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Abstract—To tackle problems that can not be solved
by current digital computers, many systems propose ideas
from physics and neuroscience. The CTDS solver intro-
duced by Ercsey-Ravasz and Toroczkai is one of such sys-
tem. It solves the satisfiability problem by reducing it to a
minimization of a time-varying target function. Although
the possibility of an efficient electric circuit implementa-
tion of the solver has been shown, in terms of physical
realizations, the solver has a problem of unbounded vari-
ations of the target function parameters. Here we propose a
variant of the solver with bounded target function parame-
ters. It includes several possible modifications of the solver
in system parameter differences. We also show the basic
characteristics of the solver, the upper and lower bounds of
the target function parameters.

1. Introduction

Despite the great progress of digital computers, there re-
main many problems that currently can not be solved effi-
ciently by them, such as those called NP-complete and NP-
hard problems. Based on ideas originating from physics
and neuroscience, many non-universal, i.e., problem spe-
cific systems are being developed to tackle such hard prob-
lems [1, 2]. The Boolean satisfiability (SAT) problem,
which is a widely known NP-complete problem, is one
such family of hard problems, also considered to be one of
the most fundamental problems of computer science. The
SAT problem is also important in application areas, such as
planning and system verification.

1.1. Boolean Satisfiability Problem

A variable that takes True or False is called Boolean vari-
able. Boolean variables and negated forms of them, such as
¬x, are called literals. A formula that is formed by literals
and logical connectives, ∧ (AND) and ∨ (OR), is called
Boolean formula. Any Boolean formula can be trans-
formed into conjunctive normal form (CNF). The CNF is a
Boolean formula formed by clauses connected by ∧, where

a clause is a Boolean formula that is formed by literals con-
nected by ∨. An assignment of truth values, True or False,
to Boolean variables is called a truth assignment. A truth
assignment satisfies a Boolean formula when evaluating it
with the assignment results in True. The problem of find-
ing a satisfying truth assignment of the input Boolean for-
mula is called Boolean satisfiability (SAT) problem. The
input is usually given as a CNF. Let f = c1∧· · ·∧cM be the
input CNF, where c1, . . . , cM are clauses. Let x1, . . . , xN be
Boolean variables that appear in f , and let V = {1, . . . ,N}
and C = {1, . . . ,M} be the indices of variables and clauses,
respectively.

1.2. Continuous-Time Dynamical System Solver

The authors of [3] proposed a continuous-time dynam-
ical system (CTDS) for solving SAT problems. First, let
us associate True and False to +1 and −1, respectively, and
for i ∈ V , let us associate si ∈ {−1,+1} to xi. Let cm,i

represent an appearance and the sign of xi in cm. In partic-
ular, cm,i = +1 holds if xi appears in cm, cm,i = −1 holds
if ¬xi appears in cm, and cm,i = 0 holds if otherwise. Let
Km = 2−km

∏
i∈V (1−cm,ixi), where km represents the number

of literals in cm. We can easily find that Km = 0 holds when
cm is satisfied and Km = 1 holds when cm is unsatisfied.
Then, we can reduce the SAT problem to a minimization
of a target function such as E =

∑
m∈C Km. Let us relax

si ∈ {−1,+1} to a continuous variable si ∈ [−1,+1], and
use the gradient descent method for the minimization of E.
However, E is not necessarily convex and the trajectory of
the minimization can be trapped in a local minimum.

It is proposed in [3] that we can avoid the issue of trap-
ping by using a time-varying target function. Let L =∑

m∈C amK2
m be the target function, where am > 0 is a weight

of cm. The gradient descent for L is performed concur-



rently with growing am as follows:

ds
dt

= −∇
∑
m∈C

amK2
m, (1)

dam

dt
= amKm, (2)

where s is a vector of si. Because Km for unsatisfied clauses
are positive, the weights for such clauses grow exponen-
tially. Due to the growth of these weights, this system can
escape from the local minima and continue the search. In
this paper, we call this system the CTDS solver for the SAT
problem. It was also shown that the probability that the
solver with a random initial condition does not find a sat-
isfying assignment decays exponentially in time and that
the decay rate for random SAT instances decreases only
in polynomially with the problem size, while the cost of
the simulation in a digital computer grows exponentially in
size.

As shown in [4], the system could be implemented ef-
ficiently with electric circuits. However, it was also re-
ported that the proposed prototype sometimes fails to solve
instances, because of the limitation of the voltage for rep-
resenting the weight variables.

The two parts of the CTDS solver, gradient descent and
the change in the target function, have their own timescales.
The balance of the two timescales is investigated in [5] by
using a variant of the CTDS solver that explicitly represents
the relative timescale of the two parts of the system;

ds
dt

= −η∇
∑
m∈C

amK2
m, (3)

dam

dt
= am(Km − T ), (4)

where T =
∑

m∈C amKm. In this system, the sum of the
weight variables is kept constant because of the decreasing
term T and we can tune the relative timescale by η. In [5],
a natural time measure based on the limitation in physical
realization is proposed for the evaluation of the choice of
η and it is shown that a strongly biased relative timescale
degrades the search performance.

The unbounded growth of the weight variable in the orig-
inal system is problematic in terms of physical realization.
The system of [5] avoids the unbounded growth, moreover,
am may decay to be extremely small, so that in a physical
realization, noise can destroy the information and random-
ize the dynamics, degrading performance. In other words,
− log am can grow unboundedly. Therefore, we have to de-
velop a system which avoids both the unbounded increases
and decreases of log am. In this paper, we propose a sys-
tem that has a decay term which prevents such unbounded
variations. We also show basic characteristics of the pro-
posed system; the upper and lower bounds of log am. Both
bounds are important because the operating range in the
analog circuit implementation will be determined by these
bounds. We also show that several possible modifications

of the system are identical to changing the parameters and
the time variable in the system, and, as a consequence, the
original system (1) and (2) and variant (3) and (4) are in-
cluded in the system.

2. Bounded CTDS Solver

The proposed system is as follows:

ds
dt

= − ∇
∑
m∈C

amK2
m, (5)

dbm

dt
= (Km − c) − λbm, (6)

where am = exp(bm). Parameters c and λ represent a thresh-
old for Km and decay rate of bm, respectively, and they
may depend on time. This inherits the important proper-
ties of the original system, namely, the improvement of s
following the gradient descent direction and the exponen-
tial growth of the weights of unsatisfied clauses. If Km is
larger than the threshold, corresponding weight increases,
and it decreases, otherwise. Although we also call bm as
weights, bm can be negative. The last term of (6) pulls bm

to zero. In section 2.4, we will describe that this system
can be derived from making the variance of log am constant
in the system (3) and (4). The equivalent transformation
results in a different system from (5) and (6) in multipli-
ers, and in general we can imagine natural modifications
of the system that multiplies am, bm and the time variable
in (5) and (6). However, the proposed system can represent
such differences by changing the parameters c and λ and the
time variable. The multiplier can be time-dependent. In the
following, we show the actual parameter changes for time-
dependent case and those for the time-independent case can
be obtained by substituting dA

dt = 0 in them.

2.1. Multiplying am

First, we consider the following system obtained by mul-
tiplying am by A:

a′m = A exp(b′m), (7)
ds
dt

= − ∇
∑
m∈C

a′mK2
m, (8)

db′m
dt

= (Km − c′) − λ′b′m. (9)

By changing variables as bm = b′m + log A, am = exp(bm),
c = c′ − λ log A − d log A

dt , and λ = λ′, we reconstruct the



system as follows:

ds
dt

= − ∇
∑
m∈C

exp(b′m + log A)K2
m = −∇

∑
m∈C

amK2
m, (10)

dbm

dt
=

(
Km − c − λ log A −

d log A
dt

)
− λ(bm − log A) +

d log A
dt

(11)

= (Km − c) − λbm. (12)

2.2. Multiplying bm

Next we consider multiplying bm by 1/A:

a′′m = exp
(

b′′m
A

)
, (13)

ds
dτ

= − ∇
∑
m∈C

a′′mK2
m, (14)

db′′m
dτ

= (Km − c′′) − λ′′b′′m. (15)

In this case, changing variables as b′m = b′′m/A, a′m =

A exp(b′m), c′ = c′′, λ′ = Aλ′′ + dA
dt , and dτ = Adt leads the

following system:

ds
dt

= − A∇
∑
m∈C

a′′mK2
m = −∇

∑
m∈C

a′mK2
m, (16)

db′m
dt

= A
(

1
A

(
(Km − c′) −

1
A

(
λ′ −

dA
dt

)
Ab′m

)
−

(
1
A2

dA
dt

)
Ab′m

)
,

(17)

= (Km − c′) − λ′b′m. (18)

Because this is equivalent to the system in section 2.1, we
can also reconstruct the system (5) and (6).

2.3. Multiplying Time Variable

By changing the coefficient of the change speed in
weight, we propose

a′′m = exp(b′′m), (19)
ds
dτ

= − ∇
∑
m∈C

a′′mK2
m, (20)

db′′m
dτ

=
1
A

((Km − c′′) − λ′′b′′m). (21)

We can obtain a system equivalent to that in section 2.1 by
changing variables as b′m = b′′m, a′m = A exp(b′m), c′ = c′′,
λ′ = λ′′, and dτ = Adt as follows:

ds
dt

= − A∇
∑
m∈C

a′′mK2
m = −∇

∑
m∈C

a′mK2
m, (22)

db′m
dt

= (Km − c′) − λ′b′m. (23)

2.4. CTDS that Keeps Variance of Weights

We can naturally derive the proposed system by keeping
the variance of the log am of the CTDS solver.

First, we note that the original CTDS solver corresponds
to the case c = 0 and λ = 0.

Let S =
∑

m∈C am, b′m = log(am/S ), and T =
d log S

dt =
1
S
∑

m∈C
dam
dt =

∑
m∈C exp(b′m)Km. The following system

proposed in [5], which is equivalent to the original system,
keeps the average of the weights:

ds
dt

= − S∇
∑
m∈C

exp(b′m)K2
m, (24)

db′m
dt

=
d log am

dt
−

d log S
dt

= Km − T. (25)

This system corresponds to the case c = T and λ = 0 except
for that ds

dt is multiplied by S , which is described in section
2.1.

We can also keep the variance of the weights by applying
the following transformation to the system (24) and (25).
Let b′′m = Bb′m so that 1

M
∑

m∈C(b′′m − µ)2 = 1 holds, where
µ = 1

M
∑

m∈C b′′m. By substituting db′′m
dt = dB

dt b′m + B db′m
dt to

0 = 1
M

∑
m∈C(b′′m − µ)( db′′m

dt −
dµ
dt ) = 1

M
∑

m∈C(b′′m − µ) db′′m
dt , we

obtain the following equation:

0 =
dB
dt

1
M

∑
m∈C

(b′′m − µ)b′m +
B
M

∑
m∈C

(b′′m − µ)
db′m
dt

(26)

=
dB
dt

1
M

∑
m∈C

(b′′m − µ)
1
B

(b′′m − µ) +
B
M

∑
m∈C

(b′′m − µ)(Km − T )

(27)

=
1
B

dB
dt

+ BC, (28)

where C = 1
M

∑
m∈C(b′′m − µ)(Km − T ). Hence we obtain

dB
dt = −B2C and the system

ds
dt

= − S∇
∑
m∈C

exp
(

b′′m
B

)
K2

m, (29)

db′′m
dt

=
dB
dt

b′m + B
db′m
dt

(30)

= − B2Cb′m + B(Km − T ) (31)
= B

(
(Km − T ) −Cb′′m

)
. (32)

Here the threshold is T and decay rate is C, and this can be
also reduced to the proposed system (5) and (6) by using
the previous reductions.

3. Characteristics of the Proposed System

In this section, we assume that c and λ are time-
independent. To make the system bounded, we can fix the
value of S and B of the systems in the previous section. We
can also use fixed T or C to eliminate its calculation cost.
We can learn about the characteristics and performance of
such a system by investigating the case of time-independent
parameters.



Table 1: The maximum value of bm and the parameter c.
Maximum value is taken for m ∈ C and t ∈ [0, 100], and the
result for 500 trajectories with 50 instances are averaged.

c max bm(t)
0.001 46.88
0.002 45.63
0.005 40.69
0.01 34.87
0.02 27.27
0.05 14.08

3.1. Upper Bound and Lower Bound of bm

We assume that λ > 0 and c > 0. dbm
dt > 0 holds when

bm < −c/λ and dbm
dt < 0 holds when bm > (1 − c)/λ. Thus,

if the initial value of bm is in [−c/λ, (1 − c)/λ], bm remains
in the same range. As we stated in the introduction, the
maximum and minimum values of the bm are important in
terms of physical realizations of the solver.

3.2. Parameter c Determines max bm

Although the upper bound of bm is shown, we found that
the maximum value of bm is usually smaller than that. It is
because, during the increase of bm, s escapes from the local
minimum and then Km becomes small so that Km − c < 0.

We also found that, if c is small, this maximum value of
bm increases with the decrease of c. This can be explained
as follows. Because we assumed that c is small, the in-
creasing speeds of bm for unsatisfied clauses are same. Let
cm′ be the clause that previously has a maximum bm value.
Because whether the local minima is destabilized or not is
determined by L without a constant factor, the difference
between the bm′ and the new max bm required to destabilize
the local minimum is similar among the different c settings.
If bm′ is small, the required time for small bm to become
sufficiently larger than bm′ is short. If the decrease of the
the bm′ during this period is smaller than the required dif-
ference, the new max bm is larger than the previous max bm.
The max bm increases until it requires long time to destabi-
lize the local minimum so that during this period bm′ de-
creases more than the difference between bm′ and the new
max bm. Therefore, because the decreasing speed is pro-
portional to c, max bm is increased by using a small c.

We generated several 3-SAT instances (CNF all of whose
clauses have exactly 3 literals) with 100 variables and 427
clauses and took 50 satisfiable ones from them. We ran
the proposed system 10 times for each instance with vary-
ing parameter c = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05 and
λ = 0.01. For each obtained trajectory we calculated
maxm∈C,t∈[0,100] bm(t) and averaged it over 500 trajectories
for each setting. From Table 1, we can see that the maxi-
mum value of bm increases with the decrease of c.

4. Conclusion

To address the issue of unlimited maximum and mini-
mum values of the weights in the CTDS solver, we pro-
posed a variant of the system that adds a decay term in
the dynamics of the weights. This system can represent its
several natural modifications by changing parameters and
time variables. We also showed the upper and lower bound
of bm, and that usually the maximum value of bm increases
if we decrease c.

We note that the maximum value of bm can effect the
search efficiency. If max bm is increased, the number of
clauses that have large bm enough to affect the change in
s increases. It means that the system can take many con-
straints into consideration concurrently, and the searching
efficiency may increase. It is also reported in [5] that in-
creasing η, which corresponds to increase max bm, results
in a decrease of the searching time of the system to find the
satisfying assignment.

In addition, we note that λ can be related to the solver’s
abillity to find solutions. Assume that there is a periodic
orbit of the system. The stability of the periodic orbit is
determined by whether a pertubation introduced at some
point is expanded when it returns along the orbit to that
point. Because the term −λbm in (6) shrinks the pertuba-
tion, we can say that if we use large λ, periodic orbits are
likely to be stable and the system is likely to be trapped in
a limit cycle. Thus, we have to represent wide range of bm

if we use small λ. There should be a trade-off between the
completeness and the value range.

In any way, theoretically and empirically, testing these
arguments which are not sufficiently confirmed yet is left
as a future work.

Acknowledgments

This work is supported in part by JST CREST (JP-
MJCR18K2 and JPMJCR14D2) and by a Grant-in-Aid
for JSPS Fellows (17J02174). It was also supported in
part by the National Science Foundation under Grants
CCF-1644368 and 1640081, and by the Nanoelectronics
Research Corporation, a wholly-owned subsidiary of the
Semiconductor Research Corporation, through Extremely
Energy Efficient Collective Electronics, an SRC-NRI Na-
noelectronics Research Initiative under Research Task ID
2698.004 (Z.T.).

References

[1] L. Chen and K. Aihara, “Chaotic simulated annealing
by a neural network model with transient chaos,” Neu-
ral Networks, vol. 8, pp. 915–930, 1995.

[2] T. Inagaki et al., “A coherent Ising machine for 2000-
node optimization problems,” Science, vol. 354, no.
6312, pp. 603–606, 2016.



[3] M. Ercsey-Ravasz and Z. Toroczkai, “Optimization
hardness as transient chaos in an analog approach to
constraint satisfaction.” Nature Physics, vol. 7, pp.
966–970, 2011.

[4] X. Yin et al., “Efficient analog circuits for Boolean sat-
isfiability,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 26, no. 1, pp. 155–167,
2018.

[5] H. Yamashita, K. Aihara, and H. Suzuki, “Timescales
of Boolean satisfiability solver using continuous-time
dynamical system,” 2019, submitted.


