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Abstract— This work is aimed to establish engineering 

theories of the coupled longitudinal and radial motion of the 

arterial wall. By treating the arterial wall as a piano string in 

the longitudinal direction and as a viscoelastic material in the 

circumferential direction, and considering pulsatile pressure 

and wall shear stress from axial blood flow in an artery, the 

fully-formed governing equations of the coupled motion of the 

arterial wall are obtained and are related to the engineering 

theories of axial blood flow for a unified engineering 

understanding of blood circulation in the cardiovascular (CV) 

system. The longitudinal wall motion and the radial wall 

motion are essentially a longitudinal elastic wave and a 

transverse elastic wave, respectively, traveling along the 

arterial tree, with their own propagation velocities dictated by 

the physical properties and geometrical parameters of the 

arterial wall. The longitudinal initial tension is essential for 

generating a transverse elastic wave in the arterial wall to 

accompany the pulsatile pressure wave in axial blood flow. 

Under aging and subclinical atherosclerosis, propagation of the 

two elastic waves and coupling of the two elastic waves weakens 

and consequently might undermine blood circulation. 

 
Clinical Relevance— Essential role of the longitudinal wall 

motion in achieving the radial wall motion and thus blood 

circulation is identified and will be useful for interpreting the 

measured coupled arterial wall motion for clinical values.   

I. INTRODUCTION 

The essential function of the cardiovascular (CV) system 
is blood circulation throughout the body. Instead of axial 
blood flow in an artery, the arterial wall takes >90% energy 
output of the left ventricle, and thus the arterial wall motion 
is critical for achieving blood circulation [1]. Atherosclerosis 
has been identified as the dominant cause of CV diseases [2]. 
These may explain the reason why arterial indices are utilized 
for detection and diagnosis of CV diseases. For instance, 
arterial stiffness, mostly in terms of pulse wave velocity 
(PWV), is indicative of arterial elasticity, and peripheral 
vascular resistance (PVR) is dictated by arterial radius at 
diastolic blood pressure [3].   

Upon blood ejection from the left ventricle, the arterial 
wall undergoes radial motion and longitudinal motion 
simultaneously [4]. With neglect of the longitudinal wall 
motion, engineering theories have been well established for 
assessing arterial indices from measured arterial pulse signals 
and are widely used in clinical studies [2]. Generally 
speaking, these theories fall into two categories [2]: 1) a 
transverse elastic wave model, and 2) a viscoelastic material 
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model. Built on the governing equations of axial blood flow 
with the radial wall motion as the boundary condition, the 
pulsatile pressure in an artery was found to be a propagation 
wave traveling along the arterial tree with the propagation 
velocity, PWV. Then, the radial wall motion was also 
considered as a transverse elastic wave accompanying the 
pulsatile pressure wave. Global/regional PWV are obtained 
by simultaneously measuring pulse signals at two artery sites 
(e.g., carotid versus femoral). The arterial wall is also treated 
as a viscoelastic material in the circumferential direction, 
which relates the pulsatile pressure to the radial wall motion 
at an artery site for assessing local arterial elasticity and 
viscosity [3].  

In recent years, the longitudinal wall motion has been 
found to serve as a more sensitive and possibly earlier 
measure of subclinical atherosclerosis, as compared with 
those radial-based arterial indices [4]. Correlations between 
radial-based arterial indices and amplitudes of the 
longitudinal wall motion have also been identified [4], 
possibly implying coupling of the arterial wall motion 
between the two directions. By treating the arterial wall as an 
isotropic viscoelastic Koiter shell, Bukač and S. Čanić [5] 
derived the governing equations of the coupled longitudinal 
and radial motion of the arterial wall. However, these 
equations do not consider the inherent anisotropic nature of 
the arterial wall and lack conceptual clarity for revealing CV 
physiology. As such, engineering theories of the coupled wall 
motion are still unclear, making the role of the longitudinal 
wall motion in blood circulation unattainable.  

This paper is aimed to establish engineering theories of 
the coupled longitudinal and radial motion of the arterial wall 
for their clinical applications. The author previously derived 
the governing equations of the coupled longitudinal and 
radial motion of the arterial wall, with its longitudinal initial 
tension being neglected [6]. Yet, the arterial wall is 
longitudinally pre-stretched and thus its longitudinal initial 
tension is expected to play a role in the arterial wall motion.  
Similar to the arterial wall, a piano string is pre-stretched and 
undergoes the coupled longitudinal and transverse motion 
[7]. In this paper, the arterial wall is treated as a piano string 
in the longitudinal direction and as a viscoelastic material in 
the circumferential direction, the contribution of axial blood 
flow to the arterial wall motion is considered as pulsatile 
pressure and wall shear stress. Consequently, the fully-
formed governing equations of the coupled motion of the 
arterial wall are obtained and are further related to the 
governing equations of axial blood flow for a unified 
engineering understanding of blood circulation in the CV 
system. The established engineering theories of the coupled 
wall motion shed important insights on the CV physiology. 
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II. FULLY-FORMED GOVERNING EQUATIONS OF THE 

COUPLED MOTION OF THE ARTERIAL WALL  

A. The Arterial Wall in the Longitudinal Direction: a Piano 

String  

As shown in Fig. 1(a), the arterial wall is subjected to 

diastolic blood pressure (DBP) and pulsatile pressure, p, in 
the radial direction. Blood flow rate, Q, along the 

longitudinal direction (x-axis) causes a wall shear stress, w, 
acting on the arterial wall. The primary geometrical 
parameters of the arterial wall are its radius, r0, at DBP and 
thickness, h, as shown in Fig. 1(b). 

 

                            (a)                                                                (b)  
Figure 1. Schematics of the arterial wall (a) along the longitudinal direction 

(x-axis) with blood pressure DBP+p in the radial direction and blood flow 
rate Q in the x-axis and undergoing radial motion r(x, t) and longitudinal 
motion u (x, t), (b) cross-section with its geometrical parameters   

The arterial wall contains three layers (i.e., intima, media 
and adventitia) in the radial direction and is commonly 
treated as a thin-layered structure in clinical studies, due to a 
high ratio of r0/h (e.g., 7~10 at the common carotid artery). 
Thus, the motion of a single point on intima-media complex 
is measured in clinical studies to represent the collective 
motion of the arterial wall and derive arterial indices. The 
arterial wall is inherently pre-stretched along the longitudinal 
direction [6], due to its layered structure. Thus, the arterial 
wall in the longitudinal direction (x-axis) is treated as a piano 
string with initial tension, T0, and elasticity, Exx. At the 
start/end of a pulse cycle, the arterial wall is under T0 and in 
its equilibrium state: u=0 and r=0. 

Fig. 2 shows an element dx of the arterial wall at the 
position, x, from the left ventricle. The displacements of the 
element in the x-axis and in the r-axis (or radial direction) are 
u and r, respectively. In a pulse cycle, the element dx is 
deformed into a space curve ds:  

                          
2 2 2(1 )x xds u r dx                               (1) 

where subscript x denotes the first-order derivative of a 
parameter with respect to x. 

 

Figure 2. Schematics of the arterial wall element dx, its geometrical 
parameters, displacements, internal forces (in blue font), and external forces 
(in purple font). 

By assuming small displacements in the two directions, 
the displacement gradients will be very small, and thus Eq. 
(1) can be simplified as:  

                     21
2(1 )x xds u r dx                                (2) 

In a pulse cycle, the tension in the arterial wall at the point 
that is originally at x is given by: 

          21
20 0 ( )xx xx x x

ds dx
T T E S T E S u r

dx


               (3) 

Note that Exx is longitudinal elasticity on top of T0, and 

02S r h   is the cross-sectional area of the arterial wall.        

The x-component, Tx-axis, and r-component, Tr-axis, of the 
tension force, T, become:  

                  (1 ) /x axis xT T u dx ds                                (4a) 

                   /r axis xT T r dx ds                                      (4b) 

According to Eq. (2), the following relation holds: 

                            21
2/ 1 x xdx ds u r                           (5) 

By substituting Eq. (5) into Eq. (4) and getting rid of the 
higher-order terms, Eq. (4) is simplified as: 

            2 21 1
2 20 (1 ) ( )x axis x xx x xT T r E S u r                     (6a) 

       21
20 0( ) ( )r axis x xx x x xT T r E S T r u r                 (6b) 

Note that T0 plays a role in the wall motion in the two 
directions, due to the radial displacement gradient, rx. 

B. Fully-formed Governing Equation of the Longitudinal 

Motion  

Equating the net longitudinal force, /x axisT x dx   , on 

the element dx to its inertial force in the x-axis gives rise to:   

                           /tt x axismu T x                                 (7) 

where the subscript tt denotes the second-order derivative of 
a parameter with respect to time and 

02wm r h   is the 

mass of the arterial wall per unit length, with w denoting the 
wall density. Then, substituting Eq. (6a) into Eq. (7) and 
neglecting the higher-order terms gives rise to: 

                           2 2 2 21
2 0( ) ( )tt l xx l x xu c u c c r                      (8)      

where subscript xx denotes the second-order derivative of a 
parameter with respect to x, and c0 and cl are defined as   
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0
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                        (9) 

Based on Eq. (8), the longitudinal wall motion represents a 
longitudinal elastic wave, u(x, t), with propagation velocity, 
cl.  

Axial blood flow contributes to the motion of the element 

dx through the wall shear stress, w, and pulsatile pressure, 

p. The forces resulting from w and p are: 
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02

w wF r dx                                 (10a) 

                            
02pF p r dx                                (10b) 

By including the x-components of the above two forces into 
Eq. (8), the fully-formed governing equation of the 
longitudinal wall motion is obtained:   

        2 2 2 21
2 0( ) ( ) w

tt l xx l x x x

w w

p
u c u c c r r

h h



 


                 (11) 

C. The Arterial Wall in the Circumferential Direction: a 

Viscoelastic Material   

In the circumferential direction, the arterial wall is treated 
as a viscoelastic material in a circular ring shape with 

elasticity, E, and viscosity, . Fig. 3 shows an element of 

d and unit length of the arterial wall. Its circumferential 
strain and stress are: 

                                 
θθ 0ε = r / r                                   (12a) 

                         
θθ θθ

0 0

= E + trr

r r
                           (12b) 

 
Figure 3. Schematic of an element of d and unit length of the arterial wall in 
the circumferential direction. 

       The sum of the r-component of the force, F=h, and 

the force resulting from p should be equal to inertial force 
of the element in the r-axis [6]:   

                  θθ θθ 0
t2 2

w 0 w 0

η E
+

ρ r ρ r
tt

w

p r
r r r

h

 
                       (13) 

Neglecting the inertial term in Eq. (13) gives rise to the 
viscoelastic material model for assessing local arterial 
elasticity and viscosity. Eq. (13) indicates that the radial wall 
motion is transverse vibration at an artery site (at a fixed x 
position). Based on Eq. (13), the radial wall motion cannot 
propagate along the arterial tree (x-axis).  

D.  Fully-formed Governing Equation of the Radial Motion   

 Based on Fig. 2, equating the net radial force, 

/r axisT x dx   , on the element dx to its inertial force in the 

r-axis gives rise to:   

                            /tt r axismy T x                               (14)      

By substituting Eq. (6b) into Eq. (14), neglecting the higher-

order terms, including the r-component of w, p, and 

F=h, the fully-formed governing equation of the radial 
wall motion becomes: 
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Eq. (15) indicates that the radial wall motion is a 
transverse elastic wave, r(x, t), with a propagation velocity of 
c0. The second term on the right side of Eq. (15) represents 
coupling of u(x, t) to r(x, t), but is a very small quantity (x-
derivative of the multiplication of the two small qualities: ux 
and rx,). Thus, Eq. (15) can be reduced to: 
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III. DISCUSSION 

A. Essential Role of the Longitudinal Motion in the Radial 

Motion of the Arterial Wall    

Based on Eq. (11), the longitudinal wall motion 
represents a longitudinal elastic wave, u(x, t), with the 
propagation velocity, cl.  Since the arterial wall is tethered to 

its surrounding tissues, w and p serve as external sources to 
sustain u(x, t) traveling down the arterial tree. Although rx is a 

small quantity, p (a few kPa) is much higher than w (a few 

Pa) [8]. Therefore, the contributions of w and p to u(x, t) 
might be comparable. A large difference between cl and c0 
indicates high coupling of r(x, t) to u(x, t).  

Eq. (16) shows that the radial wall motion represents a 
transverse elastic wave, r(x, t), with the propagation velocity, 

c0. Both w and p serve as external sources to sustain r(x, t) 

along the arterial tree. Since rx is a small quantity, and w is 

much smaller than p, p is the dominant source. Note that 

p is also needed to balance the circumferential stress, , in 
the arterial wall. This may explain that the motion amplitudes 

in the two directions are comparable [9], although p is much 

higher than w. Since T0 dictates the propagation velocity of 
r(x, t) in the arterial wall, coupling of T0 to r(x, t) is profound 
for moving the radial wall motion (transverse vibration) at an 
artery site down the arterial tree. 

B. Connection between the Coupled Wall Motion and the 

Governing Equations of Axial Blood Flow   

By neglecting the time-dependent terms in Eq. (13), the 
purely elastic model of the arterial wall in the circumferential 
direction is obtained [6]:  

                        0 0/E h r r r p                                 (17) 

By adding Eq. (17) as the boundary condition to the 
governing equations (i.e., Navier-Stokes equation and 
continuity equation) of axial blood flow and neglecting their 
non-linear terms, the governing equation of pulsatile pressure 
can be obtained [6]:  

                          
2

tt xxp PWV p                               (18) 

with PWV being defined as [2, 6]:  

                         
02 b

E h
PWV
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
                                    (19) 

where b is blood density. Eq. (18) represents the well-
established engineering essence for blood circulation: a 

pulsatile pressure wave, p(x, t), in axial blood flow travels 
along the arterial tree with PWV.  

As boundary condition, the radial wall motion should 

accompany p(x, t) traveling along the arterial tree. 
According to Eq. (16), the radial wall motion is a transverse 
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elastic wave, r(x, t), with its propagation velocity, c0, which is 
dictated by T0 in the longitudinal direction. Note that in the 
derivation of Eq. (18), u(x,t) is neglected. In reality, there are 
three waves traveling along the arterial tree with their own 

velocity: p(x, t) with PWV, r(x,t) with c0, and u(x,t) with cl.  

C. Physiological Implications  

Based on Eq. (13), the radial wall motion is transverse 
vibration and its natural frequency is given by [3]: 

                                        
0 2

0w

E



r

                                 (20) 

By neglecting the circumferential terms in Eq. (16), the radial 
wall motion is analogous to transverse vibration of a string 
with its initial tension, T0. Then, the natural frequency of the 
arterial wall of length, L, becomes [7]:    

                                  0
0

02w

T

L r h




 
                             (21) 

Smaller body size implies smaller arterial radius and shorter 
length of the arterial tree. Eq. (20) and (21) might explain the 
inverse relation of heart rate to animal body size. 

From the ascending aorta to periphery, T0, Exx, and E 
increase [2]. Concomitant increase in c0, cl, and PWV might 
indicate the coordinated propagation of the three waves. T0 
is significant at young age and drops with aging [6]. Under 

aging and subclinical atherosclerosis, Exx and E were found 
to decrease and increase, respectively, at the carotid artery 
[4]. Since reduction in T0 was found to cause a larger 

decrease in Exx than an increase in E [10], it might be 
inferred that aging and subclinical atherosclerosis cause 
reduction in both c0 and cl and a reduced difference between 
c0 and cl - a reduced coupling between u(x, t) and r(x, t), 
possibly undermining the propagation of the two elastic 
waves and thus blood circulation. As a result, PWV needs to 
increase to compensate for reduction in c0 and cl and reduced 
coupling between u(x, t) and r(x, t). 

D. Energy Transport in the Longitudinal and the Radial 

Directions along the Arterial Tree 

Here, energy transport associated with u(x,t) and r(x,t) is 

analyzed. The potential energy density (per unit mass) of the 

arterial wall in the x-axis and the r-axis is given by: 

       2 2 2 21
2 0
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( ) ( )

u

x axis l xx l x xPE c u c c r du
              (22a)        
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           (22b) 

A large difference between c0 and cl indicates higher energy 
transfer from r(x,t) to u(x,t). As compared with the potential 
energy in u(x, t), the potential energy in r(x, t) is dominant, 
given that the arterial wall stores a large amount of potential 
energy in the circumferential direction. Thus, energy 
transport in the arterial tree is mainly carried by r(x, t). 
Although the potential energy in u(x, t) is low, u(x, t) is 
essential to move r(x, t) down the arterial tree. 

As energy supply to u(x, t) and r(x, t) for sustaining their 

propagation, the work done byw and p in the x-axis and the 
r-axis is:  

                   w
x axis x

w w

p
W du r du

h h



 



                       (23a) 
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w w

p
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

 



                         (23b)   

Since the amplitudes of u(x, t) and r(x, t) are comparable [9], 
energy supply to u(x, t) is much lower than that to r(x, t), 
which is consistent with the difference in potential energy of 
the two elastic waves.   

IV. CONCLUSION 

In this paper, the fully-formed governing equations of the 
coupled longitudinal and radial motion of the arterial wall 
are derived and are related to the governing equations of 
axial blood flow for a unified engineering understanding of 
blood circulation in the CV system. For the first time, an 
essential role of the longitudinal initial tension of the arterial 
wall in transverse elastic wave propagation and thus blood 
circulation is identified. The established engineering theories 
of the coupled wall motion elucidate the effect of the 
physical properties and geometries of the arterial wall on 
blood circulation and will be useful in interpreting the 
measured coupled wall motion for their clinical values. 
Adding the influence of various arterial pathologies on the 
arterial wall (e.g., nonlinear behavior [11]) to the established 
engineering theories might contribute to a better 
understanding of their origin and progress on a mechanistic 
level in the future. 
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