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Abstract— This paper investigates the problem of similar
fault isolation (sFI) for discrete-time nonlinear uncertain sys-
tems. The main challenge lies in that the differences among
the so-called “similar” faults could be very small and easily
hidden in system uncertainties. To overcome such a challenge, in
this paper, the uncertain fault-induced system dynamics is first
accurately identified using radial basis function neural network
(RBF NNs), where the obtained knowledge can be stored and
represented by constant RBF NNs. With the obtained constant
networks, a bank of novel fault residual systems are designed
by using an absolute measurement of fault dynamics difference,
which can effectively measure the match level of the occurred
fault from each trained fault. Based on the designed residual
systems, real-time fault isolation decision making is achieved
according to the smallest residual principle (SRP), i.e., the
occurred fault is identified similar to one trained fault when the
related residual becomes the smallest one among all the others.
Rigorous analysis of the isolatability condition is also given.
Extensive simulations have been conducted to demonstrate the
effectiveness and advantages of the proposed approach.

I. INTRODUCTION

In recent years, there have been many research activities
in the development of fault isolation (FI) in various modern
engineering systems (e.g., [1], [2], [3], [4], [5], [6]). Partic-
ularly, the model-based FI approach with the capabilities of
providing a deep insight into the system process behavior
attracts quite strong interests. For example, [7] designed an
integrated robust FI architecture for distributed parameter
systems. [8] constructed an entropy optimization filter for the
FI problem of nonlinear non-Gaussian systems. In [9], a fast
adaptive fault estimation (FAFE) approximator was proposed
for linear systems. However, all these techniques virtually
focus on systems with precisely known dynamics. The FI
problem for nonlinear systems with unstructured uncertain
dynamics remains as a rather challenging problem, especially
when isolation of “similar” faults is concerned.

The “similar” faults are typically referred to those faults
with small mutual differences that could be hidden by system
uncertainties. For similar fault isolation (sFI) problem, over
the past decades, lots of interesting techniques have been
proposed but gained vry limited sucess, e.g., [10], [11], [12].
In [11], the FI problem for nonlinear uncertain systems was
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addressed by estimating the so-called fault mismatch func-
tions. However, they have not achieved accurate modeling
for system uncertain dynamics, thus are applicable only to
those faults with the fault mismatch function in relatively
large magnitudes (larger than that of the system uncertainty).
[12] proposed a smallest residual principle (SRP) based
FI scheme, where residuals are generated by measuring
certain accumulated difference between occurred fault and
each trained fault. With such schemes, if fault differences
have frequently-changing signs, the associated residuals will
approach zero, resulting in an isolation misjudgment.

For sFI problem of nonlinear uncertain systems, the dif-
ficulty lies in how to distinguish the fault difference from
unmodeled system dynamics. Adaptive neural network (NN)
provides a powerful tool. In [13], online approximation-based
FI methods are developed using adaptive NNs to estimate
the fault mismatch function. Nevertheless, since they fail
to enable the NN weights converge to their optimal values
without satisfying persistently exciting (PE) condition, the
accurate modeling of fault mismatch functions cannot be
achieved. To solve this problem, the deterministic learning
(DL) theory was recently proposed and developed in [14],
[15], [16], [17], [18], where a partial PE condition is guaran-
teed by a recurrent input to the radial basis function neural
networks (RBF NNs), and then locally accurate modeling of
the unknown system dynamics can be achieved, represented
and stored as a constant RBF NN model. A DL-based
sFI approach has been preliminarily investigated in [12]
for nonlinear uncertain systems, which, however, has not
addressed several important technical issues, such as how to
expand applicability of the FI scheme to more stringent faults
(e.g., faults with associated fault difference having frequently
changing signs), and how to extend the methodology from
continuous-time to discrete-time nonlinear uncertain systems.

In this paper, we investigate a new DL-based sFI approach
for discrete-time nonlinear uncertain systems. First, moti-
vated by [15], we propose an adaptive dynamics learning ap-
proach via DL to achieve a locally-accurate approximation of
the unknown faulty system dynamics, enabling to distinguish
the occurred similar faults from system uncertainties. The
obtained knowledge is represented and stored in a constant
RBF NN model [19]. Then, with the obtained knowledge, the
residual systems are designed using absolute measurements
of the faulty dynamics difference, to effectively evaluate the
match level of the occurred fault to each trained fault. The
FI decision making is based on SRP, i.e., the occurred fault
is identified similar to one trained fault when the related
residual becomes the smallest one among all the others.



Rigorous analysis on isolatability condition is also given.
The contributions of this paper are: 1) the sFI problem for

nonlinear uncertain systems is addressed, where the mutual
differences among considered faults are so small that could
be hidden by system uncertainties; 2) the sFI residual systems
are developed based on absolute measurements of the faulty
dynamics difference, to effectively evaluate the match level
of the occurred fault to each trained fault.

The rest of this paper is organized as follows. Sec. II
provides preliminary results and problem formulation. Sec.
III presents the DL-based learning approach, the sFI scheme
and the fault isolatability analysis. Simulation results are
presented in Sec. IV. The conclusion is in Sec. V.
Notations. R, R+ and Z+ denote, respectively, the set of
real numbers, the set of positive real numbers and the set
of positive integers; Rm×n denotes the set of m × n real
matrices; Rn denotes the set of n × 1 real column vectors;
In denotes the n×n identity matrix; | · | is the absolute value
of a real number; || · || is the 2-norm of a vector or a matrix,
i.e. ||x|| = (xTx)

1
2 ; || · ||1 is the L1-norm of a vector or a

matrix, i.e. ||x(k)||1 = 1
K

∑k−1
h=k−K |x(h)| (k ≥ K > 1).

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Preliminaries

The RBF NN is described by fnn(Z) =
∑Nn
i=1 wisi(Z) =

WTS(Z)[20], where Z ∈ ΩZ ⊂ Rq is the input vector,
W = [w1, · · · , wNn ]T ∈ RNn is the weight vector, Nn is the
NN node number, and S(Z) = [s1(||Z−ε1||), · · · , sNn(||Z−
εNn ||)]T , with si(·) being a radial basis function, and εi (i =
1, 2, · · · , Nn) being distinct points in state space. The Gaus-
sian function si(||Z− εi||) = exp[−(Z−εi)T (Z−εi)

η2i
] is one of

the most commonly used RBF, with εi = [εi1, εi2, · · · , εiq]T
being the center of receptive field and ηi is the width of the
receptive field. The Gaussian function belongs to the class
of localized RBFs in the sense that si(||Z − εi||) → 0 as
||Z|| → ∞. Obviously, S(Z) is bounded and there exists a
real constant SM ∈ R+ such that ||S(Z)|| 6 SM [19].

As shown in [20], [21], for any continuous function f(Z) :
ΩZ → R where ΩZ ⊂ Rq is a compact set, and for the NN
approximator with sufficiently-large node number Nn, there
exists an ideal constant weight vector W ∗, such that for any
ε∗ > 0, f(Z) = W ∗TS(Z) + ε, ∀Z ∈ ΩZ , where |ε| < ε∗ is
the ideal approximation error. The ideal weight vector W ∗ is
an “artificial” quantity required for analysis, and is defined
as the value of W that minimizes |ε| for all Z ∈ ΩZ ⊂
Rq , i.e. W ∗ , argminW∈RNn {supZ∈ΩZ

|f(Z)−WTS(Z)|}.
Moreover, based on the localization property of RBF NNs
[19], for any bounded trajectory Z(t) within the compact set
ΩZ , f(Z) can be approximated by using a limited number of
neurons located in a local region along the trajectory: f(Z) =
W ∗Tζ Sζ(Z) + εζ , where εζ is the approximation error, with
εζ = O(ε) = O(ε∗), Sζ(Z) = [sj1(Z), · · · , sjζ(Z)]T ∈
RNζ , W ∗ζ = [w∗j1, · · · , w∗jζ ]T ∈ RNζ , Nζ < Nn, and the
integers ji = j1, · · · , jζ are defined by |sji(Zp)| > θ (θ > 0
is a small positive constant) for some Zp ∈ Z(k).

As shown in [19], for a localized RBF network WTS(Z)
whose centers are placed on a regular lattice, almost any
recurrent trajectory1 Z(k) can lead to the satisfaction of the
PE condition of the regressor subvector Sζ(Z). This result
can be formally summarized in the following lemma.

Lemma 1 ([22]): Consider any recurrent trajectory Z(k):
Z+ → Rq . Z(k) remains in a bounded compact set ΩZ ⊂
Rq , then for RBF network WTS(Z) with centers placed on
a regular lattice (large enough to cover compact set ΩZ), the
regressor subvector Sζ(Z) consisting of RBFs with centers
located in a small neighborhood of Z(k) is PE.
B. Problem Formulation

Consider the following discrete-time nonlinear system:
x(k + 1) =f(x(k), u(k)) + v(x(k), u(k))

+ β(k − k0)φs(x(k), u(k)),
(1)

where x ∈ Rn, u ∈ Rm are system state and input; f(x, u) :
Rn × Rm → Rn is known nominal dynamics, v(x, u) :
Rn × Rm → Rn is modeling uncertainty, φs(x, u) : Rn ×
Rm → Rn is system dynamics deviation due to fault s (s =
1, · · · , N); β(k − k0) represents fault time profile: β(k −
k0) = 0 for k < k0 and β(k − k0) = 1 for k ≥ k0, k0 is
fault occurrence time. System (1) is said to operate in normal
mode when 0 < k < k0 and s-th faulty mode when k ≥ k0.
As typically adopted in the literature (e.g., [19]), we assume
that the system trajectories in normal mode, i.e., (x0, u0),
and all possible faulty modes, i.e., (xs, us), are recurrent.

Following similar definition in [12], the “similar” faults
are characterized as: 1) their mutual differences are small
and could be hidden by system uncertainty, i.e., the mag-
nitude of each φs(x, u) − φs̄(x, u) (with s ∈ {1, · · · , N},
s̄ ∈ {1, · · · , N}/{s}) could be smaller than that of system
uncertain dynamics v(x, u), and 2) the s-th faulty system
trajectory (xs, us) is close to each s̄-th one (xs̄, us̄), i.e.,

dist((xs, us), (xs̄, us̄)) := max{min ||(xs, us), (xs̄, us̄)||}
< dζ (2)

with a constant 0 < dζ < d∗ζ , and d∗ζ is the size of the NN
approximation region to be given later. We aim to achieve sFI
for the system (1) by using real-time information of (x, u).

III. MAIN RESULTS

A. Fault Dynamics Identification

Consider the system (1) operating in s-th faulty mode, i.e.,

x(k + 1) =f(x(k), u(k)) + v(x(k), u(k)) + φs(x(k), u(k)),
(3)

where s = 0, 1, · · · , N with s = 0 representing the normal
mode (i.e., φ0(x, u) = 0). Note that the terms v(x, u) and
φs(x, u) cannot be decoupled from each other, we consider
them together and define a general fault function ηs(x, u) :=
v(x, u) + φs(x, u). Then, Eq. (3) can be rewritten as:

x(k + 1) = f(x(k), u(k)) + ηs(x(k), u(k)). (4)

1A recurrent trajectory represents a large set of periodic and periodic-like
trajectories generated from linear/nonlinear dynamics systems. A detailed
characterization of recurrent trajectories can be found in [19].



The goal here is to accurately identify the function ηs(x, u).
According to Sec. II-A, for the function ηs(x, u), there

exists an ideal constant NN weight W s∗ ∈ RNn×n (with
Nn denoting the number of NN nodes) such that

ηsi (x, u) = W s∗T
i S(x, u) + εsi,0, i = 1, · · · , n, (5)

where S(x, u) : Rn × Rm → RNn is a smooth RBF vector
and εsi,0 is the estimation error satisfying |εsi,0| < ε∗ with ε∗

being a positive constant that can be made arbitrarily small
given sufficiently large number of neurons.

Then, using the Gaussian RBF networks, for system (4),
we construct the following dynamical identifier:

x̂i(k + 1) =ai(x̂i(k)− xi(k)) + fi(x(k), u(k))

+ Ŵ sT
i (k + 1)S(x(k), u(k)),

(6)

where x̂i ∈ R is the i-th estimator state, xi is the i-th state
in (4), 0 < |ai| < 1 is a design parameter, and Ŵ s

i ∈ RNn
is the estimate of W s∗

i following the adaption law:
Ŵ s
i (k + 1) = Ŵ s

i (k)

− ci(x̃i(k)− aix̃i(k − 1))S(x(k − 1), u(k − 1))

1 + ST (x(k − 1), u(k − 1))S(x(k − 1), u(k − 1))

(7)

with design constant 0 < ci < 2 and x̃i(k) := x̂i(k)−xi(k).
With the identifier (6) – (7), given the recurrent s-th faulty

system trajectory (xs, us) of (4), the partial PE condition of
S(xs, us) is satisfied according to Lem. 1. From [15], the
RBF NN weights Ŵ s

i will converge to a small neighborhood
of W s∗

i along the recurrent trajectory (xs, us), and thus a
locally accurate approximation of ηsi (x

s, us) in (4) can be
achieved by the RBF NNs Ŵ sT

i S(xs, us) along the trajectory
(xs, us) after the transient process of convergence, i.e.,

ηsi (x
s, us) = Ŵ sT

i S(xs, us) + εsi,1, (8)

with estimation error |εsi,1| = O(ε∗). Thanks to the conver-
gence of Ŵ s

i , from [15], a locally accurate approximation of
ηsi (x

s, us) is achieved by a constant model W̄ sT
i S(xs, us):

ηsi (x
s, us) = W̄ sT

i S(xs, us) + εsi,2, (9)

where W̄ s
i := 1

K2

∑K1+K2−1
k=K1

Ŵ s
i (k) with [K1,K1+K2−1]

representing a time segment after the transient process, and
εsi,2 is estimation error satisfying |εsi,2| = O(ε∗).

As argued in [15], the constant RBF NN W̄ sT
i S(xs, us)

has a certain ability of generalization, in the sense that its
locally-accurate approximation for ηsi (x

s, us) is achieved in
a local region Ωsζ along the trajectory (xs, us), that is,

ηsi (x, u) = W̄ sT
i S(x, u) + εsi , ∀(x, u) ∈ Ωsζ , (10)

where |εsi | ≤ ε∗, Ωsζ := {(x, u) | dist
(

(x, u), (xs, us)
)
<

d∗ζ} with d∗ζ > 0 characterizing the size of NN approximation
region, and ε∗ = O(ε∗) is approximation error within Ωsζ .

According to the similar fault assumption specified in
(2), for each s (s 6= 0, s ∈ {1, 2, · · · , N}) and s̄ (s̄ 6=
0, s̄ ∈ {1, 2, · · · , N}/{s}), the faulty trajectory (xs̄, us̄)
satisfies: dist((xs, us), (xs̄, us̄)) < d∗ζ , implying (xs̄, us̄) ∈
Ωsζ . From (10), once the system (1) operates in s̄-th faulty
mode, i.e., (x, u) = (xs̄, us̄) ∈ Ωsζ , we have ηsi (x

s̄, us̄) =

W̄ sT
i S(xs̄, us̄) + εsi (with |εsi | ≤ ε∗) holds. However, if the

system (1) operates in 0-th faulty mode (i.e., normal mode),
the trajectory (x, u) = (x0, u0) may not be sufficiently
close to the faulty trajectory (xs, us), i.e., (x0, u0) /∈ Ωsζ ,
such that |W̄ sT

i S(x0, u0) − ηsi (x0, u0)| � ε∗. Similarly, if
the system (1) operates in s-th faulty mode, the trajectory
(x, u) = (xs, us) /∈ Ω0

ζ , |W̄ 0T
i S(xs, us)− η0

i (xs, us)| � ε∗.
Based on this, we make the following assumption:

Assumption 1: Consider the system trajectory (x, u) gen-
erated from (1), the constant RBF NN W̄ sT

i S(x, u) (i =
1, · · · , n, s ∈ {0, 1, · · · , N}) and the local region Ωsζ from
(10). Even if (x, u) /∈ Ωsζ , there exists a known constant
γi > 0 such that |W̄ sT

i S(x, u)− ηsi (x, u)| ≤ γi.
Remark 1: The constant γi is not necessarily a large

number, since the system trajectory (x, u) cannot be far away
from the region Ωsζ no matter which mode the system (1)
operates in. Particularly, if the size of Ωsζ is made large
enough via sufficient training [15], [23], such that the system
trajectory (x, u) keeps close to (or staying within) the region
Ωsζ , then γi will be relatively small.

B. Residual System Design and Isolation Scheme

Assuming that a fault l (l ∈ {1, · · · , N}) occurs, we
consider the following monitored system:

x(k + 1) =f(x(k), u(k)) + v(x(k), u(k))

+ β(k − k0)φl(x(k), u(k))
(11)

with k0 being the fault occurrence time. A bank of residual
systems embedded with a novel mechanism of absolute
measures of faulty dynamics difference are proposed:

esi (k) = bie
s
i (k − 1) + |W̄ sT

i S(x(k − 1), u(k − 1))

+ fi(x(k − 1), u(k − 1))− xi(k)|,
(12)

where esi (0) = 0, i = 1, · · · , n, s = 0, 1, · · · , N , xi is
the i-th state of (11); fi(x, u) is known dynamics in (11);
0 ≤ bi < 1 is a design parameter; W̄ sT

i S(x , u) is a constant
RBF NN in (10) to represent ηsi (x, u) = vi(x, u)+φsi (x, u).

Remark 2: In (10), W̄ sT
i S(x(k−1), u(k−1))+fi(x(k−

1), u(k − 1)) in (12) is able to approximate the s-th trained
dynamics xsi (k) = fi(x(k−1), u(k−1))+vi(x(k−1), u(k−
1))+φsi (x(k−1), u(k−1)), and thus |W̄ sT

i S(x(k−1), u(k−
1)) + fi(x(k − 1), u(k − 1)) − xi(k)| in (12) essentially
measures the absolute difference between the monitored
system dynamics in (11) and the s-th trained faulty dynamics.

With the above residual systems (12), a sFI scheme will be
proposed based on the SRP [12]. Specifically, once a fault
l occurs in the monitored system (11) (after time k0), the
residual eli will decrease and become the smallest one among
all the residuals obtained esi (s = 0, 1, · · · , N ) from (12),
enabling the occurred fault to be isolated.

Fault isolation decision scheme: Consider the residual
systems (12). If there exists l ∈ {1, · · · , N}, and a finite
time kl > 0 such that for all i = 1, · · · , n and l̄ ∈
{0, 1, · · · , N}/{l}, eli(kl) < el̄i(kl), then the occurred fault
will be identified similar to fault l at time kl.



C. Fault Isolatability Condition
When a fault l occurs in the monitored system (11),

we have for k ≥ k0, β(k − k0)φli(x, u) = φli(x, u) and
(x, u) = (xl, ul). By introducing a fault mismatch function:
%s,li (x, u) := φsi (x, u)−φli(x, u) to represent the difference
between the occurred fault l with each trained fault s, from
(11), the residual system (12) can be rewritten as:

esi (k) = bk−k0
i esi (k0) +

k−1∑
h=k0

bk−1−h
i |W̄ sT

i S(x(h), u(h)

− ηsi (x(h), u(h) + %s,li (x(h), u(h))|, k > k0.

(13)

Note that the system trajectory (x, u) = (xl, ul) ∈ Ωsζ (s 6=
0, s ∈ {1, 2 · · · , N}), we have ηsi (x

l, ul) = W̄ sT
i S(xl, ul)+

εsi (with |εsi | ≤ ε∗) from (10). Eq. (13) is obtained as:

esi (k) =bk−k0i esi (k0) +

k−1∑
h=k0

bk−1−h
i |%s,li (x(h), u(h))− εsi |.

(14)
It should be noted that since (x, u) = (xl, ul) /∈ Ω0

ζ , the
function η0

i (x, u) cannot be described by (10) (as discussed
above in the paragraph before Assumption 1), and the 0-th
residual system cannot be rewritten as the form of (14).

Theorem 1 (Fault Isolatability): Consider the monitored
system (11) and the residual system (12). If for l ∈
{1, 2, · · · , N}, l̄ ∈ {0, 1, · · · , N}/{l}, and all i =
1, 2, · · · , n, there exists a constant µi > ε∗

1−bi such that
k−1∑
h=k0

bk−1−h
i |%l̄,li (x(h), u(h))| ≥ µi +

ε∗

1− bi
,

k−1∑
h=k0

bk−1−h
i |φli(x(h), u(h))| ≥ µi +

γi
1− bi

;

(15)

then there must exist a finite time kl > k0 such that eli(kl) <
el̄i(kl) holds, and the occurred fault is identified similar to
the trained fault l at time kl.

Proof: We first consider the 0-th residual system (13).
Since (x, u) = (xl, ul) /∈ Ω0

ζ , we have |W̄ 0T
i S(x, u) −

η0
i (x, u)| ≤ γi from Ass. 1. Note that e0

i (k0) ≥ 0,
%0,l
i (x, u) = −φli(x, u) and from (15), we have

e0
i (k) ≥

k−1∑
h=k0

bk−1−h
i (|%0,l

i (x(h), u(h))| − |W̄ 0T
i S(x(h), u(h)

−η0
i (x(h), u(h)|) ≥

k−1∑
h=k0

bk−1−h
i (|φl

i(x(h), u(h))| − γi)

>

k−1∑
h=k0

bk−1−h
i |φl

i(x(h), u(h))| − γi
1− bi

≥ µi. (16)

Consider the l̄-th (l̄ 6= 0) residual system (14). Note that
el̄i(k0) ≥ 0, |εl̄i| ≤ ε∗, and from (15), we have

el̄i(k) ≥
k−1∑
h=k0

bk−1−h
i (|%l̄,li (x(h), u(h))| − |εl̄i|)

≥
k−1∑
h=k0

bk−1−h
i (|%l̄,li (x(h), u(h))| − ε∗)

>

k−1∑
h=k0

bk−1−h
i |%l̄,li (x(h), u(h))| − ε∗

1− bi
≥ µi.

(17)

Moreover, consider the l-th residual system (14). Note that
%l,li (x, u) = 0, and |εli| ≤ ε∗, we obtain

eli(k) = bk−k0i eli(k0) +

k−1∑
h=k0

bk−1−h
i |εli| ≤

bk−k0i eli(k0)+

k−1∑
h=k0

bk−1−h
i ε∗ < bk−k0i eli(k0)+

ε∗

1− bi
. (18)

From (16) – (18), eli(k) < el̄i(k) is guaranteed for ∀ l̄ ∈
{0, 1, · · · , N}/{l} if

bk−k0i eli(k0) +
ε∗

1− bi
≤ µi. (19)

Note that µi > ε∗

1−bi , and the right-hand side of the above
inequality is a decreasing function of time step k, implying
there exists a finite time kl > k0 such that the inequality
(18) is satisfied, i.e., eli(kl) < el̄i(kl) holds and the occurred
fault l can be isolated at time kl. This ends the proof.

Remark 3: In (15), the first constraint on %l̄,li (x, u) is
not stringent, because the lower bound µi + ε∗

1−bi (with
µi > ε∗

1−bi ) is basically depending on ε∗ (be arbitrarily
small by constructing sufficiently large number of neurons
in the identification phase) and bi (be freely selected from
0 ≤ bi < 1). Thus, even when the the difference between
fault l and fault l̄ is relatively small (i.e., the occurred fault l
is quite similar to mismatched fault l̄), the condition (15) is
satisfied and the occurred fault can be isolated. On the other
hand, the constraints (15) are also loose owing to the small
lower bound µi + γi

1−bi , where the constant γi can be made
small following the arguments in Remark 1.

IV. SIMULATION STUDIES

Consider the Duffing oscillator system [19], through Euler
approximation method, we have:
x1(k + 1) = x1(k) + Tsx2(k),

x2(k + 1) = x2(k) + Ts(−p2x1(k)− p3x
3
1(k)

− p1x2(k) + p4 cos(wTsk)) + β(k − k0)φs2(x(k)),

(20)

with states x1, x2, parameters p1 = 0.55, p2 = −1.1, p3 =
1, p4 = 0.62, w = 1.9, sampling period Ts = 0.1s; fault
occurrence time k0 = 300, fault functions φs2(x) (s = 1, 2, 3)
with φ1

2(x(k)) := 0.18Ts cos(20x2(k) + 10x1(k)) denoting
fault 1, φ2

2(x(k)) := 0.18Ts sin(10x2(k) + 10x1(k)) fault 2,
and φ3

2(x(k)) := 0.18Ts cos(30x2(k) + 10x1(k)) fault 3. In
this example, we assume that f1(x(k)) := x1(k) +Tsx2(k),
f2(x(k)) := x2(k)+Tsp4 cos(wTsk) are the known nominal
dynamics of the system, and v2(x(k)) := −Tsp2x1(k) −
Tsp3x

3
1(k) − Tsp1x2(k) is the system uncertainty. Fig. 1

illustrates the comparison between fault mismatch functions
%s,l2 (x) = φs2(x)− φl2(x) (s, l ∈ {1, 2, 3}, s 6= l) and system
uncertainty v2(x), showing that the difference between the
fault s and fault l is relatively small and can be easily hidden
by the system uncertainty. It is indicated that these three
types of faults are “similar” faults that are difficult to isolate.

In the identification phase, for each s-th faulty mode
(s = 0, 1, 2, 3, with s = 0 representing the normal mode, i.e.,
φ0

2(x) = 0), we employ the proposed identifier consisting
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Fig. 1: Time profiles of system uncertainties v2(x) and the fault mismatch functions %s,l2 (x) (s, l ∈ {1, 2, 3}, s 6= l).
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Fig. 2: Identification performance of the system uncertain dynamics v2(x) in normal mode.
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(a) System trajectory in faulty mode 1. (b) Weight convergence of Ŵ 1
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Fig. 3: Identification performance of the system uncertain dynamics v2(x) + φ1
2(x) in faulty mode 1.

of (6) and (7) to accurately identify the uncertain dynamics
v2(x) + φs2(x). Specifically, we construct the RBF networks
Ŵ sT

2 S(x) in a regular lattice, with nodes Nn = 29 × 49,
the centers evenly spaced on [0.4, 1.8] × [−1.2, 1.2] and
the widths ηt = 0.05 (t = 1, 2, · · · , 1421). The design
parameters for (6) and (7) are a2 = 0.1 and c2 = 0.4.
The initial conditions are set as Ŵ s

2 (0) = 0 and x(0) =
[0.2, 0.4]T . Consider the normal mode (faulty mode 0) of
system (20), Fig. 2a shows that the normal system trajectory
is recurrent. Fig. 2b implies the convergence of the weights
Ŵ 0

2 (each curve represents one weight parameter), based
on which the constant weights W̄ 0

2 can be further obtained
by W̄ 0

2 = 1
100

∑800
k=701 Ŵ

0
2 (k). Fig. 2c demonstrates that

the obtained constant network W̄ 0T
2 S(x) achieves accurate

approximation of v2(x). Similarly, the learning performance
for the faulty mode 1 of system (20) is plotted in Fig. 3.
As for the other two faulty modes, the simulation results are
similar to those of the normal mode (and faulty mode 1),
and thus omitted here owing to the space limitation.

After achieving accurate identification of all the uncertain
faulty dynamics v2(x) + φs2(x) (s = 0, 1, 2, 3), we construct
the following residual systems:

es2(k) = b2e
s
2(k − 1) + |W̄ sT

2 S(x(k − 1))

+ x2(k − 1) + Tsp4 cos(wTs(k − 1))− x2(k)|,
(21)

with setting b2 = 0.98. Consider fault 1 occurs in the

monitored system (20) at time k0 = 300. The real-time
residuals generated from (21) are plotted in Fig. 4a, where
the fault 1 is isolated at kl = 426. Similar results of the cases
when fault 2 or fault 3 occurs can also be observed in Figs.
4b and 4c, showing fault 2 and fault 3 are isolated at time
kl = 343 and kl = 415, respectively.

To compare our scheme with the existing SRP-based FI
scheme [12], we implement the estimators in [12] as follows:

x̂s2(k) = b2(x̂s2(k − 1)− x2(k − 1)) + x2(k − 1)

+ Tsp4 cos(wTs(k − 1)) + W̄ sT
2 S(x(k − 1)),

(22)

where b2 = 0.98 and W̄ sT
2 S(x) (s = 0, 1, 2, 3) are exactly

the above-obtained identification results. The residual signals
for FI decision making are generated using an average L1

norm, i.e., ||x̃s2(k)||1 = 1
K

∑k−1
h=k−K |x̂s2(h) − x2(h)| with

K = 10. From [12], when fault 1 occurs, the generated resid-
uals ||x̃s2(k)||1 are plotted in Fig. 5a. It is shown that after
the fault 1 occurs at time k = 300, both residuals ||x̃1

2(k)||1
and ||x̃3

2(k)||1 decrease to zero, and cannot be distinguished
from each other. One explanation for such a phenomenon
is that the fault difference %3,1

2 (x) has frequently-changing
signs (as shown in Fig. 1a), its accumulated effect is easily
offset, making the mismatched residual ||x̃3

2||1 approach zero.
A similar problem is also encountered in the process of FI for
fault 3 (see Fig. 5b). Due to %2,3

2 (x) frequently changing sign,
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(a) Isolation of fault 1.
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(c) Isolation of fault 3.

Fig. 4: Fault isolation results using the proposed sFI scheme.
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(b) Isolation of fault 3.

Fig. 5: Fault isolation results using the existing sFI scheme in [12].

the mismatched residual ||x̃2
2||1 keeps close to zero and even

becomes the smallest in the time interval [400, 480], leading
to a FI misjudgment. All such issues can be overcome by
our designed residual systems (21) (see Figs. 4a and 4c).

V. CONCLUSIONS

In this paper, we have proposed a novel adaptive dynamics
learning-based sFI scheme for discrete-time nonlinear un-
certain systems. First, to deal with the system uncertainty,
we achieved locally-accurate approximation for the system
uncertain dynamics under both normal mode and all faulty
modes, where the learned knowledge was obtained and stored
in constant RBF networks. Then, a bank of novel residual
systems were constructed by using the absolute measures
of the fault dynamics difference. FI decision making was
achieved based on the SRP. The effectiveness and advantages
of the proposed sFI scheme have been verified through both
rigorous analysis and numerical simulations. In future work,
we plan to extend the results to explore applications of the
proposed approaches to real engineering problems, such as
manufacturing process and robotics.
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