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MAKING COMPUTERS EFFICIENT WITH MODULAR, 
COORDINATED, AND ROBUST CONTROL

C
omputing is taking a central role in advancing sci-
ence, technology, and society, facilitated by increas-
ingly capable systems. Computers are expected to 
perform a variety of tasks, including life-critical 
functions, while the resources they require (such 

as storage and energy) are becoming increasingly limited. 
To meet expectations, computers use control algorithms that 
monitor the requirements of the applications they run and 
reconfi gure themselves in response [1]–[5].

RAGHAVENDRA PRADYUMNA POTHUKUCHI, 
SWETA YAMINI POTHUKUCHI, 
PETROS G. VOULGARIS, and JOSEP TORRELLAS

Authorized licensed use limited to: University of Illinois. Downloaded on April 29,2020 at 21:00:29 UTC from IEEE Xplore.  Restrictions apply. 



APRIL 2020 «  IEEE CONTROL SYSTEMS  31

As computer systems grow more complex, they are being 
built with multiple modular layers that are designed indepen-
dently and interact with standardized interfaces (see “Multi-
layer-Computer Organization” for an overview). These layers, 
such as the hardware and the operating system (OS), have 
separate functions and are developed by different expert 
teams that are often from separate companies. The designs in 
one layer must interoperate with several variants in the other 
layer. For example, an OS must work with many processor 
designs and vice versa. Moreover, a computer system with 
given hardware and OS layers must efficiently run several 
types of user applications.

Naturally, the inputs, outputs, control goals, and control 
logic are different in each layer. For example, hardware con-
trollers typically measure the application throughput, power 
consumption, and temperature. The controllers change the 
processor’s operating speed, called the clock frequency (or 
simply, frequency), the number of cores, and the amount of 
available storage. In the OS, the scheduling logic decides which 
applications run on each core at any time. The goals for the 
process scheduling vary by OS designs but generally include 
some of the following: high core utilization, high throughput, 
low power consumption, and fairness. However, the metrics of 
an application’s execution on the computer (that is, the time the 
application takes to complete, the energy it consumes, and the 
task throughput) is a function of all of the layers.

Fully decoupled and centralized control architectures 
are inappropriate to manage modularly designed comput-
ers. A centralized controller that can access systemwide out-
puts and inputs is not practical because the layers are 
designed by different companies that tightly protect their 
subsystems’ internal designs. Moreover, centralized control 
does not allow a layer to interoperate with other layers and 
must be redesigned, even if a single layer in the system 
changes [6]–[8]. Consequently, centralized controllers that 
operate across system layers do not fit the design of modern 
computer systems and are seldom found in actual products.

The other alternative is to use fully decoupled controllers 
in each layer. This design is modular. However, the separate 
controllers miss the interlayer interaction and cannot effi-
ciently manage the full system [7], [9]. Controllers that 
appear to manage the individual layers effectively in isola-
tion fare poorly when deployed in the full system. However, 
due to lack of alternatives, this is the most common design 
in existing computers.

New designs are required in which each layer is regulated 
by a modular resource controller, and the different control-
lers coordinate only with interfaces for overall efficiency. Fur-
thermore, it is important to design these controllers with 
formal methods, such as control theory, instead of heuristics 
(see “Summary”). As computers have grown in complexity, it 
has become increasingly difficult to design, tune, and verify 
the heuristics even for a single layer. Despite intense design 
efforts, these heuristics can behave unexpectedly due to a 
lack of robustness [10]–[12]. When such heuristics operate in 

multiple layers, the overall efficiency can be poor. See “Lack 
of Coordination With Heuristic Control” to learn more about 
how heuristics in different layers can destructively interfere 
with each other in an IBM processor. Indeed, it is unfortunate 
that heuristics remain the popular choice for computer con-
trol in production and research.

This work proposes a modular design to manage multi-
layer computers using structured singular value (SSV) con-
trol, or n  synthesis. This approach differs from earlier 
designs [13]–[15] that focus on particular applications, such 
as a database server, or a single system layer, such as the 
hardware processor. The key idea in this article is that 
modeling limitations and interlayer interactions are con-
sidered to be uncertain when designing a controller for a 
computer layer. Furthermore, each controller reads signals 
from other layers to better coordinate under uncertainty. 
The design also has “optimizer” modules that provide 
changing targets to the n  controllers to maximize the 
computer-output combinations. This design is a significant 
advance beyond the state of the art in computer control.

Summary

Computers are operating in increasingly constrained en-

vironments and being equipped with intelligent control-

lers for resource management. Resource controllers keep 

computers efficient by customizing the usage of limited 

resources like energy and storage to match application re-

quirements. However, the operation of computers is struc-

tured in multiple layers, such as the hardware, operating 

system, and networking layers. Each of those layers is built, 

run, and controlled independently. It is desirable to manage 

the overall system by coordinating the operation of the dif-

ferent controllers and relying on a systematic control meth-

odology rather than heuristics.

This article presents a new approach to build coordinat-

ed multilayer controllers for computers. As opposed to the 

existing practice of heuristic computer control, the proposed 

approach is based on standard techniques from linear ro-

bust control theory. The key idea is that interlayer interac-

tion, among others, is considered an uncertainty when de-

signing a controller for a computer layer. We prototype this 

design on a real computer to demonstrate its effectiveness 

over existing methods. This is the first work to use linear 

robust control methods for resource efficiency in computers.

The article calls the attention of control systems re-

searchers to the topic of building formal controllers for com-

puter systems. Despite significant progress in control theory, 

computer resource control today is predominantly heuristic. 

There is a need for novel contributions that computer de-

signers can take up. As an initial step, we present several 

challenges we faced in our design to solicit advanced solu-

tions from the control systems community.
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This article makes two contributions. First, it describes the 
application of n  synthesis for modular, coordinated com-
puter control. We consider several challenges in the practice 
of computer control so that the proposed architectures are 
more easily adopted in industrial computer system design. 
As opposed to examining specific user applications running 
on a computer or individual layers, we examine how multi-
layer computers can be better designed and propose how the 
controllers in the layers must be built to efficiently run many 
applications. The effectiveness of our design is demonstrated 
on a prototype computer. We show how standard, robust 
control methods provide significant benefits to computer 
systems, making this application of n  synthesis to comput-
ing the first of its kind.

Second, this article calls attention to the problem of 
building distributed and modular coordinated controllers 
for computer systems. This problem is especially important 
as computer systems are becoming increasingly modular 
and distributed. Despite decades of progress in control 

theory, few control-theoretic concepts have been applied to 
computer system control. More theoretically solid and 
practical contributions are needed. Therefore, we present 
several design challenges for the general problem of building 
resource-efficient multilayer computers to solicit advanced 
solutions from the control systems community.

This article has more breadth and depth than our 
recent work [16], with the goal of drawing the attention 
of the IEEE Control Systems Society researchers. We 
have expanded the discussion of multilayer-computer 
organization, interlayer interaction, the modular-con-
trol problem, the suitability of control theory, design 
challenges, and additional results from system identifi-
cation and overall evaluation. We also provide the full 
details of our prototype design that were not present in 
[16] so that researchers can test new approaches to the 
problem. Finally, we bring our insights from prior work 
[12], [17] to the control systems community. Next, we 
present a representative computer system and describe 

Multilayer-Computer Organization
computer system can be conceptually divided into layers: 

the hardware and the operating system (OS). The hard-

ware contains one or more processor chips, storage, and other 

circuitry. Figure S1 shows a computer with one processor chip 

in the hardware and an OS running as software. The system is 

running several user applications.

The processor chip, which is the key component in the hard-

ware, has multiple processing units called cores and the stor-

age necessary to run applications. Figure S1 shows two types 

of cores in the processor chip. Having different types of cores 

is useful to provide various levels of throughput (a measure of 

the computer’s performance) and power consumption. For ex-

ample, a complex core can generally deliver more throughput 

but consumes more power, while a simpler core has a relatively 

lower throughput and power consumption. Therefore, it may be 

more energy efficient to use the simpler core in certain cases.

The OS runs as software on the processor and sets up the 

environment for user applications. It schedules applications on 

the processor and provides utilities such as storage manage-

ment. Process scheduling is an important part of the OS that 

decides which applications can run on each core at any time. 

The process-scheduling goals vary by OS but generally in-

clude some of the following: high core utilization, high through-

put, low power use, and fairness.

Finally, in the environment provided by the OS, there are 

multiple applications, such as Matlab, browsers, and file view-

ers, that users run on the computer. Typically, each application 

can launch multiple tasks to perform its work. As an example, 

Figure S1 has three applications that run as one task, two tasks, 

and one task, respectively. These applications (or application 

tasks) are scheduled by the OS to execute instructions on the 

hardware. Each task runs on one hardware core, and a multi-

tasking application can use multiple cores simultaneously.

The hardware and OS layers are the common layers found 

in nearly all systems. Some systems have more software layers 

on top of the OS layer, with each providing a different abstraction 

for the immediately higher layer. Figure S1 highlights the com-

ponents responsible for dynamic control of the system, which 

are the hardware chip management units and OS process- 

scheduling logic. The decisions of these components determine 

a given application’s behavior, such as its throughput, energy 

consumption, and temperature. When these decisions are 

aligned with the nature of the application’s work, the system can 

efficiently process the application, completing the task quickly 

and consuming only the minimum energy necessary.

Hardware

Software
Utilities

Process
Scheduling

Operating System

Core 1

Chip Management

Processor Chip

Matlab Browser

Applications

File Viewer

Core 2 Storage

FIGURE S1 The multilayer organization of computer systems.
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the problem of modular, coordinated resource control 
in computers.

REPRESENTATIVE PROTOTYPE SYSTEM
We use an ODROID-XU3 computer board [18] as a proto-
type system. As is common to most computers, this system 
has two layers: the hardware and OS. The processor in the 
hardware is an Exynos 5422 with eight cores built using 
ARM big.LITTLE technology [19] by Samsung. The OS is 
Ubuntu 15.04, which is based on Linux. Figure 1 shows the 
system. We run several applications from the PARSEC 2.1 
application suite [20] and SPEC06 suite [21].

Figure 2 is a schematic diagram of the system with 
the inputs and outputs of each layer. The processor in 
the hardware layer has eight units, or cores. Four of 
them, the big cores, can generate a high throughput and 
consume a significant amount of power. The remaining 
ones, the little cores, generate a lower throughput but 
consume much less power. The little and big cores are 

organized as separate clusters. Applications on this com-
puter can create multiple software tasks (called threads) 
that execute in paral lel  to speed up the system’s 
performance. Hence, there can be many applications 
and threads running simultaneously. We refer to each 
schedulable entity (an application or application thread) 
as a task.

HARDWARE- AND OPERATING SYSTEM LAYER 
INPUTS AND OUTPUTS
Four outputs in the hardware layer are considered, as 
shown in Figure 2: the power consumed by the little cluster 
(Powerlittle, measured in watts), the power consumed by the 
big cluster (Powerbig, measured in watts), the temperature 
of the hottest location (measured in degrees Celsius), and 
the throughput of the processor [also called performance, 
measured in billions of instructions per second (BIPS)]. 
Among these, the power consumed by either cluster and 
the temperature are critical for system integrity.

The processor chip management unit optimizes the chip 

for the user applications and protects the hardware from 

hazardous operating conditions, such as high temperatures. 

A common optimization goal is to reduce the power use and 

temperature while maximizing the throughput. The chip man-

agement unit monitors some of the hardware outputs, includ-

ing the chip’s throughput, power, and temperature. It sets the 

configurable inputs such as the processor’s operating speed 

(called the clock frequency or simply, frequency), number of 

cores, and available storage. It is common in modern comput-

ers to have multiple processors and storage chips, each with 

its own management units.

The outputs and inputs in each layer are tightly coupled. For 

example, in the hardware, the frequency and number of cores 

can significantly affect the power, temperature, and throughput 

of the processor. However, their impact is different across ap-

plications. Poor input choices can result in a high power con-

sumption without generating a high throughput. Similarly, the 

outputs and inputs in the OS are also tightly coupled.

MODULAR DESIGN AND INTERACTION  

BETWEEN LAYERS

Due to the complexity of computer systems, each layer is de-

signed independently by expert teams, possibly from different 

companies. The names of some of these independently de-

signed products are listed in Figure S2. With this modular de-

sign, a layer can be reused in many variants of the other layers. 

For example, the same hardware can run multiple OSs, and 

the same OS can be used on many hardware configurations. 

This is made possible by specifying interface standards that 

the layers must conform to, irrespective of their internal design.

Unfortunately, the modular design of computers makes it 

challenging to achieve system-wide efficiency with dynamic 

control. The controllers, with their layers, are designed inde-

pendently. Their internal details are proprietary and not shared 

by designers. However, a controller influences the dynamics 

of the other layers and full system. For example, the power 

consumed by the computer depends on the processor fre-

quency and assignment of applications to cores by the OS. 

However, the hardware chip management unit can control only 

frequency, not the OS’s scheduling policy, and vice versa. This 

can result in inefficient operation. As an example, when the OS 

schedules application tasks on certain cores and expects a 

high throughput, the actual throughput may be poor if the hard-

ware controller reduced the frequency of those cores, possibly 

to lower the power consumption. See “Lack of Coordination 

With Heuristic Control” for a description of such a case, as 

identified on an IBM computer. The immediate need for build-

ing efficient computer systems is to design a control system 

that conforms to the computer’s modular structure and coordi-

nates decisions across layers for system-wide efficiency.

Hardware
Examples: Processors From Intel and AMD

Operating Systems
Examples: Microsoft Windows, Linux, and Apple iOS

Applications
Examples: Matlab and Browser

FIGURE S2 The modular design of computer layers. Proprietary 
names are registered properties of the respective companies.
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The performance counters and temperature sensors 
can provide accurate measurements at the millisec-
ond timescale. However, the onboard power sensor 
has an update interval of nearly 300 ms. This time span 
is long because the sensor accumulates energy measure-
ments and divides them by the update period to provide 
accurate power values. Therefore, we chose the sam-
pling period in this layer to be 0.5 s. This is comparable 
to other works that use real system power measure-
ments for control. For example, the sampling interval in 
an IBM processor controller is 1 s [10]. The power-sens-
ing latency can be drastically lower when the sensor is 
directly located in the processor chip instead of on the 
computer board.

Four inputs in the hardware layer 
are considered: the operating speed 
of all of the cores in the little cluster 
(Frequencylittle, measured in giga-
hertz), the operating speed of all of 
the cores in the big cluster (Frequen-
cybig, measured in gigahertz), the 
number of little cores that are pow-
ered on (#Coreslittle), and the number 
of big cores that are powered on 
(#Coresbig). Changing the frequen
cy of each cluster takes fewer than 
10 ms, while turning a core on/off 
takes twice as long. The available 
discrete values of each input are 
given in Table 1.

We consider three controlled outputs 
in the OS layer: the throughput of the 
little-cluster tasks (Performancelittle, 
measured in BIPS), the throughput of 
the big-cluster tasks (Performancebig, 

Lack of Coordination With Heuristic Control

Vega et al. discuss how heuristics destructively interfere in 

a production IBM POWER7 computer system [10]. In this 

machine, there is a hardware controller that changes the speed 

(frequency) of each processor core to maintain a high utilization. 

Utilization is defined as the percentage of the clock cycles during 

which the application actively uses the processor. Reducing the 

processing speed decreases the number of clock cycles. Hence, 

there are fewer cycles during which the application does not use 

the processor at all; therefore reducing the frequency increas-

es the processor utilization. The lower speed also reduces the 

power consumed by the computer. Thus, the hardware controller 

aims to improve the utilization and reduce the power consump-

tion when applications are not using the hardware.

In the operating system, a task scheduler consolidates 

tasks onto cores and turns off the remaining cores to save 

power and improve the utilization. When tasks are not fully us-

ing a core, there are many idle cycles. By consolidating tasks 

from several low-utilization cores onto a subset of cores, fully 

idle ones can be shut down, and the utilization of the active 

cores improves. Therefore, when the system’s utilization de-

creases, it is expected that the scheduler will consolidate tasks 

to reduce power without hurting performance.

Unfortunately, in scenarios of low utilization, the hardware 

controller immediately reduces the speed of the cores to in-

crease utilization, preventing the scheduler from consolidating 

tasks and power-gating the cores. On identifying cores with 

high utilizations, the scheduler turns on more cores and moves 

tasks to them. This behavior alternates until all of the cores in 

the system are active and set to the lowest speed. The result is 

poor performance and wasted energy.

FIGURE 1 The Odroid-XU3 used as a prototype in this article. The 
processor is a Samsung Exynos 5422 with eight cores, and it was 
built using ARM big.LITTLE technology. The operating system is 
Ubuntu 15.04.

Ubuntu 15.04

L Powerlittle
Powerbig

Temperature
Performance

Performancelittle
Performancebig

∆ Spare Compute

B B

BBL

L

L

Frequencylittle
Frequencybig

#Coreslittle
#Coresbig

Little Big

#Tasksbig
Avg #Tasks per Nonidle Corelittle 
Avg #Tasks per Nonidle Corebig 

Application Tasks

FIGURE 2 A schematic of the Odroid-XU3 showing the hardware and operating system 
layers, with the input and output signals considered. The hardware layer includes the pro-
cessor, which is made of eight units, or cores. Four of the cores are high-performance, 
high-power units (called big cores) that are organized as one cluster, while the others are 
low-performance, low-power units (known as little cores) that form another cluster. There 
can be many application tasks running simultaneously. The outputs in one layer are influ-
enced by the behavior of the other layer. Avg: average.
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measured in BIPS), and the difference in spare compute capacity 
(ΔSpare compute) between the big and little clusters. We define 
a cluster’s spare compute in (1), from [17]:

	 spare compute #idle cores on (#tasks #cores on) .= - - � (1)

The term (#tasks #cores on)-  measures how many more 
tasks have been assigned to a cluster than the number of 
available cores. The spare compute measures how much of this 
difference can be accommodated within the idle cores of the 
cluster. A large value for the spare compute indicates that 
the cluster can accept more tasks, while low and negative 
values indicate an overloaded cluster. The output ΔSpare com-
pute is the difference between the spare compute in the big 
and little clusters. Intuitively, the higher the difference in the 
spare compute, the more tasks the controller will move from 
the little to the big cluster.

The process scheduler in the OS assigns the application 
tasks to cores. Ignoring the differences between tasks, the 
scheduler must 1) decide how to divide the tasks between 
the big and little clusters and 2) map tasks to cores in each 
cluster. Some cores can be left idle without any tasks so 
that the hardware controller can power them down. There-
fore, there are three inputs in this layer: 1) the number of 
tasks assigned to the big cluster (#Tasksbig), leaving the rest 
for the little cluster; 2) the average number of tasks run-
ning on each nonidle little core (avg #tasks per nonidle 
corelittle); and 3) the average number of tasks running on 
each nonidle big core (avg #tasks per nonidle corebig). 
Changing each OS input has nearly the same overhead (a 
few milliseconds) because it involves moving a task from 
one core to another.

The available discrete values of each input are given 
in Table 2. In it, #Tasksmax is the number of tasks in the 
application, which is decided by the application and 
changes dynamically. The minimum value of the inputs, 
avg #tasks per nonidle corelittle and avg #tasks per nonidle 
corebig, is zero when the tasks assigned to the respective 
clusters are zero; otherwise, it is one. The maximum value 
of these inputs occurs when all of the tasks assigned to 
those clusters are assigned to a single core. There is a non-
linear dependence between the inputs because the 
values accepted by avg #tasks per nonidle corelittle and 
avg #tasks per nonidle corebig depend on the value of the 
first input (#Tasksbig).

INTERACTION BETWEEN LAYERS  
AND THE VARIABILITY OF APPLICATIONS
The prototype demonstrates how one system layer influ-
ences the other and how applications exhibit large variations 
in their behavior. Consider two applications from the 
PARSEC benchmark suite [20], blackscholes and vips, that 
generate a variable number of tasks through time and run 
on our prototype. We monitor the hardware-layer outputs 
and fix the hardware inputs to remain at the lowest values. 

Each application is run twice, and a different policy is 
used to change the OS inputs each time. In the first policy, 
the OS assigns an equal number of tasks to each cluster, 
and within each cluster, tasks are distributed on as many 
cores as possible. In the second policy, the OS randomly 
sets its inputs.

Figure 3 shows how two of the hardware outputs, 
Powerbig and Performance, vary over time for blackscho-
les with the two OS policies. The blackscholes application 
starts with one task and, after some time, abruptly 
launches eight more. When these tasks complete, the 
first task runs for a while before the application con-
cludes. With the first OS policy [Figure 3(a)], three 
phases (corresponding to one task, eight new tasks, and 
one task) can be easily identified. Except for abrupt changes 
at transitions, there is little variation within each phase. 
However, with the second OS policy [Figure 3(b)], there 
is intense variation in all phases, even though the 
hardware inputs are constant. The variation in the phase 
with eight new tasks is particularly large due to the 
impact of the OS-layer inputs. The figure shows that 
the hardware-layer outputs are significantly affected 
by the OS inputs.

Figure 4 relays the behavior of vips. In this application, 
the number of tasks varies dynamically between one and 
eight, and some of the tasks may not use the processor, 
even when scheduled. Consequently, even with the first 
OS policy [Figure 4(a)], the hardware outputs display 
much variation. Figures 3 and 4 show that the behavior of 
a layer is significantly affected by the decisions from other 
layers. As a result, modularly designed controllers in each 
layer must be robust against the influence from other 

Input Range Step Size

Frequencylittle 0.2–1.4 GHz 0.1 GHz

Frequencybig 0.2–2 GHz 0.1 GHz

#Coreslittle 1–4 1

#Coresbig 1–4 1

TABLE 1  The available values for the hardware-layer 
inputs.

Input Range Step Size

#Tasksbig 0–#Tasksmax 1

Avg #tasks per 
nonidle corelittle

min(1,#Taskslittle)–#Taskslittle 1

Avg #tasks per 
nonidle corebig

min(1,#Tasksbig)–#Tasksbig 1

Avg: average.

TABLE 2  The available values for the operating system–
layer inputs.
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layers. Comparing Figures 3(a) and 4(a) illustrates how 
two applications with the same hardware inputs (and the 
same policy to set the OS inputs) can present drastically 
different behavior. A computer system must work well for 
many such applications, further strengthening the need 
for robustness.

GOALS FOR COMPUTER-RESOURCE CONTROL
The objective of computer efficiency typically involves 
two types of goals: tracking a set of output targets and 
optimizing a combination of the measured outputs [12]. In 
applications such as video processing engines, it is neces-
sary to deliver a constant level of power consumption and 
throughput. An advanced scenario occurs when the desired 
output levels and targets are changed dynamically based 
on real-time conditions. For example, in a battery-pow-
ered mobile device, the desired throughput (or quality of 
service) and power consumption change as the battery 

energy is depleted [22]. When the battery charge is above 
a certain level, the system must deliver a high throughput 
and can have a tolerably high power consumption. As the 
battery level decreases, the system can choose lower pairs 
of throughput and power to conserve battery life.

Optimizing a combination of outputs, which is the 
second type of goal, is more prevalent in computer control. 
Common optimization goals seek to minimize objectives of 
the form Energy Delayn#  (EDn), subject to constraints. EDn 
is the product of the application’s entire energy consump-
tion and the total execution time (Delay) raised by a 
factor n. A larger n prioritizes higher performance over low-
ering the energy consumption. Usually, the constraints are 
in terms of temperature, power consumption, and utiliza-
tion (see [23], for example). Similar to the tracking goal, 
the metric to be optimized can change through time.

In a multilayer computer, controllers in each layer 
must achieve tracking and optimization goals using only 
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FIGURE 3 A demonstration of how the hardware-layer outputs (the power of the big cluster and performance) vary with different policies 
in the operating system (OS) layer. In both cases, the same application (blackscholes) is run, and all of the hardware inputs are held 
constant. Only the OS inputs are changed through time. (a) In the first OS policy, the OS distributes threads equally among all available 
cores in the system, while (b) the second OS policy sets the OS layer inputs randomly. BIPS: billions of instructions per second.
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the sensors and actuators available to them. For example, 
a hardware controller may only change the processor fre-
quency based on throughput and power, while the OS 
controller handles scheduling based on utilization. 
When they are optimizing the combined measures, such 
as EDn,  the resource controllers can know only the 
total energy and application duration after the appli-
cation completes its execution. Therefore, they use other 
derived metrics for dynamic control during the execution. 
For example,

	 ,Energy Power Delay#= � (2)

	 ,Delay Throughput
Instructions= � (3)

where Power is the average power, Instructions is the total 
number of instructions in the application, and Throughput 
is the average rate at which the instructions are processed 

by the computer. As the total number of instructions 
is fixed,

	 .ED
Throughput

Powern
n 1? + � (4)

At the kth controller invocation, [ ]kPower  and [ ]kThroughput  
can be defined as

	 [ ]
( ) ( )

,k T
k k 1

Power
Energy Energy

=
- -

� (5)

	 [ ]
( ) ( )

,k T
k k 1

Throughput
Instructions Instructions

=
- -

� (6)

where Energy(k) and Instructions(k) are the values of the 
energy consumed and instructions processed by the system 
from the beginning of the application until the instant k. The 
instantaneous values, [ ]kPower  and [ ],kThroughput  are 
used to calculate [ ] .kEDn  This value must be minimized 
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FIGURE 4 A demonstration of how the hardware-layer outputs (the power of the big cluster and performance) vary with different policies 
in the operating system (OS) layer. In both cases, the same application (vips) is run, and all of the hardware inputs are held constant. 
Only the OS inputs are changed through time. (a) In the first OS policy, the OS distributes threads equally among all available cores in 
the system, while (b) the second OS policy sets the OS layer inputs randomly. 
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by the resource controllers during successive invocations.  
A conventional pract ice is to maximize the inverse 
( [ ]/ [ ]).k kThroughput Powern 1+

CONTROL OBJECTIVES FOR THE PROTOTYPE
The goal for the prototype computer is to develop a control 
system that achieves both tracking and optimization goals. 
For optimization, the goal is to minimize Energy × Delay 
under constraints. Therefore, the controller in each layer dyn
amically maximizes the same metric, / .Throughput Power2  
This optimization has soft constraints to preserve the physi-
cal integrity of the system, including maintaining the power 
of the big and little clusters and holding the temperature 
below certain limits. The hardware controller’s goal can be 
stated as

	 ,
,

,

maximize Power
Throughput

Power Power
Power Power

Temperature Temperature

u U

2

little little
limit

big big
limit

limit

HW HW

1
1
1

!

�

(7)

where UHW is the set of values that the inputs in the hard-
ware can accept. These inputs are listed in the “Hardware- 
and Operating System Layer Inputs and Outputs” section. 
For our board, the maximum powers of the little clus-
ter ( )Powerlittlelimit  and big cluster ( )Powerbiglimit  and the limit-
ing temperature (Temperaturelimit) are 0.33 W, 3.3 W, and 
79 ºC, respectively.

The goal for the OS controller is

	 ,maximize Power
Throughput

u U

2

OS OS!

� (8)

where UOS is the set of values accepted by the inputs in the 
OS layer, as listed in the “Hardware- and Operating System 
Layer Inputs and Outputs” section. The controllers must 
meet these goals by using imperfect models of their layers 
and any available interlayer interface information.

RESOURCE-CONTROL DESIGN REQUIREMENTS
Computer systems such as our prototype are difficult envi-
ronments to control. We list some important features that 
the control system design should include to be effective.

»» Modularity: Because the layers are developed separate
ly, each one requires a modular controller that can be 
independently designed. A controller must use an 
interface to communicate with its counterparts in other 
layers and coordinate for global efficiency.

»» Robustness against modeling limitations: The layers are 
too complex to model from first principles. Therefore, 
it is infeasible to obtain accurate models of a layer or 
interlayer interaction except in limited contexts (see 
[13] for examples). Consequently, robustness is para-
mount when designing the controllers.

»» Managing application variability: The applications that 
run on computers are numerous and vary their 
behavior through time. Such variation can be inher-
ent in the application itself. For example, an applica-
tion may run heavy computations for some time 
(generating a high throughput and using significant 
power) and transition suddenly into an idle period 
that has a low throughput and consumes little power. 
In another case, the number of tasks used within the 
application can quickly increase, elevating the power 
use, temperature, and throughput. The control system 
must detect changes in application behavior and find 
the best operating points for the outputs and suitable 
values of the inputs during each phase. The control-
lers must also be robust against unanticipated changes 
in the application behavior.

»» Handling nonlinearities in the inputs and objectives: The 
controllers must handle tracking and optimization 
goals involving metrics that can have a nonconvex and 
nonlinear relationship with the inputs. The inputs are 
also finite and discrete valued. Controllers must be 
robust against such actuator nonlinearities.

»» Intuitive design and tool support: There is a significant 
gap between the tools, knowledge, and perspectives 
of computer designers and those in the theoretical 
research of disciplines such as optimization or control 
theory. For the mainstream adoption of new system-
atic methods, it is necessary to develop computer-
centric abstractions and design methodologies. The 
design methodologies should be supported mostly by 
standard tools with intuitive tuning processes.

PRIOR WORK ON CONTROLLING COMPUTERS
Many works in research and industry use heuristics to 
control computers (for example, [8], [24]–[26]). Prior research 
demonstrates the design and runtime limitations of heuris-
tic designs [10]–[12], [27]–[30]. Several studies use con-
trol-theoretic designs. Among these, most use single-input, 
single-output (SISO), proportional-integral-derivative 
(PID) controllers [14], [15], [23], [31]–[33], but these designs 
are too limited to control even a single layer that has many 
goals. Some researchers proposed using collections of 
SISO controllers in a layer to tackle multiple goals [27], [34]. 
Computer layers have many coupled outputs (such as power 
and throughput) strongly influenced by multiple inputs 
[known as multiple-input, multiple-output (MIMO)] sys-
tems [12], [28]. Decoupled SISO controllers cannot manage 
the interaction between these outputs, resulting in poor 
performance [12], [28]. Some designs employ heuristics 
to manage controller interaction [34]. However, this defeats 
the purpose of using control-theoretic methods. Some 
works use a multiple-input, single-output approach with 
model predictive controllers (MPCs) [35], [36]. However, 
these are also insufficient to handle the MIMO nature of 
computer layers.
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Prior work includes MIMO designs with linear quadratic 
(LQ) controllers or MPCs [12]–[14], [28]. Since each computer 
layer is a MIMO system, MIMO control is best suited to 
computers. However, the proposed designs are intended for 
centralized use and do not prioritize robustness against the 
uncertainty in modularly designed multicontroller environ-
ments. The successful application of control theory for com-
puters has also been limited to specific contexts where 
accurate models could be developed [13], [14]. Such methods 
do not directly apply to the general problem of modular-
computer resource management.

Some control designs use machine learning [37]–[40] and 
matrix-completion methods for resource management [41]. 
Mishra et al. [42] employ an adaptive SISO PID controller that 
generates a generic speedup signal and a machine-learning-
based algorithm that searches for the best input configuration 
by using the signal. When machine-learning-based control 
algorithms find different output conditions at runtime than 
those that they were trained on, they provide a lower-quality 
solution unless they complete an expensive retraining phase. 
The other difference is in the guarantees they provide. Usu-
ally, guarantees from machine learning are valid for the aver-
age case without considering uncertainty.

Some works formulate the EDn minimization as a convex 
optimization problem settled by using linear programming 
solvers [43]–[45]. Solver-based approaches require more time to 
generate a decision. Since the system is dynamic, this expen-
sive process must be repeated frequently. Finally, some 
designs use market theory [46], [47] and game theory [48] to 
manage resources in specific contexts. However, there is no 

work that addresses the design of modular coordinated con-
trollers for multilayer computers.

CHOOSING AN APPROACH FOR MODULAR 
COORDINATED CONTROL
Prior work used several approaches to achieve tracking 
and optimization goals in selected computing scenarios 
[25], [26], [29], [36], [37], [45], [49]–[52]. We analyze these 
methods to determine the approach to achieve computer-
resource management goals. We begin by classifying the 
existing work into five domains: static optimization, ma-
chine learning, control theory, model-based heuristics, and 
rule-based heuristics. Table 3 compares these approaches, 
outlining their problem formulation, design and tuning 
method, advantages, and shortcomings.

Static optimization is a common choice in several designs. 
One limitation of this approach is the lack of accurate models 
and convex objective functions. Another shortcoming is that 
it ignores the dynamic nature of computer systems. There-
fore, controllers must update their models periodically at 
runtime. Lastly, the solvers used by most optimization algo-
rithms can have high overheads in time and computation 
requirements. Table 3 does not mention approaches that use 
game [48] and market theory [46], [53], which have advan-
tages and limitations similar to those of the optimization-
based methods.

Machine learning is another approach to obtain the best 
configuration for optimization goals. In this case, the con-
troller can be a neural network trained on several bench-
marks to associate some preferred input choices with a set 

Approach Formulation Example Advantages Shortcomings

Static optimization 
[45], [49]

min ( )J outputs
inputs   
with constraints, 

( )foutputs inputs=

,min Power
Throughput

frequency

2

 

Temperature To1

+ Natural choice for  
systems optimization
+ Formal approach

– Accurate and convex 
models required 
– No feedback
– Slow solvers a possibility

Machine learning 
[37], [50]

( )finputs outputs=

Optionally update ()f
()f  can be a neural network 

that minimizes ( )J outputs

Input: frequency
Outputs: power, memory 
accesses

+ Data driven
+ Formal approach

– Hard to add feedback
– Only probabilistic 
guarantees
– Needs extensive training

Control theory  
[29], [36]

inputs G outputsT=

: [ ]G A B C D LTI  that  
minimizes ∆outputs = 
outputs – targets

Input: frequency
Outputs: power, 
throughput.
Targets: ,owerp o  quality  
of service

+ Gives worst-case 
guarantees
+ Learns from 
feedback
+ Formal approach

– Hard to obtain model
– Specifying targets not 
obvious
– Suits mostly tracking 
goals

Model-based 
heuristics [51], [52]

Uses a model to guide 
heuristic decisions
The model relates outputs,  
inputs, and auxiliary outputs

Output: power
Auxiliary output: memory 
accesses
Input: frequency

+ Decision making 
simplified by model
+ Easy to develop for 
simple systems

– No guarantees
– Ad hoc design
– Prone to errors
– Hard to add learning
– Too difficult to design  
for complex systems

Rule-based 
heuristics [25], [26]

Algorithmic decisions to 
choose inputs based on 
outputs and auxiliary outputs

+ Easy to develop for 
simple systems

TABLE 3  Comparing the approaches for architecture tuning.

Authorized licensed use limited to: University of Illinois. Downloaded on April 29,2020 at 21:00:29 UTC from IEEE Xplore.  Restrictions apply. 



40  IEEE CONTROL SYSTEMS »  APRIL 2020

of observed outputs. This training updates the weights of 
the neural network so the network can later predict good 
input configurations with runtime data. It is possible to 
dynamically modify the neural network through rein-
forcement-learning methods, although this incurs a higher 
implementation complexity. The data-driven approach for 
machine-learning methods is attractive for computer con-
trol because it overcomes the lack of models. The downside 
is that the guarantees of convergence and optimality are 
probabilistic and not necessarily valid for worst-case sce-
narios. Since computer applications are diverse, it is 
possible to encounter unexpected application patterns. 
Moreover, training controllers with supervised learning 
usually requires a large number of application runs and 
extensive data processing.

Control theory natively addresses dynamic systems; uses 
feedback to improve control; and provides guarantees for 
stability, convergence, optimality, and robustness. Despite 
control theory’s advantages, at least two issues have limited 
its use in systems. First, it requires a dynamic model, which 
is hard to obtain analytically for computers. Second, control 
theory approaches assume that the target values for the out-
puts are specified by a higher entity. This might be easy in 
some cases, such as targeting a throughput requirement. 
However, that is not so when trying to optimize metrics, 
including EDn. It is also not straightforward to specify goals, 
such as “be less/more than this value.” It is easier to specify 
objectives such as “attain this value.”

Finally, heuristics-based approaches (with or without a 
model) are responsible for the majority of decision making 
in computers. While they are easy to develop and under-
stand for simple systems, difficulties arise with complex 
structures. There are high overheads to design, tune, and 
verify the ad hoc algorithms. Despite this, heuristics have 
often failed to perform well after deployment.

Among these approaches, we select control theory because 
it can address the dynamic nature of computers. Next, we 
describe the selections from the choices available in control 

theory to build the design. Then, we introduce the control 
system that includes an optimizer module to provide suit-
able targets for the controllers, addressing the limitation of 
a control theory-based approach.

NAVIGATING THE CONTROL THEORY CHOICES
Table 4 presents the taxonomy of design choices from con-
trol theory. First, the model of the system can be obtained 
by using analytical principles (white box), experimental 
data (black box), or a combination of both (gray box). 
Black-box models are the best choice when the system 
internals are unknown or too complicated to describe, as 
in computers (see “Black-Box System Identification” for an 
overview). Next, among the different modes of control, we 
use MIMO controllers because (as previously indicated) 
we target multiple tightly coupled goals that depend on 
numerous inputs.

The different organizations of MIMO controllers for 
multilayer systems are then considered. Decoupled and 
centralized designs cannot achieve modularity and coor-
dination simultaneously. In a cascaded design [6], con-
trollers are organized as a nested loop, where each one 
sets the targets for the immediately inner one. Only the 
innermost controller changes the system inputs. This 
method, too, is not well suited for our goal. The multi-
layer controllers do not always have a hierarchy between 
them and must be designed independently. To respond to 
dynamic conditions, the controllers must wait until their 
sensor data propagate to higher controllers and new tar-
gets cascade down. This is a long latency process. Instead, 
we identify the best choice to be a collaborative architec-
ture, where independent controllers communicate to 
attain coordination.

Several approaches are used to ensure that the control-
ler works correctly during uncertainty and through rapidly 
changing conditions. The classical one is to design control-
lers with additional stability margins [33]. This works for 
simple systems. Robust control explicitly optimizes con-
trollers for significant uncertainty and is applicable to com-
puter environments. The controllers have a low complexity 
and modest overheads. In gain scheduling, multiple con-
trollers are used, each suited for a particular type of execu-
tion [54]. At runtime, logic determines when each one is 
active, based on the execution. This approach requires 
additional modeling efforts and may necessitate expensive 
selection logic at runtime. Lastly, adaptive control synthe-
sizes a new controller online whenever changing condi-
tions are detected [55]. It has a higher runtime overhead 
and design complexity.

Finally, for the controller type, PID controllers are com-
monly used for their simplicity. However, they are not ade-
quate to control MIMO systems. For MIMO systems, LQ 
Gaussian (LQG) controllers [12] and MPCs [28] have been 
proposed. However, with modular-controller design, the 
interaction between layers can manifest as a large uncertainty 

Category Choices

Modeling White box (analytical), black box (data driven), 
gray box 

Mode Single-input, single-output; multiple-input, 
single-output; single-input, multiple-output; 
multiple-input, multiple-output

Organization Decoupled, centralized, cascaded, 
collaborative

Approach Classical, robust, gain-scheduling, adaptive

Type Proportional-integral-derivative; linear quadratic 
Gaussian; model predictive controller, H3  or n  
synthesis

TABLE 4  The design choices from control theory. Italic 
text indicates the choices that were selected.
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that can degrade the behavior of LQG control and MPC. 
Moreover, these controllers do not have channels to commu-
nicate among themselves.

The properties of n  controllers make them attractive to 
meet the needs of computer management.

»» n  controllers can be designed to natively work with 
uncertainty. We can formulate model limitations, 
interlayer interaction, and input discretization as 
uncertainty. Independent teams use models of only 
their layers to design controllers that are robust to 
this uncertainty. This approach enables a modular 
and robust design.

»» n  controllers can take disturbance measurements for 
improved control. In computer systems, these are 
called external signals and used to pass information 
from one layer to the controller of another layer. For 
example, the OS controller passes the number of cur-
rently running tasks as an external signal to the 
hardware controller.

»» n  synthesis is well supported by standard tools [57]. 
These controllers do not require online solvers to 
compute decisions (unlike MPCs, for example), which 
is essential for fast decision making.

MODULAR COORDINATED CONTROL  
WITH ROBUST CONTROL THEORY
The design was developed using n  synthesis from robust 
control theory [58]. Black-box system identification [59] was 
employed for the modeling, since it is difficult to model com-
puter systems using first principles. The n  controllers can 
handle model limitations and unknown interlayer interac-
tion. Finally, additional optimizer modules were incorporated 
with each n  controller to meet the optimization goals.

Control System Architecture
Figure 5 diagrams the architecture of the proposed multi-
layer control system that achieves the goals in (7) and (8). 
There is a robust n  controller and an optimizer in each 
layer. The n  controller is used to keep the outputs close to 
the received targets. This accomplishes the basic tracking 
goal. For optimizing a metric, the optimizer issues various 
targets that progressively improve the metric. The n  con-
troller responds by changing the inputs to make the outputs 
follow the changing targets. The n  controllers also read the 
inputs in other layers as measured disturbances (external 
signals) for improved decisions. This is a modular architec-
ture in which the controller and optimizer in a layer can be 

Black-Box System Identification

System identification is an area associated with control the-

ory that concerns the modeling of systems by using em-

pirical data. Because real-world systems include many phe-

nomena that are difficult to model from first principles, system 

identification plays an important role in capturing the relation-

ship between the systems’ inputs and outputs.

Modeling can be classified into three types. The first is 

white-box modeling, where the system dynamics are described 

from physical equations. Aerospace control has many models 

that are obtained in this manner. The second is gray-box mod-

eling, where designers specify a generic model structure (for 

example, a polynomial model) based on their insight, and the 

model parameters are derived from experimental information. 

This is the prevalent approach in many domains. Finally, black-

box modeling assumes no prior knowledge of the model struc-

ture. Therefore, a suitable model structure and its parameters 

are derived from experimental data. This approach is particu-

larly relevant for computer systems, as we do not have a priori 

knowledge of their dynamics.

In system identification, the system (or a computer running 

applications, in this case) is excited with special input signals. 

They are designed to easily bring out the dependence of out-

puts on the inputs. Popular choices include the pseudoran-

dom binary sequence, random Gaussian, and sum-of-sinu-

soids methods. Choosing the input signals for multiple-input, 

multiple-output (MIMO) systems requires more attention. The 

input signals are chosen to minimize their cross correlation. 

One approach is to excite one input channel with a signal dur-

ing each run and record the data. Another is to use uncorre-

lated random signals for each channel simultaneously. There-

fore, MIMO systems may require multiple identification runs. 

In each identification run, the input–output data are collected 

through time.

After the identification runs are complete, there are mul-

tiple logs of input–output data through time, one log for each 

experimental run. These data are usually normalized so that 

the different inputs and outputs have similar ranges of values. 

With the normalized data, linear-regression methods are com-

monly used to identify the parameters of a model structure. 

With black-box identification, designers may have to experi-

ment with different model structures and dimensions to find the 

one that explains their data well and aligns with any insights.

For a given model structure, using larger dimensions (for 

example, using a longer history with polynomial models) results 

in overfitting the model to the training data. As a result, the ob-

tained model parameter values are said to have a low confi-

dence, and the variance of the values given by the model is 

high. On the other hand, if the model dimension is too small, the 

model cannot explain all of the non-noise dynamics, resulting in 

larger systematic errors in the values it gives. The model is said 

to have a high bias. Tools such as Matlab [56] make it easy to 

choose between different model structures and the right dimen-

sions for each model based on the training data. See [59] for 

details on the different steps in system identification.
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designed independently. The design teams must exchange 
only the interface information for sharing the external sig-
nals and bounds for commonly monitored outputs.

The hardware optimizer generates the output targets 
that optimize the objective under constraints. This func-
tion can be stated as

	

max

,
,

,

Power
Throughput

Power Power
Power Power

Temperature Temperature

y

2

little little
limit

big big
limit

limit

HWo

1
1
1 � (9)

where yHWo  represents the target values for the out-
puts. This search for the best output targets is imple-
mented using simple algorithms. For example, to optimize 

[ ]/ [ ],k kThroughput Power2  the search module progres-
sively increases the performance targets by larger amounts 
than it increases the power targets, or it decreases the per-
formance targets by smaller amounts than it decreases the 
power targets. This implementation requires low overheads.

The controller must robustly track the targets given by 
the optimizer. This goal is formulated as

	 : :
( )

,
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y
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W y y

W u
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HW HW HW

HW

zw

C

-% %

3

Ce eo o � (10)

where uHW  represents the hardware inputs, yHW %  denotes 
the targets for the hardware outputs ,yHW zwC 3  is the 
induced H3  norm that captures the robustness to bounded 
disturbance d, Wp is the performance-requirement weight, 
and Wu is the weight for the inputs. This is a mixed-
sensitivity, robust-control problem that ensures optimal 
tracking according to the designer requirements during 
uncertainty. Standard n  synthesis is used to achieve this 
subgoal. The formulations for the OS optimizer and n  

controller are similar. For tracking-only objectives (see the 
“Goals for Computer-Resource Control” section), the opti-
mizer simply issues the output targets that the designer/
user needs. Even for advanced tracking where the targets 
change through time, the optimizer uses preset functions 
to generate the targets.

The principle behind the proposed architecture is to use 
the same control system for tracking and optimization. 
Furthermore, the optimizer searches the output-target 
space, which is simpler than searching the input space. For 
example, when optimizing [ ]/ [ ],k kThroughput Power2  the 
optimizer can progressively increase the performance tar-
gets by a larger amount than for the power targets or 
decrease the performance targets by a smaller amount than 
for the power targets. This results in a simple implementa-
tion. The alternative method of searching the input space 
has a higher complexity because the exact magnitude of an 
input’s impact on each output is difficult to ascertain. This 
difficulty increases when there are many inputs and out-
puts and when other layers change the dynamics at run-
time. Since it is important for the control system to consume 
as few resources as possible for decision making, this 
approach is not used.

Additionally, the optimizer does not have to explicitly 
address the uncertainty; instead, it relies on the n  con-
troller. The n  controller ensures that the output tracking 
is effective under the uncertainty of unmodeled intra- 
and interlayer effects. Since the n  controller can quickly 
track the targets, the optimizer does not have to wait long 
to issue new ones. Consequently, the overall optimization 
is fast.

Black-Box System Identification and Models
Due to system complexity, there are no accurate dynamic 
models of computers built with first principles. Therefore, 
empirical black-box system identification [59] is the best 
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signals.
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approach to model them. See “Black-Box System Identi-
fication” for a brief overview. Our identification experi-
ments use two applications (swaptions and vips) from the 
PARSEC 2.1 application suite [20] and four applications 
(astar, perlbench, milc, and namd) from SPEC06 [21]. These 
suites are standard for evaluating the performance of 
computers. From them, applications for identification are 
randomly selected.

Two tests are used, and there are pseudorandom input 
sequences for each training benchmark. The value of each 
input is chosen randomly and remains unchanged for an arbi-
trary duration lasting between 1 and 16 sampling intervals. 
The data are normalized to a [ , ]1 1-  range, and a polynomial 
model is identified. Figure 6 gives the input and output values 
during the identification experiments for swaptions. The 
figure shows how the four hardware inputs are changed and 
the three external signals received from the OS are set. 
Figure 7 presents the identification data following the normal-
ization. The normalized data are used to obtain our models.

It is determined that a Box–Jenkins polynomial struc-
ture generates models that better fit our data compared to 
other polynomial, state-space, and transfer-function models. 

These models connect the outputs [ ]y k  at a discrete inter-
val k, with the inputs [ ]u k  and noise [ ]e k  as

	 [ ] [ ] [ ] .y k F
B u k D

C e k= +` `j j � (11)

Note that B, C, D, and F are polynomial transfer functions 
in the z transform domain. The suitability of the Box–Jen-
kins model structure aligns with our assumption that the 
output values are related to prior values.

The hardware model has four inputs, three disturbance 
inputs, and four outputs; the OS model has three inputs, 
four disturbance inputs, and three outputs. The identified 
models can be represented as second-order transfer  
functions from inputs to outputs. For example, in the hard-
ware model, the transfer function from Frequencylittle to 
Powerlittle is given by ( . / . . ) .z z z0 38 0 04 0 022 2 + +  Similarly, 
the transfer function from Frequencybig to Powerbig is given 
by . / . . ,z z z0 34 0 01 0 022 2 - +^ h  and the transfer function 
from Frequencybig to Temperature is given by (0.18z2 

/z2– . . .z0 21 0 12+ h  The other transfer functions are similar.
The models are nominally stable as is the underlying 

system. Figure 8 shows the Bode magnitude plot for the 
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FIGURE 6 The identification data with the PARSEC benchmark swaptions. (a) Observed outputs of swaptions during system identification. 
The top row shows how each hardware output changes through time in response to the identification inputs. (b) Inputs used during system 
identification with swaptions. The bottom row of plots shows how we change the four hardware inputs (uHW1–uHW4) and the external signals 
received from the operating system (es1–es3). BIPS: billions of instructions per second.

Authorized licensed use limited to: University of Illinois. Downloaded on April 29,2020 at 21:00:29 UTC from IEEE Xplore.  Restrictions apply. 



44  IEEE CONTROL SYSTEMS »  APRIL 2020

hardware outputs from the external signals (es) that the OS 
sends to the hardware as well as the local inputs into the 
hardware. The frequency response of the model H(z) is 
evaluated on the unit circle using the substitution z e j T= ~  
with ,T0 N1 1~ ~ r= ^ h  where N~  is the Nyquist fre-
quency, and T = 0.5 s is the sampling interval [60]. This is 
the frequency range shown on the horizontal axis in 
Figure 8. N~  is also shown as a vertical line in the subplots. 
Figure 8 includes the confidence regions that are given by 
the identification methods.

A feature of the models is that the frequency response of 
many outputs is nearly flat. This is expected because the 
sampling interval used in this system (0.5 s) is much longer 
than the physical timescales at which the outputs respond 
to the inputs. As a result, we capture only coarse-grained 
dynamics that are observed at a long time interval.

μ Synthesis
The structure in Figure 9(a) is used for the n  synthesis. P% is 
the identified nominal model. We consider two forms of 
uncertainty. The first ( )opT  is the output multiplicative 
uncertainty to account for intra- and interlayer modeling 
limitations. This is bounded by Wop. The second form ( )nlT  

is the additive uncertainty used to model the input nonlin-
earity. The additive uncertainty setup lies inside a complex 
disk of radius 0.5, centered on the real axis at 0.5 [61]. Wp is 
the tracking-error bounds of the outputs, and Wu represents 
the input weights. Figure 9(a) does not show the scaling 
weights to normalize the signal measurements.

The structure in Figure 9(a) can be reorganized as a 
linear fractional transformation (LFT), shown on the left 
side of Figure 9(b), by pulling out the uncertain elements. T  
consists of block-diagonal uncertain elements,v including 
the fictitious peT  used for enforcing robust performance 
(that is, Wp and Wu). The right side of Figure 9(b) displays 
the nominal closed loop ( , )M F P Kl= %  (that is, the lower 
LFT of P% and K). Suppressing the frequency dependence 
and interpreting M as ( )M ej T~  for a particular frequency, ~  
(and similarly for the other systems involved), the SSV n  of 
M is defined as [58]

	 ( ) { ( ): ( ) , }min detM I M 0
1

!
n

v D D D D
=

- =
D r

� (12)

where ( )v Dr  is the largest singular value of .D  By the struc-
tured small-gain theorem [58], the system is internally 
stable and meets the performance criteria if and only if 
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FIGURE 7 The normalized identification data with the PARSEC benchmark swaptions. (a) Normalized inputs used during system identi-
fication. The top row shows how the hardware outputs change through time in response to the identification inputs. (b) Normalized inputs 
used during system identification using swaptions. The bottom row of plots shows how we change the four hardware inputs (uHW1–uHW4) 
and the external signals received from the operating system (es1–es3). BIPS: billions of instructions per second.
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( )M 1#nD  for all ~. The controller K is obtained by using 
the DK iteration of Matlab’s Robust Control Toolbox [57].

The weights used in this structure are given in Table 5 
and have the form ( )/ .k z a z b- -^ h  The weights to bound 
the uncertainty (Wop) are set from model validation experi-
ments and confidence estimates from the identified model 
given by Matlab. For the hardware, . ( . )/ .z z0 8 0 55 0 1- -^ h 
is used as the uncertainty bounds for all of the outputs, 
and for the OS, . / .z z0 55 0 1- -^ h is used for every output. 
A higher uncertainty is set for the OS layer, as it is imme-
diately affected by the changing number and nature of 
the application tasks.

For tracking the performance weights in the hardware 
(Wp), ( )/ .z z5 1 0 55- -^ h is used for Powerlittle, Powerbig, and 
the temperature, and . ( )/ .z z2 5 1 0 55- -^ h is used for the 
throughput. Outputs related to the power and temperature 
have tighter bounds, as they are vital to the system integ-
rity. In the OS, . ( )/ .z z2 5 1 0 55- -^ h is used for all of the 
outputs, since they are all related to performance. Our 
weights emphasize the reference tracking, as the common 
case is to track the changing targets to optimize a metric.

Figure 10 displays the Bode magnitude plots of the weights 
used to represent the uncertainty bounds and inverse of the 
tracking-performance weight in the hardware layer. The OS 
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weights are not shown, since they are similar to those of the 
hardware layer. The input weights (Wu) are set based on the 
relative overheads of changing the inputs in the hardware. 
We use 0.5 for Frequencylittle and Frequencybig and one for 
#Coreslittle and #Coresbig. For the OS, all of the inputs have a 
weight of two, since they involve migrating a task from one 
core to another and have similar overheads. The OS has more 
conservative input weights, as it is closer to the application 
unpredictability.

Using the model and weights, separate n  controllers are 
obtained for the hardware and OS layers by using standard 
routines from Matlab [62]. Since the order of the controllers 
generated by Matlab’s n  synthesis routines is large (68 for 
the hardware n  controller and 82 for the OS n  controller), 
the controller dimension is reduced through Hankel singu-
lar values. For each controller, the states whose Hankel 
singular-value contributions are lower than 0.01 are 
removed. As a result, the number of hardware and OS 
μ-controller states lowers to only 20 and 16, respectively. 
Figure 11 charts the n  bounds for the closed-loop system in 
each layer. It is shown that the controllers can provide 

robust stability and performance since ( )M 1#nD  for all of 
the frequencies.

Optimizer Design
The optimizer searches for the output targets to minimize a 
metric in its layer. It is invoked periodically at 1-s intervals 
and runs an algorithm to generate the output targets. Since 
the controller runs every 0.5 s, each set of targets issued by 
the optimizer is used for two controller invocations. Intui-
tively, the optimizer’s algorithm searches along two direc-
tions: a high-throughput region (Up) and a low-throughput 
region (Down). To move up in the high-throughput area, the 
algorithm increases the target of the throughput and that of 
the output, which is significantly below its maximum limit. 
Alternatively, to move down in the low-throughput zone, 
the algorithm decreases the target of the throughput and 
that of the output, which is close to its limit.

Algorithm 1 is the hardware optimizer that runs to maxi-
mize /Throughput Power2  under the constraints in (7). It is 
based on the algorithm in [12] and modified to support 
search constraints and multiple outputs. The hardware opti-
mizer reads the outputs in its layer, the limits in (7), conver-
gence bound ,e  and restart probability .d  It converges if the 
relative improvement in the metric being optimized is below 
.e  The restart probability d  determines the probability with 

which the optimizer’s search can begin again, even after 
convergence is achieved. The optimizer is initialized to 
search in the Up direction.

When invoked, the optimizer first computes the margins 
of all of the outputs [defined as the difference between the 
maximum limits and the actual values of the outputs 
(line 1)] and the errors [defined as the difference between 
the targets and the actual outputs (line 2)]. It then identifies 
Outputagg (the output other than the throughput that has 
the smallest margin), Outputlaz (the output other than the 
throughput that has the largest margin), and Outputlag (the 
output with the largest error).
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FIGURE 9 The structure specification for n  synthesis. P0  is the identified nominal model. opT  is the output multiplicative uncertainty to 
account for intra- and interlayer modeling limitations. This is bounded by .Wop  nlT  is the additive uncertainty used to model the input 
nonlinearity. Wp  is the performance weight for the tracking-error bounds of the outputs, and Wu  is the input weight. (a) The closed-loop 
structure for each layer. (b) The linear fractional transformation representation.
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z
z

0 1
0 8 0 55

-
-

 for all  

outputs
.
.

z
z

0 1
0 55

-
-  for all outputs

Wp

.
( . )
z

z
0 55

5 0 1
-
-

 for Powerlittle, 

Powerbig, and temperature 
.

. ( . )
z

z
0 55

2 5 0 1
-

-
 for all  

outputs

.
. ( . )
z

z
0 55

2 5 0 1
-

-
 for throughput

Wu 0.5 for frequencylittle and 
frequencybig

One for #coreslittle and 
#coresbig

2 for all inputs

TABLE 5  The weights used in the structure specification.
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A negative margin of Outputagg means that an output 
exceeded its limit (line 3). The optimizer must then reduce 
the target for this output (line 4). Additionally, the opti-
mizer reduces the target of Outputlag because its tracking 
error is the largest (its target is too high). When an output’s 
target is too high, the controller may cause the remaining 
outputs to exceed their targets so that the lagging output is 
brought closer to the target. Since this can result in some 
of the outputs going beyond their limits, the target for 
Outputlag must be reduced. The reduction in targets is per-
formed by the decrease() function in lines 3 and 4.

When no output is beyond its limit, the optimizer computes 
the value of the metric that was achieved with the previous 
choice of targets (line 7). It then calculates ,metricD  which is 

the relative improvement of the metric’s value compared to the 
previously achieved value (line 8). If the relative improvement 
is smaller than the convergence bounds ,e  the targets are not 
modified. New targets must be generated when metricD  is 
larger than e or with a small probability, d, even when metricD  
is below e (line 9). The ()rand  function in line 8 returns a 
number drawn randomly from a uniform distribution 
between zero and one. If the search direction is Up, and the 
metric’s value is increasing, the optimizer continues to search 
in the Up region. It increases the target for Throughput and 
Outputlaz that has the largest margin from the limit (lines 
12–13). The target for Throughput is increased by a larger 
amount than the target for Outputlaz. It is expected that the con-
troller will be able to increase the throughput much more than 
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the power and temperature. Increasing the target for Outputlaz 
gives the controller some freedom to increase Throughput. 
Otherwise, it may be possible that Throughput cannot be 
increased without the power use and temperature rising.

When the metric’s value is not improving in the Up region, 
the optimizer reverses its direction to Down (line 15). In 
this direction, it decreases the target for Throughput and 
Outputagg that has the smallest margin from the limit (lines 
16–17). The target for Throughput is decreased by an 
amount smaller than the target for Outputagg. The expecta-
tion for this move is that the controller will be able to reduce 
the power and temperature much more than the through-
put. Similar decisions occur when the optimizer’s search 
direction is Down (lines 20–26). The optimizer continues to 
proceed in the Down direction until the metric improves. 
Otherwise, it reverses to the Up direction.

On the prototype computer, the increase() and decrease() 
functions raise and lower the targets by 15 and 10%, respec-
tively. The large_increase() and large_decrease() functions per-
form the respective changes by 20 and 15%. When 
decreasing, the targets are not reduced below zero; when 
increasing, they are capped at the maximum values that the 
outputs can withstand. The convergence bound e is 0.05, 
and the restart probability d is 0.05. The search does not 
cycle through the same points.

The optimizer’s algorithm is simple but effective in 
practice. It follows the intuition that the best value of the 
metric /Throughput Power2  occurs in the high or low 
throughput region. Therefore, instead of searching for all 
of the output targets simultaneously, each decision of the 
algorithm changes the throughput target and the target of 
another output that is necessary to improve the through-
put. Additionally, the algorithm does not have to explicitly 
account for changing system conditions because it relies on 
the n  controllers to robustly keep the outputs near the tar-
gets. Finally, implementing the algorithm requires only a 
little computation and a few comparisons (which is one of 
the design requirements).

The algorithm for the OS optimizer differs only slightly 
and is not shown. The OS optimizer also has two search 
directions: big-side (where the big cores contribute more to 
the performance) and little-side (where the little cores con-
tribute more to the performance). The algorithm finds the 
best targets for the OS outputs in this space.

Remarks on the Control System Design
In our design, the parameters for each n  controller and 
optimizer are set independently using only the knowledge 
of their respective layers. This is a key design requirement 
to accomplish (see the “Resource-Control Design Require-
ments” section). Our control system architecture can meet 
the tracking and optimization goals as needed. Finally, the 
controllers and optimizers can be synthesized using off-
the-shelf design methods and tools that are easily accessed 
by computer designers.

    Input: �outputs, targets, limits (7), convergence bound ,e  

restart probability d

    Output: New targets for hardware outputs

    Initialize: �direction !  Up, prev_metric !  0,  

stop_search !  False

1	 margins !  limits – outputs

2	 errors !  targets – outputs

	� // Outputagg  is the output other than Throughput with the 

smallest margin

	� // Output laz  is the output other than Throughput with the 

largest margin

	� // Output lag  is the output with the largest error

3	 if 0margin Output[ ]agg 1  then

4	   target Output[ ]agg  !  decrease(target[Outputagg])

5	   target Output[ ]lag  !  decrease(target[Outputlag])

6	 else

7	   metric Power
Throughput2

!

8	   _
_

metric abs prev metric
metric prev metric

!T
-c m

9	   if metricT 2 e  or ()rand 1 d  then

10	     if direction =  Up then

11	       if metric 2 prev_metric then

12	    �     target[Throughput] !   large_increase 

  (target[Throughput])

13	     �     Outputtarget[ ]laz  !  increase( )Outputtarget[ ]laz

14	       else

15	         dir !  Down

16	     �    target[Throughput] !   

  decrease(target[Throughput])

17	     �     Outputtarget[ ]agg  !   

  large_decrease( )Outputtarget[ ]agg

18	       end

19	     else

20	       if metric 2 prev_metric then

21	         �target[Throughput] ! decrease(target[Throughput])

22	    �      Outputtarget[ ]agg  !   

  large_decrease( )Outputtarget[ ]agg

23	       else

24	         dir !  Up

25	    �     target[Throughput] !   

  large_increase(target[Throughput])

26	    �      Outputtarget[ ]laz  !  increase( )Outputtarget[ ]laz

27	       end

28	     end

29	   end

30	   prev_metric !  metric

31	 end

ALGORITHM 1  The optimizer algorithm to generate 
targets for the hardware μ controller.
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EVALUATING THE MULTILAYER n-CONTROL SYSTEM 
ON THE PROTOTYPE COMPUTER
We first present the storage and computation overheads 
of the controllers. Then, we evaluate the control system’s 
effectiveness in managing the prototype computer run-
ning a variety of applications.

Implementation Overheads
Table 6 lists the implementation overheads for the n  con-
troller in each layer. In the table, the number of operations 
includes the 32-b fixed-point additions and multiplica-
tions. The power consumed for the computation is mea-
sured on an ARM little core. For the hardware controller, 
there are four inputs, four outputs, three external signals 
from the OS, and 20 states. The controller must store nearly 
2.6 KB of data. At every ms-level invocation, it performs 
nearly 700 32-b fixed-point operations (additions and 
multiplications). It was determined that performing these 
computations on an ARM Cortex A7 core consumes 
.20–25 mW and takes .28 μs. These values are small be
cause the n  controllers must perform only matrix-vector 
calculations to generate decisions. The overheads are low 
enough to be easily used in computer hardware. The OS 
controller has similar overheads.

Overall Comparison With the State of the Art
We compare our multilayer μ-control design (called Multi-
layer SSV) with a state-of-the-art control system that was 
commercially developed for our computer. We use this 
design for comparison because 1) it has a controller for each 
layer that exchanges information with the other layer (sim-
ilar to our design), 2) it is designed by industry experts, and 
3) it is deployed in real computers. Other designs from 
research typically focus on controlling specific applica-
tions and managing only one layer. Moreover, such designs 
are usually specific to the computing platforms they con-
sider. It is not clear how to compose these designs in differ-
ent layers and port them on our computer. Therefore, we 
chose the industry-class control system for comparison.

In the control system used for comparison, the hardware 
and OS controllers are based on designs from ARM, Linaro, 
and Samsung [63], [64]. The OS controller is similar to the 
heterogeneous multiprocessing task scheduler from ARM, 
Linaro, and Samsung except that it is modified to optimize 
Energy × Delay. In this design, the hardware controller sets 
the number of cores and their frequency to the maximum 
values until the power of the big or little clusters or tempera-
ture exceed their limits; when that happens, it finds a lower, 
safe frequency value for that cluster [65]. Further, the OS con-
troller reads the number, type, and frequency of the available 
cores from the hardware controller to schedule tasks. Simi-
larly, the hardware controller reads how the tasks are distrib-
uted across all of the cores to determine the safe frequency. 
This design is called Heuristics because the state-of-the-art 
controllers in industry are built with heuristics [63]–[65].

We test our designs by running applications from PARSEC 
(blackscholes, bodytrack, facesim, fluidanimate, raytrace, x264, 
canneal, and streamcluster) and SPEC06 application suites 
(h264ref, mcf, omnetpp, gamess, gromacs and dealII) and their 
combination. Figure 12 displays the Energy × Delay of the 
applications with Multilayer SSV and Heuristics. The bars 
from left to right correspond to the SPEC applications, 
average of the SPEC applications, PARSEC applications, 
average of the PARSEC applications, and average across all 
of the applications. The applications are abbreviated to 
their first three characters. For each application, the bars 
are normalized to Heuristics.

Compared to Heuristics, Multilayer SSV reduces the 
Energy × Delay by 50%. The execution times and energy 
consumption (not shown) are reduced by 38 and 20%, 
respectively. The reason for this significant benefit is that 
the robust controllers in each layer were stable and could 
find the best settings for their layer under the influence 
from other layers. In Multilayer SSV, the actuation costs, 
output priorities, and uncertainty bounds are explicitly 
included in the controller design. The resulting controllers 
perform robustly during uncertainty. Heuristics incorpo-
rates similar information implicitly, using ad hoc rules and 
offering no stability or robustness guarantees. Hence, n  
controllers result in a substantial advance from existing 
systems. We explain this improvement in detail by con-
sidering how these control systems manage the blackscho-
les application.

Analysis of a Specific Application: blackscholes
We present how Heuristics and Multilayer SSV differ by 
focusing on the blackscholes application. As discussed in the 
section “Interaction Between Layers and the Variability of 
Applications,” this application begins with a single task 
and later launches eight new ones that run simultaneously. 
Once the eight tasks conclude, a single task performs some 
work, and the application concludes. Within a phase, the 
work performed by the application does not have large 
variations. Figure 13 documents how the control systems 
manage the outputs through time for this application.

Consider Heuristics. The application begins with one 
task that runs until 50 s. Then, it suddenly launches eight 
new tasks, resulting in a rapid increase in the power of the 

Parameter Hardware μ Operating System μ

Dimension 20 16

Required storage 2.6 KB 2.1 KB

Number of  
operations ≈ 700 ≈ 600

Computation time ≈ 28 μs ≈ 25 μs

Power consumption ≈ 20–25 mW ≈ 20–25 mW

TABLE 6  The implementation overheads of μ controllers.
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clusters, temperature, and performance. From that point, 
there are many oscillations in the power of both clusters 
and performance. Even though each layer’s controller mea-
sures the inputs from the other layer for coordination, the 
ad hoc rules offer no robustness. The outputs continue to 
fluctuate, and the application takes 270 s to complete.

In contrast, Multilayer SSV has a significantly smoother 
behavior. Even though the hardware and OS controllers have 
been independently developed, they are robust against the 
interlayer interference. The outputs are kept within limits, 
and the application has a higher throughput. At approxi-
mately 50 s, when the application suddenly launches eight 
new tasks, the controllers quickly react to bring the power of 
each cluster and the temperature below their critical values. 
The controllers’ fast response speeds up the search to opti-
mize the Energy × Delay. Notice from Figure 13(d) that the 
instantaneous performance with Multilayer SSV is nearly 1.5 
times that of Heuristics during the phase with eight tasks, 
with a comparable power consumption and temperature. As 
a result, the application completes in 180 s, much earlier than 
with Heuristics.

Evaluating Heterogeneous Application Combinations
We evaluate how the controllers would manage a com-
pletely new application behavior on our computer. Four 
application mixes are run on our computer (each with mul-
tiple tasks), and the control system’s effectiveness is evalu-
ated. Recall that the model identification experiments did 
not use any such data. In each mix, there is one application 
from PARSEC that can launch up to four tasks and one 
from SPEC that can generate four more. These mixes are 
blmc (blackscholes+mcf), stga (streamcluster+gamess), 
blst (blackscholes+streamcluster), and mcga (mcf+gamess). 
Figure 14 shows the Energy × Delay with Heuristics and 

Multilayer SSV, normalized to Heuristics. On average, 
Multilayer SSV achieves a 47% lower Energy × Delay than 
Heuristics. This demonstrates a Multilayer SSV robustness 
that could keep the computer efficient, even when encoun-
tering new application behavior.

Comparison With Decoupled Control Systems
We evaluate the importance of robustness and controller 
coordination by comparing Multilayer SSV against two 
decoupled control systems to minimize Energy × Delay on 
our computer. These systems have a controller running in 
the hardware and OS layers. However, one layer’s controller 
does not read any information from the other’s controller.

The first decoupled system is based on industry imple-
mentations and runs with heuristics. In this scheme, the OS 
controller assigns tasks to the cores in a round-robin 
manner without considering the type and frequency of each 
core. The hardware controller is similar to the performance-
power governor in Linux [66]. It sets the number of cores in 
each cluster as well as the cluster’s frequency to their maxi-
mum values whenever the power of each cluster and the 
temperature are below their limits. When the power or tem-
perature exceeds its limits, the controller uses rules to tempo-
rarily reduce the frequency of each cluster first, followed by 
the number of cores in each cluster. It does not use informa-
tion about how many threads are running on a core to actu-
ate the inputs.

The second decoupled system uses an LQG servo con-
troller (LQ integrators with Kalman estimators) in each 
layer instead of the SSV controllers. We reuse the opti-
mizers from Multilayer SSV with the LQG controllers. To 
synthesize the LQG controllers, we use the weights for 
the inputs and outputs that are comparable to those 
employed for the corresponding n  controllers. For the 
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noise-covariance matrices, we use values that are compa-
rable to the uncertainty bounds in the n  synthesis.

On average, decoupled heuristics result in 52% higher 
Energy × Delay values than Heuristics does. This is due to 
heuristics’ lack of coordination and poor robustness. The ad 
hoc heuristics in each layer are aggressive and offer no guar-
antees by themselves. When used together, they destruc-
tively interfere with each other. The hardware controller 
increases the number of cores and their frequency to the 
maximum, while the OS controller spreads the application 
tasks on as many cores as available. This causes the power to 
exceed the limit, triggering the hardware controller to reduce 
the frequency of the cores and even shut down some of them. 
When the power and temperature are below their limits, the 
hardware controller again increases the number of cores and 
their frequency to the maximum. This cyclical pattern con-
tinues for a long time, resulting in inefficiency.

Decoupled LQG controllers have nearly the same Energy 
× Delay as Heuristics. This is much better than decoupled 
heuristics but far worse than Multilayer SSV. LQG control-
lers are more robust than decoupled heuristics. However, 
the separate LQG controllers do not communicate, while 
the controllers in Heuristics do. Therefore, Heuristics has an 
advantage in this aspect. Overall, decoupled LQG control 
outperforms decoupled heuristic control, but it is at the same 
level as Heuristics.

Compared to Multilayer SSV, the decoupled LQG has two 
disadvantages. LQG controllers do not communicate, and 
they are more conservative than the n  controllers for our 
computer. To achieve the same level of robustness as our n  
controllers (against interlayer interaction, actuator nonlin-
earities, and model limitations), the LQG controller’s 
response has become too slow compared to n  control. For 
example, when the targets were changed, the hardware LQG 
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controller usually converged to the new targets in six sam-
pling intervals, compared to only two for the μ. Conse-
quently, the optimizer’s search takes longer. As a result, the 
decoupled LQG performs poorly compared to Multilayer 
SSV. Overall, the proposed Multilayer SSV system has the 
required robustness, coordination, and fast response to keep 
computers efficient. Its modular design fits naturally with 
the multilayer organization of computers. This is a signifi-
cant step beyond the existing designs for computer control.

RECENT DEVELOPMENTS AND FUTURE WORK
We recently collaborated with researchers from industry to 
develop a new hierarchical control network for managing 
modularly designed heterogeneous hardware [67], [68]. This 
recent work examines only the problem of composing con-
trol across heterogeneous systems in the hardware layer, 
unlike the present article (which considers the interaction 
between multiple system layers). Modern hardware has 
many independently designed heterogeneous subsystems 
(see “Multilayer-Computer Organization”). It is necessary to 
generate local decisions quickly in each subsystem and 
coordinate the different subsystems for global optimiza-
tion. In practice, global coordination among subsystems is 
considered difficult, and current commercial systems use 
centralized controllers in the hardware. The result is a high 
response time and design cost due to the lack of modularity.

The problem of coordinating the resource control in 
heterogeneous hardware is different than the multilayer- 

computer control problem described in this article. Hetero-
geneous hardware is integrated hierarchically, such as cores 
into processors and multiple processors into heterogeneous 
nodes. There are resource constraints for each subsystem at 
each level of integration. In contrast, multilayer controllers 
do not have a hierarchy. Additionally, the outputs (that is, 
the system power) are hardware resources that must be dis-
tributed optimally between the subsystems. For example, if 
an application runs better on a graphics processor than a 
conventional processor, the graphics processor must be 
enabled to utilize as much power as it can, and the conven-
tional processor should be disabled. In the multilayer-con-
trol problem, simply budgeting power and the throughput 
across layers is not meaningful. The OS and applications 
cannot consume power by themselves without running on 
the hardware.

An additional aspect of [67] is that it includes system 
safety as a resource control goal, one that is omitted from 
the present article. Real hardware has several mechanisms 
to protect computers from hazardous operating conditions 
such as high currents and temperatures. These are hard 
constraints, unlike the soft ones that are considered in the 
present work. Therefore, they are handled through engines 
that operate at faster timescales than those for optimization 
and tracking goals.

When optimizing engines operate without being aware 
of the interference from safety engines, the result is ineffi-
ciency. For example, when a performance controller increases 
the processor frequency to improve the throughput, it raises 
the processor temperature as a side effect. When the tem-
perature exceeds a critical threshold, safety mechanisms 
will immediately lower the frequency. If the performance 
controller restores the frequency to the previous high value, 
it could repeatedly trigger the safety mechanisms, which 
would lower the frequency. Overall, this oscillatory behav-
ior results in poor performance. The latest work [67] pro-
poses a new controller for each subsystem that combines 
multiple engines for optimization and safety and has a stan-
dard interface. Building the controller for a subsystem 
requires knowing about only that subsystem. As a heteroge-
neous computer is assembled, the controllers in the different 
subsystems are connected hierarchically, exchanging stan-
dard coordination signals.

The controller design in the new work is also based on 
robust-control-theory principles and extends some of the 
ideas in the present article. The optimizing engine in a con-
troller has a n  controller and planner. The planner provides 
targets to the controller, similar to the optimizer in the 
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There is no work that addresses the design of  

modular coordinated controllers for multilayer computers.
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present work. Additionally, it communicates with the parent 
and child controllers. The uncertainty bounds that are used 
to design the n  controllers capture the interaction between 
the subsystems and interference from the safety engines.

A natural path forward is to integrate the two ideas: 
develop distributed-control networks for all computer 
layers and connect them using standard interfaces. The 
networks may be organized differently in each layer. For 
example, the hardware control layer in [67] has a hierarchi-
cal nature because it matches the underling hardware-sys-
tem structure. The OS does not have such a structure and 
may need a different organization. Overall, the area of 
computer control is an exciting field with many opportuni-
ties for the control systems community to contribute. For 
example, the lack of accurate, standard models is a signifi-
cant challenge that merits novel designs from robust and 
adaptive control. It is possible to use ideas from extremum-
seeking control to eliminate the use of a separate optimizer.

The problem of reconciling hard safety constraints with 
optimizing control can be likened to the control problem for 
self-driving cars and unmanned aerial vehicles. Switched 
and hybrid-control designs can be useful in this scenario. 
Further, the design of distributed-control networks can bene-
fit from swarm and multiagent cooperative-control methods. 
Such distributed-control networks are particularly important 
for managing large data centers, cloud systems, and cyber-
physical systems. Lastly, it is interesting to see if machine-
learning techniques (specifically, reinforcement-learning 
methods) can be useful to control the system through online 
data. An example use of such learning modules would be to 
replace the optimizer in our design or redesign the control-
lers online. One important requirement for any control 
solution to be adopted as mainstream by computer system 
designers is that the control design must be supported with 
tools and abstractions that computer designers can easily use. 
Addressing this new application area is a great opportunity 
for the control systems community.

CONCLUSION
This article presented a novel control system to attain high 
resource efficiency in computers, outlined several chal-
lenges in using control theory for systematic computer 
control, and showed how our system meets these chal-
lenges. The proposed control system is based on linear 
robust control and provides modular coordinated control 
for modern multilayer computers. The scheme considers 
interlayer interactions as uncertainty and relies on modu-
lar n  controllers to be robust to this uncertainty. The 

controllers can be designed independently and are guar-
anteed to work in coordination. On a representative com-
puter, our two-layer control system reduced the Energy × 
Delay of a set of programs by 50%, on average, beyond the 
state of the art. We hope that the insights from this article 
will stimulate more advanced work on building formal 
controllers for computers.
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