natural Evolutionary Strategies. Ilyas et al. [20] further
improved upon Ilyas et al. [19] by exploiting gradient priors. Uesato
et al. [39] proposed to use the SPSA method to build a gradient-free
attack that can break vanishing gradient defenses. Al-Dujaili and
O’Reilly [1] proposed to directly estimate the sign of the gradient
instead of the true gradient itself. Moon et al. [28] reformulated the
continuous optimization problem into a discrete one and proposed
a combinatorial search based algorithm to make the attack more
efficient. Andriushchenko et al. [2] proposed a randomized search
scheme to iteratively patch small squares onto the test example.

Hard-label attacks: Brendel et al. [4] first studied the hard-
label attack problem and proposed to solve it via random walks
near the decision boundary. Ilyas et al. [19] demonstrated a way
to transform the hard-label attack problem into a soft label attack
problem. Cheng et al. [9] turned the adversarial optimization prob-
lem into the problem of finding the optimal direction that leads to
the shortest Ly distance to decision boundary and optimized the
new problem via zeroth-order optimization methods. Cheng et al.
[10] further improved the query complexity of [9] by estimating
the sign of gradient instead of the true gradient. Chen et al. [6] also
applied zeroth-order sign oracle to improve [4] by searching the
step size and keeping the iterates along the decision boundary.

3 THE PROPOSED METHOD

In this section, we introduce our proposed Ray Searching attack
(RayS). Before we go into details about our proposed method, we
first take an overview of the previous adversarial attack problem
formulations.

3.1 Overview of Previous Problem
Formulations

We denote the DNN model by f and the test data example as {x, y}.
The goal of adversarial attack is to solve the following optimization



problem
min 1{f(x") =y} s.t, [|X —x|lo <€, (3.1)
x/

where € denotes the maximum allowed perturbation strength. The
indicator function 1{f(x’) = y} is hard to optimize, therefore,
[1, 7,19, 20, 27, 46] turn to relax (3.1) into

max £(f(x'),y) st, ||xX' —x[le <€ (3.2)
X’

where ¢ denotes the surrogate loss function such as CrossEntropy
loss. On the other hand, traditional hard-label attacks [9, 10] re-
formulate (3.1) as

mding(d) where g(d) = argmin 1{f(x + rd/||d|l2) #y}. (3.3)

Here g(d) represents the decision boundary radius from original
example x along ray direction d and the goal is to find the mini-
mum decision boundary radius regarding the original example x.
Let (7, H) denotes the minimum decision boundary radius and the
corresponding ray direction. If the minimum decision boundary
radius satisfies ||?E/||&||2||00 < €, it will be counted as a successful
attack.

While prior works [9, 10] try to solve problem (3.3) in a contin-
uous fashion by estimating the gradient of g(d) via zeroth-order
optimization methods, the hard-label-only access restriction im-
poses great challenges in solving (3.3). Specifically, estimating the
the decision boundary radius g(d) typically takes a binary search
procedure and estimating an informative gradient of g(d) via finite
difference requires multiple rounds of g(d) computation. Further-
more, due to the large variance in zeroth-order gradient estimating
procedure, optimizing (3.3) typically takes a large number of gradi-
ent steps. These together, make solving (3.3) much less efficient and
effective than black-box attacks, not to mention white-box attacks.

Given all the problems mentioned above, we turn to directly
search for the closest decision boundary without estimating any
gradients.

3.2 Ray Search Directions

With a finite number of queries, it is impossible to search through
the whole continuous ray direction space. As a consequence, we
need to restrict the search space to a discrete set of ray directions
to make direct searches possible. Note that applying FGSM to (3.2)
leads to an optimal solution at the vertex of the Lo, norm ball [7, 28],
suggesting that those vertices might provide possible solutions to
(3.2). Empirical findings in [28] also suggest that the solution to
(3.2) obtained from the PGD attack is mostly found on the vertices
of Le norm ball. Inspired by this, Moon et al. [28] restrict the
feasible solution set as the vertex of the Lo, norm ball. Following
this idea, since our goal is to obtain the decision boundary radius, we
consider the ray directions that point to the Lo, norm ball vertices,
ie.,d € {-1,1}¢ where d denotes the dimension of original data
example x!. Therefore, instead of solving (3.3), we turn to solve a
discrete problem
min ¢g(d) where g(d) = argmin 1{f(x+ rd/||d|l2) # y}.
de{-1,1}4 r
(3.4)

!Without loss of generality, here we view x simply as a d-dimensional vector.

In problem (3.4), we reduce the search space from R9 to {-1,1}4,
which contains 24 possible search directions.

Now we begin to introduce our proposed Ray Searching attack.
We first present the naive version of the Ray Searching attack,
which is summarized in Algorithm 1. Specifically, given a model f
and a test example {x, y}, we first initialize the best search direction
as an all-one vector and set the initial best radius as infinity. Then
we iteratively change the sign of each dimension of the current
best ray direction and test whether this modified ray direction
leads to a better decision boundary radius by Algorithm 2 (will be
described later). If it does, we update the best search direction and
the best radius, otherwise, they remain unchanged. Algorithm 1is a
greedy search algorithm that finds the local optima of the decision
boundary radius, where the local optima of the decision boundary
radius are defined as follows.

Definition 3.1 (Local Optima of Decision Boundary Radius). A ray
direction d € {-1,1} is the local optima of the decision boundary
radius regarding (3.4), if for all d’ € {-1, 1}4 satisfy ||d’ —d|lo < 1,
we have g(d) < g(d’).

Theorem 3.2. Given enough query budgets, let (7, ﬁ) be the output
of Algorithm 1, then d is the local optima of decision boundary
radius problem (3.4).

Proor. We prove this by contradiction. Suppose d is not the
local optima, there must exist some d’ satisfying ||d’ — dllo < 1,
ie., d’ differs from d by at most 1 dimension, that g(a) > g(d’).
This means Algorithm 1 can still find better solution than g(ﬁ) by

going through all dimensions and thus d will not be the output of
Algorithm 1. This leads to a contradiction. O

Next we introduce Algorithm 2, which performs decision bound-
ary radius search. The main body of Algorithm 2 (from Line 7 to
Line 12) is a binary search algorithm to locate the decision bound-
ary radius with high precision. The steps before Line 7, on the other
hand, focus on deciding the search range and whether we need to
search it (this is the key to achieve efficient attacks). Specifically, we
first normalize the search direction by its L norm. And then in Line
3, we do a fast check at x + rpeqt - dr? and decide whether we need
to further perform a binary search for this direction. To help better
understand the underlying mechanism, Figure 1 provides a two-
dimensional sketch for the fast check step in Line 3 in Algorithm 2.
Suppose we first change the sign of the current dpst at dimension 1,
resulting a modified direction dymp1. The fast check shows that it is
a valid attack and it has the potential to further reduce the decision
boundary radius. On the other hand, if we change the sign of dpegt
at dimension 2, resulting a modified direction dympz. The fast check
shows that it is no longer a valid attack and the decision boundary
radius of direction dimp2 can only be worse than the current rpeg;.
Therefore, we skip all unnecessary queries that aim to estimate a
worse decision boundary radius. Note that in Cheng et al. [10], a
similar check was also presented for slightly perturbed directions.
However, they use it as the sign for gradient estimation while we
simply drop all unsatisfied radius based on the check result and
obtain better efficiency. Finally, we explain Line 6 in Algorithm 2.

2For applications such as image classification, there is an additional clipping to [0, 1]
operation to keep the image valid. We assume this is included in model f and do not
write it explicitly in Algorithm 2.



Algorithm 1 Ray Searching Attack (Naive)

Algorithm 2 Decision Boundary Radius Search (DBR-Search)

1: input: Model f, Original data example {x, y};
2: Initialize current best search direction dpeg = (1,...,1)
3: Initialize current best radius rpeg = 0

4: Initialize ray searching index k = 1

5: while remaining query budget > 0 do

6: dtrnp = dpest-copy ()

7: dtmp[k] = _dtmp [k]

8 rymp = DBR-Search(f, X, y, dunp, Tbest)

9 if runp < rpest then

10: Tbest> Abest = Ttmp, dimp

1:  endif

122 k=k+1

13:  if k ==d then

14: k=1

15:  endif

16: end while
17: return rpegt, dpest

1: input: Model f, Original data example {x, y}, Search direction
d, Current best radius rpeg, Binary search tolerance €;

2: Normalized search direction d;, = d/||d]|2
3: if f(X + rpest - dp) == y then

4: return oo

5. end if

6: Set start = 0, end = min(rpeg, ||d|[2)
7: while end — start > € do

8:  mid = (start + end)/2

9: if f(x+mid-d,) ==y then

9: end = mid

10:  else

10: start = mid

11 end if

12: end while

13: return end

The choice of min(ryegt, ||d||2) is because initial rpeg; is oo, in the
case where the fast check passes, we should make sure the binary
search range is finite.

dtmpz

Ny

binary search’

.

dtmps

Other Class

Figure 1: A two-dimensional sketch for the fast check step
in Algorithm 2.

3.3 Hierarchical Search

Recent works on black-box attacks [20, 28] found that there exists
some spatial correlation between different dimensions of the gradi-
ents, and exploiting this prior could help improve the efficiency of
black-box attacks. Therefore, they added the same perturbation for
small tiles or image blocks on the original data example to achieve
better efficiency. Inspired by this finding, we also exploit these spa-
tial correlations by designing a hierarchical search version of the
Ray Searching attack, displayed in Algorithm 3. Specifically, we add
a new stage variable s. At each stage, we cut the current search di-
rection into 2° small blocks, and for each iteration, change the sign
of the entire block simultaneously as the modified ray search direc-
tion for decision boundary radius search. After iterating through

Algorithm 3 Ray Searching Attack (Hierarchical)

1: input: Model f, Original data example {x, y};

2: Initialize current best search direction dpegt = (1,...,1)

3: Initialize current best radius rpeg =

4: Initialize stage s = 0

5. Initialize block index k = 1

6: while remaining query budget > 0 do

7 dtmp = dpest-copy ()

8 Cut dimp into 2° blocks and denote index set in the k-th block
by I

9 dimp[Zx] = —dimp [Zx]

10:  rymp = DBR-Search(f, X, y, dimp, Mbest)

11: if rypp < Tpegt then

12: Thests Abest = Ttmps dtmp
13:  endif

14 k=k+1

15:  if k == 2° then

16: s=s+1

17: k=1

18 endif

19: end while
20: return rpegts dpest

all blocks we move to the next stage and repeat the search process.
Empirically speaking, Algorithm 3 largely improves the search effi-
ciency by exploiting the spatial correlation mentioned above. All
our experiments in Section 4 are conducted using Algorithm 3. Note
that if the query budget is large enough, Algorithm 3 will, in the
end, get to the case where the block size equals to 1 and reduce to
Algorithm 1 eventually.

Note that all three algorithms (Algorithms 1, 2 and 3) do not
involve any hyperparameters aside from the maximum number
of queries, which is usually a predefined problem-related parame-
ter. In sharp contrast, typical white-box attacks and zeroth-order

3For completeness, when 2° is larger than data dimension d, Algorithm 3 will only
partition the search direction vector dyyp into d blocks to ensure each block contain
at least one dimension.



optimization-based black-box attacks, need to tune quite a few
hyperparameters in order to achieve good attack performance.

4 EXPERIMENTS

In this section, we present the experimental results of our proposed
Ray Searching attack (RayS). We first test RayS attack with other
hard-label attack baselines on naturally trained models and then
apply RayS attack on recently proposed state-of-the-art robust
training models to test their performances. All of our experiments
are conducted with NVIDIA 2080 Ti GPUs using Pytorch 1.3.1 on
Python 3.6.9 platform.

4.1 Datasets and Target Models

We compare the performance of all attack algorithms on MNIST
[24], CIFAR-10 [22] and ImageNet [11] datasets. Following adversar-
ial examples literature [1, 19, 28], we set € = 0.3 for MNIST dataset,
€ = 0.031 for CIFAR-10 dataset and € = 0.05 for ImageNet dataset.
For naturally trained models, on the MNIST dataset, we attack
two pre-trained 7-layer CNN: 4 convolutional layers followed by 3
fully connected layers with Max-pooling and RelU activation ap-
plied after each convolutional layer. The MNIST pre-trained model
achieves 99.5% accuracy on the test set. On the CIFAR-10 dataset,
we also use a 7-layer CNN structure with 4 convolutional layers
and an additional 3 fully connected layers accompanied by Batch-
norm and Max-pooling layers. The CIFAR-10 pre-trained model
achieves 82.5% accuracy on the test set. For ImageNet experiments,
we attack pre-trained ResNet-50 model [16] and Inception V3 model
[37]. The pre-trained ResNet-50 model is reported to have a 76.2%
top-1 accuracy. The pre-trained Inception V3 model is reported
to have a 78.0% top-1 accuracy. For robust training models, we
evaluate two well-recognized defenses: Adversarial Training (Ad-
vTraining) [27] and TRADES [46]. In addition, we also test three
other recently proposed defenses which claim to achieve the state-
of-the-art robust accuracy: Sensible Adversarial Training (SENSE)
[21], Feature Scattering-based Adversarial Training (FeatureScatter-
ing) [44], Adversarial Interpolation Training (AdvInterpTraining)
[45]. Specifically, adversarial training [27] solves a min-max op-
timization problem to minimize the adversarial loss. Zhang et al.
[46] studied the trade-off between robustness and accuracy in ad-
versarial training and proposed an empirically more robust model.
Kim and Wang [21] proposed to stop the attack generation when
a valid attack has been found. Zhang and Wang [44] proposed
an unsupervised feature-scattering scheme for attack generation.
Zhang and Xu [45] proposed an adversarial interpolation scheme
for generating adversarial examples as well as adversarial labels
and trained on those example-label pairs.

4.2 Baseline Methods

We compare the proposed algorithm with several state-of-the-art
attack algorithms. Specifically, for attacking naturally trained mod-
els, we compare the proposed RayS attack with other hard-label
attack baselines (i) OPT attack [9], (i) SignOPT attack [10], and (iii)
HSJA attack [6]. We adopt the same hyperparameter settings in the
original papers of OPT, SignOPT, and HSJA attack.

For attacking robust training models, we additionally compare
with other state-of-the-art black-box attacks and even white-box

attacks: (i) PGD attack [27] (white-box), (ii) CW attack [5] % (white-
box), (iii) SignHunter [1] (black-box), and (iv) Square attack [2]
(black-box). For PGD attack and CW attack, we set step size as
0.007 and provide attack results for 20 steps and also 100 steps. For
SignHunter and Square attack, we adopt the same hyperparameter
settings used in their original papers.

4.3 Comparison with hard-label Attack
Baselines on Naturally Trained Models

In this subsection, we compare our Ray Searching attack with other
hard-label attack baselines on naturally trained models. For each
dataset (MNIST, CIFAR-10, and ImageNet), we randomly choose
1000 images from its test set that are verified to be correctly classi-
fied by the pre-trained model and test how many of them can be
successfully attacked by the hard-label attacks. For each method,
we restrict the maximum number of queries as 10000. For the sake
of query efficiency, we stop the attack for certain test sample once
it is successfully attacked, i.e., the Lo, norm distance between adver-
sarial examples and original examples is less than the pre-defined
perturbation limit e. Tables 1, 2, 3 and 4 present the performance
comparison of all hard-label attacks on MNIST model, CIFAR-10
model, ResNet-50 Model and Inception V3 model respectively. For
each experiment, we report the average and median of the number
of queries needed for successful attacks for each attack, as well
as the final attack success rate, i.e., the ratio of successful attacks
against the total number of attack attempts. Specifically, on the
MNIST dataset, we observe that our proposed RayS attack enjoys
much better query efficiency in terms of average and median of the
number of queries, and much higher attack success rate than OPT
and SignOPT methods. Note that the average (median) number of
queries of SignOPT is larger than that of OPT. However, this does
not mean that SignOPT performs worse than OPT. This result is
due to the fact that the attack success rate of OPT is very low and its
average (median) queries number is calculated based on the success-
fully attacked examples, which in this case, are the most vulnerable
examples. HSJA attack, though improving over SignOPT?, still falls
behind our RayS attack. For the CIFAR model, the RayS attack still
achieves the highest attack success rate. Though the HSJA attack
comes close to the RayS attack in terms of attack success rate, its
query efficiency still falls behind. On ResNet-50 and Inception V3
models, only RayS attack maintains the high attack success rate
while the other baselines largely fall behind. Note that HSJA attack
achieves similar or even slightly better average (median) queries
on ImageNet models, suggesting that HSJA is efficient for the most
vulnerable examples but not very effective when dealing with hard-
to-attack examples. Figure 2 shows the attack success rate against
the number of queries plot for all baseline methods on different
models. Again we can see that the RayS attack overall achieves the
highest attack success rate and best query efficiency compared with
other hard-label attack baselines.

4To be precise, here CW attack refers to PGD updates with CW loss [5]

SNote that the relatively weak performance of SignOPT is due to the fact that SignOPT
is designed for Ly norm attack while this experiment is under the Lo, norm setting. So
the result does not conflict with the result reported in the original paper of SignOPT
[10].
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Figure 2: Attack success rate against the number of queries plots for different hard-label attacks on MNIST, CIFAR-10 and

ImageNet datasets.

Table 1: Comparison of L, norm based hard-label attack on
MNIST dataset (e = 0.3).

Methods Avg. Queries Med. Queries ASR (%)
OPT 3260.9 2617.0 20.9
SignOPT 3784.3 3187.5 62.8
HSJA 161.6 154.0 91.2
Ray$S 107.0 47.0 100.0
PGD (white-box) - - 100.0

Table 2: Comparison of Ly, norm based hard-label attack on
CIFAR-10 dataset (¢ = 0.031).

Methods Avg. Queries Med. Queries ASR (%)
OPT 22533 1531.0 31.0
SignOPT 2601.3 1649.0 60.1
HSJA 1021.6 714.0 99.7
RayS 792.8 343.5 99.8
PGD (white-box) - - 100.0

Table 3: Comparison of Lo, norm based hard-label attack on
ImageNet dataset for ResNet-50 model (¢ = 0.05).

Methods Avg. Queries Med. Queries ASR (%)
OPT 1344.5 655.5 14.2
SignOPT 3103.5 2434.0 36.0
HSJA 749.6 183.0 19.9
RayS 574.0 296.0 99.8
PGD (white-box) - - 100.0

4.4 Evaluating the Robustness of
State-of-the-art Robust Models

In this subsection, we further test our proposed Ray Searching
attack by applying it to the state-of-the-art robust training mod-
els. Specifically, we selected five recently proposed open-sourced
defenses on CIFAR-10 dataset and WideResNet [43] architecture.
For the test examples, we randomly choose 1000 images from the
CIFAR-10 test set. We set the maximum number of queries as 40000.

Table 4: Comparison of L., norm based hard-label attack on
ImageNet dataset for Inception V3 model (¢ = 0.05).

Methods Avg. Queries Med. Queries ASR (%)
OPT 2375.6 1674.0 21.9
SignOPT 2624.8 1625.0 39.9
HSJA 652.3 362.0 23.7
Ray$S 748.2 370.0 98.9
PGD (white-box) - - 100.0

In terms of evaluation metrics, following the literature of robust
training [27, 46], we report the natural accuracy and robust accuracy
(classification accuracy under adversarial attacks) of the defense
model. In addition, we report a new metric called Average Decision
Boundary Distance (ADBD), which is defined as the average Lo
norm distance between all test examples to their nearest decision
boundaries. Note that ADBD is not valid for white-box and black-
box attacks that follow formulation (3.1), since they cannot find the
nearest decision boundaries for all test examples.

Here we want to emphasize the difference between ADBD and
the average Lo distortion in the adversarial learning literature.
Note that Lo distortion® usually refers to the Lo, norm distance
between successful adversarial attack examples and their corre-
sponding original clean examples and therefore, is affected by the
choice the maximum perturbation limit e. For hard-label attacks,
only considering the attacks with a radius less than € loses too
much information and cannot capture the whole picture of model
robustness’. On the other hand, the ADBD metric, though only
valid for hard-label attacks, provides a meaningful estimation on the
average distance from the original clean examples to their decision
boundaries.

Tables 5, 6, 7, 8 and 9 show the comparison of different adversarial
attack methods on five selected robust models. Specifically, for two
well recognized robust training models, Adversarial Training (in Ta-
ble 5) and TRADES (in Table 6), we observe that white-box attacks
are still the strongest attacks, where PGD attack and CW attack
achieve very similar attack performances. For black-box attacks,

SFor all white-box and black-box attacks tested in this experiment, their Lo, distortions
are very close to 0.031, which is the perturbation limit €. Therefore, we do not report
the Lo, distortion in the tables as it does not provide much additional information.
7For hard-label attacks, the ADBD value is always larger than the Lo, distortion.



the SignHunter attack and Square attack achieve similar attack per-
formances as their white-box counterparts. In terms of hard-label
attacks, our proposed RayS attack also achieves comparable attack
performance as black-box or even white-box attacks given the most
restricted access to the target model. When comparing with other
hard-label attack baselines, it can be seen that our RayS attack
achieves significant performance improvement in terms of both
robust accuracy (over 20%) and the average decision boundary dis-
tance (reduced by 30%). The less effectiveness in attacking Lo, norm
threat model makes the SignOPT attack and HSJA attack less prac-
tical. For Sensible Adversarial Training model (in Table 7), it indeed
achieves overall better robust accuracy under white-box attacks,
compared with Adversarial Training and TRADES. For black-box
attacks, the SignHunter attack achieves similar performance as
PGD attack and Square attack achieves similar performance as CW
attacks. Interestingly, we observe that for hard-label attacks, our
proposed RayS attack achieves 42.5% robust accuracy, reducing
20% from PGD attack and 15% from CW attack, suggesting that
the robustness of Sensible Adversarial Training is not truly bet-
ter than TRADES and Adversarial Training, but just looks better
under PGD attack and CW attack. For Feature Scattering-based
Adversarial Training model (in Table 8), note that the CW attack
is much more effective than the PGD attack. Also for black-box
attacks, the performance of the Square attack is much better than
SignHunter attack®, suggesting that the CW loss is more effective
than CrossEntropy loss in attacking Feature Scattering-based Ad-
versarial Training model. Again, we can observe that our proposed
RayS attack reduces the robust accuracy of PGD attack by 28%
and CW attack by 10%. This also suggests that Feature Scattering-
based Adversarial Training model does not really provide better
robustness than Adversarial Training or TRADES. For Adversarial
Interpolation Training model (in Table 9), under white-box attacks,
it achieves surprisingly high robust accuracy of 75.3% (under PGD
attack) and 68.9% (under CW attack), and similar results can be
obtained under the corresponding black-box attacks. However, it
is still not truly robust under our RayS attack, reducing the robust
accuracy of PGD attack by 28% and CW attack by 22%. Note that in
this experiment, the HSJA attack also achieves lower robust accu-
racy than PGD attack, suggesting that all hard-label attacks may
have the potential to detect those falsely robust models that deceive
current white-box/black-box attacks, but the low efficiency of HSJA
restricts its power for greater use.

To obtain the overall comparison on the robustness of the five
selected robust training models under our proposed RayS attack, we
plot the Average Decision Boundary Distance (ADBD) against RayS
attack iterations in Figure 3 and the robust accuracy against RayS
attack iterations in Figure 4. First, it can be seen that the Average
Decision Boundary Distance and robust accuracy indeed converge
and remain stable after around 10000 RayS attack iterations. Figures
3 and 4 suggest that among the five selected robust training models,
TRADES and Adversarial Training remain the most robust mod-
els while Sensible Adversarial Training, Feature Scattering-based
Adversarial Training and Adversarial Interpolation Training, are
not as robust as they appear under PGD attacked and CW attack.

8Square attack is based on CW loss while SignHunter attack is based on CrossEntropy
loss.

Table 5: Comparison of different adversarial attack meth-
ods on Adversarial Training [27] for CIFAR-10 dataset
(WideResNet, ¢ = 0.031, natural accuracy: 87.4%).

Methods Att. Type ADBD Rob. Acc (%)
SignOPT hard-label  0.202 85.1
HSJA hard-label  0.060 76.8
Ray$S hard-label  0.038 54.0
SignHunter  black-box - 50.9
Square black-box - 52.7
PGD-20 white-box - 51.1
CW-20 white-box - 51.8
PGD-100 white-box - 50.6
CW-100 white-box - 51.5

Table 6: Comparison of different adversarial attack meth-
ods on TRADES [46] for CIFAR-10 dataset (WideResNet, € =
0.031, natural accuracy: 85.4%).

Methods Att. Type ADBD Rob. Acc (%)
SignOPT hard-label  0.196 84.0
HSJA hard-label  0.064 71.6
RayS hard-label  0.040 57.3
SignHunter  black-box - 56.1
Square black-box - 56.1
PGD-20 white-box - 56.5
CW-20 white-box - 55.6
PGD-100 white-box - 56.3
CW-100 white-box - 55.3

Table 7: Comparison of different adversarial attack methods
on SENSE [21] for CIFAR-10 dataset (WideResNet, ¢ = 0.031,
natural accuracy: 91.9%).

Methods Att. Type ADBD  Rob. Acc (%)
SignOPT hard-label  0.170 88.2
HSJA hard-label  0.044 66.6
RayS hard-label  0.029 42.5
SignHunter  black-box - 61.9
Square black-box - 58.2
PGD-20 white-box - 62.1
CW-20 white-box - 59.7
PGD-100 white-box - 60.1
CW-100 white-box - 57.9

Note also that even though Sensible Adversarial Training, Feature
Scattering-based Adversarial Training and Adversarial Interpola-
tion Training have quite different robust accuracy results under
RaysS attack, their ADBD results are quite similar.

5 DISCUSSIONS AND CONCLUSIONS

In this paper, we proposed the Ray Searching attack, which only
requires the hard-label output of the target model. The proposed



Table 8: Comparison of different adversarial attack methods
on Feature-Scattering [44] for CIFAR-10 dataset (WideRes-
Net, € = 0.031, natural accuracy: 91.3%).

Methods Att. Type ADBD  Rob. Acc (%)
SignOPT hard-label  0.175 87.1
HSJA hard-label  0.048 70.0
Ray$S hard-label  0.030 44.5
SignHunter  black-box - 67.3
Square black-box - 55.3
PGD-20 white-box - 72.8
CW-20 white-box - 57.2
PGD-100 white-box - 70.4
CW-100 white-box - 54.8

Table 9: Comparison of different adversarial attack meth-
ods on Adversarial Interpolation Training [45] for CIFAR-10
dataset (WideResNet, ¢ = 0.031, natural accuracy: 91.0%).

Methods Att. Type ADBD Rob. Acc (%)
SignOPT hard-label  0.169 84.2
HSJA hard-label  0.049 70.5
RayS hard-label  0.031 46.9
SignHunter  black-box - 73.6
Square black-box - 69.0
PGD-20 white-box - 75.6
CW-20 white-box - 69.2
PGD-100 white-box - 75.3
CW-100 white-box - 68.9
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Figure 3: Average Decision Boundary Distance (ADBD)
against RayS$ attack iterations plot for several robust mod-
els.

Ray Searching attack is much more effective in attack success rate
and efficient in terms of query complexity, compared with other
hard-label attacks. Moreover, it can be used as a sanity check tool
for possible “falsely robust” models that deceive current white-box
and black-box attacks.

In the following discussions, we try to analyze the key ingredi-
ents for the success of the proposed Ray Searching attack.

Why RayS attack is more effective and efficient than the other
hard-label baselines?

0.9
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E SENSE
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Q
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Figure 4: Robust accuracy against RayS attack iterations plot
for several robust models.

As we mentioned before, traditional hard-label attacks are more
focused on the Ly norm threat model with only a few extensions
to the Lo, norm threat model. While for our RayS$ attack, we re-
formulate the continuous problem of finding the closest decision
boundary into a discrete problem based on empirical findings in
Lo norm threat model, which leads to a more effective hard-label
attack. On the other hand, the strategy of directly searching for
the closest decision boundary together with a fast check step elimi-
nates unnecessary searches and significantly improves the attack
efficiency.

Why RayS attack can detect possible “false” robust models while
traditional white-box and black-box attacks cannot?

One thing we observe from Section 4 is that although different
attacks lead to different robust accuracy results, their attack perfor-
mances are correlated with the choice of attack loss functions, e.g.,
both PGD attack and SignHunter attack utilize CrossEntropy loss
and their attack performances are similar in most cases. A similar
effect can also be seen for the CW attack and Square attack, both
of which utilize the CW loss function. However, these loss func-
tions were used as surrogate losses to problem (3.1), and they may
not be able to truly reflect the quality/potential of an intermediate
example (an example near the original clean example that is not
yet a valid adversarial example). For instance, consider the case
where two intermediate examples share the same log probability
at ground truth class y, but vary drastically on other classes. Their
CrossEntropy losses are the same in such cases, but one may have
larger potential to develop into a valid adversarial example than the
other one (e.g., the second-largest probability is close to the largest
probability). Therefore, CrossEntropy loss does not really reflect
the true quality/potential of the intermediate examples. Similar
instances can also be constructed for CW loss. In sharp contrast,
our RaysS attack consider the decision boundary radius as the search
criterion?. When we compare two examples on the decision bound-
ary, it is clear that the closer one is better. In cases where the attack
problem is hard to solve and the attacker could easily get stuck at
intermediate examples (e.g., attacking robust training models), it is
easy to see that the RayS attack stands a better chance of finding
a successful attack. This partially explains the superiority of RayS
attack in detecting “falsely robust” models.

9 Actually it is a criterion for all hard-label attack.
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