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ABSTRACT
In this paper, we propose a novel intelligent control scheme

for a class of discrete-time nonlinear uncertain systems op-
erating under multiple environments/control situations. First,
based on the deterministic learning theory, artificial neural net-
works (NNs) are employed to accurately learn/identify the un-
certain system dynamics under each individual environment. The
learned knowledge is then utilized to: (i) achieve improved con-
trol performance by developing a family of experience-based
controllers (EBCs), each of which is tailored to an individual
environment; and (ii) determine real-time activation of the EBCs
by developing a pattern recognition mechanism for online iden-
tifying the active control situation. In addition, a robust quasi-
sliding mode controller is further designed and embedded in the
overall control scheme to guarantee system stability during the
transition process among multiple environments. The novelty of
the proposed control scheme lies in its intelligent capabilities of
knowledge acquisition and re-utilization in real-time control, en-
abling self-adaption to uncertain changing control environments.
A simulation example is included to verify the effectiveness of
the proposed results.

1 INTRODUCTION
Many aspects of modern life involve the use of intelligent

automated machines, which perform tasks involving complex
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dynamic interactions with their environments (e.g., [1–3]). A
notable example is the intelligent humanoid robots [4], which
are built to functionally operate in various environments and
replace human workforce to perform sets of tasks (e.g., grasp-
ing and manipulating objects [5]). Over the past decades, con-
siderable efforts have been devoted to the development of ad-
vanced intelligent control schemes to enable autonomy of such
machines operating under multiple environments (e.g., [6–8]).
However, existing methods have their own limitations, for ex-
ample, they largely require the operating environments to vary
slowly with time. For those cases when the environments are
changing abruptly, the associated intelligent control design prob-
lem is rather challenging and has received less discussions in cur-
rent literature. One promising approach to overcome this chal-
lenge is the multiple model adaptive control approach (MMAC)
proposed by [9,10]. With this approach, multiple models are first
developed to approximate/represent different control situations,
and multiple controllers are then designed to provide suitable
control actions for each corresponding control situation. How-
ever, the learning capability of adaptive controllers developed
from such a MMAC framework has not been well-explored; as
a result, it lacks the real intelligent capabilities of knowledge ac-
quisition and re-utilization. To address this issue, a so-called
pattern based neural network (NN) learning control scheme was
proposed in [11], which seeks to develop multiple controllers
with the knowledge learned from various environments. Unfor-
tunately, one limitation of this approach is that the changing se-
quence of the operating environments needs to be constrained,



i.e., the operating environment is only allowed to change from a
specific one (i.e., normal control situation) to the others, which
might not be always feasible in practice.

In this paper, we focus on the intelligent control problem
of a class of discrete-time nonlinear uncertain systems operating
under multiple environments/control situations. Specifically, we
aim at dealing with several intelligent control issues, including:
(i) how to provide high control performance with tractable com-
putational complexity under each individual environment; (ii)
how to guarantee the system stability when the operating envi-
ronment is abruptly changing from one to another; (iii) how to
determine activation of the proposed multiple controllers under
the varying environments. For the first issue, we consider that
the controlled plant is operating in a specific individual environ-
ment, we propose to design an adaptive learning controller based
on the deterministic learning theory [12], so as to achieve accu-
rate learning and stable tracking control. Through this learning
control process, the knowledge of the associated uncertain sys-
tem dynamics can be accurately learned/identified and stored in
constant radial basis function neural network (RBF NN) mod-
els. With these obtained models, a set of multiple experience-
based controllers (EBCs) can be further developed with each one
tailored to a particular control situation. One important feature
of such EBCs is that they can guarantee improved control per-
formance with significantly reduced computational burden that
is typically demanded in traditional adaptive controls. For the
second issue, it is noted that when the operating control situ-
ation is abruptly changed, the new control situation might not
be able to be recognized immediately. In this case, a robust
quasi-sliding mode controller (QSMC) is necessary to stabilize
the overall system. Such a controller will also guarantee the
switching process of multiple EBCs to be completed in a sta-
ble fashion. For the third issue, to determine online activation of
the QSMC and the EBCs, we propose a pattern detection mech-
anism (to detect the occurrence of control situation switching)
and a pattern recognition mechanism (to recognize the active
control situation). Specifically, in the detection mechanism, a
threshold is designed to bound the control tracking error under
a steadily-operating control situation. When the operating situa-
tion is abruptly changed, the tracking error will increase and ex-
ceed the threshold, which can be used to indicate occurrence of
control situation switching. Once the change of environments is
detected, the operating controller will be immediately switched
to the QSMC for stabilizing the overall system, and the recog-
nition process will be activated. For recognition, we consider
that the controlled plant is steadily operating in each individual
control situation with the QSMC, an identification approach that
is developed based on the deterministic learning theory [12] is
employed to achieve locally-accurate identification of the overall
uncertain system dynamics; the obtained knowledge is then used
to construct a bank of estimators for online recognition of active
control situations. The recognition decision making is based on

the smallest residual principle (SRP). Once the active control sit-
uation is recognized, the operating controller will be switched to
the related EBC.

The main contribution of this paper can be summarized as
follows. A novel intelligent control scheme is proposed for a
class of discrete-time nonlinear uncertain systems operating un-
der multiple control environments, which is capable of mimick-
ing the human’s intelligence capabilities of (i) knowledge acqui-
sition through the process of control and recognition, and (ii)
knowledge re-utilization to improve the performance of recogni-
tion and control for rapidly adapting to multiple environments.

The rest of the paper is organized as follows. Section 2 pro-
vides some preliminaries and states the problem to be studied.
Section 3 presents the design of EBCs, and Section 4 proposes
the robust QSMC. The detection and recognition mechanisms are
presented in Section 5. Section 6 presents the overall intelligent
controller structure for systems operating under multiple envi-
ronments. The simulation results are presented in Section 7, and
the conclusion is given in Section 8.
Notations. R, R+ and Z+ denote, respectively, the set of real
numbers, the set of positive real numbers and the set of positive
integers; Rm×n denotes the set of m×n real matrices; Rn denotes
the set of n×1 real column vectors; In denotes the n×n identity
matrix; the open ball Br = {x ∈ Rn : ||x|| < r} with r being an
arbitrary positive constant; | · | is the absolute value of a real num-
ber; || · || is the 2-norm of a vector or a matrix, i.e. ||x||= (xT x)

1
2 .

2 Preliminaries and Problem Formulation
2.1 RBF NNs

RBF NN can be described by fnn(Z) = ∑
Nn
i=1 wisi(Z) =

W T S(Z) [13], where Z ∈ ΩZ ⊂ Rq is the input vector, W =
[w1, · · · ,wNn ]

T ∈ RNn is the weight vector, Nn is the NN node
number, and S(Z) = [s1(||Z− ς1||), · · · ,sNn(||Z− ςNn ||)]T , with
si(·) being a radial basis function, and ςi (i = 1,2, · · · ,Nn) be-
ing distinct points in state space. The Gaussian function si(||Z−
ςi||) = exp[−(Z−ςi)

T (Z−ςi)

η2
i

] is one of the most commonly used ra-

dial basis functions, where ςi = [ςi1,ςi2, · · · ,ςiq]
T is the center of

the receptive field. and ηi is the width of the receptive field. The
Gaussian function belongs to the class of localized RBFs in the
sense that si(||Z− ςi||)→ 0 as ||Z|| → ∞. It is easily seen that
S(Z) is bounded and there exists a real constant SM ∈ R+ such
that ||S(Z)||6 SM [12].

It has been shown in [13, 14] that for any continuous func-
tion f (Z) : ΩZ → R where ΩZ ⊂ Rq is a compact set, and for
the NN approximator, where the node number Nn is sufficiently
large, there exists an ideal constant weight vector W ∗, such that
for any ε∗ > 0, f (Z) = W ∗T S(Z)+ ε, ∀Z ∈ ΩZ , where |ε| < ε∗

is the ideal approximation error. The ideal weight vector W ∗

is an “artificial” quantity required for analysis, and is defined
as the value of W that minimizes |ε| for all Z ∈ ΩZ ⊂ Rq,
i.e. W ∗ , argminW∈RNn{supZ∈ΩZ

| f (Z)−W T S(Z)|}. Moreover,



based on the localization property of RBF NNs [12], for any
bounded trajectory Z(k) within the compact set ΩZ , f (Z) can be
approximated by using a limited number of neurons located in a
local region along the trajectory: f (Z) =W ∗T

ζ
Sζ (Z)+ εζ , where

εζ is the approximation error, with εζ = O(ε) = O(ε∗), Sζ (Z) =
[s j1(Z), · · · ,s jζ (Z)]T ∈ RNζ , W ∗

ζ
= [w∗j1, · · · ,w∗jζ ]

T ∈ RNζ , Nζ <

Nn, and the integers ji = j1, · · · , jζ are defined by |s ji(Zp)| > θ

(θ > 0 is a small positive constant) for some Zp ∈ Z(k).
It is shown in [12] that for a localized RBF network W T S(Z)

whose centers are placed on a regular lattice, almost any recur-
rent trajectory1 Z(k) can lead to the satisfaction of the PE con-
dition of the regressor subvector Sζ (Z). This result is formally
summarized in the following lemma.

Lemma 1 ( [15,16]). Consider any recurrent trajectory Z(k):
Z+ → Rq. Z(k) remains in a bounded compact set ΩZ ⊂ Rq,
then for RBF network W T S(Z) with centers placed on a regular
lattice (large enough to cover compact set ΩZ), the regressor
subvector Sζ (Z) consisting of RBFs with centers located in a
small neighborhood of Z(k) is persistently exciting (PE).

2.2 Problem Formulation
Consider the following discrete-time nonlinear uncertain

system: {
xi(k+1) = xi+1(k), i = 1,2, · · · ,n−1,
xn(k+1) = f j(x(k))+g j(x(k))u(k),

(1)

where x = [x1, · · · ,xn]
T ∈ Rn, u ∈ R are system state and input,

respectively, f j(x) ∈ R, g j(x) ∈ R are unknown nonlinear func-
tions, the superscript denotes different system dynamics under
different control situations with j ∈ J = {1, · · · ,N}.

Assumption 1. For ∀ j ∈ J, the sign of g j(x) is known and pos-
itive, and there exist constants g j

1 > g j
0 > 0 such that g j

1 > g j(x)>
g j

0, ∀x ∈ Rn.

Assumption 2. For ∀ j ∈ J, the nominal models of f j(x), g j(x)
in system (1) are known, denoted by f̄ (x) ∈ R, ḡ(x) ∈ R, respec-
tively, which satisfy: (i) ḡ(x)

g j(x) >
1
2 and (ii) there exists a known

constant H > 0 and a certain u such that |(( f j(x)− f̄ (x)) +
(g j(x)− ḡ(x))u|< H.

Remark 1. In (1), the effects of multiple environments j ∈ J are
reflected by the nonlinear uncertain functions f j(x) and g j(x).
Different j indicates changes of the system dynamics due to the
changing environments, which could be for example, faults in the
system, external disturbances, and changes in system parame-
ters. A typical example is the robot manipulator [17], which is

1A recurrent trajectory represents a large set of periodic and periodic-like
trajectories generated from linear/nonlinear dynamics systems. A detailed char-
acterization of recurrent trajectories can be found in [12].

built to carry up and lay down some specific objects repeatedly.
The changing loads and friction would result in changing system
dynamics with parameter value jumps and varying structures.

Consider the following reference model:{
xdi(k+1) = xdi+1(k), i = 1,2, · · · ,n−1,
xdn(k+1) = fd(xd(k)),

(2)

where xd = [xd1 , · · · ,xdn ]
T ∈Rn is the reference state, fd(xd)∈R

is a known nonlinear function.

Assumption 3. All state signals of the reference model (2) are
bounded and recurrent.

In this paper, we assume that the plant (1) initially operates
in a known control situation s ∈ J, and is abruptly switched to an
unknown control situation l (l ∈ J, l 6= s) at an unknown time in-
stant kc, as shown in Fig. 1. Our objective is to drive the system
state x of (1) to track over the reference signal xd of (2). For this
purpose, as shown in Fig. 1, we seek to: (i) design a set of EBCs,
each of which is tailored to an individual control situation for all
s, l ∈ J; (ii) develop a robust QSMC to stabilize the overall sys-
tem during the transition process of control situation switching;
(iii) devise a detection mechanism (to detect the change of con-
trol situations) and a recognition mechanism (to recognize the
active control situation l), so as to determine the activation of the
multiple controllers (QSMC or EBCs).

FIGURE 1: Schematic of the real-time control process under multi-
ple environments. k0: initial time; kc: occurrence time of environment
changing; kd : detection time of environment changing from s→ l; kr:
recognition time of the active operating environment l.

Remark 2. For the above control problem, conventional con-
trol methods may not be competent. For example, robust con-
trol methods (e.g., [18]) can be used to accommodate the sys-
tem uncertainties due to multiple environments, which however
usually lead to conservative control performance. Adaptive
switching control methods (e.g., [17]), dealing with the abruptly-
changing environments, would necessitate computationally-
expensive adaption and switching. In this paper, to overcome
these deficiencies, we will propose a novel intelligent control
scheme consisting of multiple controllers and a mechanism of
detection and recognition of active control situation.



3 Adaptive Learning Control Under Individual Envi-
ronment
In this section, we aim at designing multiple EBCs for each

individual control situation j ∈ J. An adaptive learning controller
based on the deterministic learning theory [12] will be proposed
to achieve stable tracking control and accurate learning of asso-
ciated uncertain system dynamics. Specifically, consider that the
plant (1) operating in any fixed individual control situation, say
j ∈ J, if the system nonlinear functions f j(x), g j(x) are known,
one can design an ideal stabilizing control strategy as:

u j∗ =
1

g j(x)
( fd(xd)− f j(x)−λ1zn−·· ·−λn−1z2), (3)

where fd(xd) is a known function in (2), zi = xi−xdi (i= 1, · · · ,n)
is state tracking error, λ1, · · · , λn−1 are design constants such that
zn−1 + λ1zn−2 + · · ·+ λn−1 is a Schur polynomial. It is easy to
prove that with the above controller, the filtered tracking error

r = zn +λ1zn−1 + · · ·+λn−1z1, (4)
will converge to zero exponentially, and thus the state tracking
error zi will be guaranteed to be also exponentially converging to
zero.

However, since the nonlinear functions f j(x) and g j(x) are
uncertain, making the above ideal controller not implementable,
to overcome this issue, we will resort to artificial neural net-
works. Specifically, according to the NN approximation results
as introduced in Section 2.1, for the unknown nonlinear function
u j∗ in (3), there exists an ideal constant NN weight W j∗ ∈ RNn

(with Nn denoting the number of NN nodes) such that

u j∗ =W j∗T S(Z)+ ε
j, (5)

where Z = [xT ,xz]
T ∈Rn+1 with xz = fd(xd)−λ1zn−·· ·−λn−1z2

is the input vector of RBF NNs; S(Z)∈RNn is a smooth RBF vec-
tor; ε j is an ideal approximation error satisfying |ε j| < ε∗, with
ε∗ being a positive constant that can be made arbitrarily small by
constructing sufficiently large number of neurons. Based on this,
the adaptive learning controller is proposed as:

û j(k) = Ŵ jT (k)S(Z(k)), (6a)

Ŵ j(k+1) = Ŵ j(k)− γ
jr(k+1)S(Z(k)), (6b)

with γ j being a design constant, Ŵ j an estimate of W j∗ in (5).
The rigorous analysis of closed-loop stability, tracking, and

learning performance achieved by the controller (6) can be sum-
marized in the following theorem.

Theorem 1. Consider the closed-loop system consisting of the
plant (1) with any fixed j ∈ J, the reference model (2), the adap-
tive learning controller (6). Under Assumptions 1 and 3, given
initial conditions x(0) ∈ Ω0 (where Ω0 is a compact set) and
Ŵ j(0) = 0, if the controller coefficient γ j satisfies 0 < γ j <

1
1+g j

1S2
M

, with g j
1 and SM respectively being the upper bounds of

g j(x) and ||S(Z)||, then, it is guaranteed that: (i) all signals in the

closed-loop system remain uniformly ultimately bounded (UUB);
(ii) there exists a finite time Kc such that for all k > Kc, the state
tracking error x(k)− xd(k) converges to a small neighborhood
around the origin, and the network input Z = [xT ,xz]

T converges
to a small neighborhood of recurrent orbit Zd = [xT

d , fd(xd)]
T ;

(iii) a locally accurate approximation for the unknown dynamics
u j∗ in (3) is obtained by Ŵ jT S(Z) as well as W̄ jT S(Z) along the
NN input orbit Z, where

W̄ j :=
1

K2−K1 +1

K2

∑
k=K1

Ŵ j(k) (7)

with K2 > K1 > Kc being a time segment after transient process.

Proof of the above theorem follows a similar line of that
for [19, Th. 1], readers are referred to this reference for details,
which will thus be omitted here.

Remark 3. Under Assumption 3, the system states x in (1)
tracking the reference signals xd in (2) is guaranteed to be re-
current. Thus, the RBF NN input Z = [xT ,xz]

T in (6) will also be
guaranteed to be recurrent. From Lemma 1, the satisfaction of
PE condition in the design of our approach will be guaranteed,
such that accurate parameter convergence can be ensured.

Through the learning process, the knowledge of the associ-
ated uncertain dynamics u j∗ in (3) can be obtained and stored in
the constant RBF NN model W̄ jT S(Z) (with constant weight W̄ j

given in (7)). According to [19, 20], such an approximation can
be achieved in a local region Ω

j
c along the trajectory Zd , which

can be described as:

Ω
j
c = {Z |dist(Z, Zd)< d∗c ⇒ |W̄ jT S(Z)−u j∗|< ε

∗
c }. (8)

where the constant d∗c characterizes the size of NN approxima-
tion region, and ε∗c is the approximation error within Ω

j
c (∀ j ∈ J),

which can be pre-specified and obtained by constructing a suffi-
ciently large number of neurons according to [19].

Consequently, with the models W̄ jT S(Z), a set of multiple
EBCs can be designed as follows:

u j(k) = W̄ jT S(Z(k)), j = 1, · · · ,N (9)

where the constant weight W̄ j is given in (7), and j denotes the
associated control situation. The closed-loop stability and track-
ing performance of such controllers are summarized as follows.

Theorem 2. Consider the closed-loop system consisting of the
plant (1) with a fixed j ∈ J, the reference model (2), and the as-
sociated j-th EBC in the form of (9). Under Assumptions 1 and
3, given the same recurrent reference orbits Zd = [xT

d , fd(xd)]
T ,

and with initial condition Z(0) in a close vicinity of Zd , we have
that: (i) all signals in the closed-loop system remain UUB; (ii)
the state tracking error x−xd converges to a small neighborhood
around the origin; (iii) the filtered tracking error in (4) after tran-
sient process satisfies:



|r|< g j
1ε
∗
c , (10)

where g j
1 is the upper bound of g j(x), ε∗c is the NN approximation

error within Ω
j
c.

Proof. For the plant (1) under control situation j, once the sys-
tem trajectory Z enters a vicinity of the experienced tracking or-
bit Zd , i.e., Ω

j
c in (8), the j-th EBC in (9) will quickly recall

the stored knowledge to provide accurate approximation for the
dynamics u j∗ in (3), as verified in (8), so as to achieve stable
tracking control without online adaptation. The detailed analysis
can be conducted by following the same process for [19, Th. 2].
Moreover, from (1)–(4), (8) and (9), after the transient control
process, the filtered tracking error r is guaranteed to satisfy

|r(k+1)|= |g j(x(k))(W̄ jT S(Z(k))−u j∗(k))|< g j
1ε
∗
c , (11)

which ends the proof.

4 Quasi Sliding Mode Control During Transition of
Multiple Environments
In this section, a robust quasi sliding mode controller

(QSMC) will be proposed to guarantee the system stability in
the transition process of EBCs-switching, i.e., the time duration
between kd and kr as shown in Fig. 1. Specifically, consider
the plant (1) and reference model (2), a sliding surface is first
designed as:

s(k) = s(k−2)+α0zn(k)+ · · ·+αn−1z1(k), (12)

where zi = xi− xdi (i = 1, · · · ,n) are tracking errors, the param-
eters α0, · · · ,αn−1 are selected to make α0zn + · · ·+ αn−1z1 a
Schur polynomial. We then design the robust QSMC as:

u0(k) =− 1
α0ḡ(x(k))

(α0( f̄ (x(k))− fd(xd(k)))+α1zn(k)

+ · · ·+αn−1z2(k)+ s(k−1)+ρ · sgn(s(k))),
(13)

where f̄ (x), ḡ(x) are known functions as specified in Assumption
2, ρ > α0H is a design constant, and H is a known constant
defined in Assumption 2. With the controller (13), from (1)–(2),
the function s(k) exhibits the zigzag behavior:

s(k+1) = α0(e j(k+1))−ρ · sgn(s(k)) (14)

where e j(k + 1) := f j(x(k)) + g j(x(k))u(k) − ( f̄ (x(k)) +
ḡ(x(k))u(k)) is bounded by |e j(k + 1)| < H, as given in As-
sumption 2. The boundedness can thus be obtained as: |s(k)| ≤
α0H +ρ , according to [18].

Following the analysis of [18], it can be demonstrated that
the QSMC in (13) will ensure that the system state x of (1) will
stay within a close vicinity of the reference orbit xd of (2), guar-
anteeing overall stability of the system during the transition pro-
cess of control situation changing.

5 Control Situation Detection And Recognition
In this section, according to Fig. 1, a rapid pattern detection

and recognition mechanism will be further developed to deter-
mine controller activation among multiple controllers.

5.1 Detection of Environment Changing
We first design a detection mechanism for detecting the oc-

currence of changes of the operating control situations. Recall
Fig. 1, suppose that the operating control situation is abruptly
changed from s ∈ J to l ∈ J (l 6= s) at time kc, i.e., the controlled
plant’s dynamics obeys

xi(k+1) = xi+1(k), i = 1,2, · · · ,n−1

xn(k+1) =

{
f s(x(k))+gs(x(k))us(k), k0 ≤ k < kc

f l(x(k))+gl(x(k))us(k), kc ≤ k
(15)

where k0 is initial time, us is the s-th EBC of (9).
In (15), for k0 ≤ k < kc, the operating controller us matches

the current control situation s. The filtered tracking error r of (4)
is guaranteed smaller than gs

1ε∗c , as verified in Theorem 2. Once
the control situation is switched to l (l 6= s) at time kc, the filtered
tracking error r could increase and become possibly larger than
gs

1ε∗c . Based on this, a threshold (denoted by ēc) can be designed:

ēc = qcε
∗
cm , (16)

where ε∗cm := max j∈J {g j
1ε∗c }, in which the value g j

1ε∗c is given
in (10) and can be obtained in the training phase of designing
EBCs; qc ≥ 1 is an auxiliary parameter designed to prevent the
misjudgment of detection.

Detection decision making scheme: Consider the system
(15) and the reference model (2). Compare the filtered tracking
error r of (4) with the threshold ēc of (16). If there exists a finite
time kd > kc such that |r(kd)| > ēc, occurrence of the change of
active control situations can be detected at time kd .

Remark 4. With the above detection mechanism, stability of the
system (15) can be guaranteed. It is noted that the threshold ēc
in (16) can be considered as the maximum tolerable tracking er-
ror level under the proposed EBCs of (9). As long as the filtered
tracking error |r| of (4) remains smaller than the designed thresh-
old ēc, it can be deduced that the system (15) operates in a stable
fashion and the active EBC matches the current control situation.

5.2 Recognition of Active Operating Environment
As shown in Fig. 1, the recognition mechanism will be ac-

tivated once occurrence of control situation changes is detected
at time kd . Note that after time kd , the operating controller is
switched to QSMC u0 of (13), in this case the monitored system
is governed by the following dynamics:{

xi(k+1) = xi+1(k), i = 1,2, · · · ,n−1
xn(k+1) = f l(x(k))+gl(x(k))u0(k), kr > k > kd

(17)



Development of the recognition mechanism will first involve
a training phase. Specifically, we consider that the monitored
plant operates in any fixed individual control situation, say j ∈ J,
and is controlled by the robust QSMC u0 of (13), i.e.,{

xi(k+1) = xi+1(k), i = 1,2, · · · ,n−1
xn(k+1) = f j(x(k))+g j(x(k))u0(k).

(18)

For the unknown nonlinear function f j(x)+g j(x)u0 in (18), ac-
cording to the RBF NN approximation methods introduced in
Section 2.1, there exists an ideal constant NN weight W j∗

r ∈ RNn

(with Nn denoting the number of NN nodes) such that

f j(x)+g j(x)u0 =W j∗T
r Sr(x,u0)+ ε

j
r,0 (19)

where (x,u0) is the input of RBF NNs generated from system
(18), Sr(x,u0) is a smooth RBF NN vector, ε

j
r,0 is an ideal approx-

imation error satisfying |ε j
r,0| < ε∗r , and ε∗r is a positive constant

that can be made arbitrarily small by constructing large number
of neurons. Based on this, we first propose to design an identifier
as follows to learn the above unknown function:

x̂ j
r(k+1) = a j(x̂ j

r(k)− xn(k))+Ŵ jT
r (k)Sr(x(k),u0(k)), (20a)

Ŵ j
r (k+1) = Ŵ j

r (k)− c j x̃n(k+1)Sr(x(k),u0(k)), (20b)

where a j, c j are design parameters, x̃ j
r = x̂ j

r − xn, and Ŵ j
r is an

estimate of the ideal constant weight W j∗
r in (19).

Learning performance of the identifier (20) is summarized
in the following theorem.

Theorem 3. Consider the adaptive learning system consisting
of the plant (18), the identifier (20). Under Assumption 3, given
the recurrent orbit (x,u0), with initial conditions (x(0),u0(0)) ∈
Ωr,0 (where Ωr,0 is a compact set) and Ŵ j

r (0) = 0, if the asso-
ciated coefficients in (20) satisfy 0 < a j <

√
5−1
2 and 0 < c j <

1
S2

r,M(2+a j)
with Sr,M being upper bound of ||Sr(x,u0)||, then, we

have: (i) all signals in the system remain UUB; (ii) there ex-
ists a finite time Kr such that for all k > Kr, the estimation
error x̂ j

r(k)− xn(k) converges to a small neighborhood around
the origin; (iii) a locally accurate approximation for the sys-
tem dynamics f j(x)+ g j(x)u0 can be obtained by Ŵ jT

r Sr(x,u0)

as well as W̄ jT
r Sr(x,u0) along the NN input orbit (x,u0), with

W̄ j
r = 1

K2
∑

K1+K2−1
k=K1

Ŵ j
r (k), and K2 > K1 > Kr representing a time

segment after the transient process.

Proof of the above theorem follows a similar line of that
in [21, Th. 1], readers are referred to this reference for details,
which are thus omitted here.

Remark 5. Under Assumption 3, the system state x and refer-
ence signal xd are guaranteed to be recurrent. Note that the con-
trol signal u0 of (13) is designed as a function of x and xd , which

thus is also recurrent. From Lemma 1, given the recurrent orbit
(x,u0), the associated PE condition in the adaptive learning con-
trol system will be satisfied, ensuring convergence of associated
adaptation parameters to their true values.

Through the above learning/training phase, the uncertain dy-
namics f j(x)+g j(x)u0 in (18) can be identified and represented

by constant RBF NN models W̄ jT
r Sr(x,u0). Moreover, the ap-

proximation is achieved in a local region Ω
j
r along the experi-

enced recurrent trajectory (denoted by ϕ
j

r ) of (18) with

Ω
j
r :={(x,u) |dist((x,u),ϕ j

r )< d∗r ⇒

| f j(x)+g j(x)u0−W̄ jT
r Sr(x,u)|< ε

∗
r },

(21)

where d∗r characterizes the size of NN approximation region, ε∗r
is the NN approximation error within the region Ω

j
r .

Based on the obtained models W̄ jT
r Sr(x,u0), for the moni-

tored system (17), we are ready to design the following system
for real-time recognition of active operating environment:

e j
r(k) = bre j

r(k−1)+ |W̄ jT
r S(x(k−1),u0(k−1))−xn(k)|, (22)

where j = 1, · · · ,N, 0 < br < 1 is a design parameter, (x,u0) is
the real-time trajectory of (17), xn is the system state in (17),
and e j

r is a residual signal with e j
r(kd) = 0, which can be taken

as the similarity measure between the operating control situation
l of (17) and each trained control situation j in (18), as argued
in [22, 23].

The recognition decision making is based on the smallest
residual principle, that is, the active operating control situation
l of (17) is recognized when the corresponding residual el

r be-
comes the smallest one. Following the methodologies from
[22, 23], to achieve rapid recognition, the following assumption
is made.

Assumption 4. For different control situations l, l̄ ∈ J (l̄ 6= l),
the system dynamics in the form of (18) satisfies

|( f l̄(x)+gl̄(x)u0)− ( f l(x)+gl(x)u0)|> ε
∗
r , (23)

where ε∗r is the ideal approximation error given in (21).

The following theorem summarizes the recognition results.

Theorem 4. Consider the monitored system (17) and the recog-
nition systems (22). Under Assumption 4, for l ∈ J, ∀l̄ ∈ J/{l},
there must exist a finite time kr > kd such that el

r(k)< el̄
r(k) holds

for k ≥ kr, and the control situation l of (17) can be recognized
at time kr.

Proof of the above theorem follows similar line of that of
[22, Th. 1].



6 Summary of the Overall Controller Structure
In this section, we summarize the overall intelligent con-

troller structure that consists of all the control and recognition
components proposed from the previous sections, and present the
real-time control process for the plant (1) under multiple environ-
ments. Specifically, as shown in Fig. 1, when the operating con-
trol situation is abruptly changed from s to l (l 6= s) at time kc, it
will be rapidly detected at time kd . Then, the operating controller
is switched to QSMC, and the recognition process is activated.
The rapid recognition for the control situation l is achieved at
time kr. Subsequently, the operating controller is switched from
QSMC to the l-th EBC that matches the active control situation.
Consequently, the overall control system can be summarized as:

xi(k+1) = xi+1(k), i = 1,2, · · · ,n−1

xn(k+1) =


f s(x(k))+gs(x(k))us(k), k0 ≤ k < kc

f l(x(k))+gl(x(k))us(k), kc ≤ k ≤ kd

f l(x(k))+gl(x(k))u0(k), kd < k ≤ kr

f l(x(k))+gl(x(k))ul(k), kr < k,
(24)

with s, l ∈ J (l 6= s) representing different control situations, us, ul

being the EBCs of (9), u0 the QSMC of (13), k0 the initial time, kc
the occurrence time of control situation l, kd the detection time,
and kr the recognition time.

We have the following theorem to summarize the stability
property of the overall system (24).

Theorem 5. Consider the closed-loop system consisting of the
plant (24), the reference model (2), the EBCs (9), the QSMC (13),
and the recognition systems (22). Under Assumptions 1–4, given
the recurrent reference orbit Zd = [xT

d , fd(xd)]
T , and with initial

condition Z(k0) = [x(k0)
T ,xz(k0)]

T in a close vicinity of Zd , we
have: (i) all signals in the closed-loop system remain UUB; (ii)
the state tracking error x−xd converges to a small neighborhood
around zero.

Proof. When k0 ≤ k < kc, the plant (24) operates in control situ-
ation s and is controlled by the s-th EBC us. According to Theo-
rem 2, with the given initial conditions, we have that all signals in
the closed-loop system remains UUB, and the state tracking error
x− xd converges to a small neighborhood around the origin.

At time kc, in (24), the operating control situation is
switched from s to l (l 6= s). Such a change is detected at time kd ,
and then, the QSMC u0 of (13) is selected in operation for time
kd < k ≤ kr. As analyzed in Section 4, with the controller u0,
the system stability can be guaranteed and the system trajectory
x of (24) stays close to the reference orbit xd of (2). Moreover,
for time kd < k ≤ kr, the signal Z = [xT ,xz]

T is guaranteed to
stay in a close vicinity of Zd = [xT

d , fd(xd)]
T , which enables the

switching process of EBCs (us→ ul) to be completed in a stable
fashion.

At time kr, the control situation l is recognized, and then the
l-th EBC ul of (9) is activated for k > kr. According to the Theo-
rem 2, once the EBC ul is selected (at time kr), it will quickly
recall the stored knowledge to achieve desired control perfor-
mance. All signals in the closed-loop system (24) remain UUB,
and the state tracking error converges to a small neighborhood
around zero. This ends the proof.

7 Simulation Studies
In this section, we will use a numerical example to demon-

strate effectiveness of the proposed approach. To this end, we
consider the following second-order nonlinear systems:{

x1(k+1) = x2(k),
x2(k+1) = f j(x(k))+g j(x(k))u(k),

(25)

where j ∈ J = {1,2,3} represents different control situations
with f 1(x) = x1

1+2x2
2
, g1(x) = 1 + 0.3(sinx2)

2, f 2(x) = sinx1
0.8+x2

2
,

g2(x) = 0.8 + 0.3cos(x1x2) and f 3(x) = x1+0.8sinx1
1+x2

2+cosx1
, g3(x) =

1.1 + 0.2sin(x1x2) being unknown functions. Their nominal
models are known and given as: f̄ (x) = x1

1+x2
2
, ḡ(x) = 1. Con-

sider the reference model:{
xd1(k+1) = xd2(k),
xd2(k+1) = fd(xd(k)),

(26)

with fd(xd(k)) = sin(0.5(k+1)). Given (25) and (26), it is seen
that Assumptions 1–4 are all satisfied.

We first design multiple EBCs for each individual control
situation j = 1,2,3. Specifically, for the adaptive learning con-
trol in (6), we construct the RBF network S(Z) in a regular
lattice, with nodes Nn = 2197, the centers evenly spaced on
[−1.2,1.2]× [−1.2,1.2]× [−1.2,1.2] and the width ηc = 0.2.
The initial conditions are set as x(0) = [1,1]T , xd(0) = [0,0]T ,
Ŵ j(0) = 0 and the parameters are set as λ1 = 0.2, γ j = 0.1.
The EBCs in (9) are developed with W̄ j = 1

100 ∑
1200
k=1101 Ŵ j(k)

( j = 1,2,3). Consider the control situation 1, the learning perfor-
mance achieved by adaptive learning control are plotted in Figs.
2a and 2b, and the tracking performance of EBC is in Fig. 2c.
The simulation results of control situations j = 2,3 are similar
thus omitted here.

The QSMC in (13) is designed by setting α0 = 1, α1 =
0.24, and ρ = 5. Given the initial conditions x(0) = [1,1]T ,
xd(0) = [0,0]T , the tracking performance for the control situa-
tions j = 1,2,3 are plotted in Fig. 3. It is seen that no matter
which control situation occurs, QSMC always guarantees that
the system trajectory x of (25) remains within a close vicinity of
the reference orbit xd of (26).

Finally, the detection and recognition mechanisms can be
constructed as follows. For detection purpose, the detection
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FIGURE 2: Learning and control performance under control situation 1. (a) NN weight convergence of controller (6): Ŵ 1. (b) Function approximation
of controller (6): Ŵ 1T

S(Z) and u1∗. (c) Tracking performance of the 1-st EBC of (9): system state x1 and xd1 .
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FIGURE 3: Tracking control performance of the QSMC (13) (a) under control situation 1, (b) under control situation 2, (c) under control situation 3.
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FIGURE 4: Identification performance of identifier (20) under control situation 1. (a) NN weight convergence: Ŵr. (b) Function approximation:
Ŵ 1T

r Sr(x,u) and f 1(x)+g1(x)u0. (c) Function approximation: W̄ 1T

r Sr(x,u) and f 1(x)+g1(x)u0.

threshold in (16) is designed by setting qc = 10. The accu-
racy level of filtered tracking error |r| of (10) can be obtained
as ε∗cm = 0.0024 through the training phase of implementing the
EBCs. For recognition of using the identifier (20), we construct
the RBF network Sr(x,u0) in a regular lattice with nodes Nn =
2197, the centers evenly spaced on [−1.2,1.2]× [−1.2,1.2]×
[−1.2,1.2] and the width ηd = 0.2. The parameters are set as
a j = 0.1, c j = 0.1, and the initial conditions are Ŵ j

r (0) = 0,
x̂ j

r(0) = 0 ( j = 1,2,3). The learned knowledge is stored as

W̄ j
r = 1

100 ∑
1000
k=901 Ŵ j

r (k) ( j = 1,2,3). The recognition systems
in (22) are developed by setting br = 0.9. Considering the con-
trol situation 1, the identification performance of the identifier is
shown in Fig. 4. The performance of both detection and recogni-
tion mechanisms are given in Fig. 5. Note that in the simulation
process, the recognition result is observed with a delay of 50 time
steps, so as to prevent potential misjudgment of recognition. The
simulation results of control situations j = 2,3 are similar thus
omitted here.

To examine the effectiveness of the overall control scheme,
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FIGURE 5: Detection and recognition performance under control situation 1 that recurs at time kc = 8999. (a) Detection of the occurrence of control
situation 1 at time kd = 9000. (b) Recognition of control situation 1 at time kr = 9050.
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FIGURE 6: Real-time control performance of the overall controller under multiple environments. (a) Operating control situations j = 1,2,3. (b)
Operating controllers with index 0: QSMC in (13); index 1,2,3 of EBCs in (9). (c) State tracking error: x1− xd1 .

we assume the operating control situation of system (25) fol-
lows a switching sequence: 3(0 ≤ k < 8999)→ 1(8999 ≤ k <
10999)→ 2(10999 ≤ k < 12999)→ 3(12999 ≤ k), as shown
in Fig. 6a. We first consider the case that the operating con-
trol situation is switched from j = 3 to j = 1 at time kc = 8999.
The detection of such a change is achieved at time kd = 9000 as
shown in Fig. 5a, and the recognition of control situation j = 1
is achieved at time kr = 9050 as in Fig. 5b. Based on the de-
tection and recognition results, the active operating controller at
time kd +1 = 9001 is the QSMC, and switched to the 1-st EBC
at time kr + 1 = 9051, see Fig. 6b. Stabilizing tracking control

performance is achieved in Fig. 6c. For the cases that control sit-
uation j = 2 recurs at time kc = 10999, and j = 3 at kc = 12999,
the simulation results are similar and also depicted in Fig. 6.

8 Conclusions
In this paper, we have proposed a novel intelligent control

scheme for a class of discrete-time nonlinear uncertain systems
operating under multiple environments. First, for each individual
environment, with a novel adaptive learning control approach, a
set of multiple EBCs were designed to achieve stabilizing track-
ing control performance. In the transition process of multiple
environments, a robust QSMC was designed to stabilize the over-



all system. To determine activation among multiple controllers
(QSMC or EBCs), a novel detection mechanism (to detect the oc-
currence of environment changing) and a recognition mechanism
(to rapidly recognize the active operating environment) were de-
veloped. Extensive simulation studies have been conducted to
demonstrate that our approach is able to successfully operate in
varying multiple environments with desired tracking control per-
formance guaranteed.
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