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for Computing Systems

MAKING COMPUTERS EFFICIENT WITH MODULAR,
COORDINATED, AND ROBUST CONTROL

omputing is taking a central role in advancing sci-
ence, technology, and society, facilitated by increas-
ingly capable systems. Computers are expected to
perform a variety of tasks, including life-critical
functions, while the resources they require (such
as storage and energy) are becoming increasingly limited.
To meet expectations, computers use control algorithms that
monitor the requirements of the applications they run and
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As computer systems grow more complex, they are being
built with multiple modular layers that are designed indepen-
dently and interact with standardized interfaces (see “Multi-
layer-Computer Organization” for an overview). These layers,
such as the hardware and the operating system (OS), have
separate functions and are developed by different expert
teams that are often from separate companies. The designs in
one layer must interoperate with several variants in the other
layer. For example, an OS must work with many processor
designs and vice versa. Moreover, a computer system with
given hardware and OS layers must efficiently run several
types of user applications.

Naturally, the inputs, outputs, control goals, and control
logic are different in each layer. For example, hardware con-
trollers typically measure the application throughput, power
consumption, and temperature. The controllers change the
processor’s operating speed, called the clock frequency (or
simply, frequency), the number of cores, and the amount of
available storage. In the OS, the scheduling logic decides which
applications run on each core at any time. The goals for the
process scheduling vary by OS designs but generally include
some of the following: high core utilization, high throughput,
low power consumption, and fairness. However, the metrics of
an application’s execution on the computer (that is, the time the
application takes to complete, the energy it consumes, and the
task throughput) is a function of all of the layers.

Fully decoupled and centralized control architectures
are inappropriate to manage modularly designed comput-
ers. A centralized controller that can access systemwide out-
puts and inputs is not practical because the layers are
designed by different companies that tightly protect their
subsystems’ internal designs. Moreover, centralized control
does not allow a layer to interoperate with other layers and
must be redesigned, even if a single layer in the system
changes [6]-[8]. Consequently, centralized controllers that
operate across system layers do not fit the design of modern
computer systems and are seldom found in actual products.

The other alternative is to use fully decoupled controllers
in each layer. This design is modular. However, the separate
controllers miss the interlayer interaction and cannot effi-
ciently manage the full system [7], [9]. Controllers that
appear to manage the individual layers effectively in isola-
tion fare poorly when deployed in the full system. However,
due to lack of alternatives, this is the most common design
in existing computers.

New designs are required in which each layer is regulated
by a modular resource controller, and the different control-
lers coordinate only with interfaces for overall efficiency. Fur-
thermore, it is important to design these controllers with
formal methods, such as control theory, instead of heuristics
(see “Summary”). As computers have grown in complexity, it
has become increasingly difficult to design, tune, and verify
the heuristics even for a single layer. Despite intense design
efforts, these heuristics can behave unexpectedly due to a
lack of robustness [10]-[12]. When such heuristics operate in

multiple layers, the overall efficiency can be poor. See “Lack
of Coordination With Heuristic Control” to learn more about
how heuristics in different layers can destructively interfere
with each other in an IBM processor. Indeed, it is unfortunate
that heuristics remain the popular choice for computer con-
trol in production and research.

This work proposes a modular design to manage multi-
layer computers using structured singular value (SSV) con-
trol, or u synthesis. This approach differs from earlier
designs [13]-[15] that focus on particular applications, such
as a database server, or a single system layer, such as the
hardware processor. The key idea in this article is that
modeling limitations and interlayer interactions are con-
sidered to be uncertain when designing a controller for a
computer layer. Furthermore, each controller reads signals
from other layers to better coordinate under uncertainty.
The design also has “optimizer” modules that provide
changing targets to the u controllers to maximize the
computer-output combinations. This design is a significant
advance beyond the state of the art in computer control.

Summary
COmputers are operating in increasingly constrained en-
vironments and being equipped with intelligent control-
lers for resource management. Resource controllers keep
computers efficient by customizing the usage of limited
resources like energy and storage to match application re-
quirements. However, the operation of computers is struc-
tured in multiple layers, such as the hardware, operating
system, and networking layers. Each of those layers is built,
run, and controlled independently. It is desirable to manage
the overall system by coordinating the operation of the dif-
ferent controllers and relying on a systematic control meth-
odology rather than heuristics.

This article presents a new approach to build coordinat-
ed multilayer controllers for computers. As opposed to the
existing practice of heuristic computer control, the proposed
approach is based on standard techniques from linear ro-
bust control theory. The key idea is that interlayer interac-
tion, among others, is considered an uncertainty when de-
signing a controller for a computer layer. We prototype this
design on a real computer to demonstrate its effectiveness
over existing methods. This is the first work to use linear
robust control methods for resource efficiency in computers.

The article calls the attention of control systems re-
searchers to the topic of building formal controllers for com-
puter systems. Despite significant progress in control theory,
computer resource control today is predominantly heuristic.
There is a need for novel contributions that computer de-
signers can take up. As an initial step, we present several
challenges we faced in our design to solicit advanced solu-
tions from the control systems community.
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Multilayer-Computer Organization

Acomputer system can be conceptually divided into layers:
the hardware and the operating system (OS). The hard-

ware contains one or more processor chips, storage, and other

circuitry. Figure S1 shows a computer with one processor chip

in the hardware and an OS running as software. The system is

running several user applications.

The processor chip, which is the key component in the hard-
ware, has multiple processing units called cores and the stor-
age necessary to run applications. Figure S1 shows two types
of cores in the processor chip. Having different types of cores
is useful to provide various levels of throughput (a measure of
the computer’s performance) and power consumption. For ex-
ample, a complex core can generally deliver more throughput
but consumes more power, while a simpler core has a relatively

Applications

Browser || File Viewer |
p !

Operating System

Process
Scheduling

Software

Hardware
Processor Chip

! Core 2 i iStoragei

i Core 1 i

Chip Management

FIGURE $1 The multilayer organization of computer systems.

This article makes two contributions. First, it describes the
application of u synthesis for modular, coordinated com-
puter control. We consider several challenges in the practice
of computer control so that the proposed architectures are
more easily adopted in industrial computer system design.
As opposed to examining specific user applications running
on a computer or individual layers, we examine how multi-
layer computers can be better designed and propose how the
controllers in the layers must be built to efficiently run many
applications. The effectiveness of our design is demonstrated
on a prototype computer. We show how standard, robust
control methods provide significant benefits to computer
systems, making this application of u synthesis to comput-
ing the first of its kind.

Second, this article calls attention to the problem of
building distributed and modular coordinated controllers
for computer systems. This problem is especially important
as computer systems are becoming increasingly modular
and distributed. Despite decades of progress in control
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lower throughput and power consumption. Therefore, it may be
more energy efficient to use the simpler core in certain cases.

The OS runs as software on the processor and sets up the
environment for user applications. It schedules applications on
the processor and provides utilities such as storage manage-
ment. Process scheduling is an important part of the OS that
decides which applications can run on each core at any time.
The process-scheduling goals vary by OS but generally in-
clude some of the following: high core utilization, high through-
put, low power use, and fairness.

Finally, in the environment provided by the OS, there are
multiple applications, such as Matlab, browsers, and file view-
ers, that users run on the computer. Typically, each application
can launch multiple tasks to perform its work. As an example,
Figure S1 has three applications that run as one task, two tasks,
and one task, respectively. These applications (or application
tasks) are scheduled by the OS to execute instructions on the
hardware. Each task runs on one hardware core, and a multi-
tasking application can use multiple cores simultaneously.

The hardware and OS layers are the common layers found
in nearly all systems. Some systems have more software layers
on top of the OS layer, with each providing a different abstraction
for the immediately higher layer. Figure S1 highlights the com-
ponents responsible for dynamic control of the system, which
are the hardware chip management units and OS process-
scheduling logic. The decisions of these components determine
a given application’s behavior, such as its throughput, energy
consumption, and temperature. When these decisions are
aligned with the nature of the application’s work, the system can
efficiently process the application, completing the task quickly
and consuming only the minimum energy necessary.

theory, few control-theoretic concepts have been applied to
computer system control. More theoretically solid and
practical contributions are needed. Therefore, we present
several design challenges for the general problem of building
resource-efficient multilayer computers to solicit advanced
solutions from the control systems community.

This article has more breadth and depth than our
recent work [16], with the goal of drawing the attention
of the IEEE Control Systems Society researchers. We
have expanded the discussion of multilayer-computer
organization, interlayer interaction, the modular-con-
trol problem, the suitability of control theory, design
challenges, and additional results from system identifi-
cation and overall evaluation. We also provide the full
details of our prototype design that were not present in
[16] so that researchers can test new approaches to the
problem. Finally, we bring our insights from prior work
[12], [17] to the control systems community. Next, we
present a representative computer system and describe
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The processor chip management unit optimizes the chip
for the user applications and protects the hardware from
hazardous operating conditions, such as high temperatures.
A common optimization goal is to reduce the power use and
temperature while maximizing the throughput. The chip man-
agement unit monitors some of the hardware outputs, includ-
ing the chip’s throughput, power, and temperature. It sets the
configurable inputs such as the processor’s operating speed
(called the clock frequency or simply, frequency), number of
cores, and available storage. It is common in modern comput-
ers to have multiple processors and storage chips, each with
its own management units.

The outputs and inputs in each layer are tightly coupled. For
example, in the hardware, the frequency and number of cores
can significantly affect the power, temperature, and throughput
of the processor. However, their impact is different across ap-
plications. Poor input choices can result in a high power con-
sumption without generating a high throughput. Similarly, the
outputs and inputs in the OS are also tightly coupled.

MODULAR DESIGN AND INTERACTION

BETWEEN LAYERS

Due to the complexity of computer systems, each layer is de-
signed independently by expert teams, possibly from different
companies. The names of some of these independently de-
signed products are listed in Figure S2. With this modular de-
sign, a layer can be reused in many variants of the other layers.
For example, the same hardware can run multiple OSs, and
the same OS can be used on many hardware configurations.
This is made possible by specifying interface standards that
the layers must conform to, irrespective of their internal design.

the problem of modular, coordinated resource control
in computers.

REPRESENTATIVE PROTOTYPE SYSTEM

We use an ODROID-XU3 computer board [18] as a proto-
type system. As is common to most computers, this system
has two layers: the hardware and OS. The processor in the
hardware is an Exynos 5422 with eight cores built using
ARM big.LITTLE technology [19] by Samsung. The OS is
Ubuntu 15.04, which is based on Linux. Figure 1 shows the
system. We run several applications from the PARSEC 2.1
application suite [20] and SPECO06 suite [21].

Figure 2 is a schematic diagram of the system with
the inputs and outputs of each layer. The processor in
the hardware layer has eight units, or cores. Four of
them, the big cores, can generate a high throughput and
consume a significant amount of power. The remaining
ones, the little cores, generate a lower throughput but
consume much less power. The little and big cores are

Unfortunately, the modular design of computers makes it
challenging to achieve system-wide efficiency with dynamic
control. The controllers, with their layers, are designed inde-
pendently. Their internal details are proprietary and not shared
by designers. However, a controller influences the dynamics
of the other layers and full system. For example, the power
consumed by the computer depends on the processor fre-
quency and assignment of applications to cores by the OS.
However, the hardware chip management unit can control only
frequency, not the OS’s scheduling policy, and vice versa. This
can result in inefficient operation. As an example, when the OS
schedules application tasks on certain cores and expects a
high throughput, the actual throughput may be poor if the hard-
ware controller reduced the frequency of those cores, possibly
to lower the power consumption. See “Lack of Coordination
With Heuristic Control” for a description of such a case, as
identified on an IBM computer. The immediate need for build-
ing efficient computer systems is to design a control system
that conforms to the computer’s modular structure and coordi-
nates decisions across layers for system-wide efficiency.

Applications
Examples: Matlab and Browser

Operating Systems
Examples: Microsoft Windows, Linux, and Apple iOS

Hardware
Examples: Processors From Intel and AMD

FIGURE S2 The modular design of computer layers. Proprietary
names are registered properties of the respective companies.

organized as separate clusters. Applications on this com-
puter can create multiple software tasks (called threads)
that execute in parallel to speed up the system’s
performance. Hence, there can be many applications
and threads running simultaneously. We refer to each
schedulable entity (an application or application thread)
as a task.

HARDWARE- AND OPERATING SYSTEM LAYER
INPUTS AND OUTPUTS

Four outputs in the hardware layer are considered, as
shown in Figure 2: the power consumed by the little cluster
(Powery;, measured in watts), the power consumed by the
big cluster (Power,;,, measured in watts), the temperature
of the hottest location (measured in degrees Celsius), and
the throughput of the processor [also called performance,
measured in billions of instructions per second (BIPS)].
Among these, the power consumed by either cluster and
the temperature are critical for system integrity.
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Lack of Coordination With Heuristic Control
Vega et al. discuss how heuristics destructively interfere in

a production IBM POWER?7 computer system [10]. In this
machine, there is a hardware controller that changes the speed
(frequency) of each processor core to maintain a high utilization.
Utilization is defined as the percentage of the clock cycles during
which the application actively uses the processor. Reducing the
processing speed decreases the number of clock cycles. Hence,
there are fewer cycles during which the application does not use
the processor at all; therefore reducing the frequency increas-
es the processor utilization. The lower speed also reduces the
power consumed by the computer. Thus, the hardware controller
aims to improve the utilization and reduce the power consump-
tion when applications are not using the hardware.

In the operating system, a task scheduler consolidates
tasks onto cores and turns off the remaining cores to save

- o -
FIGURE 1 The Odroid-XU3 used as a prototype in this article. The
processor is a Samsung Exynos 5422 with eight cores, and it was
built using ARM big.LITTLE technology. The operating system is
Ubuntu 15.04.

Application Tasks

coi

#Taskspg
Avg #Tasks per Nonidle Corejiye

power and improve the utilization. When tasks are not fully us-
ing a core, there are many idle cycles. By consolidating tasks
from several low-utilization cores onto a subset of cores, fully
idle ones can be shut down, and the utilization of the active
cores improves. Therefore, when the system’s utilization de-
creases, it is expected that the scheduler will consolidate tasks
to reduce power without hurting performance.

Unfortunately, in scenarios of low utilization, the hardware
controller immediately reduces the speed of the cores to in-
crease utilization, preventing the scheduler from consolidating
tasks and power-gating the cores. On identifying cores with
high utilizations, the scheduler turns on more cores and moves
tasks to them. This behavior alternates until all of the cores in
the system are active and set to the lowest speed. The result is
poor performance and wasted energy.

The performance counters and temperature sensors
can provide accurate measurements at the millisec-
ond timescale. However, the onboard power sensor
has an update interval of nearly 300 ms. This time span
is long because the sensor accumulates energy measure-
ments and divides them by the update period to provide
accurate power values. Therefore, we chose the sam-
pling period in this layer to be 0.5 s. This is comparable
to other works that use real system power measure-
ments for control. For example, the sampling interval in
an IBM processor controller is 1 s [10]. The power-sens-
ing latency can be drastically lower when the sensor is
directly located in the processor chip instead of on the
computer board.

Four inputs in the hardware layer
are considered: the operating speed
of all of the cores in the little cluster
(Frequencyy;, measured in giga-
hertz), the operating speed of all of
the cores in the big cluster (Frequen-

Performancejye
Performancey,q

Avg #Tasks per Nonidle Coreyq

A Spare Compute i

CYpigs measured in gigahertz), the

number of little cores that are pow-

ered on (#Coresy;y), and the number

Frequencyjie n ﬂ Powerije of big cores that are powered on

Frequencyyg Poweryg (#Coresy;g). Changing the frequen-
—_— >

#Coresje Temperature cy of each cluster takes fewer than

#Cores,;q Performance 10 ms, while turning a core on/off

Little Big takes twice as long. The available

FIGURE 2 A schematic of the Odroid-XU3 showing the hardware and operating system
layers, with the input and output signals considered. The hardware layer includes the pro-
cessor, which is made of eight units, or cores. Four of the cores are high-performance,
high-power units (called big cores) that are organized as one cluster, while the others are
low-performance, low-power units (known as little cores) that form another cluster. There
can be many application tasks running simultaneously. The outputs in one layer are influ-

enced by the behavior of the other layer. Avg: average.
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discrete values of each input are
given in Table 1.

We consider three controlled outputs
in the OS layer: the throughput of the
little-cluster tasks (Performanceyy,,
measured in BIPS), the throughput of
the big-cluster tasks (Performance,
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measured in BIPS), and the difference in spare compute capacity
(ASpare compute) between the big and little clusters. We define
a cluster’s spare compute in (1), from [17]:

spare compute = #idle cores on — (#tasks — #cores on). (1)

The term (#tasks — #cores on) measures how many more
tasks have been assigned to a cluster than the number of
available cores. The spare compute measures how much of this
difference can be accommodated within the idle cores of the
cluster. A large value for the spare compute indicates that
the cluster can accept more tasks, while low and negative
values indicate an overloaded cluster. The output ASpare com-
pute is the difference between the spare compute in the big
and little clusters. Intuitively, the higher the difference in the
spare compute, the more tasks the controller will move from
the little to the big cluster.

The process scheduler in the OS assigns the application
tasks to cores. Ignoring the differences between tasks, the
scheduler must 1) decide how to divide the tasks between
the big and little clusters and 2) map tasks to cores in each
cluster. Some cores can be left idle without any tasks so
that the hardware controller can power them down. There-
fore, there are three inputs in this layer: 1) the number of
tasks assigned to the big cluster (#Tasksy,), leaving the rest
for the little cluster; 2) the average number of tasks run-
ning on each nonidle little core (avg #tasks per nonidle
coreyye); and 3) the average number of tasks running on
each nonidle big core (avg #tasks per nonidle corey,).
Changing each OS input has nearly the same overhead (a
few milliseconds) because it involves moving a task from
one core to another.

The available discrete values of each input are given
in Table 2. In it, #Tasks,,, is the number of tasks in the
application, which is decided by the application and
changes dynamically. The minimum value of the inputs,
avg #tasks per nonidle corey;,, and avg #tasks per nonidle
corey, is zero when the tasks assigned to the respective
clusters are zero; otherwise, it is one. The maximum value
of these inputs occurs when all of the tasks assigned to
those clusters are assigned to a single core. There is a non-
linear dependence between the inputs because the
values accepted by avg #tasks per nonidle corey;, and
avg #tasks per nonidle core,;, depend on the value of the
tirst input (#Tasks,,).

INTERACTION BETWEEN LAYERS

AND THE VARIABILITY OF APPLICATIONS

The prototype demonstrates how one system layer influ-
ences the other and how applications exhibit large variations
in their behavior. Consider two applications from the
PARSEC benchmark suite [20], blackscholes and vips, that
generate a variable number of tasks through time and run
on our prototype. We monitor the hardware-layer outputs
and fix the hardware inputs to remain at the lowest values.

e A
TABLE 1 The available values for the hardware-layer
inputs.

N v
Input Range Step Size
Frequency;e 0.2-1.4 GHz 0.1 GHz
Frequency,,q 0.2-2 GHz 0.1 GHz
#Coresjye 1-4 1

L #Coresg 1-4 1 )

e A
TABLE 2 The available values for the operating system-
layer inputs.

N v
Input Range Step Size
#Tasks,g 0—#TaskSmay 1

Avg #tasks per
nonidle coreyye

min(1,#Tasksye)—#Tasksjye 1

Avg #tasks per
nonidle corey,g

min(1,#Tasksy,g)—#Tasksy,q 1

Avg: average.

Each application is run twice, and a different policy is
used to change the OS inputs each time. In the first policy,
the OS assigns an equal number of tasks to each cluster,
and within each cluster, tasks are distributed on as many
cores as possible. In the second policy, the OS randomly
sets its inputs.

Figure 3 shows how two of the hardware outputs,
Powery;, and Performance, vary over time for blackscho-
les with the two OS policies. The blackscholes application
starts with one task and, after some time, abruptly
launches eight more. When these tasks complete, the
first task runs for a while before the application con-
cludes. With the first OS policy [Figure 3(a)], three
phases (corresponding to one task, eight new tasks, and
one task) can be easily identified. Except for abrupt changes
at transitions, there is little variation within each phase.
However, with the second OS policy [Figure 3(b)], there
is intense variation in all phases, even though the
hardware inputs are constant. The variation in the phase
with eight new tasks is particularly large due to the
impact of the OS-layer inputs. The figure shows that
the hardware-layer outputs are significantly affected
by the OS inputs.

Figure 4 relays the behavior of vips. In this application,
the number of tasks varies dynamically between one and
eight, and some of the tasks may not use the processor,
even when scheduled. Consequently, even with the first
OS policy [Figure 4(a)], the hardware outputs display
much variation. Figures 3 and 4 show that the behavior of
alayer is significantly affected by the decisions from other
layers. As a result, modularly designed controllers in each
layer must be robust against the influence from other
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layers. Comparing Figures 3(a) and 4(a) illustrates how
two applications with the same hardware inputs (and the
same policy to set the OS inputs) can present drastically
different behavior. A computer system must work well for
many such applications, further strengthening the need
for robustness.

GOALS FOR COMPUTER-RESOURCE CONTROL

The objective of computer efficiency typically involves
two types of goals: tracking a set of output targets and
optimizing a combination of the measured outputs [12]. In
applications such as video processing engines, it is neces-
sary to deliver a constant level of power consumption and
throughput. An advanced scenario occurs when the desired
output levels and targets are changed dynamically based
on real-time conditions. For example, in a battery-pow-
ered mobile device, the desired throughput (or quality of
service) and power consumption change as the battery

Poweryg (W)

I
300 350 400 450

R
50 200 25
Time (s)

I
50 100 1

Powery,g (W)

0
0 50 100 150 200 250 300 350 400 450

Time (s)

energy is depleted [22]. When the battery charge is above
a certain level, the system must deliver a high throughput
and can have a tolerably high power consumption. As the
battery level decreases, the system can choose lower pairs
of throughput and power to conserve battery life.

Optimizing a combination of outputs, which is the
second type of goal, is more prevalent in computer control.
Common optimization goals seek to minimize objectives of
the form Energy x Delay” (ED"), subject to constraints. ED"
is the product of the application’s entire energy consump-
tion and the total execution time (Delay) raised by a
factor n. A larger n prioritizes higher performance over low-
ering the energy consumption. Usually, the constraints are
in terms of temperature, power consumption, and utiliza-
tion (see [23], for example). Similar to the tracking goal,
the metric to be optimized can change through time.

In a multilayer computer, controllers in each layer
must achieve tracking and optimization goals using only

Performance (BIPS)

P R
50 200 250 300 350 400 450
Time (s)

I
100 1

(a)

Performance (BIPS)

50 100 150 200 250 300 350 400 450
Time (s)

(b)

FIGURE 3 A demonstration of how the hardware-layer outputs (the power of the big cluster and performance) vary with different policies
in the operating system (OS) layer. In both cases, the same application (blackscholes) is run, and all of the hardware inputs are held
constant. Only the OS inputs are changed through time. (a) In the first OS policy, the OS distributes threads equally among all available
cores in the system, while (b) the second OS policy sets the OS layer inputs randomly. BIPS: billions of instructions per second.
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the sensors and actuators available to them. For example,
a hardware controller may only change the processor fre-
quency based on throughput and power, while the OS
controller handles scheduling based on utilization.
When they are optimizing the combined measures, such
as ED", the resource controllers can know only the
total energy and application duration after the appli-
cation completes its execution. Therefore, they use other
derived metrics for dynamic control during the execution.
For example,

Energy = Power X Delay, (A}

Delay = Anstructions

Throughput’ ©)

where Power is the average power, Instructions is the total
number of instructions in the application, and Throughput
is the average rate at which the instructions are processed

Poweryg (W)

1 1 1
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Time (s)

1
200

Poweryg (W)
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Time (s)
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(a)

(b)

by the computer. As the total number of instructions
is fixed,

Power
n+1 -

ED n A+ YUvWwerL 00
o Throughput

(&)

At the kth controller invocation, Power [k] and Throughput|[k]
can be defined as

Energy (k) — Energy (k — 1)
’ )

_ Instructions (k) — Instructions (k — 1) ©

Power[k] =

7

Throughput k]

where Energy(k) and Instructions(k) are the values of the
energy consumed and instructions processed by the system
from the beginning of the application until the instant k. The
instantaneous values, Power [k] and Throughput[k], are
used to calculate ED"[k]. This value must be minimized
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FIGURE 4 A demonstration of how the hardware-layer outputs (the power of the big cluster and performance) vary with different policies
in the operating system (OS) layer. In both cases, the same application (vips) is run, and all of the hardware inputs are held constant.
Only the OS inputs are changed through time. (a) In the first OS policy, the OS distributes threads equally among all available cores in
the system, while (b) the second OS policy sets the OS layer inputs randomly.
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by the resource controllers during successive invocations.
A conventional practice is to maximize the inverse
(Throughput"* '[k] /Power [k]).

CONTROL OBJECTIVES FOR THE PROTOTYPE

The goal for the prototype computer is to develop a control
system that achieves both tracking and optimization goals.
For optimization, the goal is to minimize Energy x Delay
under constraints. Therefore, the controller in each layer dyn-
amically maximizes the same metric, Throughpu’c2 /Power.
This optimization has soft constraints to preserve the physi-
cal integrity of the system, including maintaining the power
of the big and little clusters and holding the temperature
below certain limits. The hardware controller’s goal can be
stated as

Throughput?

maximize
Power

upw € Upw

limit
Poweriiwe < Poweriite,
limit

Powerpig < Powersig,
Temperature < Temperature"™", @)

where Uy is the set of values that the inputs in the hard-
ware can accept. These inputs are listed in the “Hardware-
and Operating System Layer Inputs and Outputs” section.
For our board, the maximum powers of the little clus-
ter (Powerliie) and big cluster (Powerpy") and the limit-
ing temperature (Temperature'™") are 0.33 W, 3.3 W, and
79 °C, respectively.
The goal for the OS controller is

Throughput?

maximize
Power

ups€ Ups

, ®)

where Uqg is the set of values accepted by the inputs in the
OS layer, as listed in the “Hardware- and Operating System
Layer Inputs and Outputs” section. The controllers must
meet these goals by using imperfect models of their layers
and any available interlayer interface information.

RESOURCE-CONTROL DESIGN REQUIREMENTS
Computer systems such as our prototype are difficult envi-
ronments to control. We list some important features that
the control system design should include to be effective.

» Modularity: Because the layers are developed separate-
ly, each one requires a modular controller that can be
independently designed. A controller must use an
interface to communicate with its counterparts in other
layers and coordinate for global efficiency.

» Robustness against modeling limitations: The layers are
too complex to model from first principles. Therefore,
it is infeasible to obtain accurate models of a layer or
interlayer interaction except in limited contexts (see
[13] for examples). Consequently, robustness is para-
mount when designing the controllers.
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» Managing application variability: The applications that
run on computers are numerous and vary their
behavior through time. Such variation can be inher-
ent in the application itself. For example, an applica-
tion may run heavy computations for some time
(generating a high throughput and using significant
power) and transition suddenly into an idle period
that has a low throughput and consumes little power.
In another case, the number of tasks used within the
application can quickly increase, elevating the power
use, temperature, and throughput. The control system
must detect changes in application behavior and find
the best operating points for the outputs and suitable
values of the inputs during each phase. The control-
lers must also be robust against unanticipated changes
in the application behavior.

» Handling nonlinearities in the inputs and objectives: The
controllers must handle tracking and optimization
goals involving metrics that can have a nonconvex and
nonlinear relationship with the inputs. The inputs are
also finite and discrete valued. Controllers must be
robust against such actuator nonlinearities.

» Intuitive design and tool support: There is a significant
gap between the tools, knowledge, and perspectives
of computer designers and those in the theoretical
research of disciplines such as optimization or control
theory. For the mainstream adoption of new system-
atic methods, it is necessary to develop computer-
centric abstractions and design methodologies. The
design methodologies should be supported mostly by
standard tools with intuitive tuning processes.

PRIOR WORK ON CONTROLLING COMPUTERS

Many works in research and industry use heuristics to
control computers (for example, [8], [24]-[26]). Prior research
demonstrates the design and runtime limitations of heuris-
tic designs [10]-[12], [27]-[30]. Several studies use con-
trol-theoretic designs. Among these, most use single-input,
single-output (SISO), proportional-integral-derivative
(PID) controllers [14], [15], [23], [31]-[33], but these designs
are too limited to control even a single layer that has many
goals. Some researchers proposed using collections of
SISO controllers in a layer to tackle multiple goals [27], [34].
Computer layers have many coupled outputs (such as power
and throughput) strongly influenced by multiple inputs
[known as multiple-input, multiple-output (MIMO)] sys-
tems [12], [28]. Decoupled SISO controllers cannot manage
the interaction between these outputs, resulting in poor
performance [12], [28]. Some designs employ heuristics
to manage controller interaction [34]. However, this defeats
the purpose of using control-theoretic methods. Some
works use a multiple-input, single-output approach with
model predictive controllers (MPCs) [35], [36]. However,
these are also insufficient to handle the MIMO nature of
computer layers.
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Prior work includes MIMO designs with linear quadratic
(LQ) controllers or MPCs [12]-[14], [28]. Since each computer
layer is a MIMO system, MIMO control is best suited to
computers. However, the proposed designs are intended for
centralized use and do not prioritize robustness against the
uncertainty in modularly designed multicontroller environ-
ments. The successful application of control theory for com-
puters has also been limited to specific contexts where
accurate models could be developed [13], [14]. Such methods
do not directly apply to the general problem of modular-
computer resource management.

Some control designs use machine learning [37]-[40] and
matrix-completion methods for resource management [41].
Mishra et al. [42] employ an adaptive SISO PID controller that
generates a generic speedup signal and a machine-learning-
based algorithm that searches for the best input configuration
by using the signal. When machine-learning-based control
algorithms find different output conditions at runtime than
those that they were trained on, they provide a lower-quality
solution unless they complete an expensive retraining phase.
The other difference is in the guarantees they provide. Usu-
ally, guarantees from machine learning are valid for the aver-
age case without considering uncertainty.

Some works formulate the ED” minimization as a convex
optimization problem settled by using linear programming
solvers [43]-[45]. Solver-based approaches require more time to
generate a decision. Since the system is dynamic, this expen-
sive process must be repeated frequently. Finally, some
designs use market theory [46], [47] and game theory [48] to
manage resources in specific contexts. However, there is no

work that addresses the design of modular coordinated con-
trollers for multilayer computers.

CHOOSING AN APPROACH FOR MODULAR
COORDINATED CONTROL

Prior work used several approaches to achieve tracking
and optimization goals in selected computing scenarios
[25], [26], [29], [36], [37], [45], [49]-[52]. We analyze these
methods to determine the approach to achieve computer-
resource management goals. We begin by classifying the
existing work into five domains: static optimization, ma-
chine learning, control theory, model-based heuristics, and
rule-based heuristics. Table 3 compares these approaches,
outlining their problem formulation, design and tuning
method, advantages, and shortcomings.

Static optimization is a common choice in several designs.
One limitation of this approach is the lack of accurate models
and convex objective functions. Another shortcoming is that
it ignores the dynamic nature of computer systems. There-
fore, controllers must update their models periodically at
runtime. Lastly, the solvers used by most optimization algo-
rithms can have high overheads in time and computation
requirements. Table 3 does not mention approaches that use
game [48] and market theory [46], [53], which have advan-
tages and limitations similar to those of the optimization-
based methods.

Machine learning is another approach to obtain the best
configuration for optimization goals. In this case, the con-
troller can be a neural network trained on several bench-
marks to associate some preferred input choices with a set

e A
TABLE 3 Comparing the approaches for architecture tuning.
N\ v
Approach Formulation Example Advantages Shortcomings
Static optimization _mip J(outputs) Throughput? + Natural choice for — Accurate and convex
[45], [49] ";,FI’:; constraints frequerr]cy Power ~’ systems optimization models required
outputs = f(inpu‘ts) Temperature < T, + Formal approach — No feedback -
— Slow solvers a possibility
Machine learning inputs = f(outputs) Input: frequency + Data driven — Hard to add feedback
[37], [50] Optionally update () Outputs: power, memory  + Formal approach — Only probabilistic
f() can be a neural network accesses guarantees
that minimizes J(outputs) — Needs extensive training
Control theory inputs = G Aoutputs Input: frequency + Gives worst-case — Hard to obtain model
[29], [36] G:[ABCD].n that Outputs: power, guarantees — Specifying targets not
minimizes Aoutputs = throughput. + Learns from obvious
outputs — targets Targets: power,, quality feedback — Suits mostly tracking
of service + Formal approach goals
Model-based Uses a model to guide Output: power + Decision making
heuristics [51], [52] heuristic decisions Auxiliary output: memory  simplified by model — No guarantees
The model relates outputs,  accesses + Easy to develop for —Ad hoc design
inputs, and auxiliary outputs Input: frequency simple systems — Prone to errors
— Hard to add learning
Rule-based Algorithmic decisions to + Easy to develop for f_o;r?:grimlf:lst tgtgis;gn
heuristics [25], [26] choose inputs based on simple systems P y
L outputs and auxiliary outputs )
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of observed outputs. This training updates the weights of
the neural network so the network can later predict good
input configurations with runtime data. It is possible to
dynamically modify the neural network through rein-
forcement-learning methods, although this incurs a higher
implementation complexity. The data-driven approach for
machine-learning methods is attractive for computer con-
trol because it overcomes the lack of models. The downside
is that the guarantees of convergence and optimality are
probabilistic and not necessarily valid for worst-case sce-
narios. Since computer applications are diverse, it is
possible to encounter unexpected application patterns.
Moreover, training controllers with supervised learning
usually requires a large number of application runs and
extensive data processing.

Control theory natively addresses dynamic systems; uses
feedback to improve control; and provides guarantees for
stability, convergence, optimality, and robustness. Despite
control theory’s advantages, at least two issues have limited
its use in systems. First, it requires a dynamic model, which
is hard to obtain analytically for computers. Second, control
theory approaches assume that the target values for the out-
puts are specified by a higher entity. This might be easy in
some cases, such as targeting a throughput requirement.
However, that is not so when trying to optimize metrics,
including ED". It is also not straightforward to specify goals,
such as “be less/more than this value.” It is easier to specify
objectives such as “attain this value.”

Finally, heuristics-based approaches (with or without a
model) are responsible for the majority of decision making
in computers. While they are easy to develop and under-
stand for simple systems, difficulties arise with complex
structures. There are high overheads to design, tune, and
verify the ad hoc algorithms. Despite this, heuristics have
often failed to perform well after deployment.

Among these approaches, we select control theory because
it can address the dynamic nature of computers. Next, we
describe the selections from the choices available in control

e A
TABLE 4 The design choices from control theory. Italic
text indicates the choices that were selected.

N\ N

Category Choices

Modeling White box (analytical), black box (data driven),

gray box

Mode Single-input, single-output; multiple-input,
single-output; single-input, multiple-output;

multiple-input, multiple-output
Organization Decoupled, centralized, cascaded,

collaborative
Approach Classical, robust, gain-scheduling, adaptive
Type Proportional-integral-derivative; linear quadratic
Gaussian; model predictive controller, H.. or u
synthesis
. J
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theory to build the design. Then, we introduce the control
system that includes an optimizer module to provide suit-
able targets for the controllers, addressing the limitation of
a control theory-based approach.

NAVIGATING THE CONTROL THEORY CHOICES

Table 4 presents the taxonomy of design choices from con-
trol theory. First, the model of the system can be obtained
by using analytical principles (white box), experimental
data (black box), or a combination of both (gray box).
Black-box models are the best choice when the system
internals are unknown or too complicated to describe, as
in computers (see “Black-Box System Identification” for an
overview). Next, among the different modes of control, we
use MIMO controllers because (as previously indicated)
we target multiple tightly coupled goals that depend on
numerous inputs.

The different organizations of MIMO controllers for
multilayer systems are then considered. Decoupled and
centralized designs cannot achieve modularity and coor-
dination simultaneously. In a cascaded design [6], con-
trollers are organized as a nested loop, where each one
sets the targets for the immediately inner one. Only the
innermost controller changes the system inputs. This
method, too, is not well suited for our goal. The multi-
layer controllers do not always have a hierarchy between
them and must be designed independently. To respond to
dynamic conditions, the controllers must wait until their
sensor data propagate to higher controllers and new tar-
gets cascade down. This is a long latency process. Instead,
we identify the best choice to be a collaborative architec-
ture, where independent controllers communicate to
attain coordination.

Several approaches are used to ensure that the control-
ler works correctly during uncertainty and through rapidly
changing conditions. The classical one is to design control-
lers with additional stability margins [33]. This works for
simple systems. Robust control explicitly optimizes con-
trollers for significant uncertainty and is applicable to com-
puter environments. The controllers have a low complexity
and modest overheads. In gain scheduling, multiple con-
trollers are used, each suited for a particular type of execu-
tion [54]. At runtime, logic determines when each one is
active, based on the execution. This approach requires
additional modeling efforts and may necessitate expensive
selection logic at runtime. Lastly, adaptive control synthe-
sizes a new controller online whenever changing condi-
tions are detected [55]. It has a higher runtime overhead
and design complexity.

Finally, for the controller type, PID controllers are com-
monly used for their simplicity. However, they are not ade-
quate to control MIMO systems. For MIMO systems, LQ
Gaussian (LQG) controllers [12] and MPCs [28] have been
proposed. However, with modular-controller design, the
interaction between layers can manifest as a large uncertainty
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that can degrade the behavior of LQG control and MPC.
Moreover, these controllers do not have channels to commu-
nicate among themselves.

The properties of u controllers make them attractive to
meet the needs of computer management.

» u controllers can be designed to natively work with
uncertainty. We can formulate model limitations,
interlayer interaction, and input discretization as
uncertainty. Independent teams use models of only
their layers to design controllers that are robust to
this uncertainty. This approach enables a modular
and robust design.

u controllers can take disturbance measurements for
improved control. In computer systems, these are
called external signals and used to pass information
from one layer to the controller of another layer. For
example, the OS controller passes the number of cur-
rently running tasks as an external signal to the
hardware controller.

4 synthesis is well supported by standard tools [57].
These controllers do not require online solvers to
compute decisions (unlike MPCs, for example), which
is essential for fast decision making.

)

v

)

v

Black-Box System Ildentification

System identification is an area associated with control the-
ory that concerns the modeling of systems by using em-

pirical data. Because real-world systems include many phe-

nomena that are difficult to model from first principles, system

identification plays an important role in capturing the relation-

ship between the systems’ inputs and outputs.

Modeling can be classified into three types. The first is
white-box modeling, where the system dynamics are described
from physical equations. Aerospace control has many models
that are obtained in this manner. The second is gray-box mod-
eling, where designers specify a generic model structure (for
example, a polynomial model) based on their insight, and the
model parameters are derived from experimental information.
This is the prevalent approach in many domains. Finally, black-
box modeling assumes no prior knowledge of the model struc-
ture. Therefore, a suitable model structure and its parameters
are derived from experimental data. This approach is particu-
larly relevant for computer systems, as we do not have a priori
knowledge of their dynamics.

In system identification, the system (or a computer running
applications, in this case) is excited with special input signals.
They are designed to easily bring out the dependence of out-
puts on the inputs. Popular choices include the pseudoran-
dom binary sequence, random Gaussian, and sum-of-sinu-
soids methods. Choosing the input signals for multiple-input,
multiple-output (MIMO) systems requires more attention. The
input signals are chosen to minimize their cross correlation.

MODULAR COORDINATED CONTROL

WITH ROBUST CONTROL THEORY

The design was developed using u synthesis from robust
control theory [58]. Black-box system identification [59] was
employed for the modeling, since it is difficult to model com-
puter systems using first principles. The u controllers can
handle model limitations and unknown interlayer interac-
tion. Finally, additional optimizer modules were incorporated
with each u controller to meet the optimization goals.

Control System Architecture

Figure 5 diagrams the architecture of the proposed multi-
layer control system that achieves the goals in (7) and (8).
There is a robust u controller and an optimizer in each
layer. The u controller is used to keep the outputs close to
the received targets. This accomplishes the basic tracking
goal. For optimizing a metric, the optimizer issues various
targets that progressively improve the metric. The x con-
troller responds by changing the inputs to make the outputs
follow the changing targets. The u controllers also read the
inputs in other layers as measured disturbances (external
signals) for improved decisions. This is a modular architec-
ture in which the controller and optimizer in a layer can be

One approach is to excite one input channel with a signal dur-
ing each run and record the data. Another is to use uncorre-
lated random signals for each channel simultaneously. There-
fore, MIMO systems may require multiple identification runs.
In each identification run, the input—output data are collected
through time.

After the identification runs are complete, there are mul-
tiple logs of input—output data through time, one log for each
experimental run. These data are usually normalized so that
the different inputs and outputs have similar ranges of values.
With the normalized data, linear-regression methods are com-
monly used to identify the parameters of a model structure.
With black-box identification, designers may have to experi-
ment with different model structures and dimensions to find the
one that explains their data well and aligns with any insights.

For a given model structure, using larger dimensions (for
example, using a longer history with polynomial models) results
in overfitting the model to the training data. As a result, the ob-
tained model parameter values are said to have a low confi-
dence, and the variance of the values given by the model is
high. On the other hand, if the model dimension is too small, the
model cannot explain all of the non-noise dynamics, resulting in
larger systematic errors in the values it gives. The model is said
to have a high bias. Tools such as Matlab [56] make it easy to
choose between different model structures and the right dimen-
sions for each model based on the training data. See [59] for
details on the different steps in system identification.
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FIGURE 5 The multilayer u-control architecture. Each layer uses a cascaded control system to meet the optimization and tracking goals.
The optimizer searches for the targets that best optimize the execution under constraints. The u controller tracks the given targets
robustly and optimally according to a conventional cost function. The u controllers receive inputs from the other layer as external

signals.

designed independently. The design teams must exchange
only the interface information for sharing the external sig-
nals and bounds for commonly monitored outputs.

The hardware optimizer generates the output targets
that optimize the objective under constraints. This func-
tion can be stated as

Throughput®
Power
limit
Poweriie < Poweriite,
limit

Powernig < Powersig,
Temperature < Temperature™,

YHWo

O

where yuwo represents the target values for the out-
puts. This search for the best output targets is imple-
mented using simple algorithms. For example, to optimize
Throughputz[k] /Power[k], the search module progres-
sively increases the performance targets by larger amounts
than it increases the power targets, or it decreases the per-
formance targets by smaller amounts than it decreases the
power targets. This implementation requires low overheads.

The controller must robustly track the targets given by
the optimizer. This goal is formulated as

min| Fa |,
w:(yHW“) o Z:(Wp(yHW»—wa))/ (10)
d W ugw
where upy represents the hardware inputs, yuw. denotes
the targets for the hardware outputs ypnw, [Tz, is the
induced H. norm that captures the robustness to bounded
disturbance d, W, is the performance-requirement weight,
and W, is the weight for the inputs. This is a mixed-
sensitivity, robust-control problem that ensures optimal
tracking according to the designer requirements during
uncertainty. Standard u synthesis is used to achieve this
subgoal. The formulations for the OS optimizer and u
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controller are similar. For tracking-only objectives (see the
“Goals for Computer-Resource Control” section), the opti-
mizer simply issues the output targets that the designer/
user needs. Even for advanced tracking where the targets
change through time, the optimizer uses preset functions
to generate the targets.

The principle behind the proposed architecture is to use
the same control system for tracking and optimization.
Furthermore, the optimizer searches the output-target
space, which is simpler than searching the input space. For
example, when optimizing Throughput2 [k] /Power[k], the
optimizer can progressively increase the performance tar-
gets by a larger amount than for the power targets or
decrease the performance targets by a smaller amount than
for the power targets. This results in a simple implementa-
tion. The alternative method of searching the input space
has a higher complexity because the exact magnitude of an
input’s impact on each output is difficult to ascertain. This
difficulty increases when there are many inputs and out-
puts and when other layers change the dynamics at run-
time. Since it is important for the control system to consume
as few resources as possible for decision making, this
approach is not used.

Additionally, the optimizer does not have to explicitly
address the uncertainty; instead, it relies on the u con-
troller. The u controller ensures that the output tracking
is effective under the uncertainty of unmodeled intra-
and interlayer effects. Since the u controller can quickly
track the targets, the optimizer does not have to wait long
to issue new ones. Consequently, the overall optimization
is fast.

Black-Box System Identification and Models

Due to system complexity, there are no accurate dynamic
models of computers built with first principles. Therefore,
empirical black-box system identification [59] is the best
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approach to model them. See “Black-Box System Identi-
fication” for a brief overview. Our identification experi-
ments use two applications (swaptions and vips) from the
PARSEC 2.1 application suite [20] and four applications
(astar, perlbench, milc, and namd) from SPECO06 [21]. These
suites are standard for evaluating the performance of
computers. From them, applications for identification are
randomly selected.

Two tests are used, and there are pseudorandom input
sequences for each training benchmark. The value of each
input is chosen randomly and remains unchanged for an arbi-
trary duration lasting between 1 and 16 sampling intervals.
The data are normalized to a [-1,1] range, and a polynomial
model is identified. Figure 6 gives the input and output values
during the identification experiments for swaptions. The
figure shows how the four hardware inputs are changed and
the three external signals received from the OS are set.
Figure 7 presents the identification data following the normal-
ization. The normalized data are used to obtain our models.

It is determined that a Box-Jenkins polynomial struc-
ture generates models that better fit our data compared to
other polynomial, state-space, and transfer-function models.

These models connect the outputs y[k] at a discrete inter-
val k, with the inputs u[k] and noise e[k] as

Ykl = (%u)[k] +<%e>[k].

(11)
Note that B, C, D, and F are polynomial transfer functions
in the z transform domain. The suitability of the Box-Jen-
kins model structure aligns with our assumption that the
output values are related to prior values.

The hardware model has four inputs, three disturbance
inputs, and four outputs; the OS model has three inputs,
four disturbance inputs, and three outputs. The identified
models can be represented as second-order transfer
functions from inputs to outputs. For example, in the hard-
ware model, the transfer function from Frequencyy;y,. to
Poweryyy. is given by (0.38z° /z*+0.04z + 0.02). Similarly,
the transfer function from Frequency,;, to Power, is given
by (0.34z%/z*—0.01z +0.02), and the transfer function
from Frequencyy;, to Temperature is given by (0.1822
/z?~0.21z + 0.12). The other transfer functions are similar.

The models are nominally stable as is the underlying
system. Figure 8 shows the Bode magnitude plot for the
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FIGURE 6 The identification data with the PARSEC benchmark swaptions. (a) Observed outputs of swaptions during system identification.
The top row shows how each hardware output changes through time in response to the identification inputs. (b) Inputs used during system
identification with swaptions. The bottom row of plots shows how we change the four hardware inputs (uyws—Upws) @and the external signals
received from the operating system (es;—es3). BIPS: billions of instructions per second.
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FIGURE 7 The normalized identification data with the PARSEC benchmark swaptions. (a) Normalized inputs used during system identi-
fication. The top row shows how the hardware outputs change through time in response to the identification inputs. (b) Normalized inputs
used during system identification using swaptions. The bottom row of plots shows how we change the four hardware inputs (Upwi—Upwa)
and the external signals received from the operating system (es,;—es;). BIPS: billions of instructions per second.

hardware outputs from the external signals (es) that the OS
sends to the hardware as well as the local inputs into the
hardware. The frequency response of the model H(z) is
evaluated on the unit circle using the substitution z = /"
with 0 < w < wn=(7/T), where wy is the Nyquist fre-
quency, and T = 0.5 s is the sampling interval [60]. This is
the frequency range shown on the horizontal axis in
Figure 8. wn is also shown as a vertical line in the subplots.
Figure 8 includes the confidence regions that are given by
the identification methods.

A feature of the models is that the frequency response of
many outputs is nearly flat. This is expected because the
sampling interval used in this system (0.5 s) is much longer
than the physical timescales at which the outputs respond
to the inputs. As a result, we capture only coarse-grained
dynamics that are observed at a long time interval.

u Synthesis

The structure in Figure 9(a) is used for the x synthesis. P. is
the identified nominal model. We consider two forms of
uncertainty. The first (Aqp) is the output multiplicative
uncertainty to account for intra- and interlayer modeling
limitations. This is bounded by W,,. The second form (Aw)
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is the additive uncertainty used to model the input nonlin-
earity. The additive uncertainty setup lies inside a complex
disk of radius 0.5, centered on the real axis at 0.5 [61]. W, is
the tracking-error bounds of the outputs, and W, represents
the input weights. Figure 9(a) does not show the scaling
weights to normalize the signal measurements.

The structure in Figure 9(a) can be reorganized as a
linear fractional transformation (LFT), shown on the left
side of Figure 9(b), by pulling out the uncertain elements. A
consists of block-diagonal uncertain elements,v including
the fictitious Ape used for enforcing robust performance
(that is, W, and W,). The right side of Figure 9(b) displays
the nominal closed loop M = Fi(P., K) (that is, the lower
LFT of P. and K). Suppressing the frequency dependence
and interpreting M as M (") fora particular frequency, @
(and similarly for the other systems involved), the SSV u of
M is defined as [58]

1 (12)

#aM) = G (A)- det (- MA) = 0,A € A)

where 6 (A) is the largest singular value of A. By the struc-
tured small-gain theorem [58], the system is internally
stable and meets the performance criteria if and only if
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4a(M) <1 for all w. The controller K is obtained by using
the DK iteration of Matlab’s Robust Control Toolbox [57].

The weights used in this structure are given in Table 5
and have the form (k(z—a)/z—b). The weights to bound
the uncertainty (W,,) are set from model validation experi-
ments and confidence estimates from the identified model
given by Matlab. For the hardware, (0.8(z —0.55) /z—0.1)
is used as the uncertainty bounds for all of the outputs,
and for the OS, (z —0.55/z —0.1) is used for every output.
A higher uncertainty is set for the OS layer, as it is imme-
diately affected by the changing number and nature of
the application tasks.

From: es; From: es, From: es3

Frequencyjige

For tracking the performance weights in the hardware
(W,), (5(z—1) /z—0.55) is used for Powery;o, Power;,, and
the temperature, and (2.5(z—1)/z—0.55) is used for the
throughput. Outputs related to the power and temperature
have tighter bounds, as they are vital to the system integ-
rity. In the OS, (2.5(z—1)/z—0.55) is used for all of the
outputs, since they are all related to performance. Our
weights emphasize the reference tracking, as the common
case is to track the changing targets to optimize a metric.

Figure 10 displays the Bode magnitude plots of the weights
used to represent the uncertainty bounds and inverse of the
tracking-performance weight in the hardware layer. The OS
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FIGURE 8 The Bode magnitude plot of the identified hardware model evaluated on the unit circle. The frequency range on the x-axis w is
based on the sampling interval (T=0.5s): 0 < w < wn = /T, where w is the Nyquist frequency. wy is shown as a vertical line the subplots.
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FIGURE 9 The structure specification for u synthesis. P is the identified nominal model. Ao is the output multiplicative uncertainty to
account for intra- and interlayer modeling limitations. This is bounded by Wqp. An is the additive uncertainty used to model the input
nonlinearity. W, is the performance weight for the tracking-error bounds of the outputs, and W. is the input weight. (a) The closed-loop
structure for each layer. (b) The linear fractional transformation representation.

e A
TABLE 5 The weights used in the structure specification.
N\ v
Weight Hardware Operating System
Wo 0.8(z—0.55) z—-0.55
P o1 for all 201 for all outputs
outputs
Wp 5(z—0.1) 2.5(z—0.1)
2 055 for Powerjye, ~—> 055 for all
Poweryy, and temperature  outputs
2.5(z—-0.1)
~2-055 for throughput
W, 0.5 for frequencyye and 2 for all inputs
frequencyy,g
One for #cores;y, and
#coresyg

weights are not shown, since they are similar to those of the
hardware layer. The input weights (W,) are set based on the
relative overheads of changing the inputs in the hardware.
We use 0.5 for Frequencyy. and Frequencyy,;, and one for
#Coresyy. and #Coresy;,. For the OS, all of the inputs have a
weight of two, since they involve migrating a task from one
core to another and have similar overheads. The OS has more
conservative input weights, as it is closer to the application
unpredictability.

Using the model and weights, separate u controllers are
obtained for the hardware and OS layers by using standard
routines from Matlab [62]. Since the order of the controllers
generated by Matlab’s 4 synthesis routines is large (68 for
the hardware u controller and 82 for the OS u controller),
the controller dimension is reduced through Hankel singu-
lar values. For each controller, the states whose Hankel
singular-value contributions are lower than 0.01 are
removed. As a result, the number of hardware and OS
u-controller states lowers to only 20 and 16, respectively.
Figure 11 charts the # bounds for the closed-loop system in
each layer. It is shown that the controllers can provide
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robust stability and performance since ua(M) <1 for all of
the frequencies.

Optimizer Design

The optimizer searches for the output targets to minimize a
metric in its layer. It is invoked periodically at 1-s intervals
and runs an algorithm to generate the output targets. Since
the controller runs every 0.5 s, each set of targets issued by
the optimizer is used for two controller invocations. Intui-
tively, the optimizer’s algorithm searches along two direc-
tions: a high-throughput region (Up) and a low-throughput
region (Down). To move up in the high-throughput area, the
algorithm increases the target of the throughput and that of
the output, which is significantly below its maximum limit.
Alternatively, to move down in the low-throughput zone,
the algorithm decreases the target of the throughput and
that of the output, which is close to its limit.

Algorithm 1 is the hardware optimizer that runs to maxi-
mize Throughpu’c2 /Power under the constraints in (7). It is
based on the algorithm in [12] and modified to support
search constraints and multiple outputs. The hardware opti-
mizer reads the outputs in its layer, the limits in (7), conver-
gence bound ¢, and restart probability 8. It converges if the
relative improvement in the metric being optimized is below
€. The restart probability § determines the probability with
which the optimizer’s search can begin again, even after
convergence is achieved. The optimizer is initialized to
search in the Up direction.

When invoked, the optimizer first computes the margins
of all of the outputs [defined as the difference between the
maximum limits and the actual values of the outputs
(line 1)] and the errors [defined as the difference between
the targets and the actual outputs (line 2)]. It then identifies
Output,,, (the output other than the throughput that has
the smallest margin), Output,,, (the output other than the
throughput that has the largest margin), and Output,,, (the
output with the largest error).
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A negative margin of Output,,, means that an output
exceeded its limit (line 3). The optimizer must then reduce
the target for this output (line 4). Additionally, the opti-
mizer reduces the target of Output,,, because its tracking
error is the largest (its target is too high). When an output’s
target is too high, the controller may cause the remaining
outputs to exceed their targets so that the lagging output is
brought closer to the target. Since this can result in some
of the outputs going beyond their limits, the target for
Output,,, must be reduced. The reduction in targets is per-
formed by the decrease() function in lines 3 and 4.

When no output is beyond its limit, the optimizer computes
the value of the metric that was achieved with the previous
choice of targets (line 7). It then calculates Ametric, which is
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the relative improvement of the metric’s value compared to the
previously achieved value (line 8). If the relative improvement
is smaller than the convergence bounds ¢, the targets are not
modified. New targets must be generated when Ametric is
larger than € or with a small probability, 6, even when Ametric
is below € (line 9). The rand() function in line 8 returns a
number drawn randomly from a uniform distribution
between zero and one. If the search direction is Up, and the
metric’s value is increasing, the optimizer continues to search
in the Up region. It increases the target for Throughput and
Outputy,, that has the largest margin from the limit (lines
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amount than the target for Output,,,. It is expected that the con-
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-
ALGORITHM 1 The optimizer algorithm to generate
X targets for the hardware p controller.
Input: outputs, targets, limits (7), convergence bound e,
restart probability &
Output: New targets for hardware outputs
Initialize: direction — Up, prev_metric — 0,
stop_search — False
1 margins < limits — outputs
2 errors — targets — outputs
/Il Outputagg is the output other than Throughput with the
smallest margin
/I Outputia; is the output other than Throughput with the
largest margin
/l Outputiag is the output with the largest error
3 if margin[Outputagg] <0 then
4 target[Outputagy] — decrease(target[Output,gyg])
5 target[Outputiag] — decrease(target[Output),g])
6 else
7 metric — %\?\E’ljtz
8 | Ametric — abs( metr;)cre—vﬁz ;ig?r;vc‘letnc )
9 if Ametric > € or rand() <4 then
10 if direction = Up then
1 if metric > prev_metric then
12 target[Throughput] — /large_increase
(target[Throughput])
13 target[Outputi.;] — increase (target[Outputia,])
14 else
15 dir — Down
16 target[Throughput] —
decrease(target[Throughput])
17 target[Outputagg] —
large_decrease (target[Outputagg])
18 end
19 else
20 if metric > prev_metric then
21 target[Throughput] — decrease(target[Throughput])
22 target[Outputagg] —
large_decrease (target[Outputagg])
23 else
24 dir — Up
25 target[Throughput] —
large_increase(target[Throughput])
26 target[Output.a;] — increase (target[Outputiaz])
27 end
28 end
29 |end
30 prev_metric — metric
31 end
.
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the power and temperature. Increasing the target for Output,,,
gives the controller some freedom to increase Throughput.
Otherwise, it may be possible that Throughput cannot be
increased without the power use and temperature rising.

When the metric’s value is not improving in the Up region,
the optimizer reverses its direction to Down (line 15). In
this direction, it decreases the target for Throughput and
Output,,, that has the smallest margin from the limit (lines
16-17). The target for Throughput is decreased by an
amount smaller than the target for Output,,,. The expecta-
tion for this move is that the controller will be able to reduce
the power and temperature much more than the through-
put. Similar decisions occur when the optimizer’s search
direction is Down (lines 20-26). The optimizer continues to
proceed in the Down direction until the metric improves.
Otherwise, it reverses to the Up direction.

On the prototype computer, the increase() and decrease()
functions raise and lower the targets by 15 and 10%, respec-
tively. The large_increase() and large_decrease() functions per-
form the respective changes by 20 and 15%. When
decreasing, the targets are not reduced below zero; when
increasing, they are capped at the maximum values that the
outputs can withstand. The convergence bound € is 0.05,
and the restart probability 0 is 0.05. The search does not
cycle through the same points.

The optimizer’s algorithm is simple but effective in
practice. It follows the intuition that the best value of the
metric Throughpu’c2 /Power occurs in the high or low
throughput region. Therefore, instead of searching for all
of the output targets simultaneously, each decision of the
algorithm changes the throughput target and the target of
another output that is necessary to improve the through-
put. Additionally, the algorithm does not have to explicitly
account for changing system conditions because it relies on
the u controllers to robustly keep the outputs near the tar-
gets. Finally, implementing the algorithm requires only a
little computation and a few comparisons (which is one of
the design requirements).

The algorithm for the OS optimizer differs only slightly
and is not shown. The OS optimizer also has two search
directions: big-side (where the big cores contribute more to
the performance) and little-side (where the little cores con-
tribute more to the performance). The algorithm finds the
best targets for the OS outputs in this space.

Remarks on the Control System Design

In our design, the parameters for each u controller and
optimizer are set independently using only the knowledge
of their respective layers. This is a key design requirement
to accomplish (see the “Resource-Control Design Require-
ments” section). Our control system architecture can meet
the tracking and optimization goals as needed. Finally, the
controllers and optimizers can be synthesized using off-
the-shelf design methods and tools that are easily accessed
by computer designers.
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EVALUATING THE MULTILAYER u-CONTROL SYSTEM
ON THE PROTOTYPE COMPUTER

We first present the storage and computation overheads
of the controllers. Then, we evaluate the control system’s
effectiveness in managing the prototype computer run-
ning a variety of applications.

Implementation Overheads

Table 6 lists the implementation overheads for the x con-
troller in each layer. In the table, the number of operations
includes the 32-b fixed-point additions and multiplica-
tions. The power consumed for the computation is mea-
sured on an ARM little core. For the hardware controller,
there are four inputs, four outputs, three external signals
from the OS, and 20 states. The controller must store nearly
2.6 KB of data. At every ms-level invocation, it performs
nearly 700 32-b fixed-point operations (additions and
multiplications). It was determined that performing these
computations on an ARM Cortex A7 core consumes
~20-25 mW and takes =28 us. These values are small be-
cause the u controllers must perform only matrix-vector
calculations to generate decisions. The overheads are low
enough to be easily used in computer hardware. The OS
controller has similar overheads.

Overall Comparison With the State of the Art

We compare our multilayer y-control design (called Multi-
layer SSV) with a state-of-the-art control system that was
commercially developed for our computer. We use this
design for comparison because 1) it has a controller for each
layer that exchanges information with the other layer (sim-
ilar to our design), 2) it is designed by industry experts, and
3) it is deployed in real computers. Other designs from
research typically focus on controlling specific applica-
tions and managing only one layer. Moreover, such designs
are usually specific to the computing platforms they con-
sider. It is not clear how to compose these designs in differ-
ent layers and port them on our computer. Therefore, we
chose the industry-class control system for comparison.

In the control system used for comparison, the hardware
and OS controllers are based on designs from ARM, Linaro,
and Samsung [63], [64]. The OS controller is similar to the
heterogeneous multiprocessing task scheduler from ARM,
Linaro, and Samsung except that it is modified to optimize
Energy x Delay. In this design, the hardware controller sets
the number of cores and their frequency to the maximum
values until the power of the big or little clusters or tempera-
ture exceed their limits; when that happens, it finds a lower,
safe frequency value for that cluster [65]. Further, the OS con-
troller reads the number, type, and frequency of the available
cores from the hardware controller to schedule tasks. Simi-
larly, the hardware controller reads how the tasks are distrib-
uted across all of the cores to determine the safe frequency.
This design is called Heuristics because the state-of-the-art
controllers in industry are built with heuristics [63]-[65].

e A
TABLE 6 The implementation overheads of y controllers.

N\ v
Parameter Hardware py Operating System p
Dimension 20 16
Required storage 2.6 KB 2.1 KB
Number of
operations =700 ~600
Computation time ~28 us =25 us
Power consumption ~20-25 mW ~20-25 mW

We test our designs by running applications from PARSEC
(blackscholes, bodytrack, facesim, fluidanimate, raytrace, x264,
canneal, and streamcluster) and SPEC06 application suites
(h264ref, mcf, omnetpp, gamess, gromacs and dealll) and their
combination. Figure 12 displays the Energy x Delay of the
applications with Multilayer SSV and Heuristics. The bars
from left to right correspond to the SPEC applications,
average of the SPEC applications, PARSEC applications,
average of the PARSEC applications, and average across all
of the applications. The applications are abbreviated to
their first three characters. For each application, the bars
are normalized to Heuristics.

Compared to Heuristics, Multilayer SSV reduces the
Energy x Delay by 50%. The execution times and energy
consumption (not shown) are reduced by 38 and 20%,
respectively. The reason for this significant benefit is that
the robust controllers in each layer were stable and could
find the best settings for their layer under the influence
from other layers. In Multilayer SSV, the actuation costs,
output priorities, and uncertainty bounds are explicitly
included in the controller design. The resulting controllers
perform robustly during uncertainty. Heuristics incorpo-
rates similar information implicitly, using ad hoc rules and
offering no stability or robustness guarantees. Hence, u
controllers result in a substantial advance from existing
systems. We explain this improvement in detail by con-
sidering how these control systems manage the blackscho-
les application.

Analysis of a Specific Application: blackscholes
We present how Heuristics and Multilayer SSV differ by
focusing on the blackscholes application. As discussed in the
section “Interaction Between Layers and the Variability of
Applications,” this application begins with a single task
and later launches eight new ones that run simultaneously.
Once the eight tasks conclude, a single task performs some
work, and the application concludes. Within a phase, the
work performed by the application does not have large
variations. Figure 13 documents how the control systems
manage the outputs through time for this application.
Consider Heuristics. The application begins with one
task that runs until 50s. Then, it suddenly launches eight
new tasks, resulting in a rapid increase in the power of the
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FIGURE 12 The comparison of Energy x Delay (lower is better). The bars from left to right correspond to SPEC applications, average of
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(Avg). For each application, the bars are normalized to Heuristics. SSV: structured singular value.

clusters, temperature, and performance. From that point,
there are many oscillations in the power of both clusters
and performance. Even though each layer’s controller mea-
sures the inputs from the other layer for coordination, the
ad hoc rules offer no robustness. The outputs continue to
fluctuate, and the application takes 270 s to complete.

In contrast, Multilayer SSV has a significantly smoother
behavior. Even though the hardware and OS controllers have
been independently developed, they are robust against the
interlayer interference. The outputs are kept within limits,
and the application has a higher throughput. At approxi-
mately 50s, when the application suddenly launches eight
new tasks, the controllers quickly react to bring the power of
each cluster and the temperature below their critical values.
The controllers’ fast response speeds up the search to opti-
mize the Energy x Delay. Notice from Figure 13(d) that the
instantaneous performance with Multilayer SSV is nearly 1.5
times that of Heuristics during the phase with eight tasks,
with a comparable power consumption and temperature. As
a result, the application completes in 180 s, much earlier than
with Heuristics.

Evaluating Heterogeneous Application Combinations

We evaluate how the controllers would manage a com-
pletely new application behavior on our computer. Four
application mixes are run on our computer (each with mul-
tiple tasks), and the control system’s effectiveness is evalu-
ated. Recall that the model identification experiments did
not use any such data. In each mix, there is one application
from PARSEC that can launch up to four tasks and one
from SPEC that can generate four more. These mixes are
blmc (blackscholes+mcf), stga (streamcluster+gamess),
blst (blackscholes+streamcluster), and mcga (mcf+gamess).
Figure 14 shows the Energy x Delay with Heuristics and
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Multilayer SSV, normalized to Heuristics. On average,
Multilayer SSV achieves a 47% lower Energy x Delay than
Heuristics. This demonstrates a Multilayer SSV robustness
that could keep the computer efficient, even when encoun-
tering new application behavior.

Comparison With Decoupled Control Systems

We evaluate the importance of robustness and controller
coordination by comparing Multilayer SSV against two
decoupled control systems to minimize Energy x Delay on
our computer. These systems have a controller running in
the hardware and OS layers. However, one layer’s controller
does not read any information from the other’s controller.

The first decoupled system is based on industry imple-
mentations and runs with heuristics. In this scheme, the OS
controller assigns tasks to the cores in a round-robin
manner without considering the type and frequency of each
core. The hardware controller is similar to the performance-
power governor in Linux [66]. It sets the number of cores in
each cluster as well as the cluster’s frequency to their maxi-
mum values whenever the power of each cluster and the
temperature are below their limits. When the power or tem-
perature exceeds its limits, the controller uses rules to tempo-
rarily reduce the frequency of each cluster first, followed by
the number of cores in each cluster. It does not use informa-
tion about how many threads are running on a core to actu-
ate the inputs.

The second decoupled system uses an LQG servo con-
troller (LQ integrators with Kalman estimators) in each
layer instead of the SSV controllers. We reuse the opti-
mizers from Multilayer SSV with the LQG controllers. To
synthesize the LQG controllers, we use the weights for
the inputs and outputs that are comparable to those
employed for the corresponding u controllers. For the
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noise-covariance matrices, we use values that are compa-
rable to the uncertainty bounds in the 4 synthesis.

On average, decoupled heuristics result in 52% higher
Energy x Delay values than Heuristics does. This is due to
heuristics” lack of coordination and poor robustness. The ad
hoc heuristics in each layer are aggressive and offer no guar-
antees by themselves. When used together, they destruc-
tively interfere with each other. The hardware controller
increases the number of cores and their frequency to the
maximum, while the OS controller spreads the application
tasks on as many cores as available. This causes the power to
exceed the limit, triggering the hardware controller to reduce
the frequency of the cores and even shut down some of them.
When the power and temperature are below their limits, the
hardware controller again increases the number of cores and
their frequency to the maximum. This cyclical pattern con-
tinues for a long time, resulting in inefficiency.
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Decoupled LQG controllers have nearly the same Energy
x Delay as Heuristics. This is much better than decoupled
heuristics but far worse than Multilayer SSV. LQG control-
lers are more robust than decoupled heuristics. However,
the separate LQG controllers do not communicate, while
the controllers in Heuristics do. Therefore, Heuristics has an
advantage in this aspect. Overall, decoupled LQG control
outperforms decoupled heuristic control, but it is at the same
level as Heuristics.

Compared to Multilayer SSV, the decoupled LQG has two
disadvantages. LQG controllers do not communicate, and
they are more conservative than the u controllers for our
computer. To achieve the same level of robustness as our u
controllers (against interlayer interaction, actuator nonlin-
earities, and model limitations), the LQG controller’s
response has become too slow compared to u# control. For
example, when the targets were changed, the hardware LQG
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FIGURE 13 The regulation of blackscholes through the two control systems. This application begins with a single task and later launches
eight parallel tasks. The work in the parallel phase does not have large variations. Finally, the parallel tasks complete their work, and the
application terminates. (a) The power of the little cluster. (b) The power of the big cluster. (c) The temperature. (d) The application

throughput. BIPS: billions of instructions per second.
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There is no work that addresses the design of
modular coordinated controllers for multilayer computers.

controller usually converged to the new targets in six sam-
pling intervals, compared to only two for the yu. Conse-
quently, the optimizer’s search takes longer. As a result, the
decoupled LQG performs poorly compared to Multilayer
SSV. Overall, the proposed Multilayer SSV system has the
required robustness, coordination, and fast response to keep
computers efficient. Its modular design fits naturally with
the multilayer organization of computers. This is a signifi-
cant step beyond the existing designs for computer control.

RECENT DEVELOPMENTS AND FUTURE WORK
We recently collaborated with researchers from industry to
develop a new hierarchical control network for managing
modularly designed heterogeneous hardware [67], [68]. This
recent work examines only the problem of composing con-
trol across heterogeneous systems in the hardware layer,
unlike the present article (which considers the interaction
between multiple system layers). Modern hardware has
many independently designed heterogeneous subsystems
(see “Multilayer-Computer Organization”). It is necessary to
generate local decisions quickly in each subsystem and
coordinate the different subsystems for global optimiza-
tion. In practice, global coordination among subsystems is
considered difficult, and current commercial systems use
centralized controllers in the hardware. The result is a high
response time and design cost due to the lack of modularity.
The problem of coordinating the resource control in
heterogeneous hardware is different than the multilayer-
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FIGURE 14 The comparison of Energy x Delay for heterogeneous
application combinations. Each workload has a four-task PARSEC
application plus four copies of a single-task SPEC application.
The workloads are bimc (blackscholes+mcf), stga (streamcluster
+gamess), blst (blackscholes+streamcluster), and mcga (mcf+
gamess). The models were not trained under such conditions. The
Energy x Delay with Heuristics and Multilayer SSV are normalized
to Heuristics.
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computer control problem described in this article. Hetero-
geneous hardware is integrated hierarchically, such as cores
into processors and multiple processors into heterogeneous
nodes. There are resource constraints for each subsystem at
each level of integration. In contrast, multilayer controllers
do not have a hierarchy. Additionally, the outputs (that is,
the system power) are hardware resources that must be dis-
tributed optimally between the subsystems. For example, if
an application runs better on a graphics processor than a
conventional processor, the graphics processor must be
enabled to utilize as much power as it can, and the conven-
tional processor should be disabled. In the multilayer-con-
trol problem, simply budgeting power and the throughput
across layers is not meaningful. The OS and applications
cannot consume power by themselves without running on
the hardware.

An additional aspect of [67] is that it includes system
safety as a resource control goal, one that is omitted from
the present article. Real hardware has several mechanisms
to protect computers from hazardous operating conditions
such as high currents and temperatures. These are hard
constraints, unlike the soft ones that are considered in the
present work. Therefore, they are handled through engines
that operate at faster timescales than those for optimization
and tracking goals.

When optimizing engines operate without being aware
of the interference from safety engines, the result is ineffi-
ciency. For example, when a performance controller increases
the processor frequency to improve the throughput, it raises
the processor temperature as a side effect. When the tem-
perature exceeds a critical threshold, safety mechanisms
will immediately lower the frequency. If the performance
controller restores the frequency to the previous high value,
it could repeatedly trigger the safety mechanisms, which
would lower the frequency. Overall, this oscillatory behav-
ior results in poor performance. The latest work [67] pro-
poses a new controller for each subsystem that combines
multiple engines for optimization and safety and has a stan-
dard interface. Building the controller for a subsystem
requires knowing about only that subsystem. As a heteroge-
neous computer is assembled, the controllers in the different
subsystems are connected hierarchically, exchanging stan-
dard coordination signals.

The controller design in the new work is also based on
robust-control-theory principles and extends some of the
ideas in the present article. The optimizing engine in a con-
troller has a x controller and planner. The planner provides
targets to the controller, similar to the optimizer in the
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The area of computer control is an exciting field with many opportunities
for the control systems community to contribute.

present work. Additionally, it communicates with the parent
and child controllers. The uncertainty bounds that are used
to design the u controllers capture the interaction between
the subsystems and interference from the safety engines.

A natural path forward is to integrate the two ideas:
develop distributed-control networks for all computer
layers and connect them using standard interfaces. The
networks may be organized differently in each layer. For
example, the hardware control layer in [67] has a hierarchi-
cal nature because it matches the underling hardware-sys-
tem structure. The OS does not have such a structure and
may need a different organization. Overall, the area of
computer control is an exciting field with many opportuni-
ties for the control systems community to contribute. For
example, the lack of accurate, standard models is a signifi-
cant challenge that merits novel designs from robust and
adaptive control. It is possible to use ideas from extremum-
seeking control to eliminate the use of a separate optimizer.

The problem of reconciling hard safety constraints with
optimizing control can be likened to the control problem for
self-driving cars and unmanned aerial vehicles. Switched
and hybrid-control designs can be useful in this scenario.
Further, the design of distributed-control networks can bene-
fit from swarm and multiagent cooperative-control methods.
Such distributed-control networks are particularly important
for managing large data centers, cloud systems, and cyber-
physical systems. Lastly, it is interesting to see if machine-
learning techniques (specifically, reinforcement-learning
methods) can be useful to control the system through online
data. An example use of such learning modules would be to
replace the optimizer in our design or redesign the control-
lers online. One important requirement for any control
solution to be adopted as mainstream by computer system
designers is that the control design must be supported with
tools and abstractions that computer designers can easily use.
Addressing this new application area is a great opportunity
for the control systems community.

CONCLUSION

This article presented a novel control system to attain high
resource efficiency in computers, outlined several chal-
lenges in using control theory for systematic computer
control, and showed how our system meets these chal-
lenges. The proposed control system is based on linear
robust control and provides modular coordinated control
for modern multilayer computers. The scheme considers
interlayer interactions as uncertainty and relies on modu-
lar u controllers to be robust to this uncertainty. The

controllers can be designed independently and are guar-
anteed to work in coordination. On a representative com-
puter, our two-layer control system reduced the Energy x
Delay of a set of programs by 50%, on average, beyond the
state of the art. We hope that the insights from this article
will stimulate more advanced work on building formal
controllers for computers.
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