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Abstract

We study the problem of learning a node-labeled tree given independent traces from an appropri-
ately defined deletion channel. This problem, tree trace reconstruction, generalizes string trace
reconstruction, which corresponds to the tree being a path. For many classes of trees, including
complete trees and spiders, we provide algorithms that reconstruct the labels using only a polyno-
mial number of traces. This exhibits a stark contrast to known results on string trace reconstruction,
which require exponentially many traces, and where a central open problem is to determine whether
a polynomial number of traces suffice. Our techniques combine novel combinatorial and complex
analytic methods.
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1. Introduction

Statistical reconstruction problems aim to recover unknown objects given only noisy samples of the
data. In the string trace reconstruction problem, there is an unknown binary string, and we observe
noisy samples of this string after it has gone through a deletion channel. This deletion channel
independently deletes each bit with constant probability ¢ and concatenates the remaining bits. The
channel preserves bit order, so we observe a sampled subsequence known as a trace. The goal is
to learn the original string with high probability using few traces. The string trace reconstruction
problem (with insertions and substitutions in addition to deletions) directly appears in the problem
of DNA Data Storage [Church et al. (2012); Organick et al. (2018)]. Here it is crucial to minimize
the sample complexity, as this directly impacts the cost of retrieving data stored in synthetic DNA.

We introduce a generalization of string trace reconstruction, called tree trace reconstruction.
Research on DNA nanotechnology has demonstrated that structures of DNA molecules that are
more complex than a line, such as lattices and trees, can be constructed. Also, recent work can
distinguish some molecular topologies, such as Y-structures (spiders with three arms), from line
DNA using nanopores [Karau and Tabard-Cossa (2018)]. We envision these results may open the
door for more complicated tree structures, which could be useful for applications. From a technical
perspective, tree trace reconstruction may aid in understanding the interplay of combinatorial and
analytic approaches to reconstruction problems and can be a springboard for new ideas.

* Full version appears as https://arxiv.org/abs/1902.05101.
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(a) Original Tree (b) TED (c) Left-Propagation

Figure 1: Deletion models. Gray nodes deleted from original tree (a). Resulting trace in the TED
Model (b) and the Left-Propagation Model (c).

Let X be arooted tree with unknown binary labels on its n non-root nodes. We assume X has a
canonical ordering of its nodes, and the children of a node v in X have a left-to-right ordering. The
goal of tree trace reconstruction is to learn the labels of X with high probability, using the minimum
number of traces, knowing only ¢, the deletion model, and the structure of X. We consider two
deletion models. In both models, each non-root node v in X is deleted independently with constant
deletion probability g—the root is never deleted—and the resulting tree is called a trace. Also, in
both models, deletions are associative, so it suffices to define the behavior of a single deletion.

In the Tree Edit Distance model, deletions do not preserve the nodes’ degrees (see Figure 1).

e Tree Edit Distance (TED) model: When v is deleted, all children of v become children of
v’s parent. Equivalently, contract the edge between v and its parent, retaining the parent’s
label. The children of v take v’s place as a continuous subsequence in the left-to-right order.

A key motivation for the TED model is that deletions in the TED model correspond exactly to the
deletion operation in tree edit distance, which is a well-studied metric for pairs of labeled trees [Bille
(2005)]. This metric is relevant for applications, as well; for example, tree edit distance is often used
to compare secondary structures of RNA [Zhang and Shasha (1989)].

In contrast, our main motivation for the Left-Propagation model is more theoretical: it preserves
different structural properties—for instance, a node’s number of children does not increase—and
poses different challenges than the TED model. To describe this model, we define the left-only path
starting at v as the path that recursively goes from parent to left-most child, stopping at a leaf.

e Left-Propagation model: When v is deleted, recursively replace every node (together with
its label) in the left-only path starting at v with its child in the path. This results in the deletion
of the last node of the left-only path, with the remaining tree structure unchanged.!

Figure 1 depicts example traces in both the TED and the Left-Propagation models, for the same
original tree X and the same set of deleted nodes. Note that it may not be clear from a trace which
nodes were deleted. Also, observe that when X is a path (with first node as the root) or a star (with
center as the root), then both models coincide with the string deletion channel. In many places, we
defer to the full version of the paper.

1. Since the BFS order on X is arbitrary (but fixed), the choice of using the left-only path (as opposed to, say, the
right-only one) does not a priori bias certain nodes.
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1.1. Related Work

Introduced by Batu, Kannan, Khanna, and McGregor [Batu et al. (2004)], string trace reconstruction
has received a lot of attention, especially recently [De et al. (2017); Hartung et al. (2018); Holden
and Lyons (2018); Holenstein et al. (2008); Holden et al. (2018); McGregor et al. (2014); Nazarov
and Peres (2017); Viswanathan and Swaminathan (2008)]. Yet there is still an exponential gap
between the known upper and lower bounds for the number of traces needed to reconstruct an arbi-
trary string with high probability and constant deletion probability: it is known that exp(O (nl/ 3))
traces are sufficient [De et al. (2017); Nazarov and Peres (2017)] and S~2(n5/ 4) traces are neces-
sary [Holden and Lyons (2018)]. Determining whether a polynomial number of traces suffice is a
challenging open problem in the area. A well-studied variant is reconstructing a string with random,
average-case labels, instead of arbitrary, worst-case labels [Batu et al. (2004); Holden et al. (2018)].
In a few of our algorithms, we reduce various subproblems to the string trace reconstruction
problem. Hence, we will use existing results as a black box, and we precisely state the previous
results now. Let T'(n, ¢) denote the minimum number of traces needed to reconstruct an n-bit string
with probability at least 1 — &, where the dependence on the deletion probability g is left implicit.

Theorem 1 (De et al. (2017); Nazarov and Peres (2017)) T'(n,8) < In(}) . ',

In terms of lower bounds, T'(n, §) = Q(n'2%) for any § bounded away from one [Holden and
Lyons (2018)]. We discuss related work on other graph reconstruction models in the full version,
noting that there are no formal or quantitative connections between these other models and ours.

1.2. Our Results

We provide algorithms for two main classes of trees: complete k-ary trees and spiders; some results
extend beyond these as well. In a complete k-ary tree, every non-leaf node has exactly k children,
and all leaves have the same depth. An (n, d)-spider consists of n/d paths of d + 1 nodes, all start-
ing from the same root. We focus on these two classes because of their varying structure. Spiders
behave like a union of disjoint paths, except when some paths have all of their nodes deleted. This
allows us to extend methods from string trace reconstruction, with a slightly more complicated anal-
ysis. On the other hand, complete k-ary trees are so structured that we can use more combinatorial
algorithms, which have proven less successful for string trace reconstruction so far. We use with
high probability to mean with probability at least 1 — O(1/n). Also, [t] := {1,2,...,t}.

TED model for complete k-ary trees. Let X be arooted complete k-ary tree along with unknown
binary labels on its n non-root nodes. We provide two algorithms to reconstruct X, depending on
whether the degree k is large or small. We state our theorems in terms of T'(k, §).

Theorem 2 In the TED model, there exist c,¢’ > 0 depending only on q such that if k > ¢log? (n),
then it is possible to reconstruct a complete k-ary tree on n nodes with exp(c -logy, n) - T(k, 1/n?)
traces with high probability.

Theorem 1 implies that T'(k,1/n?) = exp (O(kl/ %)) if k > clog®(n), so the trace complexity
in Theorem 2 is currently exp (O(logy(n) + k1/3)). This is poly(n) as long as k = O(log® n).

Theorem 3 In the TED model, there exists C > 0 depending only on q such that exp(Cklog;, n)
traces suffice to reconstruct a complete k-ary tree on n nodes with high probability.
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In particular, when k is a constant, then the trace complexity of Theorem 3 is poly(n). Theo-
rem 3 makes no restrictions on k, but uses more traces than Theorem 2 for k > ¢ log2 n.

Left-Propagation model for complete k-ary trees. We provide two reconstruction algorithms
for k-ary trees in the Left-Propagation model, leading to the following two theorems. Algorithms,
proofs, and details for this model appear in the full version.

Theorem 4 [In the Left-Propagation model, there exists ¢ > 0 depending only on q such that
if k > clogn, then T(d + k,1/n?) traces suffice to reconstruct a complete k-ary tree of depth
d = O(logy, n) with high probability.

When k > clogn, then d + k = O(k), and we reconstruct an n-node complete k-ary tree with
exp(O(k'/3)) traces by using Theorem 1. We also provide an algorithm with no assumptions on k.

Theorem 5 In the Left-Propagation model, O(n"logn) traces suffice to reconstruct an n-node
ck oy ﬁ),fora constant ¢ > 1.

Inn

complete k-ary tree with high probability, where v = In (%q) (

Theorem 5 implies that poly (n) traces suffice to reconstruct a k-ary tree whenever k = O(logn)
and ¢ is a constant. For small enough ¢ and k, the algorithm needs only a sublinear number of traces
(for example, binary trees with ¢ < 1/2 — ¢). As ¢ is a constant, the bound in Theorem 5 can be
more simply thought of as exp(C’ - (d + k)); and, in Theorem 4 as exp(C - (d + k)'/3).

Spiders. The TED and Left-Propagation deletion models are the same for spiders. We provide
two reconstruction algorithms, depending on whether the depth d is large or small.

Theorem 6 Assume that d < log; ,,n. For g < 0.7, there exists C > 0 depending only on q such
that exp(C - d(nq®)/3) traces suffice to reconstruct an (n, d)-spider with high probability.

To understand the statement of this theorem, consider d = clog; /, n with ¢ < 1. A black-

box reduction to the string case results in using exp(Q2(n!=)) traces for reconstruction (see the
full version for details), whereas Theorem 6 improves this to exp(O(n(!=9/3)). Our approach
extends previous results based on complex analysis [De et al. (2017); Nazarov and Peres (2017)].
In particular, we analyze a generating function that might be of independent interest, related to
Littlewood polynomials.

For large depth d > log; /, n, full paths of the spider are unlikely to be completely deleted, and
in the full version we derive the following result as a corollary of Theorem 1.

Proposition 7 For ¢ < 1 and all n large enough, an (n,d)-spider with d > log; /q T can be
reconstructed with 2 - T (d L ) traces with high probability.

I 2TL2

1.3. Overview of TED Algorithms

Previous work on string trace reconstruction mostly utilizes two classes of algorithms: mean-based
methods, which use single-bit statistics for each position in the trace, and alignment-based methods,
which attempt to reposition subsequences in the traces to their true positions.

Although mean-based algorithms are currently quantitatively better for string reconstruction,
they seem difficult to extend to k-ary trees under the TED deletion model. Specifically, mean-based
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methods require a precise understanding of how the bit in position j’ of the original tree affects the
bit in position j of the trace. For strings, there is a global ordering of the nodes which enables this.
Unfortunately, for k-ary trees with & ¢ {1, n} under the TED model, nodes may shift to a variety of
locations, making it unclear how to characterize bit-wise statistics. To circumvent this challenge, we
provide two new algorithms, depending on whether or not the degree k is large (k > clog®(n)). The
main idea is to partition the original tree into small subtrees and learn their labels using a number
of traces parameterized primarily by & and log;, n, which can be much smaller than n.

When £k is large enough, we will be able to localize root-to-leaf paths, in the sense that we can
identify the location of their non-leaf nodes in the original tree with high probability. By covering
the internal nodes of the tree by such paths, we will directly learn the labels for all non-leaf nodes.
Then, we observe that the leaves can be naturally partitioned into stars of size k, and we can learn
their labels by reducing to string trace reconstruction (for strings on k bits).

When k is small, our localization method fails, and we resort to looking at traces which contain
even more structure (which requires more traces). We decompose the entire tree into certain subtrees
and recover their labels separately. We define a property which is easily detectable among traces
and show that when this property holds, we can extract labels for the subtrees that are correct with
probability at least 2/3. Then, we take a majority vote to get the correct labels with high probability.

1.4. Overview of Spider Techniques

When the paths of a spider are sufficiently long—if they have depth d > log;,, n—then with
probability close to 1, no path is fully deleted in a given trace. This allows us to trivially match
paths of the trace spider to paths of the original spider and then use string trace reconstruction
algorithms on the individual paths, leading to Proposition 7.

When the paths of a spider are shorter (d < log; /, ), almost all traces have paths fully deleted;
here it is unclear which paths were deleted, which forces us to align paths from different traces. We
bypass alignment-based methods and use a mean-based algorithm, building off methods introduced
in the proof of Theorem 1 by De et al. (2017); Nazarov and Peres (2017). In contrast to strings
which are one dimensional, we have the additional difficulty that spiders are two dimensional: one
representing which path a node is in, and the other representing where in a path a node is.

2. Preliminaries

In what follows, X denotes the (known) underlying tree, along with the (unknown) binary labels on
its n non-root nodes. See the full version for standard tree definitions (e.g., depth, ancestor, leaf).

k-ary Tree Algorithm Preliminaries. Let X be a rooted complete k-ary tree with depth d. We
index the non-root nodes according the BFS order on X (the root is not indexed; the children
of the root are {0,1,...,k — 1}, etc.). We identify nodes of X with their index. For t € [d],
let J; be the nodes at depth ¢. Define Z; = J; = {0,1,...,k — 1}, and for ¢t > 2, we set
T = {i € J; | i mod k # 0}. Define Z = | J¢=] Z;. We define three unlabeled subtrees of X. Let
Px (1) be the path from the root to 7 in X. Define Hx (i) as the union of the left-only path starting
at 7, descending to a leaf ¢, and the k& — 1 siblings of ¢. Finally, define G x (i) = Px (i) U Hx (7).

Canonical subtrees of traces. We define certain subtrees of a trace, analogous to Px (i), Hx (%),
and G'x (i), and they only depend on the position of i in X. We will denote them as Py (i), Hy (),
and Gy (7). Intuitively, they are subtrees in Y obtained by looking at nodes that should be in the
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Figure 2: Canonical subtrees for k-ary trees, in the original tree (left) and trace (right).

same position as the corresponding ones in X. However, the node ¢ does not necessarily belong to
these subtrees (e.g., it may have been deleted in Y, or another node may be in its place). In what
follows, we refer to subtrees as sequences of nodes in the BFS order, since the edge structure will
be clear from context (i.e., the subtree is the induced subgraph on the relevant nodes).

We formally define Py (i), Hy (i), and Gy (¢), which are also depicted in Figure 2. Fix 7, and let
Up, U1, - . ., Ug—1 be the internal nodes in G x (i), where u; has depth ¢, and letug, . .., uq k1 be the
leaf nodes, ordered left-to-right in the BFS order. Define 7; : {0,1,...,d—1} — {0,1,...,k—1}
so that 7;(t) is the position of u;11 in X among its siblings (the children of its parent u;). Note
that 7; is independent of the labels of X. Let ¢; be the depth of 7 in X. We define Py (7) as the path
V0, V1, ...,V in Y obtained from the following process. Set v to be the root. Then, for ¢ € [t;],
let v; be the node at depth ¢ in Y that is in position 7;(t — 1) among the k children of v;_1, where we
abort and set Py (i) =L if v4_1 does not have exactly k children. Similarly, let Gy (i) be the subtree
V0, V1, - - -, Vgt+k—1, Where vy is defined as follows. Set vy to be the root in Y. Then, for ¢ € [d — 1],
let v; be the node at depth ¢ in Y that is in position 7;(¢ — 1) among the & children of v;_1, where
we abort and set Gy (i) =L if v;_1 does not have exactly k children. Finally, set vg, ..., vg1x—1 tO
be the £ children of vy_1, and again we set Gy (i) =L if vy_; does not have precisely k children.
If Gy (i) #L1, then set Hy (i) = v,,...,v41k—1, and otherwise, set Hy (i) =_L. Observe that if

Gy (i) #L, then we have Gy (i) = Py (i )UHy( ).

We remark that Gy (i), Hy (i), and Py (i) depend only on 7; and Y, and therefore, they do not
use any label information from X. We also note that whether these subtrees are set to L will be
significant, since it implies certain structural properties of traces. If all nodes in G x (4) survive in a
trace Y, then we say that Y contains Gx(i). We write Gy (i) = Gx (i) if the nodes and labels in
these subtrees are exactly the same (by construction, the edges will also be the same).

3. Reconstructing Trees, TED deletion Model

3.1. Proof of Theorem 2 concerning large degree trees

Our algorithm utilizes structure that occurs when k > clog®(n). Recall that for a node i in X, we
think of ¢’s children as being ordered consecutively, left-to-right, based on the BFS ordering of X.

Definition 8 Let Y be a trace of a tree X. We say that Y is b-balanced if, for every internal node i
in X, at most b consecutive children of i have been deleted in'Y .

Claim 9 If X has n nodes, then a trace Y is b-balanced with probability at least 1 — ng®.
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Proof Any set of b consecutive nodes is deleted with probability ¢°. Since there are at most n
starting nodes for a run of b nodes, a union bound proves the claim. |

We reconstruct X using b-balanced traces Y. However, since we do not know how to detect
whether a trace is balanced or not, we set b large enough so that all traces are balanced with high
probability, b = O(\/E) The balanced structure helps us to determine the position in X of all
internal nodes in Y that occur on some surviving root-to-leaf path. For the leaves, we will utilize
string trace reconstruction, which applies because the k children of a node at depth d — 1 are leaves,
and the deletion process for a star with k leaves is the same as for the string with k bits.

Lemma 10 Let ¢, ¢ be large constants depending only on q. Assume that k > clog® (n). Fora
node j € Jy1, if Y contains the path Px (j), then there is an algorithm to determine the original
position in X of every node of Px (j) in' Y with probability at least 1 — exp(—cVk).

Proof Set b = 10v/k/log(1/q) = Q(logn), so that a trace Y is b-balanced with probability at
least 1 — exp(—C’+/k) by Claim 9. In what follows, we assume Y is b-balanced. In particular this
implies that Y contains some child of every internal node in X, because k > b for k large enough
(equivalently, n large enough, because k > ¢log? (n)). This property allows us to deduce the depth
in X of nodes in Y. To see this, let u be any node in Y, and let ¢ be the original depth of w in X.
Then, Y contains a path from u to a leaf in Y with d — ¢ + 1 nodes (including ). In other words,
depth ¢ nodes in X have height d — ¢ in Y, when not deleted. As a consequence, Y contains some
root-to-leaf path (ug,u1, ..., uq) from X, and u; has depth ¢ in both X and Y.

Let ¢ : Y — X be the injective function mapping nodes in Y to their positions in X. We will
determine ¢(uy) for every u; € Px(j) such that Y contains Px(j) and j € J4—1. Without loss of
generality, fix j and assume that Px (j) corresponds to the first d nodes (uo, . . ., u4—1). Our goal is
to verify this fact by determining ¢(u;) for u; € Px(j).

We know that vy is the root in both X and Y, so consider any depth ¢ € [d — 1] and suppose that
we have already determined ¢(u;—1). Among the children of w;_; in Y, there is a subset that were
originally children of ¢(u;—1) in X. Denote these surviving children as w1, . .., wy, for1 < k' < k,
where we order the w; from left-to-right in the BFS ordering. We can identify wy,...,wy in Y,
because they will have height d —¢ in Y, while their siblings in Y will have height at mostd —¢ — 1,
which follows from our earlier discussion about consequences of being b-balanced. For some 7/,
we have w; = u, but we will more generally determine ¢(w;) for all @ € [k']. We will do this by
determining the original position of w; in X among the children of ¢ (u;—1).

Let a; be the (currently unknown) number of deleted children of u;—; between w; and w; 1,
where we set ag (resp. ag/) to be the number of deleted nodes before w; (resp. after wy/) in Y.
Observe that w; has position ¢ + > ., ; a; in X among the children of ¢(u;—1). Therefore, our
goal will be to determine ay, . . . , a; with high probability.

Let R; be the total number of surviving descendants in Y of these a; deleted children. Let
my = Z?;f k* be the number of edges in a complete k-ary tree of depth d — t, and observe that
each of the a; deleted children has m; descendants in X, each which survive with probability (1—¢q)
independently. In other words, F?; is a Binomial random variable with a; - m; trials and probability
(1 — q) of success, and E[R;] = a; - (1 — q)my.

Consider the event that, for every i = 0, 1, ..., K, we have

(1- Q)mt.

|Ri —a; - (1 —q)-my| < 3

ey
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We claim that Eq. (1) holds with probability at least 1 — exp(—C\/%) by a standard Chernoff
bound, since the R; are Binomial random variables, where we use that a; < b = O(\/E) to bound
the deviation of R;. We now argue that if Eq. (1) holds, then we can determine the position of each
w; among the children of ¢(u;—1), and so, we can determine ¢(w1), ..., ¢(wy). To achieve this,
set @; to be the unique integer satisfying a; — 1/2 < ﬁw < a; + 1/2. By Eq. (1), we have that
a; = a; fori = 0,1,...,k’. We deduce that the node w; has position 7 + ZO<j<i a; in X among
the children of ¢(u;—1), fori = 0,1,...,k". Therefore, knowing ¢(u;_1) and assuming Eq. (1)
allows us to determine ¢(w;) as well. We now put everything together. Any trace Y is b-balanced
with probability 1 — exp(—O(v/k)). When Y is b-balanced and contains Py (j), we determine the
positions of the nodes in this path with probability 1 — exp(—O(v/k)). Although Y may contain
Px (j) for many values of j € J;_1, there are at most n such paths. Since k& > ¢ log2 n, we can take
a union bound, and we succeed in determining the positions of every Px(j) in Y with probability
at least 1 — exp(—c \/E) for some constant ¢ > 0 depending only on gq. |

Lemma 11 Fix j € J;_1. Using T(k,1/n?) traces that each contain Px(j), we can reconstruct
the labels for Px (j) and all children of j with probability at least 1 — 2 /n>.

Proof Consider a trace Y containing Px (7). Using Lemma 10, we can locate every node of Px (j)
in Y with probability at least 1 — exp(—c’v/k). Finding the labels for Px (j) is trivial, since the
path from the root to j in Y will correspond to the nodes of Px (j), in order, and these will have the
correct labels. For the leaves, we will utilize the string trace reconstruction algorithm (Theorem 1).
Indeed, since we have assumed that each trace Y contains Px (j), we know that the children of j
in Y are a subset of the & children of j in X. Each one of these leaves is deleted with probability ¢
independently, and they are presented in the same order as a string of length & through the deletion
channel. Therefore, Theorem 1 applies, and the T'(k, 1/n?) traces will suffice to reconstruct the
labels for the k children of j in X with probability at least 1 — 1/n? — exp(—c’ V'k). In conclusion,
with probability 1 — 2/n2, we can reconstruct the labels for Py (j) and children of j. [ |

Proof [Proof of Theorem 2] The path Px(j) for j € J;_1 consists of d nodes, so it survives in a
trace with probability (1 — ¢)%. Sample C' (1 — ¢) ™% T (k,1/n?) traces, where C is a large enough
constant to guarantee that with probability at least 1 — O(1/n?), we will see at least T' (k, 1/n?)
traces that contain Px (j). Using Lemma 11, we can reconstruct Px (j) and all children of j using
some T'(k,1/n?) traces that contain Px (j) with probability 1 — O(1/n?). Applying a union bound
over Jy—1 with | 7;_1| < n, we learn the labels for all nodes in X with probability 1 — O(1/n). B

3.2. Proof of Theorem 3 concerning arbitrary degree trees

We will recover the labels for G x (i) for each i € Z, which is sufficient because these subtrees cover
all of the non-root nodes in X. The challenge is that G x () may shift to an incorrect position, even
when Gy (i) #L. This happens, for example, when the parent of ¢ has children deleted in such a
way that ¢ moves to the left or right, but ¢ still has k£ — 1 siblings (some of which are new).

Let u be a node in Gx (7) with child «’ that is not a leaf (so u and «’ both originally have &
children). If v and all of its & children survive in a trace, then we will be in good shape. However,
consider the situation when u survives and v’ is deleted. In the TED model, we expect (1 — ¢)k
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children of u’ to move up to become children of u. The bad case is when u has exactly k children
in a trace after some of its original children are deleted. This only happens when subtrees rooted at
children of u are completely deleted. If such a subtree is large (u is higher up in the tree), then this
is extremely unlikely. We use the following property to force the relevant subtrees to survive.

Definition 12 A trace Y is s-stable for i € Z if Gy (i) #.L, and for every internal node v in Gy (7)
with height h < s in'Y, each of the k children of v has height exactly h — 1inY.

An obvious way for Y to be s-stable is for it to contain G x () and enough relevant descendants
of nodes in Gx(i). Let G%(i) be the union of Gx (i) and the k children of every internal node
in Gx(i). Then Y will be s-stable if it contains G (i) and at least one path to a leaf (in X) from
every node in G} () with height at most s. In Lemma 13, we even argue that this happens with high
enough probability to achieve the bound in the theorem. Unfortunately, we cannot directly check
whether Y contains the exact nodes in G} (7). We can check if Y is s-stable for ¢ by examining
the nodes of Gy (i) and their descendants in Y. But if Y is s-stable, then it is still not necessarily
the case that Gy (i) = Gx (i), since the nodes in Gx () may have shifted in Y or been deleted. To
get around this complication, we rely on the s-stable property of a trace. We argue in Lemma 14
that if s is large enough and a trace Y is s-stable for ¢, then with probability at least 2/3, we have
Gy (i) = Gx(i). Taking a majority vote of Gy (i) over O(log n) traces, we recover G x (i) with high
probability. We fix s = [logk log; /q(3dl<:)w . The proofs of the next two lemmas are in Appendix A.

Lemma 13 Fori € Z, a trace is s-stable for i with probability at least (1 — q)dk+52k.

Lemma 14 [fY is an s-stable trace for i, then Gy (i) = G x (i) with probability at least 2/3.

Proof [Proof of Theorem 3] (sketch) Let A be a set of T = C'log(n) /(1 — q)* 5 traces with C' a
large enough constant. By Lemma 13, each trace in A is s-stable for ¢ with probability (1 —q)dk+52k.
Therefore, by setting C' large enough and taking a union bound over ¢ € Z, we can ensure that with
probability at least 1 — 1/n2, there is A; C A that of s-stable traces for i with |A;| > C’logn,
for every ¢ € Z. By Lemma 14, each trace Y € A; has the property that Gy (i) = Gx (i) with
probability at least 2/3. Let f;(Y) € {0,1}4+%~1 be the labels of Gy (i) in Y. In expectation over
Y € A;, we have that at least a 2/3 fraction of Y satisfy f;(Y) = f;(X). Since |A;] = C'logn
for a large enough constant C’, we have by a Chernoff bound that the majority value of f;(Y") over
Y € A, is equal to f;(X), with probability at least 1 — 1/n?. For each i € Z, our reconstruction
algorithm will use this majority vote to deduce the labels for G'x (). Taking a union bound over i €
Z, where |Z| < n, we correctly label all nodes with probability at least 1 — 2/n. To show that

T = exp(O(dk)), where d = O(log, n), we simply plug in s = {logk logl/q(3dk)-‘ . [

4. Reconstructing Spiders

In the regime where spiders have short paths (d < log; ,, ), we use mean-based algorithms that
generalize the methods of De et al. (2017); Nazarov and Peres (2017).
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Figure 3: DFS indexing and example trace (in both deletion models) for a (12, 3)-spider.

Spider Preliminaries. When a labeled (n, d)-spider, X, goes through the deletion channel, we
assume that its trace, Y, is an (n, d)-spider by inserting nodes labeled Os after the remaining paths
and nodes. After this, all traces have n/d paths of length d. We define a left-to-right ordered DFS
index for (n, d)-spiders, illustrated in Figure 3. The labels increase along the length of the paths
from the root and increase left to right among the paths. Specifically, if node v is in the ¢th path
from the left and has depth j, then its label is (i — 1)d + j — 1. These labels will be used to
define appropriate generating functions. Since the root is not deleted, it is not considered as part of
the generating function. When d is constant, the reconstruction problem on (n, d)-spiders can be
reduced to string trace reconstruction (see the full version). In what follows, we assume that d > 20.

4.1. Proof of Theorem 6 concerning (7, d)-spiders with small d
We compute the expected generating function for an (n, d)-spider that has gone through a deletion

channel with parameter . We denote this expected generating function by A(w), where w € C.

Lemma 15 Let a = {ai}?;ol be the labels of an (n,d)-spider with labels a; € R and let b =
{b; };:& be the labels of its trace from the deletion channel with deletion probability q. Then

n—1 n—1
A(w) :=E ijwj =(1—gq) Z“f(q 4 (1= )t mod d) (g 1 (1 — gy LE],
J=0 £=0

where the expectation is over the random labels b.

While A(w) is written as only a function of w, it implicitly depends on the labels a of the original
spider. We use this generating function to distinguish between two candidate (n,d)-spiders X1
and X2, which have labels a' = {a}}~] and a® = {a2}"_] which are different (that s, there
exists j € {0,1,...,n — 1} such that ajl =+ a?). Let Y! and Y2 denote random traces with labels
bt = {bj1 ;L;& and b? = {b? ;‘;01 that arise from passing X' and X? through the deletion channel
with deletion probability g. Define a := a' — a? and let A (w) be the expected generating function
with input a. From Lemma 15 we have that

|
—

n

(E [b;] —E [b3]) w’ = A(w). )

<
Il
o

10
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Let * := arg min,-, {as # 0} (note that /* < n—1). We can write A(w) = (¢%+(1—q¢%)w?) 7).
A(w), where we call A(w) the factored generating function. Taking absolute values in Eq. (2),

15 ‘

n—1
SOIE )] —E 2] | Jul > |A@w) = (1 - ) |1 - ¢t +¢°| T |A@w)]. @)
§=0

Ultimately, we aim to bound from below max; ‘E [b]l] —E [bﬂ ‘ by choosing w € C appropriately.

We consider points on the arc 7y, := {e? : —7/L < 6 < 7/L}, where L > 20. The following
lemmas are needed to bound the generating function (see the full version for the proof of Lemma 17
and Appendix B for the proofs of the other lemmas in this section).

Lemma 16 For w € vy, we have that |(1 — ¢Hw? + qd‘ > exp (—27r2 q?(1 - qd)dQ/LQ) .

Lemma 17 Let 0 < q < 0.7 be a constant. There exists ¢ € v, as well as a constant C' > 0
depending only on q, such that |A(C)| = exp (—C' - dL).

Proof [Proof outline of Lemma 17] Let €2 C C be a bounded, open region, and let 92 denote its
boundary. The harmonic measure of a subset v C 0 with respect to a point wy € €2, will be
denoted by p,° (7). Let f(w) denote an analytic function; we will choose f = A. We know that
log | f| satisfies the sub-mean value property: for all wy € €2 we have that

log | f(wo)| < / log | f (w) | dp® (w). @)

o0N

As in Eq. (4), we will define a region of integration where the value of log ‘ﬁ(w)| is controlled
along the boundary, and the boundary will contain vy, = {¢ : —7/L < 6 < w/L}. In fact,
the methods of Hartung et al. (2018) show a lower bound for sup.,, |f(w)| for an analytic function
f(w) satisfying the growth condition in Lemma 18, by using Eq. (4) and a particular choice of wy.

Lemma 18 Forall w € D and all deletion probabilities q € (0, 1), we have ‘ﬁ(w)’ < m.

The crucial insight is that A also satisfies the growth condition specified in Lemma 18, allowing
us to borrow methods from Hartung et al. (2018) to upper bound the right hand side of Eq. (4).
However, we have to work more to find an appropriate point wg € 1D in order to find a lower bound
for the left hand side of Eq. (4), so that we can also show a lower bound for sup.,, |A(w)). [ |

Proof [Proof of Theorem 6] Let { € v, be the point guaranteed by Lemma 17. Substituting ¢ into
Eq. (3) (and dropping the factor of 1 — ¢%), we use Lemma 17 and Lemma 16 to see that

n—1
SOIE B —E[52]] = JAQ)] = (1 - q) exp (—271'2 : qdnd/L2) exp (—C - dL),
§=0

for a constant C' > 0 depending only on ¢. Setting L = max{(47’ng?/C) 3 20} and plugging
into the display above, we find that there exists an index j such that

B[] - E [2]| > %eXp (¢ diag) ) 5

11
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for some constant C’ > 0 depending only on q. Therefore, we have shown that there is some index
ji=173 (X LX 2) where we expect the traces corresponding to X! and X? to differ significantly.

Suppose spider X' goes through the deletion channel and we observe T samples, S',...,S7
where sample S* has labels {u§ ?:_6[. Let 1 denote the right hand side of Eq. (5). We say that a
spider X? is a better match than X for traces {S"},¢[r if at the index j = j(X*, X?), X? looks
closer to the traces than X!; that is, if

1 T
72 u; —E 0]
t=1

As before, the expectation is over the random labels b' and b?. A Chernoff bound implies that if
the traces {S t}te[T] came from spider X!, then the probability that X? is a better match than X!
is at most exp(—17?/2). Repeating this for all pairs of binary labeled (n, d)-spiders, the algorithm
outputs X*, the (n, d)-spider which is a better match than all others (the best match), if such a spider
exists. Otherwise, the algorithm outputs a random binary labeled (n, d)-spider.

We bound from above the probability that the algorithm does not find that X! is the best match
by a combination of a union bound and a Chernoff bound (as discussed above). The probabilities
below are taken over the random traces {S*};cry:

1
7> u; —E 0]

t=1

<

Pr[X* # X' < Z Pr[X? is a better match than X'] < 2" - exp (—Tn*/2)
X2:X24X1

T
= 2"exp (2712 exp <7C' . d(nqd)1/3))

for C' > 0 depending only on ¢. This latter expression is at most 1/n if T' > exp (cd (nqd) Y 3) for
a large enough constant ¢ depending only on q. |

5. Conclusions and Future Directions

We introduced the problem of tree trace reconstruction, and we demonstrated, for multiple classes of
trees, that we can utilize the structure of trees to develop more efficient algorithms than the current
state-of-the-art for string trace reconstruction.

Our paper leaves open many problems and initiates several directions for future work. For one,
can our existing sample complexity bounds be improved? Of particular interest are (1) the TED
model for complete k-ary trees with w(1) < k < clog?® n and (2) spiders with depth d = clog, /g T
¢ < 1; can we reconstruct with poly(n) traces in these cases? More generally, what is the sample
complexity for other classes of trees? What properties of the tree structure are most relevant for
reconstructing with fewest traces? Finally, we have focused on deletion channels, but insertions and
substitutions are well-defined and relevant for tree edit distance applications. It would be worthwhile
to understand the sample complexity for these edits as well.
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Appendix A. Missing proofs for k-ary trees

Proof [Proof of Lemma 13] Being s-stable has two conditions. First, we need Gy (i) #L. Let
G (i) be the union of Gx (i) and the k children of every internal node in G'x (i), where |G % (i)| =
dk + 1. We will prove that if Y contains G (i), then Gy (i) #.L, because in fact, Gy (i) = G x (i).
Since the root is never deleted, all nodes in G (i) survive in a trace with probability (1 — ¢)?*, and
so Gy (i) = Gx(7) with at least this probability.

Assume that Y contains G (i). Let Gx (i) = uo, . . ., ug4x—1, and consider building Gy (i) =
V0, -« - Vd4k—1 Using ;. We argue recursively: For ¢ € [d — 1], we assume that vy = uy for all
t' < t, and we prove that v; = u; as well. The base case t' = 0 holds because the root vy = ug is
never deleted. Then, since Y contains G;’((z) we know that vy = uy has exactly k children in Y,
which are the children of uy in X. Moreover, the left-to-right order of these k children is preserved
in the deletion model. Therefore, the child of vy in position 7;(¢') must indeed be w1 forall ¢’ < t.
This establishes v; = u; forall t € {0, 1,...,d — 1}. For the leaves of Gx(7), when vg_1 = ugq_1,

and vg_1 has k children in Y, then we must also have vg, ..., Vg1k—1 = Udy - - -, Udtk—1-
For the second condition of s-stable, consider an internal node u; in G x (7) with height h = d—¢
satisfying 1 < h < s. Let ug, ..., u;_; be the children of u; in X. Because uj has height h — 1

in X, there is some path with A nodes from u; to a leaf in X. Consider one such path for each
j=0,...,k—1such that j # m;(t). Since there are k — 1 choices for j, let P, be the union of
these k — 1 paths, where |P;| = h(k — 1) < s(k — 1). The survival of P; guarantees that u/; has

the correct height for Y to be s-stable. Since | Uf;c}_ <Pl < s%(k — 1), and each node survives
independently with probability (1 — ¢), we have that Py, ..., P;_1 survive with probability at
least (1 — ¢)¥ k=1,

Combining these two conditions, Y is s-stable with probability at least (1 — q)dk“% . |

Proof [Proof of Lemma 14] Since Y is s-stable, Gy (i) #.L. Let Gy (i) = vo,...,vq+x—1 and
Gx (i) = wo,...,ugrk—1, where v; and u; have depth t € {0,1,...,d — 1}, and vg—1 and ug_q
have children vy, ..., vg45—1 and ug, ..., uq+x—1, respectively. Our strategy is to define an event
€ that happens with probability at least 2/3 and implies that v; = u; for ¢t < d + k — 1. Consider
t € [d], and let uy, . .., u),_, be the children of u;—; in X. Define & to be the event that, for every
j € {0,1,...,k — 1}, at least one node in the subtree rooted at ug survives in Y. Then, define
Ecm =2, & and set £ = E¢y.

We first argue that when £, holds, then v; = u; for all ¢ < m. Because the root has not been
deleted, we have vy = ug. Then, for t € [m], we assume that vy = uy for t’ < ¢, and we prove that
Vi = Ug.

Because Y is s-stable, v;—1 has k children in Y. Denote them vy, . .. ,v;_l. We need to show
that u; is in position 7;(¢ — 1) among them, so that v; = ’u; (1) = Ut Since &; holds, there is
some surviving node in Y from the subtree rooted at each original child of u;_; in X. Moreover,
since u;—1 = V41, this accounts for at least k children of v;_; in Y. Because there are exactly k
children of v;_1, it must be the case that v/ A1) is originally from the subtree rooted at u; in X. In
particular, v/ A1) = W if and only if u; survivesin Y.

We claim that if u; were deleted, then it would contradict Y being s-stable, since we would have
Gy (i) =1 instead. Indeed, the deletion of u; would cause v/ J(t—1) 0 have height less than d — ¢
in Y. This would imply that at some depth d’ with ¢ < d’ < d, the node vy in Gy (i) would be a
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leaf, leading to Gy (i) =L. We conclude that u; survives in Y, and so that v; = Uri(t-1)

desired.

We have shown that £ guarantees that v; = u; for all t < d — 1. In particular, vg_1 = ug_1,
and the k children of vy_1 in Y must be the children of ugy_; in X. This finishes the argument that
& implies that vy = u; forallt < d + k — 1, that is, Gy (1) = Gx (7).

Now, we prove that £ happens with probability at least 2/3 in an s-stable trace. We prove this
in two steps. First, we argue that E<4_, occurs with probability at least 2/3. Then, we show that
E<q—s implies £. Consider the node u;—; in Gx (¢) fort € [d — s], and let v, ..., u)_, be the k
children of u;—1 in X. Since the height of u; is at least s, the subtree rooted at u; in X contains
at least > ,_, k' > k® nodes. The probability that all of these nodes are deleted is at most ¢*".

= Ut, as

Because s = {logk log, /q(3dk)-‘ , this is at most 1/(3dk). Taking a union bound over the £ children

implies that £, occurs with probability at least 1 — 1/(3d), and taking a union bound over ¢ € [d — s]
implies that £, holds with probability at least 2/3.

The final step is to prove that £ happens with probability one, in an s-stable trace, assuming
that £<4_, holds. More precisely, we will show that <4, implies £j_gyp41 for{ =0,1...,5—
1. We have already argued that £<4_ s, guarantees that vg_si¢ = u4_sy¢. We claim that the k
children vy, ..., v;,_; of vg_s4¢ are the original children of u4_s,¢ in X (and this clearly implies
Ed—s+e+1)- Since Y is s-stable, there is a path with s — £+ 1 nodes from U} toaleafinY. If v} were
not an original child of u4_s¢, then all such paths would have at most s — £ nodes. This implies
no children of ug_s1¢ = v4—s4¢ have been deleted in Y, and their existence witnesses the survival
of the subtrees needed for £;_s.¢+1. Since this holds for £ = 0,1...,s, we conclude that £ = 4
follows from 45 in an s-stable trace, and Pr[Gy (i) = Gx(i)] > Pr[€] = Pr[€<4—s] > 2/3.
|

Appendix B. Missing proofs for spiders

Proof [Proof of Lemma 15] We index the non-root nodes of the spider according to the DFS ordering
described in Section 4. We can uniquely write any j € {0,1,...,n—1} as j = d - s; + r; with
sj €40,1,...,n/d — 1} corresponding to a particular path of the spiderand r; € {0,1,...,d — 1}
describing where along this path node j is. Consider two nodes, j = d-s; +rjand { = d - sy + 7y,
with j > £. After passing a through the deletion channel to get the trace b, by comes from a; if and
only if a; is retained, exactly r, of the first 7; nodes in the path of j are retained, and exactly s, of
the first s; paths are retained. This leads to the following generating function:

n—1 n—1 n—1
Ty re ri—re [ 57 5;,—5 s
2|3 o] =00 Fu S (2)a - (2)er 0 e
=0 =0 =t
n—1

Il
—~
—_

|

(=)
N—

S

<.

M-
TN
=

j) (1—q)q™" @)qd(s”@)(l — )L,

=0 1= \"*
n/d—1 d—1 S5 T

(=) 3, D> agarn ) Y <T]> (1—q)q7™" <SJ >qd(sj T = gt
5;=0 r;=0 $p=01p=0 re St
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where we used linearity of expectation and interchanged the order of summation. Observing that
the sums are binomial expansions we have that

n/d—1 d—1
(Z byw ) (1=q) > D aasr(q+ (1= quw) (g + (1 — ¢)w?)

s5;=0 r;=0
n—1

= (1-9) > ajlg+ (1 - qqw) 4D (¢ 4 (1 - gyuhd),
7=0

which proves the claim. n
Proof [Proof of Lemma 16] Writing w = cos(f) + isin(f#), we see that
(1 = g’ + ¢
= |(1 — ¢%)(cos(8) + isin(6))? + qd‘z = ‘(1 — q%)(cos(df) + isin(df)) + ¢*
= ((1 — ¢%) cos(df) + q*)* + ((1 — ¢") sin(d#))?
= (1 — ¢)? cos?(dh) + 2¢%(1 — ¢%) cos(dB) + ¢** + (1 — ¢%)? sin?(dh)

= (1—qH? +2¢%(1 — ¢%) cos(df) + ¢** =1 — 2¢% + 2¢* + 2¢*(1 — ¢%) cos(db)
=1—2¢%(1 = ¢")(1 — cos(dp)).
Now using the fact that 1 —cos(y) < y?/2, as well as the inequality 1 —% > exp(—4y) which holds

for all y € [0,0.9] (in our case indeed ¢?(1 — ¢%)d?6? € [0, 0.9] for all possible parameter values),
we obtain that

2

(1 — ¢Hw? + ¢* ’ =1—2¢%1 — ¢ (1 — cos(dh)) > exp(—4q?(1 — ¢%)d?6?).

Taking a square root of the last line shows |(1 — ¢%)w? + ¢¢| > exp(—2¢%(1 — ¢%)d?6?). Finally,
the assumption that w € ~, implies that §2 < 72 /L? and the claim follows. |

Proof [Proof of Lemma 18] First, we show that ¢@ + (1 — ¢%)|w|? < (¢+ (1 —¢q)|w|)? forallw € D
and g € (0, 1). This is because

(-l =3 () - - qd+2 ( a1 - gl

j=0

d—1
d\ »
> ¢+ w|") (j>qj(1 — )7 = +|w|*(1 - ¢%),
=0

17



RECONSTRUCTING TREES FROM TRACES

where we used the inequality |w| ™7 > 1 which holds when |w| < 1 and j > 0. Combining this
inequality with the triangle inequality, we can show the desired upper bound for }A(w) ’:

n—1 L] _|e*
)| < 5 foalla + (01— glt @49 g+ 1 — gyt 4L
=0*
5% ]
<D g+ (=gl D (gf 4 (1 - %) wl)
=0*
<5 (0 (= ot et (L8115 )
=0*
« n—1
— g+ (-l (g (1 ) )’
=0*

B R R e 1
<(g+ (1 —q)|w]) 1—(qg+ (1 —q)|w)
. 1

STo@rd-ge)  G-g0 )’

where we used that ¢ + (1 — ¢)|w| < 1 and ¢* — d[¢*/d] > 0. Note that the same upper bound
holds for | A(w)| as well, since |A(w)| < ’A(w)‘ for all w € D. [ |
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