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ABSTRACT

For bidirectional joint image-text modeling, we develop variational hetero-encoder
(VHE) randomized generative adversarial network (GAN), a versatile deep genera-
tive model that integrates a probabilistic text decoder, probabilistic image encoder,
and GAN into a coherent end-to-end multi-modality learning framework. VHE
randomized GAN (VHE-GAN) encodes an image to decode its associated text, and
feeds the variational posterior as the source of randomness into the GAN image
generator. We plug three off-the-shelf modules, including a deep topic model,
a ladder-structured image encoder, and StackGAN++, into VHE-GAN, which
already achieves competitive performance. This further motivates the development
of VHE-raster-scan-GAN that generates photo-realistic images in not only a multi-
scale low-to-high-resolution manner, but also a hierarchical-semantic coarse-to-fine
fashion. By capturing and relating hierarchical semantic and visual concepts with
end-to-end training, VHE-raster-scan-GAN achieves state-of-the-art performance
in a wide variety of image-text multi-modality learning and generation tasks.

1 INTRODUCTION

Images and texts commonly occur together in the real world. There exists a wide variety of deep
neural network based unidirectional methods that model images (texts) given texts (images) (Gomez
et al., 2017; Kiros & Szepesvari, 2012; Reed et al., 2016; Xu et al., 2018; Zhang et al., 2017a). There
also exist probabilistic graphic model based bidirectional methods (Srivastava & Salakhutdinov,
2012b;a; Wang et al., 2018) that capture the joint distribution of images and texts. These bidirectional
methods, however, often make restrictive parametric assumptions that limit their image generation
ability. Exploiting recent progress on deep probabilistic models and variational inference (Kingma &
Welling, 2014; Zhou et al., 2016; Zhang et al., 2018a; Goodfellow et al., 2014; Zhang et al., 2017b),
we propose an end-to-end learning framework to construct multi-modality deep generative models
that can not only generate vivid image-text pairs, but also achieve state-of-the-art results on various
unidirectional tasks (Srivastava & Salakhutdinov, 2012b;a; Wang et al., 2018; Gomez et al., 2017;
Xu et al., 2018; Zhang et al., 2017a;b; Verma et al., 2018; Zhang et al., 2018b), such as generating
photo-realistic images given texts and performing text-based zero-shot learning.

To extract and relate semantic and visual concepts, we first introduce variational hetero-encoder
(VHE) that encodes an image to decode its textual description (e.g., tags, sentences, binary attributes,
and long documents), where the probabilistic encoder and decoder are jointly optimized using
variational inference (Blei et al., 2017; Hoffman et al., 2013; Kingma & Welling, 2014; Rezende et al.,
2014). The latent representation of VHE can be sampled from either the variational posterior provided
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by the image encoder given an image input, or the posterior of the text decoder via MCMC given a
text input. VHE by construction has the ability to generate texts given images. To further enhance
its text generation performance and allow synthesizing photo-realistic images given an image, text,
or random noise, we feed the variational posterior of VHE in lieu of random noise as the source of
randomness into the image generator of a generative adversarial network (GAN) (Goodfellow et al.,
2014). We refer to this new modeling framework as VHE randomized GAN (VHE-GAN).

Off-the-shelf text decoders, image encoders, and GANs can be directly plugged into the VHE-GAN
framework for end-to-end multi-modality learning. To begin with, as shown in Figs. 1(a) and 1(b), we
construct VHE-StackGAN++ by using the Poisson gamma belief network (PGBN) (Zhou et al., 2016)
as the VHE text decoder, using the Weibull upward-downward variational encoder (Zhang et al.,
2018a) as the VHE image encoder, and feeding the concatenation of the multi-stochastic-layer latent
representation of the VHE as the source of randomness into the image generator of StackGAN++
(Zhang et al., 2017b). While VHE-StackGAN++ already achieves very attractive performance,
we find that its performance can be clearly boosted by better exploiting the multi-stochastic-layer
semantically meaningful hierarchical latent structure of the PGBN text decoder. To this end, as
shown in Figs. 1(a) and 1(c), we develop VHE-raster-scan-GAN to perform image generation in not
only a multi-scale low-to-high-resolution manner in each layer, as done by StackGAN++, but also a
hierarchical-semantic coarse-to-fine fashion across layers, a unique feature distinguishing it from
existing methods. Consequently, not only can VHE-raster-scan-GAN generate vivid high-resolution
images with better details, but also build interpretable hierarchical semantic-visual relationships
between the generated images and texts.

Our main contributions include: 1) VHE-GAN that provides a plug-and-play framework to integrate
off-the-shelf probabilistic decoders, variational encoders, and GANs for end-to-end bidirectional
multi-modality learning; the shared latent space can be inferred either by image encoder ¢(z | x), if
given images, or by Gibbs sampling from the conditional posterior of text decoder p(t | z), if given
texts; 2) VHE-raster-scan-GAN that captures and relates hierarchical semantic and visual concepts to
achieve state-of-the-art results in various unidirectional and bidirectional image-text modeling tasks.

2  VARIATIONAL HETERO-ENCODER RANDOMIZED GANS

VAEs and GANS are two distinct types of deep generative models. Consisting of a generator (decoder)
p(x | z), a prior p(z), and an inference network (encoder) ¢(z | ) that is used to approximate
the posterior p(z | x), VAEs (Kingma & Welling, 2014; Rezende et al., 2014) are optimized by
maximizing the evidence lower bound (ELBO) as

ELBO = Egrpyu(@)[L(®)], L(2) := Ezrg(z|a) Inp(x]|2)] - KL[g(z|2)|[p(2)], (1)
where pgan () = vazl %533 represents the empirical data distribution. Distinct from VAEs that
make parametric assumptions on data distribution and perform posterior inference, GANs in general
use implicit data distribution and do not provide meaningful latent representations (Goodfellow et al.,
2014); they learn both a generator G and a discriminator D by optimizing a mini-max objective as

ming maxp{Eqpy. (@) [0 D(x)] + E,opiz) In(1 — D(G(2)))]}, 2)

where p(z) is a random noise distribution that acts as the source of randomness for data generation.

2.1 VHE-GAN OBJECTIVE FUNCTION FOR END-TO-END MULTI-MODALITY LEARNING

Below we show how to construct VHE-GAN to jointly model images « and their associated texts ¢,
capturing and relating hierarchical semantic and visual concepts. First, we modify the usual VAE
into VHE, optimizing a lower bound of the text log-marginal-likelihood Ey..,,,,.,¢) [In p(t)] as

ELBOyhe = Ep. (t,2) [Lvhe(t, )], Line(t, @) := E, gz |a) Inp(t|2z)]-KL[g(2z | z)|[p(2)], 3)

where p(t|z) is the text decoder, p(z) is the prior, p(t) = E..,z)[p(t]2)], and Lype(t, ) <

InE, 4z [%] = Inp(t). Second, the image encoder ¢(z | ), which encodes image x

into its latent representation z, is used to approximate the posterior p(z |t) = p(t|z)p(z)/p(¢t).
Third, variational posterior ¢(z | ) in lieu of random noise p(z) is fed as the source of randomness
into the GAN image generator. Combing these three steps, with the parameters of the image encoder
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Figure 1: Illustration of (a) VHE, (b) StackGAN++, (¢) raster-scan-GAN, (d) vanilla-GAN, and (e) simple-
raster-scan-GAN. VHE-raster-scan-GAN consists of (a) and (c). x4 is down-sampled from x with scaling
factor d. VHE-StackGAN++, consisting of (a) and (b), VHE-vanilla-GAN, consisting of (a) and (d), and
VHE-simple-raster-scan-GAN, consisting of (a) and (e), are all used for ablation studies.

q(z | z), text decoder p(t | z), and GAN generator denoted by E, Gyae, and Gan, respectively, we
express the objective function of VHE-GAN for joint image-text end-to-end learning as

E Cl;IliIlG mDaX Epdala(tym) [‘c(t7 x)]’
sGvae; Ggan

L(t,z) :=InD(x) + KL[g(z | x)|[p(2)] + Ezngz|z) [ In(1 — D(Gen(2))) — Inp(t|2)]. )

Note the objective function in (4) implies a data-triple-reuse training strategy, which uses the same data
mini-batch in each stochastic gradient update iteration to jointly train the VHE, GAN discriminator,
and GAN generator; see a related objective function, shown in (10) of Appendix A, that is resulted
from naively combining the VHE and GAN training objectives. In VHE-GAN, the optimization
of the encoder parameter F is related to not only the VHE’s ELBO, but also the GAN mini-max
objective function, forcing the variational posterior g(z | ) to serve as a bridge between VHE and
GAN, allowing them to help each other. Although there are some models (Mescheder et al., 2017;
Makhzani et al., 2015; Tolstikhin et al., 2018; Dumoulin et al., 2017; Donahue et al., 2017; Che et al.,
2017, Srivastava et al., 2017; Grover et al., 2018; Larsen et al., 2016; Huang et al., 2018) combining
VAESs and GANs in various ways, they focus on single-modality tasks while the VHE-GAN on two
different modalities. In Appendix A, we analyze the properties of the VHE-GAN objective function
and discuss related works. Below we develop two different VHE-GANS, one integrates off-the-shelf
modules, while the other introduces new interpretable hierarchical latent structure.

2.2 VHE-STACKGAN++ WITH OFF-THE-SHELF MODULES

As shown in Figs. 1(a) and 1(b), we first construct VHE-Stack GAN++ by plugging into VHE-GAN
three off-the-shelf modules, including a deep topic model (Zhou et al., 2016), a ladder-structured
encoder (Zhang et al., 2018a), and StackGAN++ (Zhang et al., 2017b). For text analysis, both
sequence models and topic models are widely used. Sequence models (Bengio et al., 2003) often
represent each document as a sequence of word embedding vectors, capturing local dependency
structures with some type of recurrent neural networks (RNNSs), such as long short-term memory
(LSTM) (Hochreiter & Schmidhuber, 1997). Topic models such as latent Dirichlet allocation (LDA)
(Blei et al., 2003) often represent each document as a bag of words (BoW), capturing global word
cooccurrence patterns into latent topics. Suitable for capturing local dependency structure, existing
sequence models often have difficulty in capturing long-range word dependencies and hence macro-
level information, such as global word cooccurrence patterns (i.e., topics), especially for long
documents. By contrast, while topic models ignore word order, they are very effective in capturing
latent topics, which are often directly related to macro-level visual information (Gomez et al., 2017;
Dieng et al., 2017; Lau et al., 2017). Moreover, topic models can be applied to not only sequential
texts, such as few sentences (Wang et al., 2009; Jin et al., 2015) and long documents (Zhou et al.,
2016), but also non-sequential ones, such as textual tags (Srivastava & Salakhutdinov, 2012a; 2014;
Wang et al., 2018) and binary attributes (Elhoseiny et al., 2017b; Zhu et al., 2018). For this reason, for
the VHE text decoder, we choose PGBN (Zhou et al., 2016), a state-of-the-art topic model that can
also be represented as a multi-stochastic-layer deep generalization of LDA (Cong et al., 2017). We
complete VHE-StackGAN++ by choosing the Weibull upward-downward variational encoder (Zhang
et al., 2018a) as the VHE image encoder, and feeding the concatenation of all the hidden layers of
PGBN as the source of randomness to the image generator of StackGAN++ (Zhang et al., 2017b).

As in Fig. 1, we use a VHE that encodes an image into a deterministic-upward—stochastic-downward
ladder-structured latent representation, which is used to decode the corresponding text. Specifically,
we represent each document as a BoW high-dimensional sparse count vector t,, € Z%°, where
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Z =1{0,1,---} and K| is the vocabulary size. For the VHE text decoder, we choose to use PGBN
to extract hierarchical latent representation from ¢,,. PGBN consists of multiple gamma distributed
stochastic hidden layers, generalizing the “shallow” Poisson factor analysis (Zhou et al., 2012; Zhou
& Carin, 2015) into a deep setting. PGBN with L hidden layers, from top to bottom, is expressed as

0 ~ Gam (r, 1/5;””) , 7~ Gam(y0/Kp,1/50),

6" ~ Gam (q>“+1>0£f+1), 1/s£f+1>) A=1L—1,---,2,1, t,~ Pois (<1><1>0$}>) , (5)

where the hidden units 055 ) e Rf’ of layer [ are factorized under the gamma likelihood into the

product of topics W) ¢ Rf“l *K1 and hidden units of the next layer, Ry = {z,z > 0}, 57(71) >0
and K is the number of topics of layer (. If the texts are represented as binary attribute vectors b,,,
we can add a Bernoulli-Poisson link layer as b,, = 1(¢,, > 1) (Zhou, 2015; Zhou et al., 2016). We

place a Dirichlet prior on each column of & The topics can be organized into a directed acyclic

graph (DAG), whose node k at layer [ can be visualized with the top words of [Hi;i <I>(t)] g); the
topics tend to be very general in the top layer and become increasingly more specific when moving
downwards. This semantically meaningful latent hierarchy provides unique opportunities to build a
better image generator by coupling the semantic hierarchical structures with visual ones.

Let us denote ® = {<I>(1), R @(L), r} as the set of global parameters of PGBN shown in (5). Given
@, we adopt the inference in Zhang et al. (2018a) to build an Weibull upward-downward variational

image encoder as Hﬁ;l Hle a0V |z, ®+Y 90Dy where ®LFY .= 9L .= ) and

g0V |z, D 90D) = Weibull (k) + DI+ A1)y, ©)

The Weibull distribution is used to approximate the gamma distributed conditional posterior, and its
parameters kg ), ,\ﬁf ) € RE1 are deterministically transformed from the convolutional neural network
(CNN) image features f(x,,) (Szegedy et al., 2016), as shown in Fig. 1(a) and described in Appendix
D.1. We denote 2 as the set of encoder parameters. We refer to Zhang et al. (2018a) for more details
about this deterministic-upward—stochastic-downward ladder-structured inference network, which is
distinct from a usual inference network that has a pure bottom-up structure and only interacts with
the generative model via the ELBO (Kingma & Welling, 2014; Gulrajani et al., 2017).

The multi-stochastic-layer latent representation z = {0(1) }lel is the bridge between two modalities.
As shown in Fig. 1(b), VHE-StackGAN++ simply randomizes the image generator of StackGAN++
(Zhang et al., 2017b) with the concatenated vector 8 = [0(1), cee O(L)] . We provide the overall
objective function in (15) of Appendix D.2. Note that existing neural-network-based models (Gomez
et al., 2017; Xu et al., 2018; Zhang et al., 2017a;b; Verma et al., 2018; Zhang et al., 2018b) are
often able to perform unidirectional but not bidirectional transforms between images x and texts t.
However, bidirectional transforms are straightforward for the proposed model, as z can be either
drawn from the image encoder ¢(z | ) in (6), or drawn with an upward-downward Gibbs sampler
(Zhou et al., 2016) from the conditional posteriors p(z | t) of the PGBN text decoder p(t | z) in (5).

2.3 VHE-RASTER-SCAN-GAN WITH A HIERARCHICAL-SEMANTIC MULTI-RESOLUTION
IMAGE GENERATOR

While we find that VHE-StackGAN++ has already achieved impressive results, its simple concate-
nation of 8¥) does not fully exploit the semantically-meaningful hierarchical latent representation
of the PGBN-based text decoder. For three DAG subnets inferred from three different datasets, as
shown in Figs. 21 -23 of Appendix C.7, the higher-layer PGBN topics match general visual concepts,
such as those on shapes, colors, and backgrounds, while the lower-layer ones provide finer details.
This motivates us to develop an image generator to exploit the semantic structure, which matches
coarse-to-fine visual concepts, to gradually refine its generation. To this end, as shown in Fig. 1(c), we
develop “raster-scan” GAN that performs generation not only in a multi-scale low-to-high-resolution
manner in each layer, but also a hierarchical-semantic coarse-to-fine fashion across layers.

Suppose we are building a three-layer raster-scan GAN to generate an image of size 256°.
We randomly select an image «,, and then sample {495})}?:1 from the variational posterior
T, a8 | &, ®"+D 0{1)). First, the top-layer latent variable 8, often capturing general
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semantic information, is transformed to hidden features hES) for the 7" branch:
h(3) _ F(3)(9(3)); h(3) _ F~(3)(h(i) 9(3)), i=23, (7)

where F( ) is a CNN. Second, havmg obtalned {h 3 |, generators {G( 3_, synthesize low-

to-high-resolution image samples {si = G (h(3 )}3_,, where 353), sg‘g), and s§3) are of 162,

322, and 642, respectively. Third, sgg) is down-sampled to sg ) of size 322 and combined with the

information from 6? to provide the hidden features at layer two:
= O%),50); n® = FP(1®,6%), i=23, (8)

where C' denotes concatenation along the channel. Fourth, the generators synthesize image samples

{s; @ = G(2)(h(2)) 3_,, where sg ), s; ), and s( ) are of 322, 642, and 1282, respectively. The same

process is then replicated at layer one to generate {s( ) = G(l)(h(l)) 5—1, where 5(11), sél), and s(l)

are of size 642, 1282, and 2562, respectively, and sg ) becomes a desired high-resolution synthesized
image with fine details. The detailed structure of raster-scan-GAN is described in Fig. 26 of Appendix
D.3. PyTorch code is provided to aid the understanding and help reproduce the results.

Different from many existing methods (Gomez et al., 2017; Reed et al., 2016; Xu et al., 2018; Zhang
et al., 2017b) whose textual feature extraction is separated from the end task, VHE-raster-scan-GAN
performs joint optimization. As detailedly described in the Algorithm in Appendix E, at each mini-
batch based iteration, after updating ® by the topic-layer-adaptive stochastic gradient Riemannian
(TLASGR) MCMC of Cong et al. (2017), a Weibull distribution based reparameterization gradient
(Zhang et al., 2018a) is used to end-to-end optimize the following objective:

Hlin{ng)}“7 Q maX{DEz)}“ Epd“‘“(m’“t”)EH?zl 20D | 2, @D 9(l+1)){ - logp(tn | (I,v(l)7 9511))
+ 300 KL[g(0V | &, @17 00D | p(olh) | @11 gl
3 3 ! ! l l
+30 5% log DY (2, 60) +1og(1 - D (G (61), 600}, 9

where {:c }l 1,11 denote different resolutions of &, corresponding to {s }Z Li=1-

2.4 RELATED WORK ON JOINT IMAGE-TEXT LEARNING

Gomez et al. (2017) develop a CNN to learn a transformation from images to textual features pre-
extracted by LDA. GANSs have been exploited to generate images given pre-learned textual features
extracted by RNNs (Denton et al., 2015; Reed et al., 2016; Zhang et al., 2017a; Xu et al., 2018; Zhang
et al., 2018b; Li et al., 2019). All these works need a pre-trained linguistic model based on large-scale
extra text data and the transformations between images and texts are only unidirectional. The recently
proposed Obj-GAN (Li et al., 2019) needs even more side information such as the locations and
labels of objects inside images, which could be difficult and costly to acquire in practice. On the other
hand, probabilistic graphical model based methods (Srivastava & Salakhutdinov, 2012b;a; Wang
et al., 2018) are proposed to learn a joint latent space for images and texts to realize bidirectional
transformations, but their image generators are often limited to generating low-level image features.
By contrast, VHE-raster-scan-GAN performs bidirectional end-to-end learning to capture and relate
hierarchical visual and semantic concepts across multiple stochastic layers, capable of a wide variety
of joint image-text learning and generation tasks, as described below.

3 EXPERIMENTAL RESULTS

For joint image-text learning, following previous work, we evaluate the proposed VHE-StackGAN++
and VHE-raster-scan-GAN on three datasets: CUB (Wah et al., 2011), Flower (Nilsback & Zisserman,
2008), and COCO (Lin et al., 2014), as described in Appendix F. Besides the usual text-to-image
generation task, due to the distinct bidirectional inference capability of the proposed models, we can
perform a rich set of additional tasks such as image-to-text, image-to-image, and noise-to-image-text-
pair generations. Due to space constraint, we present below some representative results, and defer
additional ones to the Appendix. We provide the details of our experimental settings in Appendix F.
PyTorch code is provided at https://github.com/BoChenGroup/VHE-GAN.
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Table 1: Inception score (IS, larger is better) and Frechet inception distance (FID, smaller is better) of
StackGAN++ (Zhang et al., 2017b), HDGAN (Zhang et al., 2018b), AttGAN (Xu et al., 2018), Obj-GAN (Li
et al., 2019), and the proposed VHE-raster-scan-GAN; the values labeled with * are calculated by the provided
well-trained models and the others are quoted from the original publications; see Tab. 5 in Appendix C.1 for the
error bars of IS. Note that while the FID of Obj-GAN is the lowest, it does not necessarily imply it produces
high-quality images, as shown in Figs. 13 and 27; this is because FID only measures the similarity on the image
feature space, but ignores the shapes of objects and diversity of generated images. More discussions can be
found in Section 3.1 and Appendix G.

Method | StackGAN++ HDGAN AttnGAN Obj-GAN VHE-raster-scan-GAN
Criterion | IS FID IS FID IS FID IS FID IS FID
Flower | 3.26 | 48.68 | 3.45 | 40.127 — — - - 3.72 35.13
CUB 3.84 | 1530 | 4.15 | 13.48" | 4.36 | 13.02" - - 441 12.02
COCO | 830 | 81.59 | 11.86 | 78.16" | 25.89 | 77.01" | 26.58" | 36.98" | 27.16 75.88

Table 2: Ablation study for image-to-text learning, where the structures of different variations of raster-scan-
GAN are illustrated in Figs. 1(b), 1(d), and 1(e).

Method | PGBN+StackGAN++ | VHE-vanilla-GAN | VHE-StackGAN++ | VHE-simple-raster-scan-GAN
Criterion 1S FID 1S FID 1S FID IS FID
Flower 3.29 41.04 3.01 52.15 3.56 38.66 3.62 36.18
CUB 3.92 13.79 3.52 21.24 4.20 12.93 4.31 12.35
COCO 10.63 79.65 6.36 97.15 12.63 78.02 20.13 77.18

Figure 2: Comparison on image generation given texts from CUB, Flower, and COCO. Shown in the top row
are the textual descriptions and their associated real images; see Appendix C.2 for higher-resolution images.
Note AttnGAN did not perform experiments on Flower and hence its results on Flower are not shown, and since
Obj-GAN only performed experiment on COCO, we defer its visual results to Appendix C.3.

3.1 TEXT-TO-IMAGE LEARNING

Although the proposed VHE-GANSs do not have a text encoder to directly project a document to the
shared latent space, given a document and a set of topics inferred during training, we use the upward-
downward Gibbs sampler of Zhou et al. (2016) to draw {H(l) }£ | from its conditional posterior under
PGBN, which are then fed into the GAN image generator to synthesize random images.

Text-to-image generation: In Tab. 1, with inception score (IS) (Salimans et al., 2016) and Frechet
inception distance (FID) (Heusel et al., 2017), we compare our models with three state-of-the-art
GANS in text-to-image generation. For visualization, we show in the top row of Fig. 2 different test
textual descriptions and the real images associated with them, and in the other rows random images
generated conditioning on these textual descriptions by different algorithms. Higher-resolution
images are shown in Appendix C.2. We also provide example results on COCO, a much more
challenging dataset, in Fig. 13 of Appendix C.3.

It is clear from Fig. 2 that although both StackGAN++ (Zhang et al., 2017b) and HDGAN (Zhang
et al., 2018b) generate photo-realistic images nicely matched to the given texts, they often misrepresent
or ignore some key textual information, such as “black crown” for the 2nd test text, “yellow pistil”
for 5th, “yellow stamen” for 6th, and “computer” for 7th. These observations also apply to AttnGAN
(Xu et al., 2018). By contrast, both the proposed VHE-StackGAN++ and VHE-raster-scan-GAN
do a better job in capturing and faithfully representing these key textual information into their
generated images. Fig. 13 for COCO further shows the advantages of VHE-raster-scan-GAN in better
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Class name: Rhinoceros Auklet

red body colorful body It is a seabird, nesting in seabird colonies, with red grey red pink
red head blue head a large orange/brown bill. Plumage is dark on brown dark large petal
black wings green back top and paler below, in offshore and inshore long large stamen light
long bill solid tail water. Sometimes it swim in the water and
})lack belly yellow belly sometimes it stand on the strong. red brown red pink
L & gray dark ¥ stamen petal
large black | long yellow

orange black
brown dark
yellow head

red yellow 0
long petal &
brown thin

yellow black
dark head
body blue

yellow long
red thin
petal green

yellow blue
black body
long colored

(a) (b) ()
Figure 3: Example results of VHE-raster-scan-GAN on three different tasks: (a) image generation given five
textual attributes; (b) image generation given a long class-specific document (showing three representative
sentences for brevity) from CUB; and (c) latent space interpolation for joint image-text generation on CUB (left
column) and Flower (right column), where the texts in the first and last row are given.

representing the given textual information in its generated images. Note Obj-GAN, which learns a
bounding box generator that restricts object locations, obtains the lowest FID on COCO. However,
it appears that this type of restriction significantly improves FID at the expense of sacrificing the
diversity of generated images given text, as shown in Fig. 27 of Appendix G. From the results in
Fig. 13, it also appears that Obj-GAN overly emphasizes correctly arranging the spatial locations of
different visual features, which is important to achieve low FID, but does not do well in generating
correct object shapes, which is important to visual effect. Besides, the training of Obj-GAN requires
more side information including the locations and labels of objects in the images, which are often not
provided in practice (e.g., neither CUB nor Flower comes with this type of side information). While
the proposed VHE-GAN models do not need these additional side information, they could be further
improved by following Obj-GAN to take them into consideration.

As discussed in Section 2.2, compared with sequence models, topic models can be applied to more
diverse textual descriptions, including textual attributes and long documents. For illustration, we
show in Figs. 3(a) and 3(b) example images generated conditioning on a set of textual attributes
and an encyclopedia document, respectively. These synthesized images are photo-realistic and their
visual contents well match the semantics of the given texts. Trained on CelebA (Liu et al., 2015), we
provide in Fig. 9 examples of facial image generation given attributes; see Appendix B for details.

Ablation studies: We also consider several ablation studies for text-to-image generation, as shown
in Tab. 2. First, we modify StackGAN++ (Zhang et al., 2017b), using the text features extracted
by PGBN to replace the original ones by RNN, referred to as PGBN+StackGAN++. It is clear that
PGBN+StackGAN++ outperforms the original StackGAN++, but underperforms VHE-StackGAN++,
which can be explained by that 1) the PGBN deep topic model is more effective in extracting
macro-level textual information, such as key words, than RNNs; and 2) jointly end-to-end training
the textual feature extractor and image encoder, discriminator, and generator helps better capture
and relate the visual and semantical concepts. Second, note that VHE-StackGAN++ has the same
structured image generator as both StackGAN++ and HDGAN do, but performs better than them.
We attribute its performance gain to 1) its PGBN deep topic model helps better capture key semantic
information from the textual descriptions; and 2) it performs end-to-end joint image-text learning
via the VHE-GAN framework, rather than separating the extraction of textual features from text-to-
image generation. Third, VHE-vanilla-GAN underperforms VHE-StackGAN++, suggesting that the
stacking structure is helpful for generating high resolution images, as previously verified in Zhang
et al. (2017a). VHE-simple-raster-scan-GAN outperforms VHE-StackGAN++ but underperforms
VHE-raster-scan-GAN, confirming the benefits of combining the stacking and raster-scan structures.
More visual results for ablation studies can be found in Appendix C.2. Below we focus on illustrating
the outstanding performance of VHE-raster-scan-GAN.

Latent space interpolation: In order to understand the jointly learned image and text manifolds,
given texts 1 and t5, we draw 6, and 6 and use the interpolated variables between them to generate
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both images via the GAN’s image generator and texts via the PGBN text decoder. As in Fig. 3(c),
the first row shows the true texts ¢; and images generated with 81, the last row shows ¢» and images
generated with @, and the second to fourth rows show the generated texts and images with the
interpolations from 6, to 85. The strong correspondences between the generated images and texts,
with smooth changes in colors, object positions, and backgrounds between adjacent rows, suggest that
the latent space of VHE-raster-scan-GAN is both visually and semantically meaningful. Additional
more fine-gridded latent space interpolation results are shown in Figs. 15-18 of Appendix C.4.

Visualization of captured semantic and visual concepts: Zhou et al. (2016) show that the semantic
concepts extracted by PGBN and their hierarchical relationships can be represented as a DAG, only a
subnet of which will be activated given a specific text input. In each subplot of Fig. 4, we visualize
example topic nodes of the DAG subnet activated by the given text input, and show the corresponding
images generated at different hidden layers. There is a good match at each layer between the visual
contents of the generated images and semantics of the top activated topics, which are mainly about
general shapes, colors, or backgrounds at the top layer, and become more and more fine-grained
when moving downward. In Fig. 5, for the DAG learned on COCO, we show a representative subnet
that is rooted at a top-layer node about “rooms and objects at home,” and provide both semantic and
visual representations for each node. Being able to capture and relate hierarchical semantic and visual
concepts helps explain the state-of-the-art performance of VHE-raster-scan-GAN.

3.2 IMAGE-TO-TEXT LEARNING

VHE-raster-scan-GAN can perform a wide variety of extra tasks, such as image-to-text generation,
text-based zero-shot learning (ZSL), and image retrieval given a text query. In particular, given image
X, wedraw t,, ast, |0, ~ p(t|®,0,), 0, |z, ~ qa(0|®,x,) and use it for downstream tasks.

Image-to-text generation: Given an image, we may generate some key words, as shown in Fig. 6(a),
where the true and generated ones are displayed on the left and right of the input image, respectively.
It is clear that VHE-raster-scan-GAN successfully captures the object colors, shapes, locations, and
backgrounds to predict relevant key words.

Text-based ZSL: Text-based ZSL is a specific task that learns a relationship between images and
texts on the seen classes and transfer it to the unseen ones (Fu et al., 2018). We follow the the same
settings on CUB and Flower as existing text-based ZSL methods summarized in Tab. 3. There are
two default splits for CUB—the hard (CUB-H) and easy one (CUB-E)—and one split setting for
Flower, as described in Appendix F. Note that except for our models that infer a shared semantically
meaningful latent space between two modalities, none of the other methods have generative models
for both modalities, regardless of whether they learn a classifier or a distance metric in a latent space
for ZSL. Tab. 3 shows that VHE-raster-scan-GAN clearly outperforms the state of the art in terms
of the Top-1 accuracy on both the CUB-H and Flower, and is comparable to the second best on
CUB-E (it is the best among all methods that have reported their Top-5 accuracies on CUB-E). Note
for CUB-E, every unseen class has some corresponding seen classes under the same super-category,
which makes the classification of surface or distance metric learned on the seen classes easier to
generalize to the unseen ones. We also note that both GAZSL and ZSLPP rely on visual part detection
to extract image features, making their performance sensitive to the quality of the visual part detector
that often has to be elaborately tuned for different classes and hence limiting their generalization
ability, for example, the visual part detector for birds is not suitable for flowers. Tab. 3 also includes
the results of ZSL using VHE, which show that given the same structured text decoder and image
encoder, VHE consistently underperforms both VHE-StackGAN++ and VHE-raster-scan-GAN. This
suggests 1) the advantage of a joint generation of two modalities, and 2) the ability of GAN in helping
VHE achieve better data representation. The results in Tab. 3 also show that the ZSL performance
of VHE-raster-scan-GAN has a clear trend of improvement as PGBN becomes deeper, suggesting
the advantage of having a multi-stochastic-hidden-layer deep topic model for text generation. We
also collect the ZSL results of the last 1000 mini-batch based stochastic gradient update iterations to
calculate the error bars. For existing methods, since there are no error bars provided in published
paper, we only provide the text error bars of the methods that have publicly accessible code.

3.3 IMAGE/TEXT RETRIEVAL

As discussed in Section 2.4, the proposed models are able to infer the shared latent space given either
an image or text. We test both VHE-StackGAN++ and VHE-raster-scan-GAN on the same image/text
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Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3
red green red . bird grey bird village white view
Layer 3 flower leaves green Layer 3 t standing | dark body Layer 3 country | sky village
color group colored | body large white attractive | cloudy wide
ruffled red stamen B red bright large | | blue house village
Layer 2 large green yellow = grey body standing Layer Zm sky low sky
wavy pink center bird light body B cloudy many beautiful

ruffled red clustered red grey black blue house road
petal petal dark Layer 1 bright small rounded Layer 1 sky clustered | ground
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This bright colored red flower on the Real This bright red colored bird with dark Real
green leaves has petals that surround Image  rounded eyes, grey wing and brown Image
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Figure 4: Visualization of example semantic and visual concepts captured by a three-stochastic-hidden-layer
VHE-raster-scan-GAN from (a) Flower, (b) Bird, and (c) COCO. In each subplot, given the real text ¢,, shown at

the bottom, we draw {0% ) }?:1 via Gibbs sampling; we show the three most active topics in ®O (ranked by the

weights of o' )) at layer [ = 3, 2, 1, where each topic is visualized by its top three words; and we feed {Gﬁf ) jra
into raster-scan-GAN to generate three random images (one per layer, coarse to fine from layers 3 to 1).

i

The picture shows a view of village
having blue fine sky, low house,
grey road and green trees.

Table 3: Accuracy (%) of ZSL on CUB and Flower. Note that some of them are attribute-based methods but

applicable in our setting by replacing attribute vectors with text features (labeled by *), as discussed in (Elhoseiny
etal., 2017b).

Text-ZSL dataset CUB-H CUB-E Flower
Accuracy criterion top-1 top-1 \ top-5 top-1
WAC-Kernel (Elhoseiny et al., 2017a) 7.7+£028 | 3354+022 | 643+020 | 9.1 £2.77
ZSLNS (Qiao et al., 2016) 73+£036 | 29.1+£0.28 | 61.8+022 | 8.7+£246
ESZSL* (Romeraparedes & Torr, 2015) | 7.4 +£0.31 | 285+0.26 | 59.9 £0.20 8.6 £2.53
SynC* (Changpinyo et al., 2016) 8.6 28.0 61.3 8.2
ZSLPP (Elhoseiny et al., 2017b) 9.7 37.2 - -
GAZSL (Zhu et al., 2018) 10.3 £0.26 | 43.7 £0.28 | 67.61 +0.24 -
VHE-L3 140+0.24 | 346 +0.25 | 646020 | 89+ 1.57
VHE-StackGAN++-L3 16.1 38.5 68.2 10.6
VHE-raster-scan-GAN-L1 11.7 £0.31 | 32.1 £0.32 | 62.6 £0.33 9.4 + 1.68
VHE-raster-scan-GAN-L2 149 +026 | 37.1£0.24 | 64.6+0.25 | 11.0+1.54
VHE-raster-scan-GAN-L3 16.7 £0.24 | 39.6 £0.20 | 70.3 +0.18 | 12.1 + 1.47

Table 4: Comparison of the image-to-text retrieval performance, measured by Top-1 accuracy, and text-to-image
retrieval performance, measured by AP@50, between different methods on CUB-E.

Method CNN-LSTM AttnGAN TA-GAN VHE-StackGAN++ | VHE-raster-scan-GAN
(Lietal,2017) | (Xuetal., 2018) | (Nam et al., 2018)
Top1-ACC(%) 61.5 55.1 61.3 60.2 61.7
AP@50(%) 57.6 51.0 62.8 61.3 62.6

retrieval tasks as in TA-GAN (Nam et al., 2018), where we use the cosine distance between the
inferred latent space given images (q(@ | «), image encoder) and these given texts (p(0 | t), Gibbs
sampling) to compute the similarity scores. Similar with TA-GAN, the top-1 image-to-text retrieval
accuracy (Top-1 Acc) and the percentage of matching images in top-50 text-to-image retrieval results
(AP@50) on CUB-E dataset are used to measure the performance. As shown in Table 4, VHE-raster-
scan-GAN clearly outperforms AttnGAN (Xu et al., 2018) and is comparable with TA-GAN. Note
TA-GAN needs to extract its text features based on the fastText model (Bojanowski et al., 2017)
pre-trained on a large corpus, while VHE-raster-scan-GAN learns everything directly from the current
dataset in an end-to-end manner. Also, VHE-raster-scan-GAN outperforms VHE-StackGAN++,
which further confirms the benefits of combining both the stacking and raster scan structures.

3.4 GENERATION OF RANDOM TEXT-IMAGE PAIRS

Below we show how to generate data samples that contain both modalities. After training a three-
stochastic-hidden-layer VHE-raster-scan-GAN, following the data generation process of the PGBN

text decoder, given {<I>(l) }3_, and 7, we first generate 6® ~ Gam (7', 1/ 5(4)) and then downward
propagate it through the PGBN as in (5) to calculate the Poisson rates for all words using Mo,
Given a random draw, «{19(l)}z°’:1 is fed into the raster-scan-GAN image generator to generate a
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Figure 5: An example topic hierarchy learned on COCO and its visual representation. We sample 04 ~
q(@%l:s) | @, x,, ) for all n; for topic node k of layer [, we show both its top words and the top two images ranked
by their activations 05},2.

yellow yellow brown . = brown pink
color y grey | = water spikey
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Figure 6: Example results of using VHE-raster-scan-GAN for (a) image-to-textual-tags generation, where the
generated tags highlighted in red are included in the original ones; (b) image-text-pair generations (columns
from left to right are based on Flower, CUB, and COCO, respectively).

corresponding image. Shown in Fig. 6(b) are six random draws, for each of which we show its
top seven words and generated image, whose relationships are clearly interpretable, suggesting that
VHE-raster-scan-GAN is able to recode the key information of both modalities and the relationships
between them. In addition to the tasks shown above, VHE-raster-scan-GAN can also be used to
perform image retrieval given a text query, and image regeneration; see Appendices C.5 and C.6 for
example results on these additional tasks.

4 CONCLUSION

We develop variational hetero-encoder randomized generative adversarial network (VHE-GAN)
to provide a plug-and-play joint image-text modeling framework. VHE-GAN is a versatile deep
generative model that integrates off-the-shelf image encoders, text decoders, and GAN image discrim-
inators and generators into a coherent end-to-end learning objective. It couples its VHE and GAN
components by feeding the VHE variational posterior in lieu of noise as the source of randomness of
the GAN generator. We show VHE-StackGAN++ that combines the Poisson gamma belief network,
a deep topic model, and StackGAN++ achieves competitive performance, and VHE-raster-scan-GAN,
which further improves VHE-StackGAN++ by exploiting the semantically-meaningful hierarchi-
cal structure of the deep topic model, generates photo-realistic images not only in a multi-scale
low-to-high-resolution manner, but also in a hierarchical-semantic coarse-to-fine fashion, achieving
outstanding results in many challenging image-to-text, text-to-image, and joint text-image learning
and generation tasks.

10
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A MODEL PROPERTY OF VHE-GAN AND RELATED WORK

Let us denote ¢(2) = Egpy(a)[a(z] @) = & ZnN:1 q(z|x,) as the aggregated posterior (Hoff-
man & Johnson, 2016; Makhzani et al., 2015). Removing the triple-data-reuse training strategy, we
can re-express the VHE-GAN objective in (4) as

. éninG max[—ELBOyne + Lgan]; Loan := Eampy(@) N D(T) + E2og(z) In(1 — D(Ggan(2))),
sGvae ; Ggan
(10)

which corresponds to a naive combination of the VHE and GAN training objectives, where the data
samples used to train the VHE, GAN generator, and GAN discriminator in each gradient update
iteration are not imposed to be the same. While the naive objective function in (10) differs from the
true one in (4) that is used to train VHE-GAN, it simplifies the analysis of its theoretical property, as
described below.

Let us denote ¢(z,x,t) := q(z|x)pdata(x,t) as the joint distribution of (x,t) and z under
the VHE variational posterior ¢(z|x), Iy(z,2) = Ey; 4 [In %] as the mutual in-

formation between & ~ pgaiq(x) and z ~ ¢(z), and JIDS(p1||p2) = %KL[p1||(p1 + p2)/2] +
1KL[p2||(p1 + p2)/2] as the Jensen—Shannon divergence between distributions p; and p,. Similar
to the analysis in Hoffman & Johnson (2016), the VHE’s ELBO can be rewritten as ELBOy. =
Eq(z,2,¢) logp(t| z)] — I4(x, 2) — KL[g(2)||p(2)], where the mutual information term can also be
expressed as Io(x, z) = Eyp,... (2)KL[g(2 | 2)|[q(2)]. Thus maximizing the ELBO encourages
the mutual information term I, (, z) to be minimized, which means while the data reconstruction
term By (> o +) [log p(t | 2)] needs to be maximized, part of the VHE optimization objective penalizes
a z from carrying the information of the x that it is encoded from. This mechanism helps provide
necessary regularization to prevent overfitting. As in Goodfellow et al. (2014), with an optimal
discriminator D¢, for generator G, we have min Lgan(Dg, G) = Ind + 2ISD(pgata ()| |pa, (2)),
where p¢_ () denotes the distribution of the generated data G/(z) that use z ~ ¢(2) as the random
source fed into the GAN generator. The JSD term is minimized when pe_ () = paata ().

With these analyses, given an optimal GAN discriminator, the naive VHE-GAN objective function in
(10) reduces to

L anin (.o logp(t] 2)] + KLIg(2)llp(=)] + I, (. 2) + 298D (paata () Ipe. (x)). (11

From the VHEs’ point of view, examining (11) shows that it alleviates the inherent conflict in VHE
of maximizing the ELBO and maximizing the mutual information I, (x, z). This is because while
the VHE part of VHE-GAN still relies on minimizing I, (x, z) to regularize the learning, the GAN
part tries to transform ¢(z) through the GAN generator to match the true data distribution pga¢. ().
In other words, while its VHE part penalizes a z from carrying the information about the « that it
is encoded from, its GAN part encourages a z to carry information about the true data distribution
Pdata (), but not necessarily the observed « that it is encoded from.

From the GANS’ point of view, examining (11) shows that it provides GAN with a meaningful latent
space, necessary for performing inference and data reconstruction (with the aid of the data-triple-use
training strategy). More specifically, this latent representation is also used by the VHE to maximize
the data log-likelihood, a training procedure that tries to cover all modes of the empirical data
distribution rather than dropping modes. For VHE-GAN (4), the source distribution is ¢(z | ), not
only allowing GANSs to participate in posterior inference and data reconstruction, but also helping
GAN:s resist mode collapse. In the following, we discuss some related works on combining VAEs
and GANSs.

A.1 RELATED WORK ON COMBINING VAES AND GANS

Examples in improving VAEs with adversarial learning include Mescheder et al. (2017), which allows
the VAE:s to take implicit encoder distribution, and adversarial auto-encoder (Makhzani et al., 2015)
and Wasserstein auto-encoder (Tolstikhin et al., 2018), which drop the mutual information term from
the ELBO and use adversarial learning to match the aggregated posterior and prior. Examples in
allowing GANSs to perform inference include Dumoulin et al. (2017) and Donahue et al. (2017),
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which use GANSs to match the joint distribution ¢(2z | €)pgate () defined by the encoder and the one
p(x | z)p(z) defined by the generator. However, they often do not provide good data reconstruction.
Examples in using VAEs or maximum likelihood to help GANs resist mode collapse include Che et al.
(2017); Srivastava et al. (2017); Grover et al. (2018). Another example is VAEGAN (Larsen et al.,
2016) that combines unit-wise likelihood at hidden layer and adversarial loss at original space, but its
update of the encoder is separated from the GAN mini-max objective. On the contrary, IntroVAE
(Huang et al., 2018) retains the pixel-wise likelihood with an adversarial regularization on the latent
space. Sharing network between the VAE decoder and GAN generator in VAEGAN and IntroVAE,
however, limit them to model a single modality.

B MORE DISCUSSION ON SEQUENCE MODELS AND TOPIC MODELS IN TEXT
ANALYSIS.

In Section 3.1, we have discussed two models to represent the text: sequence models and topic
models. Considering the versatility of topic models (Wang et al., 2009; Jin et al., 2015; Zhou et al.,
2016; Srivastava & Salakhutdinov, 2012a; 2014; Wang et al., 2018; Elhoseiny et al., 2017b; Zhu
et al., 2018) in dealing with different types of textual information, and its effectiveness in capturing
latent topics that are often directly related to macro-level visual information (Gomez et al., 2017;
Dieng et al., 2017; Lau et al., 2017), we choose a state-of-the-art deep topic model, PGBN, to model
the textual descriptions in VHE. Due to space constraint, we only provide simple illustrations in
Figs. 3(a) and 3(b). In this section, more insights and discussions are provided.

Red body Blue breast  Orange belly Longleg Dark wings  Colorful body
Black belly ~ White wings Bluehead  Brown crown White body Blue head
Long bill Striped back  Buff back Spotted back Yellow bill  Green back
Black wings  White bill Long tail Striped tail  Round belly Solid tail

Red head Short leg Black throat Yellow bell Grey back  Yellow bell

Figure 7: Generated random images by VHE-raster-scan-GAN conditioning on five binary attributes.

As discussed before, topic models are able to model non-sequential texts such as binary attributes.
The CUB dataset provides 312 binary attributes (Wah et al., 2011) for each images, such as whether
“crown color is blue” and whether “tail shape is solid” to define the color or shape of different body
parts of a bird. We first transform these binary attributes for the nth image to a 312-dimensional
binary vector t,,, whose ith element is 1 or 0 depending on whether the bird in this image owns the
ith attribute or not. The binary attribute vectors ¢,, are used together with the corresponding bird
images x,, to train VHE-raster-scan-GAN. As shown in Fig. 7, we generate images given five binary
attributes, which are formed into a 312-dimensional binary vector ¢ (with five non-zero elements
at these five attributes) that becomes the input to the PGBN text decoder. Clearly, these generated
images are photo-realistic and faithfully represent the five provided attributes.

The proposed VHE-GANS can also well model long documents. In text-based ZSL discussed in
Section 3.2, each class (not each image) is represented as a long encyclopedia document, whose global
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semantic structure is hard to captured by existing sequence models. Besides a good ZSL performance
achieved by VHE-raster-scan-GAN, illustrating its advantages of text generation given images, we
show Fig. 8 example results of image generation conditioning on long encyclopedia documents on the
unseen classes of CUB-E (Qiao et al., 2016; Akata et al., 2015) and Flower (Elhoseiny et al., 2017a).

Class name: Rhinoceros Auklet

It is a seabird, nesting in seabird
colonies, with a large orange/brown bill.
Plumage is dark on top and paler below,
in offshore and inshore water.
Sometimes it swim in the water and
sometimes it stand on the strong.

Class name: Yellow Bellied Flycatcher

Brownish-olive upperparts, darker on the
wings and tail, yellowish underparts.

Have small bill short tail, on a perch low
or in the middle of a tree.

Its eyes are dark and round with radiating
vigor, like looking for food or insects.

(a)

Class name: Ball Moss

It tends to form a spheroid shape ranging
in size from a golf ball to a soccer ball.

It may hinder tree growth.

Its petals are stripe-like yellow ones and
its stamen is also round dark brown or

Class name: Barberton Daisy

It bear a large capitulum with striking,
two-lipped ray floret in yellow or orange.
Colors include white, yellow, and pink.
Its petals are medium, and each of them
is round and the number is about six.

yellow.

(b)

Figure 8: Image generation conditioning on long encyclopedia documents using VHE-raster-scan-
GAN trained on (a) CUB-E and (b) Flower. Shown in the top part of each subplot are representative
sentences taken from the long document that describes an unseen class; for the three rows of images
shown in the bottom part, the first row includes three real images from the corresponding unseen
class, and the other two rows include a total of six randomly generated images conditioning on the
long encyclopedia document of the corresponding unseen class.

Analogous to how the Bird images are generated in Fig. 7, we also perform facial image generation
given a set of textual attributes. On CelebA dataset, given attributes, we train VHE-stackGAN++ and
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eyeglasses eyeglasses mustache smiling
receding hairline  straight hair black hair blond hair
mouth slightly open young male wavy hair
male rosy cheeks  high cheekbones attractive

smiling no beard sideburns

VHE-StackGAN++

VHE-raster-scan-GAN

high cheekbones

bald
male
narrow eyes
no beard
old

Figure 9: Example results of facial image generation conditioning on five textual attributes, by
VHEStackGAN++ and VHE-raster-scan-GAN trained on the CelebA dataset. Both models are
trained with 20 epochs, with the output resolution set as 128 x 128. Note our current network
architecture, designed mainly for natural images, has not yet been fine-tuned for facial images.

VHE-raster-scan-GAN to generate the facial images with resolution 128 x 128. As shown in Fig.
9, after the training of 20 epochs, we generate facial images given five attributes. While the facial
images generated by both models nicely match the given attributes, VHE-raster-scan-GAN provides

higher visual quality and does a better job in representing the details.
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C MORE EXPERIMENTAL RESULTS ON JOINT IMAGE-TEXT LEARNING

C.1

TABLES 1 AND 2 WITH ERROR BARS.

For text-to-image generation tasks, we use the official pre-defined training/testing split (illustrated in
Appendix F) to train and test all the models. Following the definition of error bar of IS in StackGAN++
(Zhang et al., 2017b), HDGAN (Zhang et al., 2018b), and AttnGAN (Xu et al., 2018), we provide
the IS results with error bars for various methods in Table 5, where the results of the StackGAN++ ,
HDGAN, and AttnGAN are quoted from the published papers. The FID error bar is not included as it
has not been clearly defined.

Table 5: Inception score (IS) results in Table 1 with error bars.

Method | StackGAN++ HDGAN AttnGAN Obj-GAN VHE-raster-scan-GAN
Flower 3.26 £+ .01 345+ .07 - - 3.72 + .01

CUB 3.84 £ .06 415+ .05 4.36 £ .03 - 4.41 £ .03
COCO 8.30 + .10 11.86 £ .18 | 25.89 &+ .47 | 26.68 .52 27.16 &+ .23

Table 6: Inception score (IS) results in Table 2 with error bars.

Method | PGBN+StackGAN++ | VHE-vanilla-GAN | VHE-StackGAN++ | VHE-simple-raster-scan-GAN
Flower 329 £+ .02 3.01 £ .06 3.56 + .03 3.62 £+ .02

CUB 3.92 + .06 3.52 £ .08 4.20 + .04 4.31 £ .06
COCO 10.63 £+ .10 6.36 £ .20 12.63 £ .15 20.13 + 22
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C.2 HIGH-QUALITY IMAGES OF FIGURE 2

Due to space constraint, we provide relative small-size images in Fig. 2. Below we show the
corresponding images with larger sizes.

This bird is
yellow with

An all black
bird with a
thick, round
black bill.

StackGAN++

AttnGAN

VHE-StackGAN++

VHE-raster—scan—GAN

Figure 10: The images above the blue line are the larger-size replots of CUB Bird images in Figure 2,
while the images below the blue line are results for ablation study.
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1 This flower
é b This is a purple g\\!jﬂﬁ, contains hundred
long, curling PR b bell shaped 3 of needle like
orange petals  |§ \ | flower, with a : yellow petals
with dark red ! yellow pistil around the

spots. ¢ ¥ and long stigma.p- brighter yellow

StackGAN++

HDGAN

VHE-StackGAN++

VHE-raster—scan—GAN

VHE-vanilla—GAN

Yy

VHE-simple-raster—scan—GAN

Figure 11: The images above the blue line are the larger-size replots of Flower images in Figure 2,
while the images below the blue line are results for ablation study.
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A wooden desk | ¥

] A very dark

topped with a A city street with
laptop ! cars and
computer. L. buildings.

StackGAN++

HDGAN

AttnGAN

VHE-StackGAN++

VHE-raster—scan—GAN

VHE-vanilla—GAN

VHE-simple—-raster—scan—GAN

Figure 12: The images above the blue line are the larger-size replots of COCO images in Figure 2,
while the images below the blue line are results for ablation study.
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C.3 MORE TEXT-TO-IMAGE GENERATION RESULTS ON COCO

COCO is a more challenging dataset than CUB and Flower, as it contains very diverse objects and
scenes. We show in Fig. 13 more samples conditioned on different textural descriptions.

StackGAN++ AttnGAN Ob j—GAN VHE-raster-scan—GAN

A living room
filled with lots
of furniture.

A child with
black clothes is
standing on top
of a show
covered hill.

A beach on a
cloudy day with
a bunch of
people on 1it.

People playing
with kites
outside under
the blue sky.

The baseball
player with
white clothes is
ready for the
game.

A white tall
cathedral
towering under
the sky.

Figure 13: Example text-to-image generation results on COCO.
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C.4 LATENT SPACE INTERPOLATION

In addition to the latent space interpolation results of VHE-raster-scan-GAN in Fig. 3(c) of Section
3.1, below we provide more fine-gridded latent space interpolation in Figs. 15-18.

Figure 15: Example of latent space interpolation on CUB.
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Figure 18: Example of lateni gpace interpolation on Flower.
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C.5 IMAGE RETRIEVAL GIVEN A TEXT QUERY

For image x,, we draw its BoW textual description ¢, as t, |0, ~ p(t|®,0,), 0,|x, ~
g (0| ®,x,). Given the BoW textual description ¢ as a text query, we retrieve the top five im-
ages ranked by the cosine distances between ¢ and %,,’s. Shown in Fig. 19 are three example image
retrieval results, which suggest that the retrieved images are semantically related to their text queries
in colors, shapes, and locations.

white
pink
purple
yellow
center

blue
long
black
tail
dark

motorcycle
parked
parking
black
ground

Figure 19: Top-5 retrieved images given a text query. Rows 1 to 3 are for Flower, CUB, and COCO, respectively.

C.6 IMAGE REGENERATION

We note for VHE-GAN, its image encoder and GAN component together can also be viewed as
an “autoencoding” GAN for images. More specifically, given image =, VHE-GAN can provide
random regenerations using G (qq (6 | ®, x)). We show example image regeneration results by both
VHE-StackGAN++ and VHE-raster-scan-GAN in Fig. 20. These example results suggest that the
regenerated random images by the proposed VHE-GANs more of less resemble the original real
image fed into the VHE image encoder.

Original
N
A Abad
Reconstruetion N
by VIE- y
StackGAN++

Reponstruotionf§

Figure 20: Example results of image regeneration using VHE-StackGAN++ and VHE-raster-scan-GAN. An
original image is fed into the VHE image encoder, whose latent representation is then fed into the GAN image
generator to generate a corresponding random image. The models in columns 1-4 are trained on Flower, columns
5-8 on CUB, and columns 9-12 on COCO.

C.7 LEARNED HIERARCHICAL TOPICS IN VHE

The inferred topics at different layers and the inferred sparse connection weights between the topics
of adjacent layers are found to be highly interpretable. In particular, we can understand the meaning

of each topic by projecting it back to the original data space via [Hi;i ‘I>(t)] ¢,(€l) and understand the
relationship between the topics by arranging them into a directed acyclic graph (DAG) and choose
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its subnets to visualize. We show in Figs. 21, 22, and 23 example subnets taken from the DAGs
inferred by the three-layer VHE-raster-scan-GAN of size 256-128-64 on Flower, CUB, and COCO,
respectively. The semantic meaning of each topic and the connection weights between the topics of
adjacent layers are highly interpretable. For example, in Figs. 21, the topics describe very specific
flower characteristics, such as special colors, textures, shapes, and parts, at the bottom layer, and
become increasingly more general when moving upwards.

11

green pedicel color purple
large ruffled wavy long
shaped edges stem

60

red green color stamen
ruffled edges long bright
pedicel large dark sepal

7
red green long color
pedicel pointed pink
sepals stamen looking

68
ruffled large wavy brown
green rounded wide wrinkled
pedicels curled pistil

9
red color bright stamen
green dark stigma pedicel
pistil deep shown

97
center yellow bright
petal stamen color
clustered large round

Figure 21: An example topic hierarchy taken from the directed acyclic graph learned by a three-layer VHE-

raster-scan-GAN of size 256-128-64 on Flower.

15
black white orange beak
long crown wings head
feet large body

36
yellow green grey
small belly gray white
beak eye crown head

22

40
black orange feet
white red crown webbed
beak long head tarsus
C 2

37
white black beak long
head eye body pointy
color rings rest

87

brown belly breast white
beak throat long wings

crown light small

yellow grey wings
head belly body beak
small brown wingbars

45
webbed
footed
shore
snowy
waterbird

Figure 22: Analogous plot to Fig. 21 on CUB.

26 37
bear teddy stuffed bears room living table couch
sitting animals brown toy television tv chair sitting
white holding animal furniture chairs kitchen

—

24 70 2 37

luggage floor suitcase chair desk table sitting kitchen refrigerator

sitting bag suitcases laptop room window bed white stove cabinets
old bags red airport wooden chairs old sink table room open

bed room bedroom white
window beds hotel sitting
large small pillows

kitchen
Wwhite

Figure 23: Analogous plot to Fig. 21 on COCO.
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D SPECIFIC MODEL STRUCTURE IN VHE-STACKGAN++ AND
VHE-RASTER-SCAN-GAN

D.1 MODEL STRUCTURE OF VHE

In Fig. 24, we give the structure of VHE used in VHE-StackGAN++ and VHE-raster-
scan-GAN, where f(x) is the image features extracted by Inception v3 network and () ~

H,ﬁl Uniforrn(sg); 0, 1). With the definition of g(*) = f(z), we have

kO = exp(Whgh) 4 b0y, (12)
AD = exp(Wg® + ), (13)
g =11 + exp(W{ gD 4+ b)), (14

where Wi € RExK W) ¢ RExK W) ¢ REKi pl) ¢ REC BY) ¢ REY, and
b € REL.

Inception v3 N 7
® O,

Figure 24: The architecture of VHE in VHE-StackGAN++ and VHE-raster-scan-GAN.

D.2 MODEL OF VHE-STACKGAN++

In Section 2.2, we first introduce the VHE-StackGAN++, where the multi-layer textual representation
{9(1),0(2), e ,H(L)} is concatenated as 60 = [0(1), e ,H(L)} and then fed into StackGAN++

(Zhang et al., 2017b). In Figs. 1 (a) and (b), we provide the model structure of VHE-StackGAN++.
We also provide a detailed plot of the structure of StackGAN++ used in VHE-StackGAN++ in Fig.
25, where JCU is a specific type of discriminator; see Zhang et al. (2017b) for more details.

The same with VHE-raster-scan-GAN, VHE-StackGAN++ is also able to jointly optimize all compo-
nents by merging the expectation in VHE and GAN to define its loss function as

ming (¢,)s_ Max(p,s Epdata(mnvtn)]EHlel a6 |mm¢<1+1>,95}+1>){ —log p(t, | &) 05}))
+ 31, KL[g(6Y |2, @171 9+ D) || p(o) | @1+D), 9(+D)]
+ 37 [log Di(2n.i,0,) +log(1 — Di(G(8,),0,))]}. (15)
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FC with reshape Upsampling Conv3x3

Joining I Residual I

128x128x3

G1

II 4x4 | ) ) | 64x64 )I)I) 128x128 256x256
X64N, X4N, x2N, xNg 256x256x3

Figure 25: The structure of Stack-GAN++ in VHE-StackGAN++, where JCU is a type of discrimina-
tor proposed in Zhang et al. (2017b).
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D.3 STRUCTURE OF RASTER-SCAN-GAN

In Fig. 26, we provide a detailed plot of the structure of the proposed raster-scan-GAN.

lI FC with reshape I

Downsampllng

Upsampling | Joining Il Residual Conv3x3

ﬁ 16x16x3

Go } Gm

]
6 l} I|I} |I|
42)(_1;“6 16X16 32X32 64"64 G 64x64x3
X.
16x16 I}I 64x64 I)

x32 x16

32x32x3

ﬂ 32x32x3 64x64x3
G‘ 2) G(Z)

4x4 16x16 l 16x16 32x32 64x64 128x128 G®
X136 128x128x3
16x16 III)I) 128x128 I)

ll .64"64"3 .128x128x3 I ﬂ
256x256x3

G(U G(l)

W
4x4 16x16 16x16 64x64 128x128 256x256 G("
x1024 X256 X272

Figure 26: The structure of raster-scan-GAN in VHE-raster-scan-GAN, where JCU is a type of discriminator
proposed in Zhang et al. (2017b).
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E JOINT OPTIMIZATION FOR VHE-RASTER-SCAN-GAN

Based on the loss function of VHE-raster-scan-GAN (9), with TLASGR-MCMC (Cong et al., 2017)
and WHALI (Zhang et al., 2018a), we describe in Algorithm 1 how to perform mini-batch based joint
update of all model parameters.

Algorithm 1 Hybrid TLASGR-MCMC/VHE inference algorithm for VHE-raster-scan-GAN.

Initialize encoder parameters 2, topic parameters of PGBN { 30 }1,1. generator G, and discrimi-
nator D.
for iter =1,2,--- do

Randomly select a mini-batch containing N image-text pairs d = {x,,, t,, }_;;

N,L

Draw random noise {eg )} l from uniform distribution;
n=1,l=1
Calculate Vp L (D, G, 2 | x);
Calculate Vo £ (D, G, Q| x);
N,L

Calculate Vo L by the aid of {55,”} » 1;
Update Das D =D +VpL(D,G,Q |w),
Update Gas G =G — VgL (D,G,Q2 | x);
Update Q as 2 = Q — VqlL;
Sample {6} £, from (6) given 2 and {®}£_|, and use {¢}\_, to update topics {®"} [,
according to TLASGR-MCMC;

end for

F DATA DESCRIPTION ON CUB, FLOWER, AND COCO WITH TRAINING
DETAILS

In image-text multi-modality learning, CUB (Wah et al., 2011), Flower (Nilsback & Zisserman, 2008)
and COCO (Lin et al., 2014) are widely used datasets.

CUB (http://www.vision.caltech.edu/visipedia/CUB-200-2011.html):
CUB contains 200 bird species with 11,788 images. Since 80% of birds in this dataset have
object-image size ratios of less than 0.5 (Wah et al., 2011), as a preprocessing step, we crop all
images to ensure that bounding boxes of birds have greater-than-0.75 object-image size ratios, which
is the same with all related work. For textual description, Wah et al. (2011) provide ten sentences for
each image and we collect them together to form BoW vectors. Besides, for each species, Elhoseiny
et al. (2017a) provide its encyclopedia document for text-based ZSL, which is also used in our
text-based ZSL experiments.

For CUB, there are two split settings: the hard one and the easy one. The hard one ensures that the
bird subspecies belonging to the same super-category should belong to either the training split or test
one without overlapping, referred to as CUB-hard (CUB-H in our manuscript). A recently used split
setting (Qiao et al., 2016; Akata et al., 2015) is super-category split, where for each super-category,
except for one subspecies that is left as unseen, all the other are used for training, referred to as
CUB-easy (CUB-E in our manuscript). For CUB-H, there are 150 species containing 9410 samples
for training and 50 species containing 2378 samples for testing. For CUB-E, there are 150 species
containing 8855 samples for training and 50 species containing 2933 samples to testing. We use both
of them the for the text-based ZSL, and only CUB-E for all the other experiments as usual.

Flower http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html:
Oxford-102, commonly referred to as Flower, contains 8,189 images of flowers from 102 different
categories. For textual description, Nilsback & Zisserman (2008) provide ten sentences for each
image and we collect them together to form BoW vectors. Besides, for each species, Elhoseiny et al.
(2017a) provide its encyclopedia document for text-based ZSL, which is also used in our text-based
ZSL experiments in section 4.2.2. There are 82 species containing 7034 samples for training and 20
species containing 1155 samples for testing.
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For text-based ZSL, we follow the same way in Elhoseiny et al. (2017a) to split the data. Specifically,
five random splits are performed, in each of which 4/5 of the classes are considered as “seen classes”
for training and 1/5 of the classes as “unseen classes” for testing. For other experiments, we follow
Zhang et al. (2017b) to split the data.

COCO http://cocodataset .org/#download: Compared with Flower and CUB, COCO
is a more challenging dataset, since it contains images with multiple objects and diverse backgrounds.
To show the generalization capability of the proposed VHE-GANSs, we also utilize COCO for
evaluation. Following the standard experimental setup for COCO (Reed et al., 2016; Zhang et al.,
2017b), we directly use the pre-split training and test sets to train and evaluate our proposed models.
There are 82081 samples for training and 40137 samples for testing.

Training details: we train VHE-rater-scan-GAN in four Nvidia GeForce RTX2080 TI GPUs. The
experiments are performed with mini-batch size 32 and about 30.2G GPU memory space. We run
600 epochs to train the models on CUB and Flower, taking about 797 seconds for CUB-E and 713
seconds for Flower for each epoch. We run 100 epochs to train the models on COCO, taking about
6315 seconds for each epoch. We use the Adam optimizer (Kingma & Ba, 2014) with learning
rate 2 x 1074, 31 = 0.5, and 5 = 0.999 to optimize the parameters of the GAN generator and
discriminator, and use Adam with learning rate 1074, b1 = 0.9, and B2 = 0.999 to optimize the
VHE parameters. The hyper-parameters to update the topics ® with TLASGR-MCMC are the same
with those in Cong et al. (2017).
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G ADDITIONAL DISCUSSION ON OBJ-GAN

Focusing on the COCO dataset, the recently proposed Obj-GAN (Li et al., 2019) exploits more side
information, including the bounding boxes and labels of objects existing in the images, to perform
text-to-image generation. More specifically, Obj-GAN first trains an attentive sequence to sequence
model to infer the bounding boxes given a text ¢:

Bl:T = [BI,BQa e 7BT] = Gbox(e)a (16)

where, e are the pre-trained bi-LSTM word vectors of £, B, = (I, b;) consists of the class label of the
tth object and its bounding box b = (x,y,w, h) € R*. Given the bounding boxes Bj.7, Obj-GAN
learn a shape generator to predict the shape of each object in its bounding box:

M.y = Gishape (Brr: 21:1) 5 (17)

where z; ~ N (0, 1) is a random noise vector. Having obtained By.7 and M 1.7, Obj-GAN trains an
attentive multi-stage image generator to generate the images conditioned on By.7, M1.7, and e.

Although Obj-GAN achieves a better FID on COCO, it has two major limitations in practice. First, it
is not always possible to obtain accurate bounding boxes and labels of objects in the image; even they
can be acquired by manual labeling, it is often time and labor consuming, especially on large datasets.
Second, each word is associated with one fixed bounding box; in other words, given one sentence,
the locations of the objects in the generated images are fixed, which clearly hurts the diversity of the
Obj-GAN generated images, as shown in Fig. 27.

People playing with | %

kites outside under ! a
the blue sky. _

B T .
Obj-GAN ﬁ 3-—I ii E
VHE-raster-scan-GAN

y *

Figure 27: The generated random images of Obj-GAN given text lack diversity.
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