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Abstract— This work is aimed to establish engineering
theories of the coupled longitudinal and radial motion of the
arterial wall. By treating the arterial wall as a piano string in
the longitudinal direction and as a viscoelastic material in the
circumferential direction, and considering pulsatile pressure
and wall shear stress from axial blood flow in an artery, the
fully-formed governing equations of the coupled motion of the
arterial wall are obtained and are related to the engineering
theories of axial blood flow for a unified engineering
understanding of blood circulation in the cardiovascular (CV)
system. The longitudinal wall motion and the radial wall
motion are essentially a longitudinal elastic wave and a
transverse elastic wave, respectively, traveling along the
arterial tree, with their own propagation velocities dictated by
the physical properties and geometrical parameters of the
arterial wall. The longitudinal initial tension is essential for
generating a transverse elastic wave in the arterial wall to
accompany the pulsatile pressure wave in axial blood flow.
Under aging and subclinical atherosclerosis, propagation of the
two elastic waves and coupling of the two elastic waves weakens
and consequently might undermine blood circulation.

Clinical Relevance— Essential role of the longitudinal wall
motion in achieving the radial wall motion and thus blood
circulation is identified and will be useful for interpreting the
measured coupled arterial wall motion for clinical values.

I. INTRODUCTION

The essential function of the cardiovascular (CV) system
is blood circulation throughout the body. Instead of axial
blood flow in an artery, the arterial wall takes >90% energy
output of the left ventricle, and thus the arterial wall motion
is critical for achieving blood circulation [1]. Atherosclerosis
has been identified as the dominant cause of CV diseases [2].
These may explain the reason why arterial indices are utilized
for detection and diagnosis of CV diseases. For instance,
arterial stiffness, mostly in terms of pulse wave velocity
(PWYV), is indicative of arterial elasticity, and peripheral
vascular resistance (PVR) is dictated by arterial radius at
diastolic blood pressure [3].

Upon blood ejection from the left ventricle, the arterial
wall undergoes radial motion and longitudinal motion
simultaneously [4]. With neglect of the longitudinal wall
motion, engineering theories have been well established for
assessing arterial indices from measured arterial pulse signals
and are widely used in clinical studies [2]. Generally
speaking, these theories fall into two categories [2]: 1) a
transverse elastic wave model, and 2) a viscoelastic material
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model. Built on the governing equations of axial blood flow
with the radial wall motion as the boundary condition, the
pulsatile pressure in an artery was found to be a propagation
wave traveling along the arterial tree with the propagation
velocity, PWV. Then, the radial wall motion was also
considered as a transverse elastic wave accompanying the
pulsatile pressure wave. Global/regional PWV are obtained
by simultaneously measuring pulse signals at two artery sites
(e.g., carotid versus femoral). The arterial wall is also treated
as a viscoelastic material in the circumferential direction,
which relates the pulsatile pressure to the radial wall motion
at an artery site for assessing local arterial elasticity and
viscosity [3].

In recent years, the longitudinal wall motion has been
found to serve as a more sensitive and possibly earlier
measure of subclinical atherosclerosis, as compared with
those radial-based arterial indices [4]. Correlations between
radial-based arterial indices and amplitudes of the
longitudinal wall motion have also been identified [4],
possibly implying coupling of the arterial wall motion
between the two directions. By treating the arterial wall as an
isotropic viscoelastic Koiter shell, Buka¢ and S. Canié¢ [5]
derived the governing equations of the coupled longitudinal
and radial motion of the arterial wall. However, these
equations do not consider the inherent anisotropic nature of
the arterial wall and lack conceptual clarity for revealing CV
physiology. As such, engineering theories of the coupled wall
motion are still unclear, making the role of the longitudinal
wall motion in blood circulation unattainable.

This paper is aimed to establish engineering theories of
the coupled longitudinal and radial motion of the arterial wall
for their clinical applications. The author previously derived
the governing equations of the coupled longitudinal and
radial motion of the arterial wall, with its longitudinal initial
tension being neglected [6]. Yet, the arterial wall is
longitudinally pre-stretched and thus its longitudinal initial
tension is expected to play a role in the arterial wall motion.
Similar to the arterial wall, a piano string is pre-stretched and
undergoes the coupled longitudinal and transverse motion
[7]. In this paper, the arterial wall is treated as a piano string
in the longitudinal direction and as a viscoelastic material in
the circumferential direction, the contribution of axial blood
flow to the arterial wall motion is considered as pulsatile
pressure and wall shear stress. Consequently, the fully-
formed governing equations of the coupled motion of the
arterial wall are obtained and are further related to the
governing equations of axial blood flow for a unified
engineering understanding of blood circulation in the CV
system. The established engineering theories of the coupled
wall motion shed important insights on the CV physiology.



II. FULLY-FORMED GOVERNING EQUATIONS OF THE
COUPLED MOTION OF THE ARTERIAL WALL

A. The Arterial Wall in the Longitudinal Direction: a Piano
String

As shown in Fig. 1(a), the arterial wall is subjected to
diastolic blood pressure (DBP) and pulsatile pressure, 4p, in
the radial direction. Blood flow rate, O, along the
longitudinal direction (x-axis) causes a wall shear stress, z,,
acting on the arterial wall. The primary geometrical
parameters of the arterial wall are its radius, 7y, at DBP and
thickness, %, as shown in Fig. 1(b).
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Figure 1. Schematics of the arterial wall (a) along the longitudinal direction
(x-axis) with blood pressure DBP+Ap in the radial direction and blood flow
rate Q in the x-axis and undergoing radial motion r(x, #) and longitudinal
motion u (x, ¢), (b) cross-section with its geometrical parameters

The arterial wall contains three layers (i.e., intima, media
and adventitia) in the radial direction and is commonly
treated as a thin-layered structure in clinical studies, due to a
high ratio of ryh (e.g., 7~10 at the common carotid artery).
Thus, the motion of a single point on intima-media complex
is measured in clinical studies to represent the collective
motion of the arterial wall and derive arterial indices. The
arterial wall is inherently pre-stretched along the longitudinal
direction [6], due to its layered structure. Thus, the arterial
wall in the longitudinal direction (x-axis) is treated as a piano
string with initial tension, 7), and elasticity, E,. At the
start/end of a pulse cycle, the arterial wall is under 7)) and in
its equilibrium state: u=0 and r=0.

Fig. 2 shows an element dx of the arterial wall at the
position, x, from the left ventricle. The displacements of the
element in the x-axis and in the r-axis (or radial direction) are
u and r, respectively. In a pulse cycle, the element dx is
deformed into a space curve ds:

ds=\/(1+uf)2+rf -dx )

where subscript x denotes the first-order derivative of a
parameter with respect to x.
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Figure 2. Schematics of the arterial wall element dx, its geometrical
parameters, displacements, internal forces (in blue font), and external forces
(in purple font).

By assuming small displacements in the two directions,
the displacement gradients will be very small, and thus Eq.
(1) can be simplified as:

ds=(+u_+ }4r’)-dx )

In a pulse cycle, the tension in the arterial wall at the point
that is originally at x is given by:

ds —dx

T=T,+E_S- =T, +E.S-(u,+%r) (3)

Note that E, is longitudinal elasticity on top of 7), and
S =271, -h is the cross-sectional area of the arterial wall.

The x-component, 7., and r-component, 7., of the
tension force, T, become:

T, i =T(1+u,)-dx/ds (4a)
T pie =T 1, -dx/ds (4b)

According to Eq. (2), the following relation holds:
dx/ds=1-u,—Y%r’ (5)

By substituting Eq. (5) into Eq. (4) and getting rid of the
higher-order terms, Eq. (4) is simplified as:

T =T (A= S+ E S (u, + )477) (6a)
T =Ty 1+ (ELS=T0) 1, + Y1) (6b)

Note that 7, plays a role in the wall motion in the two
directions, due to the radial displacement gradient, r,.

B. Fully-formed Governing Equation of the Longitudinal
Motion

Equating the net longitudinal force, 07 . /dx-dx, on
the element dx to its inertial force in the x-axis gives rise to:
mutt = 87;—axis /ax (7)

where the subscript # denotes the second-order derivative of
a parameter with respect to time and m=p, 2zrh is the

mass of the arterial wall per unit length, with p,, denoting the
wall density. Then, substituting Eq. (6a) into Eq. (7) and
neglecting the higher-order terms gives rise to:

u, =c¢ u, + % —c)- (), ®)

where subscript xx denotes the second-order derivative of a
parameter with respect to x, and ¢, and ¢, are defined as
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Based on Eq. (8), the longitudinal wall motion represents a
longitudinal elastic wave, u(x, ¢), with propagation velocity,
Cy.

Axial blood flow contributes to the motion of the element
dx through the wall shear stress, 7,, and pulsatile pressure,
Ap. The forces resulting from 7,, and Ap are:



F, =7, 27ndx (10a)

F,, =Ap-2zrdx (10b)

By including the x-components of the above two forces into

Eq. (8), the fully-formed governing equation of the
longitudinal wall motion is obtained:
4= g (G =) (), + e 2y (D)
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C. The Arterial Wall in the Circumferential Direction: a
Viscoelastic Material

In the circumferential direction, the arterial wall is treated
as a viscoelastic material in a circular ring shape with
elasticity, Egy, and viscosity, 77g5. Fig. 3 shows an element of
d@ and unit length of the arterial wall. Its circumferential
strain and stress are:

€ =1/T, (12a)

r r,
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Coo = Eog — 10— (12b)
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Figure 3. Schematic of an element of ¢6 and unit length of the arterial wall in
the circumferential direction.

The sum of the r-component of the force, F=oyyh, and
the force resulting from Ap should be equal to inertial force
of the element in the r-axis [6]:

(13)

per ,0 wh

Neglecting the inertial term in Eq. (13) gives rise to the
viscoelastic material model for assessing local arterial
elasticity and viscosity. Eq. (13) indicates that the radial wall
motion is transverse vibration at an artery site (at a fixed x
position). Based on Eq. (13), the radial wall motion cannot
propagate along the arterial tree (x-axis).

D. Fully-formed Governing Equation of the Radial Motion

Based on Fig. 2, equating the net radial force,
oT / Ox - dx , on the element dx to its inertial force in the

r—axis

r-axis gives rise to:

/ Ox (14)

By substituting Eq. (6b) into Eq. (14), neglecting the higher-
order terms, including the r-component of 7,, 4p, and
F=0oyph, the fully-formed governing equation of the radial
wall motion becomes:
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Eq. (15) indicates that the radial wall motion is a
transverse elastic wave, r(x, ¢), with a propagation velocity of
cp- The second term on the right side of Eq. (15) represents
coupling of u(x, t) to r(x, ), but is a very small quantity (x-
derivative of the multiplication of the two small qualities: u,
and r,,). Thus, Eq. (15) can be reduced to:
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III. DiscussioN

A. Essential Role of the Longitudinal Motion in the Radial
Motion of the Arterial Wall

Based on Eq. (11), the longitudinal wall motion
represents a longitudinal elastic wave, u(x, t), with the
propagation velocity, ¢;. Since the arterial wall is tethered to
its surrounding tissues, 7, and Ap serve as external sources to
sustain u(x, ¢) traveling down the arterial tree. Although r, is a
small quantity, Ap (a few kPa) is much higher than z, (a few
Pa) [8]. Therefore, the contributions of 7, and Ap to u(x, #)
might be comparable. A large difference between ¢; and ¢y
indicates high coupling of r(x, t) to u(x, ¢).

Eq. (16) shows that the radial wall motion represents a
transverse elastic wave, r(x, t), with the propagation velocity,
¢y. Both 7, and 4p serve as external sources to sustain r(x, ¢)
along the arterial tree. Since 7, is a small quantity, and z, is
much smaller than Ap, Ap is the dominant source. Note that
Ap is also needed to balance the circumferential stress, oy, in
the arterial wall. This may explain that the motion amplitudes
in the two directions are comparable [9], although Ap is much
higher than ,. Since T, dictates the propagation velocity of
r(x, t) in the arterial wall, coupling of T} to r(x, ¢) is profound
for moving the radial wall motion (transverse vibration) at an
artery site down the arterial tree.

B. Connection between the Coupled Wall Motion and the
Governing Equations of Axial Blood Flow

By neglecting the time-dependent terms in Eq. (13), the
purely elastic model of the arterial wall in the circumferential
direction is obtained [6]:

E,-h-rir=r-Ap (17)
By adding Eq. (17) as the boundary condition to the
governing equations (i.e., Navier-Stokes equation and
continuity equation) of axial blood flow and neglecting their
non-linear terms, the governing equation of pulsatile pressure
can be obtained [6]:

Ap, = PWV? - Ap.. (18)
with PWV being defined as [2, 6]:
PWV = Eph (19)
2r,p,

where p, is blood density. Eq. (18) represents the well-
established engineering essence for blood circulation: a
pulsatile pressure wave, Ap(x, t), in axial blood flow travels
along the arterial tree with PWV.

As boundary condition, the radial wall motion should
accompany Ap(x, t) traveling along the arterial tree.
According to Eq. (16), the radial wall motion is a transverse



elastic wave, r(x, ¢), with its propagation velocity, ¢y, which is
dictated by 7, in the longitudinal direction. Note that in the
derivation of Eq. (18), u(x,?) is neglected. In reality, there are
three waves traveling along the arterial tree with their own
velocity: Ap(x, t) with PWV, r(x,t) with ¢y, and u(x,#) with c,.

C. Physiological Implications

Based on Eq. (13), the radial wall motion is transverse
vibration and its natural frequency is given by [3]:

Lo (20)
pwroz

By neglecting the circumferential terms in Eq. (16), the radial
wall motion is analogous to transverse vibration of a string
with its initial tension, 7). Then, the natural frequency of the
arterial wall of length, L, becomes [7]:

z [T,
a)ozz S
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Smaller body size implies smaller arterial radius and shorter
length of the arterial tree. Eq. (20) and (21) might explain the
inverse relation of heart rate to animal body size.
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From the ascending aorta to periphery, Ty, E,,, and Ey
increase [2]. Concomitant increase in ¢y, ¢;, and PWV might
indicate the coordinated propagation of the three waves. T
is significant at young age and drops with aging [6]. Under
aging and subclinical atherosclerosis, E,, and Eyy were found
to decrease and increase, respectively, at the carotid artery
[4]. Since reduction in 7, was found to cause a larger
decrease in E,, than an increase in Egy [10], it might be
inferred that aging and subclinical atherosclerosis cause
reduction in both ¢, and ¢; and a reduced difference between
¢p and ¢; - a reduced coupling between u(x, ¢) and r(x, t),
possibly undermining the propagation of the two elastic
waves and thus blood circulation. As a result, PWTV needs to
increase to compensate for reduction in ¢, and ¢; and reduced
coupling between u(x, t) and r(x, t).

D. Energy Transport in the Longitudinal and the Radial
Directions along the Arterial Tree

Here, energy transport associated with u(x,#) and r(x,t) is
analyzed. The potential energy density (per unit mass) of the
arterial wall in the x-axis and the r-axis is given by:

PE, = [ -t + (] =0)-(]), | -du (222)

(22b)
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A large difference between ¢, and ¢; indicates higher energy
transfer from r(x,t) to u(x,t). As compared with the potential
energy in u(x, t), the potential energy in r(x, ) is dominant,
given that the arterial wall stores a large amount of potential
energy in the circumferential direction. Thus, energy
transport in the arterial tree is mainly carried by r(x, ).
Although the potential energy in u(x, ?) is low, u(x, t) is
essential to move r(x, ¢) down the arterial tree.

As energy supply to u(x, t) and r(x, t) for sustaining their
propagation, the work done byz, and 4p in the x-axis and the
r-axis is:

T Ap
AW _ . =—du+——"r -du
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Since the amplitudes of u(x, #) and r(x, ¢) are comparable [9],

energy supply to u(x, ¢) is much lower than that to r(x, ¢),

which is consistent with the difference in potential energy of

the two elastic waves.

AW,

IV. CONCLUSION

In this paper, the fully-formed governing equations of the
coupled longitudinal and radial motion of the arterial wall
are derived and are related to the governing equations of
axial blood flow for a unified engineering understanding of
blood circulation in the CV system. For the first time, an
essential role of the longitudinal initial tension of the arterial
wall in transverse elastic wave propagation and thus blood
circulation is identified. The established engineering theories
of the coupled wall motion elucidate the effect of the
physical properties and geometries of the arterial wall on
blood circulation and will be useful in interpreting the
measured coupled wall motion for their clinical values.
Adding the influence of various arterial pathologies on the
arterial wall (e.g., nonlinear behavior [11]) to the established
engineering theories might contribute to a better
understanding of their origin and progress on a mechanistic
level in the future.
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