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Abstract

Many applications, such as text modelling,
high-throughput sequencing, and recom-
mender systems, require analysing sparse,
high-dimensional, and overdispersed discrete
(count or binary) data. Recent deep proba-
bilistic models based on variational autoen-
coders (VAE) have shown promising results
on discrete data but may have inferior mod-
elling performance due to the insufficient
capability in modelling overdispersion and
model misspecification. To address these is-
sues, we develop a VAE-based framework us-
ing the negative binomial distribution as the
data distribution. We also provide an anal-
ysis of its properties vis-à-vis other mod-
els. We conduct extensive experiments on
three problems from discrete data analysis:
text analysis/topic modelling, collaborative
filtering, and multi-label learning. Our mod-
els outperform state-of-the-art approaches on
these problems, while also capturing the phe-
nomenon of overdispersion more effectively.1

1 INTRODUCTION

Discrete data are ubiquitous in many applications. For
example, in text analysis, a collection of documents
can be represented as a word-document count ma-
trix; in recommender systems, users’ shopping history

1Code at https://github.com/ethanhezhao/NBVAE
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can be represented as a binary (or count) item-user
matrix, with each entry indicating whether or not a
user has bought an item (or its purchase count); in
extreme multi-label learning problems, data samples
can be tagged with a large set of labels, presented
as a binary label matrix. Such kinds of data are of-
ten characterised by high-dimensionality and extreme
sparsity. With the ability to handle high-dimensional
and sparse matrices, Probabilistic Matrix Factorisa-
tion (PMF) (Mnih and Salakhutdinov, 2008) has been
a key method of choice for such problems. PMF gen-
erates data from a suitable probability distribution,
parameterised by some low-dimensional latent factors.
For modelling discrete data, Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) and Poisson Factor Anal-
ysis (PFA) (Canny, 2004; Zhou et al., 2012) are two
representative models that generate data samples us-
ing the multinomial and Poisson distributions, respec-
tively. Originally, LDA and PFA can be seen as single-
layer models, whose modelling expressiveness may be
limited. Several prior works have focused on extend-
ing them with hierarchical/deep Bayesian priors (Blei
et al., 2010; Paisley et al., 2015; Gan et al., 2015b;
Zhou et al., 2016; Lim et al., 2016; Zhao et al., 2018a).
However, increasing model complexity with hierarchi-
cal priors can also complicate inference, which hinders
their usefulness in analysing large-scale data.

The recent success of deep generative models such
as Variational Autoencoders (VAEs) (Kingma and
Welling, 2014; Rezende et al., 2014) on modelling real-
valued data such as images has motivated machine
learning practitioners to adapt VAEs to discrete data,
as done in recent works (Miao et al., 2016, 2017; Kr-
ishnan et al., 2018; Liang et al., 2018). Instead of us-
ing the Gaussian distribution as the data distribution
for real-valued data, the multinomial distribution has
been used for discrete data (Miao et al., 2016; Krish-
nan et al., 2018; Liang et al., 2018). Following Liang

https://github.com/ethanhezhao/NBVAE
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et al. (2018), we refer to these VAE-based models as
“MultiVAE” (Multi for multinomial)2. MultiVAE can
be viewed as a deep nonlinear PMF model, with non-
linearity modelled by deep neural networks. Compared
with conventional hierarchical Bayesian models, Mul-
tiVAE enjoys better modelling capacity without sacri-
ficing the scalability, with the use of amortized varia-
tional inference (AVI) (Rezende et al., 2014). In this
work, we address some key shortcomings of these ex-
isting models; in particular, 1) insufficient capability
of modelling overdispersion in count-valued data, and
2) model misspecification for binary data.

Specifically, overdispersion (i.e., variance larger than
mean) describes the phenomenon that the data vari-
ability is large, a key aspect in large-scale count-valued
data. For example, overdispersion in text data can be-
have as word burstiness (Church and Gale, 1995; Mad-
sen et al., 2005; Doyle and Elkan, 2009; Buntine and
Mishra, 2014): When a word is seen in a document,
it may excite both itself and related ones. Burstiness
can cause overdispersion in text data because in a doc-
ument, it is common that a few bursty words occur
multiple times while other words only show up once
or never, resulting in high variance in the word counts
of the document. As shown in Zhou (2018), the deep-
seated cause of the insufficient capability of modelling
overdispersion in existing PMF models is their limited
ability to handle self- and cross-excitation. Specifi-
cally, in the text data example, self-excitation cap-
tures the effect that if a word occurs in a document,
it is likely to occur more times in the same document;
while cross-excitation models the effect that if a word
such as “puppy” occurs, it will likely excite the oc-
currences of the related words such as “dog.” It can
be shown that existing PMF models (including VAEs)
with Poisson/multinomial likelihood cannot explicitly
capture self- and cross-excitations.

Besides count-valued observations, binary-valued data
are also prevalent in many applications, such as in col-
laborative filtering and graph analysis. It may not
be proper to directly use multinomial or Poisson to
model binary data, which is a common misspecifica-
tion in many existing models. This is because a multi-
nomial or Poisson may assign more than one count to
one position, ignoring the binary nature of data. The
misspecification could result in inferior modelling per-
formance (Zhou, 2015; Zhao et al., 2017a).

To address the aforementioned challenges, we propose
a Bayesian approach using the negative binomial (NB)
distribution as the data distribution in a VAE-based
deep generative model, so as to exploit its power in

2The generative process (decoder) in Miao et al. (2016);
Krishnan et al. (2018); Liang et al. (2018) is similar, while
the inference process (encoder) is different.

learning nonlinearity from high-dimensional and com-
plex data spaces. We show that using NB as the like-
lihood can explicitly capture self-excitation, which ex-
isting VAE-based methods for discrete data are un-
able to deal with properly. The use of deep struc-
tures further boosts our model capacity for captur-
ing cross-excitation. By sufficiently capturing both
kinds of excitations, our proposed method is able to
better handle overdispersion. Moreover, the use of
NB (instead of multinomial as in Liang et al. (2018);
Krishnan et al. (2018)) facilitates developing a link
function between the Bernoulli and NB distributions,
which enjoys better modelling performance and effi-
ciency for binary data. Putting this together, our re-
sulting Negative-Binomial Variational AutoEncoder
(NBVAE for short) is a VAE-based framework gen-
erating data with a NB distribution. This can be effi-
ciently trained and achieves superior performance on
various tasks on discrete data, including text analysis,
collaborative filtering, and multi-label learning.

2 PROPOSED METHOD

We start with the introduction of our proposed
NBVAE model for count-valued data in Section 2.1,
and then give a detailed analysis on how self- and
cross-excitations are captured in different models and
why NBVAE is capable of better handling them in Sec-
tion 2.2. Finally, we describe the variants of NBVAE
for modelling binary data and for multi-label learning
in Sections 2.3 and 2.4, respectively.

2.1 Negative-Binomial Variational
Autoencoder (NBVAE)

Like the standard VAE model, NBVAE consists of
two components: a decoder for the generative pro-
cess and an encoder for the inference process. Here
we focus on the generative process and discuss the
inference procedure in Section 3. Without loss of
generality, we present our model in text analysis on
word counts, but the model can work with any kind
of count-valued matrices. Suppose the word counts
of a text corpus are stored in a V × N count matrix
Y ∈ NV×N = [y1, · · · ,yN ], where N = {0, 1, 2, · · · },
N and V are the number of documents and size of
the vocabulary, respectively. To generate the occur-
rences of the words for the jth (j ∈ {1, · · ·N}) doc-
ument, yj ∈ NV , we draw a K dimensional latent
representation zj ∈ RK from a standard multivariate
normal prior. Given zj , yj is drawn from a (multi-
variate) negative-binomial distribution with rj ∈ RV+
(R+ = {x : x ≥ 0}) and pj ∈ (0, 1)V as the parame-
ters. Moreover, rj and pj are obtained by transform-
ing zj from two nonlinear functions, fθr (·) and fθp(·),
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parameterised by θr and θp, respectively. To generate
valid NB parameters, the output of fθr (·) and fθp(·) is
fed into exp(·) and sigmoid(·), respectively. The above
generative process can be formulated as follows:

zj ∼ N (0, IK),

rj = exp (fθr (zj)) , pj = sigmoid (fθp(zj)),

yj ∼ NB(rj ,pj). (1)

Due to the equivalence of the draws between a multi-
variate negative-binomial distribution and a Dirichlet-
multinomial distribution (Zhou, 2018, Theorem 1),
the proposed NBVAE can be viewed as a deep non-
linear generalisation of the models built upon the
Dirichlet-Multinomial distribution, which effectively
capture word burstiness in topic modelling (Doyle and
Elkan, 2009; Buntine and Mishra, 2014).

2.2 How NBVAE Captures Self- and
Cross-Excitations

We now compare our NBVAE model and other PMF
models in terms of their ability of capturing self- and
cross-excitations in count-valued data. For easy com-
parison, we present the related models with a unified
framework and show our analysis in the case of gener-
ating word counts. In general, yj can be explicitly gen-
erated from the data distribution by yj ∼ p(yj | lj),
where lj ∈ RV+ is the model parameter. Alterna-
tively, one can first generate the token of each word
in document j, {wij}

y·j
i=1 (wij ∈ {1, · · · , V }), and then

we count the occurrences of different tokens by yvj =∑y·j
i=1 1(wij = v), where 1(·) is the indicator function.

It can be seen that the two ways are equivalent. As
shown later, in both ways, lj takes a factorised form.
Now if we look at the predictive distribution of a word,
wij , conditioned on the other words’ occurrences in the
corpus, Y−ij , it can be presented as follows:

p(wij = v | Y−ij) ∝∫
p(wij = v | l′j) p(l′j | Y−ij)dl

′
j =

Ep(l′j |Y−ij)

[
p(wij = v | l′j)

]
, (2)

where l′j is the predictive rate computed with the pa-
rameters obtained from the posterior.

With the above notation, we can relate (as special
cases) various existing models for discrete data to our
proposed NBVAE model, such as PFA (Canny, 2004;
Zhou et al., 2012), LDA (Blei et al., 2003), Multi-
VAE (Miao et al., 2016; Krishnan et al., 2018; Liang
et al., 2018), and Negative-Binomial Factor Analysis
(NBFA) (Zhou, 2018), as follows:

PFA: It is easy to see that PFA directly fits into this
framework, where p(yj | lj) is the Poisson distribution

and lj = Φθj . Here Φ ∈ RV×K+ = [φ1, · · · ,φK ] is the

factor loading matrix and Θ ∈ RK×N+ = [θ1, · · · ,θN ]
is the factor score matrix. Their linear combinations
determine the probability of the occurrence of v in
document j.

LDA: Originally, LDA explicitly assigns a topic
zij ∈ {1, · · · ,K} to wij , with the following process:

zij ∼ Cat(θj/θ·j) and wij ∼ Cat(φzij ), where θ·j =∑K
k θkj and “Cat” is the categorical distribution. By

collapsing all the topics, we can derive an equivalent
representation of LDA, in line with the general frame-
work: yj ∼ Multi(y·j , lj), where lj = Φθj/θ·j .

MultiVAE: MultiVAE generates data from a multi-
nomial distribution, whose parameters are constructed
by the decoder: yj ∼ Multi(y·j , lj), where lj =
softmax(fθ(zj)). As shown in Krishnan et al. (2018),
MultiVAE can be viewed as a nonlinear PMF model.

NBFA: NBFA uses a NB distribution as the data
distribution, the generative process of which can be
represented as: yj ∼ NB(lj , pj), where lj = Φθj .

The above comparisons on the data distributions and
predictive distributions of those models are shown in
Table 1. In particular, y−ivj denotes the number of oc-

currences of word v in document j, excluding the ith

word. Now we can show a model’s capacity of cap-
turing self- and cross-excitations by analysing its pre-
dictive distribution. 1) Self-excitation: If we com-
pare PFA, LDA, and MultiVAE against NBFA and
NBVAE, it can be seen that the latter two models
with NB as their data distributions explicitly capture
self-excitation via the term y−ivj in the predictive dis-
tributions. Specifically, if v appears more in document
j, y−ivj will be larger, leading to larger probability that
v shows up again. Therefore, the latter three mod-
els directly capture word burstiness with y−ivj . How-
ever, PFA, LDA, and MultiVAE cannot do this be-
cause they predict a word purely based on the interac-
tions of the latent representations and pay less atten-
tion to the existing word frequencies. Therefore, even
with deep structures, their potential for modelling self-
excitation is still limited. 2) Cross-excitation: For
the models with NB, i.e., NBVAE and NBFA, as self-
excitation is explicitly captured by y−ivj , the interac-
tions of the latent factors are only responsible to model
cross-excitation. Specifically, NBFA applies a single-
layer linear combination of the latent representations,
i.e.,

∑K
k φvkθkj , while NBVAE can be viewed as a

deep extension of NBFA, using deep neural networks
to conduct multi-layer nonlinear combinations of the
latent representations, i.e, rvj = exp (fθr (zj))v and
pvj = sigmoid (fθp(zj))v. Therefore, NBVAE enjoys
richer modelling capacity than NBFA on capturing
cross-excitation. 3) Summary: We summarise our
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Table 1: Comparison of the data distributions, model parameters, predictive rates, and posteriors. q(·) denotes the
encoder in VAE models, which will be introduced in Section 3.

Model Data distribution Model parameter Predictive rate Posterior

PFA yj ∼ Poisson(lj) lj = Φθj l′vj ∝
∑K
k φvkθkj Φ,θj ∼ p(Φ,θj | Y−ij)

LDA yj ∼ Multi(y·j , lj) lj = Φθj/θ·j l′vj ∝
∑K
k φvkθkj/θ·j Φ,θj ∼ p(Φ,θj | Y−ij)

MultiVAE yj ∼ Multi(y·j , lj) lj = softmax(fθ(zj)) l′vj ∝ softmax(fθ(zj))v zj ∼ q(zj | Y−ij)
NBFA yj ∼ NB(lj , pj) lj = Φθj l′vj ∝ (y−ivj +

∑K
k φvkθkj)pj Φ,θj , pj ∼ p(Φ,θj , pj | Y−ij)

NBVAE yj ∼ NB(rj ,pj)
rj = exp (fθr (zj))
pj = sigmoid (fθp(zj)

l′vj ∝ (y−ivj + exp (fθr (zj))v) · sigmoid (fθp(zj)v zj ∼ q(zj | Y−ij)

Table 2: How self- and cross-excitation are captured.

Model Self-excitation Cross-excitation

PFA Single-layer structure
LDA Single-layer structure

MultiVAE Multi-layer neural networks

NBFA y−ivj Single-layer structure

NBVAE y−ivj Multi-layer neural networks

analysis on how self- and cross-excitations are captured
in related models in Table 2.

2.3 NBVAE for Binary Data

In many problems, discrete data are in binary form.
For example, suppose a binary matrix Y ∈ {0, 1}V×N
stores the buying history of N users on V items, where
yvj = 1 indicates that user j has brought item v, and
vice versa. Previous models like MultiVAE (Krish-
nan et al., 2018; Liang et al., 2018) treat such binary
data as counts, which is a model misspecification and
is likely to result in inferior performance. To better
model binary data, we develop a simple yet effective
method that links the generative process of NBVAE
with the Bernoulli distribution. Specifically, inspired
by the link function used in Zhou (2015), we first gen-
erate a latent discrete intensity vector, mj ∈ NV , from
the generative process of NBVAE. Next, we generate
the binary vector, yj by thresholding mj at one as:

zj ∼ N (0, IK),

rj = exp (fθr (zj)) , pj = sigmoid (fθp(zj)) ,

mj ∼ NB(rj ,pj) , yj = 1(mj ≥ 1). (3)

Intuitively, mvj can be viewed as the (latent) inter-
est of user j on item v and the user will buy this
item if and only if mvj > 0. As mj is drawn from
NB, we do not have to explicitly generate it. We can
marginalise it out and get the following data likeli-
hood: yj ∼ Bernoulli

(
1− (1− pj)rj

)
, where rj and

pj have the same construction of the original NBVAE.
Here we refer to this extension of NBVAE as NBVAEb

(b for binary). Note that the NB distribution is a
gamma mixed Poisson distribution, so the elements of
mj (from a multivariate NB) can be viewed to be in-
dividually generated from a Poisson distribution. This

is an important property that makes the link function
applicable to NBVAE. In contrast, it is inapplicable to
MutiVAE (Liang et al., 2018; Krishnan et al., 2018) as
multinomial generates elements dependently.

2.4 NBVAE for Multi-label Learning

Our model admits easy extensions for other problems
that require modeling discrete data. In particular, we
show how to extend NBVAE for solving the multi-
label learning problem, which can be formulated into
a supervised task of modelling binary matrices. In a
multi-label learning task, there is a large set of labels
in a dataset while an individual sample is associated
with a small subset of the labels. Suppose there are
N samples, each of which is associated with a D di-
mensional feature vector xj ∈ RD and a binary la-
bel vector yj ∈ {0, 1}V . V is the number of labels
that can be very large, and yvj = 1 indicates sample j
is labelled with v. The goal is to predict the labels
of a sample given its features. Here the label matrix
Y ∈ {0, 1}V×N is a large-scale, sparse, binary matrix.

Inspired by the idea of Conditional VAE (Sohn et al.,
2015) and corresponding linear methods (Zhao et al.,
2017a,b), we develop a conditional version of NBVAE,
named NBVAEc (c for conditional), for extreme multi-
label learning3. The general idea is that instead of
drawing the latent representation of a sample from
an uninformative prior (i.e., standard normal) as in
NBVAEb, we use a prior constructed with the sam-
ple’s feature in NBVAEc. Specifically, we introduce a
parametric function fψ(·) to transform the features of
sample j to the mean and variance of the normal prior,
formulated as follows:

µj ,σj = fψ(xj), zj ∼ N (µj ,diag{σ2
j}),

rj = exp (fθr (zj)),pj = sigmoid (fθp(zj)) ,

mj ∼ NB(rj ,pj),yj = 1(mj ≥ 1). (4)

Note that fψ(·) defines p(zj | xj), which encodes the

3Other approaches that incorporate super-
vised/conditional information in VAEs can also be
used in our model. The main purpose here is to demon-
strate our model’s appealing potential for modelling
binary data as well its model flexibility.
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features of a sample into the prior of its latent repre-
sentation. Intuitively, we name it the feature encoder.
With the above construction, given the feature vector
of a testing sample j∗, we can feed xj∗ into the feature
encoder to sample the latent representation, zj∗ , then
feed it into the decoder to predict its labels.

3 VARIATIONAL INFERENCE

The inference of NBVAE and NBVAEb follows the
standard amortized variational inference procedure of
VAEs, where a data-dependent variational distribu-
tion q(zj | yj) (i.e., encoder) is used to approximate
the true posterior, p(zj | yj), as follows:

µ̃j , σ̃j = fφ(yj), zj ∼ N (µ̃j ,diag{σ̃2
j}). (5)

Given q(zj | yj), the learning objective is to maximise
the Evidence Lower BOund (ELBO) of the marginal
likelihood of the data: Eq(zj |yj)

[
log p(yj | zj)

]
−

KL
[
q(zj | yj) ‖ p(zj)

]
, in terms of the decoder pa-

rameters θr, θp and the encoder parameter φ. Here the
reparametrization trick (Kingma and Welling, 2014;
Rezende et al., 2014) is used to sample from q(zj | yj).

For NBVAEc, there are two differences of inference
from the above two models: 1) Due to the use of the in-
formative prior conditioned on features, the Kullback-
Leiber (KL) divergence on the RHS of the ELBO is
calculated between two non-standard multivariate nor-
mal distributions: KL

[
q(zj | yj) ‖ p(zj | xj)

]
. Thus,

the KL divergence of the ELBO does not only serve
as a regularizer for q(zj | yj) but also helps learn the
feature encoder, fψ(·). 2) In NBVAEc, the feature en-
coder plays an important role, as it is the one that
generates the latent representations for test samples.
To get more opportunities to train it, when sampling
zj in the training phase, we propose to alternatively
draw it between zj ∼ q(zj | yj) and zj ∼ p(zj | xj).
This enables the feature encoder to directly contribute
to the generation of labels, which improves its perfor-
mance in the testing phase.

4 RELATED WORK

Probabilistic matrix factorisation models for
discrete data. Several well-known models fall into
this category, including LDA (Blei et al., 2003) and
PFA (Zhou et al., 2012), as well as their hierarchi-
cal extensions such as those in Blei et al. (2010);
Teh et al. (2012); Paisley et al. (2015); Gan et al.
(2015a); Ranganath et al. (2015); Henao et al. (2015);
Lim et al. (2016); Zhou et al. (2016); Zhao et al.
(2017b, 2018b). Among various models, the clos-
est ones to ours are NBFA (Zhou, 2018) and non-
parametric LDA (Buntine and Mishra, 2014), which

generate data with the negative-binomial distribution
and Dirichlet-multinomial distribution, respectively.
Our models can be viewed as a deep generative exten-
sions to them, providing better model expressiveness,
flexibility, as well as inference scalability.

VAEs for discrete data. Miao et al. (2016) pro-
posed Neural Variational Document Model (NVDM),
which extended the standard VAE with multinomial
likelihood for document modelling. Miao et al. (2017)
further built a VAE to generate the document-topic
distributions in the LDA framework. Srivastava and
Sutton (2017) developed an AVI algorithm for the in-
ference of LDA, which can be viewed as a VAE model.
Card et al. (2018) introduced a general VAE frame-
work for topic modelling with meta-data. Grønbech
et al. (2019) recently proposed a Gaussian mixture
VAE with negative-binomial for gene-expression data,
which has a different construction to ours and does not
consider binary data, multi-label learning, or in-depth
analysis. Burkhardt and Kramer (2019) proposed a
VAE framework for topic modelling, the latent repre-
sentations of which are drawn from Dirichlet instead
of Gaussian. Krishnan et al. (2018) found that us-
ing the standard training algorithm of VAEs in large
sparse discrete data may suffer from model underfit-
ting and proposed a stochastic variational inference
(SVI) (Hoffman et al., 2013) algorithm initialised by
AVI to mitigate this issue. In the collaborative filtering
domain, Liang et al. (2018) noticed a similar issue and
alleviated it by proposing MultiVAE with a training
scheme based on KL annealing (Bowman et al., 2016).
Note that NVDM, NFA, and MultiVAE are the closest
ones to ours, their generative processes are very simi-
lar but their inference procedures are different. NFA is
reported to outperform NVDM on text analysis (Kr-
ishnan et al., 2018) while MultiVAE is reported to have
better performance than NFA on collaborative filter-
ing tasks (Liang et al., 2018). Compared with them,
we improve the modelling performance in a different
way, i.e., by better capturing self- and cross-excitations
so as to better handle overdispersion. Moreover, NFA
and MultiVAE use the multinomial likelihood, which
may not work well for binary data.

VAEs for multi-label learning. In various applica-
tions, such as image/document tagging, recommender
system, ad-placement, multi-label learning/extreme
classification problems have drawn a significant atten-
tion (Yu et al., 2014; Mencia and Fürnkranz, 2008;
Yen et al., 2016; Bhatia et al., 2015; Rai et al., 2015;
Jain et al., 2016; Prabhu et al., 2018a; You et al., 2018;
Prabhu et al., 2018b). Most of the existing state-of-
the-art methods adopt either multiple steps of process-
ing of the labels and features or complex optimisation
algorithms. In contrast, NBVAEc achieves compara-
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ble performance but with much simpler model struc-
tures. To our knowledge, the adaptation of VAEs to
the multi-label learning area is rare, because most ex-
isting VAE models are unable to deal with large-scale
sparse binary label matrices effectively.

5 EXPERIMENTS

In this section, we evaluate the proposed models on
three important applications of large-scale discrete
data: text analysis, collaborative filtering, and multi-
label learning. We run our models multiple times and
report the average results. The details of the datasets,
evaluation metrics, experimental settings, and running
time comparison are provided in the appendix.

5.1 Experiments on Text Analysis

Our first set of experiments is on text analysis. We
consider three widely-used corpora (Srivastava et al.,
2013; Gan et al., 2015a; Henao et al., 2015; Cong et al.,
2017): 20 News Group (20NG), Reuters Corpus Vol-
ume (RCV), and Wikipedia (Wiki). Following Wallach
et al. (2009), we report per-heldout-word perplexity
of all the models, which is a widely-used metric for
text analysis. Note that we use the same perplex-
ity calculation for all the compared models, detailed
in the appendix. We compare our proposed NBVAE
with the following three categories of state-of-the-art
models for text analysis: 1) Bayesian deep exten-
sions of PFA and LDA: Deep latent Dirichlet alloca-
tion (DLDA) (Cong et al., 2017), Deep Poisson Factor
Modelling (DPFM) (Henao et al., 2015), Deep Poisson
Factor Analysis (DPFA) (Gan et al., 2015b) with dif-
ferent kinds of inference algorithms such as Gibbs sam-
pling, stochastic variational inference, and stochas-
tic gradient MCMC (SGMCMC) (Chen et al., 2014);
2) NBFA (Zhou, 2018), a recently-proposed single-
layer factor analysis model with negative-binomial
likelihood, where the truncated version is used and
the inference is done by Gibbs sampling. 3) Mul-
tiVAE (Liang et al., 2018; Krishnan et al., 2018), a
recent VAE model for discrete data with the multino-
mial distribution as the data distribution. We use the
implementation in Liang et al. (2018) for MultiVAE.

The perplexity results are shown in Table 3. Follow-
ing Gan et al. (2015a); Henao et al. (2015); Cong et al.
(2017), we report the performance of DLDA, DPFM,
and DPFA with two and/or three hidden layers, which
are the best results reported in their papers. For the
VAE-based models, we vary the network architecture
with one and two hidden layers and vary the depths
and widths of the layers, as shown in Table 3. We
observe the following from the results: 1) If we com-
pare NBFA with DLDA, DPFM, and DPFA, it can

Table 3: Perplexity comparisons. “Layers” indicate the
architecture of the hidden layers (for VAE models, it is the
hidden layer architecture of the encoder.). Best results are
in boldface. TLASGR and SGNHT are the algorithms of
SGMCMC, detailed in the papers of DLDA (Cong et al.,
2017) and DPFA (Gan et al., 2015a). Some results of the
models with Gibbs sampling on RCV and Wiki are not
reported because of the scalability issue. All the experi-
mental settings here are consistent with those in Gan et al.
(2015a); Henao et al. (2015); Cong et al. (2017).

Model Inference Layers 20NG RCV Wiki

DLDA TLASGR 128-64-32 757 815 786
DLDA Gibbs 128-64-32 752 802 -
DPFM SVI 128-64 818 961 791
DPFM MCMC 128-64 780 908 783

DPFA-SBN Gibbs 128-64-32 827 - -
DPFA-SBN SGNHT 128-64-32 846 1143 876
DPFA-RBM SGNHT 128-64-32 896 920 942

NBFA Gibbs 128 690 702 -

MultiVAE VAE 128-64 746 632 629
MultiVAE VAE 128 772 786 756

NBVAE VAE 128-64 688 579 464
NBVAE VAE 128 714 694 529

Table 4: Perplexity comparisons with larger layer width.

Model Inference Layers RCV Wiki

DLDA TLASGR 256-128-64 710 682
NBFA Gibbs 256 649 -

MultiVAE VAE 256-128 587 589
NBVAE VAE 256-128 535 451

DLDA TLASGR 512-256-128 656 602
MultiVAE VAE 512-256 552 558
NBVAE VAE 512-256 512 445

be seen that modelling self-excitation with the NB
distribution in NBFA has a large contribution to the
modelling performance. 2) It can be observed that
the single-layer VAE models (i.e., MultiVAEs with one
layer) achieve no better results than NBFA. However,
when multi-layer structures were used, VAE models
largely improve their performance. This shows the in-
creased model capacity with deeper neural networks
is critical to getting better modelling performance
via cross-excitation. 3) Most importantly, our pro-
posed NBVAE significantly outperforms all the other
models, which demonstrates the necessity of mod-
elling self-excitation explicitly and modelling cross-
excitation with deep structures.

In Table 3, we use 128 as the maximum layer width,
following Gan et al. (2015a); Henao et al. (2015); Cong
et al. (2017). Given the sizes of RCV and Wiki, we in-
crease the maximum to 256 and 512 to study how the
width of layer matters, the results of which are shown
in Table 4. By looking at Tables 3 and 4, we find: 1)
With the increased layer widths, all the models gained
significant improvements; 2) Among all the models,
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Figure 1: Comparisons of the entropy histograms on the
20NG dataset with 2,000 as the vocabulary and 7,531 test
documents. The horizontal axis: the value of entropy. The
vertical axis: the number of the test documents that are
with a specific entropy value.

regardless of each layer’s width, NBVAE outperforms
the others with a significant margin; 3) With smaller
model structures (e.g., [256-128]), NBVAE is able to
achieve comparable results to the other models with
larger structures (e.g., MultiVAE [512-256]), demon-
strating our models’ expressiveness.

To explicitly show how self-excitation is captured in
our model, we compare the entropy of the predictive
distributions on the test documents of 20NG. The en-
tropy of document j given the predictive distribution
parameterised with l′j is computed as follows:

entropyj = exp

(
−

V∑
v

l′vj log(l′vj)

)
, (6)

where l′j is assumed to be normalised and is computed
model-specifically according to Table 1. The intuition
here is that, given a model, the entropy of the pre-
dictive distribution of a document can be interpreted
as the effective number of unique words that the doc-
ument is expected to focus on. Therefore, if a model
takes self-excitation into account, the entropy of a doc-
ument is expected to be small, as the model’s predic-
tive distribution will put large mass on the words that
already occur in the document. In contrast, if a model
does not take into account self-excitation, its predic-
tive distribution of a document would relatively spread
over all the words. Essentially, it means that a smaller
entropy indicates better capture of self-excitation. Af-
ter computing the entropy of all the test documents,
we plot the histograms in Figure 1. It can be observed
that, in our proposed NBVAE, the centre of the his-
togram is closer to the origin of coordinates, which
shows that our model has more documents that with
small entropy. This is because self-excitation is better
captured by our model.

5.2 Experiments on Collaborative Filtering

Our second set of experiments is on collaborative
filtering, where the task is to recommend items to
users using their clicking history. We evaluate our
models’ performance on four user-item consumption
datasets: MovieLens-10M (ML-10M), MovieLens-20M
(ML-20M), Netflix Prize (Netflix), and Million Song
Dataset (MSD) (Bertin-Mahieux et al., 2011). Fol-
lowing Liang et al. (2018), we report two evaluation
metrics: Recall@R and the truncated normalized dis-
counted cumulative gain (NDCG@R), detailed in the
appendix. As datasets used here are binary, we com-
pared NBVAEb, with the recent VAE models: 1) Mul-
tiVAE. 2) MultiDAE (Liang et al., 2018), a denois-
ing autoencoder (DAE) with multinomial likelihood,
which introduces dropout (Srivastava et al., 2014) at
the input layer. MultiVAE and MultiDAE are state-
of-the-art VAE models for collaborative filtering and
they have been reported to outperform several recent
advances such as Wu et al. (2016) and He et al. (2017).
The experimental settings are consistent with those
in Liang et al. (2018), detailed in the appendix.

Figure 2 shows the NDCG@R and Recall@R of the
models on the four datasets, where we used R ∈
{1, 5, 10, 20, 50}. In general, our proposed NBVAEb

outperforms the baselines (i.e., MulitVAE and Mul-
tiDAE) on almost all of the datasets, In particular,
the margin is notably large while the R value is small,
such as 1 or 5. It indicates that the top-ranked items in
NBVAEb are always more accurate than those in Mul-
tiVAE and MuliDAE. This fact is also supported by
the large gap of NDCG@R between NBVAEb and the
two baselines, as NDCG@R penalises the true items
that are ranked low.

To further demonstrate the benefit of using NBVAEb,
we compare it with NBVAE on the ML-10M dataset,
where the latter treats binary data as count-valued
data. The results of NDCG@R and Recall@R on ML-
10M are shown in Table 5, where NBVAEb’s results are
significantly better than NBVAE, showing the neces-
sity of dealing with binary data separately from count-
valued data.

5.3 Experiments on Multi-Label Learning

Finally, we compare NBVAEc with several recent ad-
vances in multi-label learning, including LEML (Yu
et al., 2014), PfastreXML (Jain et al., 2016), PD-
Sparse (Yen et al., 2016), and GenEML (Jain et al.,
2017). We use three multi-label learning benchmark
datasets: Delicious (Tsoumakas et al., 2008), Me-
diamill (Snoek et al., 2006), and EURLex (Mencia
and Fürnkranz, 2008). We report Precision@R (R ∈
{1, 3, 5}), which is a widely-used evaluation metric for
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Figure 2: Comparisons of NDCG@R (N@R) and RecallR (R@R). Standard errors in multiple runs are generally less
than 0.003 for all the models on all the datasets, which are too tiny to show in the figures.

Table 5: NDCG@R (N@R) and RecallR
(R@R) of NBVAE and its variants on ML-10M.
Best results are in boldface.

Model N@1 N@5 N@10 N@20 N@50
NBVAE 0.3333 0.2951 0.3012 0.3263 0.3788
NBVAEb 0.3684 0.3187 0.3198 0.3394 0.3878

Model R@1 R@5 R@10 R@20 R@50
NBVAE 0.3333 0.2927 0.3224 0.3968 0.5453
NBVAEb 0.3684 0.3124 0.3360 0.4039 0.5456

Table 6: Precision (P@R). Best results for each dataset are in boldface.
The standard errors of our model are computed in multiple runs. The
results of GenEML on Delicious are not reported due to the unavailability.

Datasets Metric LEML PfastreXML PD-Sparse GenEML NBVAEc

Delicious
P@1
P@3
P@5

65.67
60.55
56.08

67.13
63.48
60.74

51.82
46.00
42.02

-
-
-

68.49±0.39
62.83±0.47
58.04±0.31

Mediamill
P@1
P@3
P@5

84.01
67.20
52.80

83.98
67.37
53.02

81.86
62.52
45.11

87.15
69.9
55.21

88.27±0.24
71.47±0.18
56.76±0.26

EURLex
P@1
P@3
P@5

63.40
50.35
41.28

75.45
62.70
52.51

76.43
60.37
49.72

77.75
63.98
53.24

78.28±0.49
66.09±0.17
55.47±0.15

multi-label learning, following Jain et al. (2017). For
the baselines, the reported results are the publicly
known best ones.

Table 6 shows the performance comparisons on the
multi-label learning datasets. It can be observed that
the proposed NBVAEc outperforms the others on the
prediction precision, showing its promising potential
on multi-label learning problems. Note that the base-
lines are specialised to the multi-label learning prob-
lem, many of which either take multiple steps of pro-
cessing of the labels and features or use complex op-
timisation algorithms. Compared with those models,
the model simplicity of NBVAEc is an appealing ad-
vantage, which gives VAE models great potential in
multi-label learning and related problems.

6 CONCLUSION

In this paper, we have focused on analysing and ad-
dressing two shortcomings of probabilistic modelling
on large-scale, sparse, discrete data: insufficient ca-

pability of modelling overdispersion in count-valued
data and model misspecification in binary data. To
address this we use the NB distribution, which con-
quers overdispersion in count-valued data by better
capturing self- and cross-excitations as well as deals
with binary data in a proper and effective way.

The advantages of our methods on count-valued and
binary data have been demonstrated by their superior
performance on text analysis and collaborative filter-
ing. Remarkably, due to the great model capacity and
flexibility of modelling binary data, our model can be
extended to multi-label learning, obtaining state-of-
the-art performance in the comparison with many ad-
vanced custom-designed algorithms. Extensive exper-
iments have shown the great potential of our models
on modelling various kinds of discrete data.

Finally, we believe that our methods are excel-
lent examples of hybridising the valuable knowl-
edge in Bayesian probabilistic modelling with newly-
developed deep learning techniques, which would in-
spire considerable future work in various areas.
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