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ABSTRACT

Real-time, safe, and stable motion planning in co-robot sys-
tems involving dynamic human robot interaction (HRI) remains
challenging due to the time varying nature of the problem. One
of the biggest challenges is to guarantee closed-loop stability of
the planning algorithm in dynamic environments. Typically, this
can be addressed if there exists a perfect predictor that precisely
predicts the future motions of the obstacles. Unfortunately, a
perfect predictor is not possible to achieve. In HRI environments
in this paper, human workers and other robots are the obsta-
cles to the ego robot. We discuss necessary conditions for the
closed-loop stability of a planning problem using the framework
of model predictive control (MPC). It is concluded that the pre-
dictor needs to be able to detect the obstacles’ movement mode
change within a time delay allowance and the MPC needs to have
a sufficient prediction horizon and a proper cost function. These
allow MPC to have an uncertainty tolerance for closed-loop sta-
bility, and still avoid collision when the obstacles’ movement is
not within the tolerance. Also, the closed-loop performance is
investigated using a notion of M-convergence, which guarantees
finite local convergence (at least M steps ahead) of the open-loop
trajectories toward the closed-loop trajectory. With this notion,
we verify the performance of the proposed MPC with stability
enhanced prediction through simulations and experiments. With
the proposed method, the robot can better deal with dynamic en-
vironments and the closed-loop cost is reduced.

Masayoshi Tomizuka
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Department of Mechanical Engineering
University of California
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INTRODUCTION

The development of intelligent industrial robots is craving
for a safe, reactive, and stable motion planning in dynamic en-
vironments. For example, an automated guided vehicle (AGV)
in co-robot systems involving dynamic human robot interaction
(HRI), needs to decide in real time how to bypass multiple hu-
man workers and a set of obstacles in the environment in order
to approach its target efficiently.

In literature, motion planning algorithms usually fall into
three categories: graph-search based algorithm, sampling-based
algorithm, and optimization-based algorithm. Among these al-
gorithms, this paper focuses on model predictive control (MPC)
[1], an optimization-based algorithm. MPC has been widely
adopted both in academic research and in industrial applications.
The fact that MPC observes the environment every time before
solving the optimization problem allows the system to adjust and
re-plan according to the changes of the environment. Its abil-
ity to handle input and state constraints also makes it popular
in addressing motion planning problems. A typical MPC ap-
proach involves a sequence of receding horizon optimization.
The sequential nature of such MPC formulation introduces a
closed-loop with respect to the performance index for optimiza-
tion. The closed-loop stability problem is a serious issue when
the environment, including motions of obstacles, is dynamic. If
the MPC problem is convex and has time-invariant constraints,
the stability of the closed loop system can be guaranteed by
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modifying prediction horizon, adding terminal cost, adding ter-
minal equality constraints, or using terminal set constraints in-
stead [2]. These methods can guarantee that the calculated com-
mands and the resulting states are bounded in the presence of
bounded disturbances. One common application of motion plan-
ning MPC problems is autonomous vehicles [3], where stability
can be guaranteed by setting stability boundary for the control
system, i.e., stability is quantified at several vehicle speeds. An-
other common application is industrial robots [4], where stabil-
ity can be guaranteed by using Lyapunov-like functions and the
terminal-state controller when the state space is convex.

However, two natures of motion planning in dynamic en-
vironments have contaminated the stability properties of MPC.
First, the existence of obstacles in the environment introduces
non-convex state constraints, which result in time varying and
non-convex MPC problems. This makes closed-loop stability
of MPC hard to analyze. The second problem is that the con-
straints in the optimization problem change continuously through
out time due to the changes in the environment. The fact that op-
timization problems are sensitive to the constraints makes the ac-
curacy of the prediction extremely crucial because the prediction
determines the state constraints of the problem. Commonly seen
assumptions in MPC, such as obstacles are moving in constant
velocity or acceleration, may not suit the environment well and
cause the open-loop trajectories at each time step to vary largely.
This might result in dynamically unreasonable closed-loop tra-
jectories. Dynamically unreasonable closed-loop trajectory will
cause the robot to execute violent or zigzagging movements that
are harmful to the robot’s motors and also scare other workers
in the environment. Fortunately, with some assumptions, it is
possible to formulate the uncertainties in the MPC problem in
a proper way. Some works have been focusing on dealing with
uncertainties in MPC problems [5, 6]. In these papers, systems
under persistent disturbance can be controlled by robust MPC.
However, a more common scenario in motion planning problems
is to have uncertainties in the environment, e.g., environment that
has obstacles moving at varying speed. Therefore, a probabilis-
tic model of the obstacles’ future movement is needed. In [7],
stochastic MPC deals with probability constraints to handle un-
certainties in the environment. To achieve even higher efficiency,
another approach is to directly predict the object’s future motion.
In [8,9], the authors focus on industrial HRI environment, where
the uncertainties in the environment are usually caused by hu-
man workers. It is clear that although the workers do not explic-
itly reveal their intention, it is still possible to predict their future
motion based on past observations [10, 11]. In [12], a Bayesian
filter is used for motion prediction given observations in the past
and the state transition model.

The contributions of this paper are to discuss the condi-
tions to enable closed-loop stability and to provide an example
of a motion planning method with a closed-loop stability en-
hanced predictor in a MPC framework. Conditions for the pre-
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FIGURE 1: The execution structure of MPC.

dictor and the MPC are identified and can guarantee closed-loop
stability when the environment satisfies some assumptions, and
collision avoidance even though the assumptions are not satis-
fied. With the conditions, we proposed an example of MPC
with stability enhanced prediction, which utilizes the past and
current observations of the environment to predict a worker’s in-
tention and construct the state space for the optimization prob-
lem at each MPC time step. It is assured that the proposed
method is stable theoretically in the sense of Lyapunov in a set
of common factory scenarios that satisfies the assumptions. The
proposed method can also better deal with environment uncer-
tainties which addresses the limitation of MPC without stability
enhanced prediction, i.e., MPC that only uses current observa-
tions and always assumes constant velocity or constant accelera-
tion. To show that owing to a better knowledge of the dynamic
environment, the proposed method performs better than MPC
without stability enhanced prediction, a new notion of open-
loop prediction convergence property called M-convergence is
used, which serves as another indicator of the closed-loop per-
formance. The open-loop and closed-loop cost of the proposed
method are also compared with the MPC without stability en-
hanced prediction to verify the improvement. Simulation studies
are performed to test the performance and finally, experiments
are carried to verify the proposed method (video is publicly avail-
able at jessicaleu24.github.io/DSCC2019.html).

PROBLEM FORMULATION
Traditional Non-convex MPC and Notations

In MPC (FIGURE 1), at each time step ¢, a future trajectory
will be planned by solving an optimization problem. This trajec-
tory is denoted as z := [zx, Zx+1,2k+2,  ** , 2k+H) Where the state,
Zx, 1s called the k™ action location. H is the prediction horizon.
In this paper, zx = [x(k),y(k)]T contains the x and y coordinate of
the robot’s location in 2-dimensional Cartesian space at time step
t = k. Note that z; corresponds to the current position, denoted
as 70(t = k) = (x,y)|;=«. The trajectory will then be executed
and the robot will go to 7z, the k+ 1/ action location. The
sampling time between two time steps is a constant, denoted as
At. After reaching the next action location, the robot will again
solve the optimization problem and plan a new trajectory and re-
peat the process. To avoid confusion, the current time step can
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also be marked as superscript in some cases , €.g., zﬁ 41 Mmeans
the planned action location zz| at time step t = k.

At time step t = k, given the current state, the following op-
timization needs to be solved to obtain z,

ming, J(z;), ey
stz € T% (z0(k),0). (2)

This optimization is performed at every MPC time step k as time
evolves. There are two assumptions in this formulation:

Assumption 1 (Cost). The cost function, containing both the
stage cost and the terminal cost, is convex, regular, and time-
invariant, and has the following form

J (@) = C1|[Dic — 2oy |3+ Cal Ve — Vrer |3+ C3 | Azl (3)

Here, C is the coefficient of the first term, which penalizes the
robot’s deviation from a reference line so that the robot output
trajectory is not too irregular. Matrix D is a projection matrix
that extract all y’s from z;. C, is the coefficient of the second
term, which penalizes the speed profile of the planned trajectory
with regard to a constant speed so that the robot will be time
efficient. Vz; is the velocity vector. Here, the speed reference is
set to be a constant speed going along the positive x-axis. C3 is
the coefficient of the third term, which penalizes the acceleration
of the output trajectory so that the motion will be smooth. Az is
the acceleration vector.

Assumption 2 (Constraint). The state constraint T is non-
convex and its complement, O, is a collection of disjoint convex
sets.

Based on the current observation, assuming that the obsta-
cles are moving in constant speed, the obstacle region, O, can
be obtained. The set of state constraints, F’,‘n, satisfies Assump-
tion 2. The current state, zo(k), is measured and assigned to

the first entry of z;. The final trajectory is [z’,ﬁ,zﬁ} ,-..], which
is equivalent to [zi*1 ,%.1---] (FIGURE 1) if the tracking con-

troller is perfect.

The Convex Feasible Set Algorithm

Because the problem we are solving has non-convex state
constraints, the problem is a non-convex MPC problem. Here
we solve the optimization problem at each MPC time step us-
ing the convex feasible set algorithm (CFS) [13], which itera-
tively solves a sequence of sub-problems of the original non-
convex problem using convex constraints, e.g., convex feasible
set. The CFS algorithm in the MPC structure uses the previ-
ous solution as a reference to construct the convex feasible set.

The convex feasible set for a reference point z” is computed as
F(7)={z:A(Z)z2 < b(Z") } where A(Z") is a matrix and b(z") is
a column vector. Assuming perfect prediction, at time step k+ 1,
the reference is setas z;_ | = [z£+1 ,z’,§+2, .. ,z’,§+H,z;:+H+l] where

. 2 k 2
LTI Mgz,gl;[ll lzkrm1llo + Nzerm — zrm1llr

J k 2
ek -1 =22k + st -

If zz, 1 €T, then the optimal solution is z} ; =z;_ . If
% yge1 ¢ I, denote the feasible solution as

ZepHyl = Arg min ||z pe H2Q+ 124 1 — 2k+r+1 IR
Zh+H+1€D 5)

k k
1z -1 = 22rm + T H 41 13-

Moreover, denote
[k k k 5
iy = [Zk+l7zk+2a'"7Zk+H7Z'k+H+1}‘ ) o
Because of the construction above, the optimal solution is
z7,, atstep k+ 1 satisfies that

zy,, =arg min  J(z ). 6)

a4i€F ()

Note that J(z; ) < J(z7, ;) <J(z{,,), therefore, the cost of the
trajectory is always bounded. The executed trajectory is from
those z;_, for different k.

Closed-loop Stability of MPC-based Planning Prob-
lems

As discussed previously, uncertainties in the environment
are usually caused by human workers or other robots. Here,
we identify the necessary conditions that enable closed-loop sta-
bility. First, the scenario where the worker’s motion is pre-
dictable needs to be identified. Assuming that the worker’s
movements can be captured by a predictor with finite modes,
m € {my,ma,...,mg,myp}, where m;, i =1,...,d are the modes
where the worker’s movements are predictable and m,,, captures
all the other unpredictable movements. An assumption is made
in the predictable modes:

Assumption 3 (Obstacle motion). Assuming that the accel-
eration and velocity of the obstacle are bounded, the veloc-
ity, Vops, Of the obstacle during m; mode is also bounded, i.e.,
||V0bs|| <

m;*

Therefore, we can define the predictable mode as the following:

Definition 1 (Predictable mode). During predictable mode
m;, there exists an obstacle region Of»‘ that covers the obstacle
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movements for the coming T,; time duration, and thus, the move-
ments in this mode are predictable. Here, T,; is called the time
delay allowance.

With the Definition 1, we can define closed-loop stability of
MPC in time varying environments when the obstacle’s move-
ment mode is predictable as the following:

Definition 2 (Closed-loop stability of MPC). Ler J*(k) be
the optimal cost at time step k. MPC is stable in closed-loop if
the optimal cost function is a Lyapunov function, i.e., 0 < J*(k) <
J*(k—1) for all k during predictable mode m;.

Denote k; to be the time when the obstacle movement
switches in between different modes, and k), to be the time when
the predictor detects that change. Denote T to be the time delay
between k; and kp;, i.e., Ty = kps — k;. With Assumption 3, the
first condition for the overall system is:

Condition 1 (Condition for the predictor). The time delay,
Ty, needs to satisfy Ty < T,; foralli=1,... d.

This is important for safety reason especially when the
worker is switching from predictable modes to unpredictable
mode. This condition guarantees that the obstacle region can
cover the worker’s movements even though the predictor hasn’t
detected the mode change. Therefore, the motion planner can
still plan for a solution that avoids collision. With the above as-
sumptions and condition, we have the first main result:

Main result 1 (Convergence of the state constraints).

A series of obstacle region, Of.‘, can be chosen by the predictor
and Of-‘ satisfies the relationship Of.‘ C Oé‘*l during predictable
mode m;. The set of state constraints, 1";‘, is the complement of
O{-‘ such that z; € F;‘ and l"f-{fl - F{»‘ during mode m,.

The MPC problem during mode m; is:

zj = argming, J(z), (N
stz € T¥(zo(k),0). (8)

Here, I'¥ also satisfies Assumption 2. Denote J* (k) = J(z9).

A condition on the MPC controller is also needed to guar-
antee a sufficient knowledge of the obstacle size in the planning
problem:

Condition 2 (Prediction horizon and terminal cost).
Both the prediction horizon H and the penalty on the terminal
cost are sufficient that during mode my, the open-loop prob-
lem always solves for a solution that can bring the robot to
completely pass by the obstacle.

With Assumption 1, the cost function is time-invariant and
quadratic. With Condition 2 and Main result 1, the number of fu-
ture way points affected by the obstacle is non-increasing. There-
fore, Ff’l - Ff-‘ implies that the open-loop planning problem is

finding a solution in a larger and larger space throughout time
with regard to a time-invariant cost function during mode m;.

Main result 2 (Closed-loop stability of MPC). The cost of
the optimal open-loop trajectory follows 0 < J*(k) < J*(k—1)
when Assumption 1 to 3 and Condition I and 2 are satisfied dur-
ing mode m;. Therefore, the proposed MPC with stability en-
hanced prediction is stable in the sense of Lyapunov during mode
m; before encountering a new obstacle or the worker begins to
leave the obstacle region, i.e., m switches back to my.

Regarding the closed-loop stability, the main results may
seem to be relatively straight forward to obtain under the as-
sumptions. However, it is important that with Condition 1, the
proposed method can react to situations when the condition of a
Lyapunov function is violated, i.e., collision is avoided and thus,
safety is guaranteed at all times.

A Predictor Example

The following example presents a preliminary closed-loop
stability enhanced predictor, which provides needed information
to enhance closed-loop stability. First, the scenario where the
workers’ motion is predictable needs to be identified. In a factory
setting, human workers and mobile robots usually move toward
a place and stop to complete some tasks. This means they are
going to stay in an area for an amount of time which is likely to
be long enough for the ego robot to consider them as static ob-
jects with margins. The robot can then plan a path to go around
them so that the shared-space is better utilized. We divided the
worker’s movement into two mode, moving mode and work-
ing (stop) mode. Denote the mode as m € {moving, working}.
Here moving is the unpredictable mode and working is the pre-
dictable mode. Therefore, it is important to know whether the
worker is going to stop, i.e., switches to predictable mode. To
do such prediction, denote the past position of the obstacle at
time ¢ = k to be z,p5(k), the past path of the obstacle is hﬁbs =
(2055 (0),Zobs (1), -, Zobs (k)] 7. With h¥, , denote the probability
for the obstacle to continue moving and to stop to be p,, (k) and
Pstop(k), respectively (pgo(k) + psop(k) = 1). Let ry and r, to
be the update rates (r; > 1 and 0 < r, < 1) and b to be the bias
term. Notice that T is determined by the choices of these con-
stants. We have the probability-update algorithm as shown in
Algorithm 1.

Although the worker/robot has stopped, it is still possible
that the he/she will have some movements within the working
area (i.e., obstacle region). Therefore, the ego robot needs to
know potentially how big the area is by observing the movements
of the worker/robot. A naive Bayesian filtering-based method
is presented to track the obstacle (e.g., other moving robot or
human worker) and give a safety margin according to the past
movements that the robot should keep away from the obstacle.

Each past position has an associated weight
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Algorithm 1 The probability-update algorithm.

1: procedure MOVEPRED(h, , poo(k — 1), pyrop(k— 1))
2 Acc < getAcc(h, )

3 endVel < PredictEndVel(Acc)

4: if abs(endVel) > threshold then

5: Weo = I Pgo(k—1)

6 Wstop < r2pstop(k_ 1) +b

7 else

8 Weo <= I2Pgo(k—1)+D

9 Wstop $— rlpstap(k_ 1)

10: Pgo(k), Psiop (k) <= normalize(Wgo, Wyrop)
11: return pg, (k), psiop (k)

P(zops(k)), and the weight vector for h¥,  is pf, =

[P(2obs(0)), P(zobs(1)), - - -, P(zops(k))] . In each MPC time
step, pk, . is updated:

A — T
p];bs :[ [ ’yp](()bsl]T 1 ] ’
Dobs ©)

ko _
"ol

where ¥ is the discount constant (0 < y < 1). Let h’*, - and p’*,

be the last 10 elements of h’;bs and p'[‘)bs, respectively. To de-
termine the obstacle region in the motion planning problem at
each MPC time step, denote the uncertainty index as o(k) =
std(p’*,, o W%, ), where o denotes the entry-wise multiplication.
A path that has bigger position change for the last several time
steps will result in larger o (k). This can serve as an indicator of
position uncertainty in the future under the assumption that the
future movement of the obstacle is related to the current and past
movements.

State Space Formulation and Stability

As denoted previously, kp is the time when the predic-
tor detects that the worker/robot has switched to working mode
(m = working), i.e., pgo(kps) < cpsiop(kps) and 0 < ¢ < 1. In
the following, we construct the state space during working mode
(k > kpy) with the information presented in the previous section.
Denote the high-dimensional obstacle region in the trajectory
space at each MPC time step as OX (o (k),0%,,). Consider the
scenario where there is an obstacle coming into the scene and
staying within a working area (obstacle region) while moving
back and forth to complete a task in the area, stability analy-
sis with regard to the open-loop cost function can be done with
some assumptions.

With Assumption 3, it can be shown that o (k) has an upper

bound, o (k) < O(r*v" .. ¢)» Where 7 is the number of time steps

Current state z, (k).
State space I'*.
Predicted mode m.

CFS

Trajectory planning

Planned trajectory zj.

LQR
Tracking controller

Obstacle movement
prediction and tracking

Control input [:)]

Mobile robot

o

3y K10A0 orepdn)

FIGURE 2: The overall system control design.
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FIGURE 3: Illustration of the slack variable.

used to calculate (k) and ¢ = 10 in our case. Therefore, the
motion is predictable and it is possible to find O, that can cover
the obstacle movements as stated in Definition 1. With a proper
choice of the update rates, the first condition holds and Main
result 1 can be applied.

Again, the set of state constraints, F]V‘V, is the complement of
OF and satisfies Assumption 2. The MPC problem during mode
working is:

z; = argming, J(zy), (10)
stz € T8 (z9(k),0%). an

Denote J*(k) = J(z)).

The cost of the optimal open-loop trajectory follows 0 <
J*(k) <J*(k—1) when Assumption 1 to 3 and Condition 1 and
2 are satisfied. Therefore, the proposed MPC with stability en-
hanced prediction is stable in the sense of Lyapunov for all &
during mode working.

Overall System

The overall system is shown in FIGURE 2. Although the
planned trajectory is feasible, tracking error will occur in real
world experiment, causing the state becoming infeasible. This
results in a violent motion because the control command accord-
ing to the new planning result at the next time step will immedi-
ately pull the robot out of the infeasible area. In order to avoid
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. k_ [k ok k
such problem, we introduce S* = [sk+17sk+27 . ,sk+H], the slack

variable vector. Introducing slack variables allows the states to
violate the original constraints, which are the margin boundaries
of the obstacles (FIGURE 3). However these slack variables
are also added to the cost function so that the violation is pe-
nalized [14]. The new problem is shown in the following:

miny, J(z) +||S*|3, (12)
s.t. zi € T, (13)

where I'* is:
rk— F]fV(Zo (k),O’fm Sk), if m = working (14
| X (z0(k), 05, 8%),  otherwise

An iterative LQR (ILQR) controller [15] is used for a bet-
ter tracking performance, which outputs the control commands
[v, ®]; . The overall system goes through a process as shown in
Algorithm 2 at ever MPC time step.

Algorithm 2 The overall algorithm.

1: while MPC do

2 GetInformation()

3 Predictor()

4: if pgo(kyw) < cpsiop(ky) then
5: m = working
6

7

8

9

else
m = moving
7y <+ CFS(z0(k),T%,m)
. [v @]} < ILOR(z)
10: ego robot executes the control commands

M-Convergence for Analyzing Closed-loop Perfor-
mance

In this paper, we propose a new notion, M-convergence, to
analyzing transient of the planned open-loop trajectory from one
planning instance to the next.

Definition 3 (M-convergence). We say that an action loca-
tion, zi, is M-converging if for k — M < t < k, the last M
predictions for zi satisfy: (i) ||z — 2" < |2 =272, or
(ii) |||z§<—z;<_1|| — & —Zz_z\H <8, when |2, — 2, < & or
both. Here & and € are small thresholds.

In FIGURE 4, the pink-orange-color circles are the action
location z; planned at different time steps that are tested for M-
convergence of z;. The conditions imply that the planned state z;

t=k Koaea  evee ——
Z ZKk31 Zic+H
=k A0 0—0—0— ks
t=k-2 20— O0—0—0—z2,
|
|
t=k-M+1 2 — —A=0—
|
K=M_ e ... — k=M kM
t=k-M Zk-M 2k~ Zk-M+H

FIGURE 4: Illustration of M-convergence.

would have smaller and smaller change ((i)) or sufficiently small
change ((ii)) on the predicted action location between consecu-
tive time steps after time step k — M. This notion allows us to
examine the local convergence property of the open-loop trajec-
tories to the closed-loop trajectory at each action location.

Having such property benefits the robot performance. M-
convergence guarantees that the action location will not change
much, and therefore, guarantees smoothness of the output trajec-
tory. If M is sufficiently large, the robot system will not experi-
ence sudden changes. Moreover, since the planned trajectory is
usually tracked by a low-level tracking controller, the larger the
M is, the smoother the control command would be. Therefore,
M-convergence is chosen to be one of the metrics to evaluate the
closed-loop performance.

SIMULATION RESULT AND DISCUSSION

The simulation scenario in this work is similar to that of mo-
bile robots operating in factories. To test our algorithm and see
the improvement of the proposed method, a common industrial
scenario is considered. The goal for the robot is to move along a
line, y = 0, in the positive x-axis direction, while maintaining a
constant speed which also points along the positive x-axis.

Result of Scenario with Shared-space Working Area

To show that the proposed method can better deal with dy-
namic environments, we design a scenario which is common in
human-robot shared-space environments. In the beginning, the
human worker walks (moving mode) in constant acceleration to-
wards and stops around the line y = 0 in front of the ego robot.
Once the worker stops, he/she starts to work in the area and
moves back and forth in a small range (working mode). To suc-
cessfully pass the working area, the robot needs to be able to
determine the size of the working area and not be overreacting to
the worker’s small but inconsistent movements.

Simulation results are shown in FIGURE 5a and FIG-
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(a) Simulation result of the proposed MPC with stability enhanced prediction.
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(b) Simulation result of MPC without stability enhanced prediction.

FIGURE 5: Scenario that has an oscillating moving obstacle.

URE 5b, where the blue blocks represent the worker’s posi-
tions and the gray star-lines represent the planned trajectories
at each time step (darker colors represents time steps that are
closer to current). Here, k,; = 31. We can see that the proposed
method has a overall smooth closed-loop trajectory, while MPC
without stability enhanced prediction experience oscillation on
the open-loop prediction due to the worker’s small movements
in the working mode. Correspondingly, FIGURE 6a and FIG-
URE 6b also show that the proposed method recovers faster in
M-convergence after the worker switches to working mode. In
FIGURE 6¢ we can see that having the knowledge of the size of
the working area, the proposed method can plan safely around
the worker while not being overreacting to the small movements
of the worker. On the other hand, MPC without stability en-
hanced prediction reacts strongly to the speed change and re-
sults in open-loop trajectories with high cost. In FIGURE 6d we
can see that the cost with the proposed method is the same as
MPC without stability enhanced prediction in the first 12 steps
but is noticeably smaller afterwords. This is because the pro-
posed method can better utilize the share-space therefore has bet-
ter overall performance.

Discussion

The proposed method is also tested in other similar scenarios
with different factors, e.g, worker’s acceleration, range of move-
ment during working mode. It is shown that the ego robot can al-
ways complete its task without colliding with the obstacle. How-
ever, it is noticed that tuning the predictor sometimes improves
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(a) M-convergence for simulation result of the proposed MPC with stability
enhanced prediction.
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(b) M-convergence for simulation result of MPC without stability enhanced
prediction.
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(c) Comparison for open-loop cost of MPC with/without stability enhanced
prediction (SEP).
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(d) Comparison for closed-loop cost of MPC with/without stability enhanced
prediction (SEP).

FIGURE 6: Comparison between MPC without stability en-
hanced prediction and the proposed MPC with stability enhanced
prediction.

the performance, this indicates that a better predictor is crucial in
the improvement of the proposed MPC with stability enhanced
prediction. The predictor introduced in this paper is only a pre-
liminary version and can be replaced by more advanced ones in
the future.
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EXPERIMENTAL RESULT

To verify the performance, the proposed MPC (with H = 20)
controller with stability enhanced prediction is tested on Turtle-
Bot3, which is developed by ROBOTIS. TurtleBot3 is a ROS
standard platform robot. The MPC controller is running in MAT-
LAB on a separate laptop with an 2.8 GHz Intel Core i7-7700HQ.

Similar to the simulation scenario, we have the ego robot
running the proposed MPC with stability enhanced prediction
and another remote-controlled robot (obstacle robot) represent-
ing the worker in the first scenario. The experimental result is
shown in FIGURE 9a, where we can see the robot successfully
avoids the obstacle and merges back to the original route without
overreacting to the other robot’s movements in the working area.

In the second scenario (FIGURE 9b), a human worker, hav-
ing a higher priority, i.e., doesn’t need to yield to the robot,
comes toward to the table to perform some tasks and leaves the
working area toward the opposite direction of the robot after fin-
ishing the tasks. The robot running the proposed MPC with sta-
bility enhanced prediction avoids the human worker while track-
ing a straight line. From FIGURE 7a, we can see that at the be-
ginning the robot detects the worker’s movement and the predic-
tion was assuming constant speed. After the worker switches to
working mode, the robot predicts the working area and plans ac-
cordingly (FIGURE 7b). Finally, after the worker left the work-
ing area and starts to walk away from the robot, the robot detects
that movement, switches m back to m = moving, and starts to
merge back to the line y = 0 prior to the prediction when m is
still at the working mode. FIGURE 7c shows that the gray lines
turn earlier and earlier comparing to the blue line in FIGURE 7b
as the worker leaves.

The third scenario is similar to the second scenario at the
beginning, however, the worker leaves from the other side of the
table. Therefore, the worker walks along the same direction as
the robot for a short period of time after leaving the working
area. This experiment shows that the proposed method can re-
act to situations when the condition of a Lyapunov function is
violated, i.e., avoiding collision when the predictor is switch-
ing back to unpredictable mode. From FIGURE 8a, we can see
that at the beginning the robot does the same thing as in sce-
nario 2 shown in FIGURE 7b. After the worker switches back
to moving mode, the robot detects that movement, switches m
back to m = moving, and can successfully re-plan and continue to
avoid collision (FIGURE 8b) instead of merging back to y =0 as
planned previously (FIGURE 8a). We can also see that because
the working area is sufficient to capture the obstacle movement
when the predictor is detecting the change, which fulfills Con-
dition 1, the path implemented is smooth even though there is a
change in the worker’s mode. Finally, after the worker starts to
leave the scene along the positive y direction, the robot starts to
merge back to the line y = 0 (FIGURE &c).

The experimental results show that with the proposed
method, the robot can deal with time varying environment and
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(a) Experimental result when m = moving.
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(c) Experimental result when m is switched back to m = moving (obstacle is
moving away from the robot).

FIGURE 7: Path planned and implemented in the second sce-
nario.

efficiently utilize the shared working space.

CONCLUSION

This paper discussed the conditions to enable closed-loop
stability of a motion planning MPC that handles common time
varying scenarios in co-robot systems involving dynamic HRI.
In order to guarantee such property, under the listed assumptions,
the predictor needed to be able to detect the workers’ movement
mode change within a time delay allowance and the MPC needed
to have a sufficient prediction horizon and a proper cost function.
An example of a MPC with a closed-loop stability enhanced pre-
dictor was presented. Satisfying the conditions, the proposed
MPC with stability enhanced prediction observed the environ-
ment and constructed proper state constraints for the optimiza-
tion problem. This guaranteed the robot to have closed-loop sta-
bility theoretically when all assumptions were satisfied. The con-
ditions also allowed the proposed method to avoid collision even
though the environment did not satisfy all the assumptions. To
evaluate the proposed method’s performance in practice, a new
notion, M-convergence, was used and simulation results showed
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(c) Experimental result when the worker leaves the scene.

FIGURE 8: Path planned and implemented in the third scenario.

that a robot with the proposed method was capable of dealing
with dynamic environments, had a better convergence property,
and thus, resulted in a smooth closed-loop trajectory. It was also
shown that the cost was reduced sufficiently for both open-loop
cost and closed-loop cost. Finally, experiments on Turtlebot3
showed that the proposed method performed well in time vary-
ing environments. In the future, we will improve the predictor
so that the proposed MPC with stability enhanced prediction can
deal with more complicated environments efficiently.
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(a) Experimental result with mobile robot passing by another robot.
(b) Experimental result with mobile robot passing by a human worker that walks away from the robot after leaving the working area.

(c) Experimental result with mobile robot passing by a human worker that walks along the same direction as the robot for a short period of time after leaving the working
area.

FIGURE 9: Experimental result of mobile robot running the proposed MPC with stability enhanced prediction.
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