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Abstract— Despite the increased accuracy of intrusion 

detection systems (IDS) in identifying cyberattacks in 

computer networks and devices connected to the internet, 

distributed or coordinated attacks can still go undetected or 

not detected on time.  The single vantage point limits the ability 

of these IDSs to detect such attacks. Due to this reason, there is 

a need for attack characteristics’ exchange among different 

IDS nodes. Researchers proposed a cooperative intrusion 

detection system to share these attack characteristics 

effectively. This approach was useful; however,  the security of 

the shared data cannot be guaranteed. More specifically, 

maintaining the integrity and consistency of shared data 

becomes a significant concern. In this paper, we propose a 

blockchain-based solution that ensures the integrity and 

consistency of attack characteristics shared in a cooperative 

intrusion detection system. The proposed architecture achieves 

this by detecting and preventing fake features injection and 

compromised IDS nodes. It also  facilitates scalable attack 

features exchange among IDS nodes, ensures heterogeneous 

IDS nodes participation, and it is robust to public IDS nodes 

joining and leaving the network. We evaluate the security 

analysis and latency. The result shows that the proposed 

approach detects and prevents compromised IDS nodes, 

malicious features injection, manipulation, or deletion, and it is 

also scalable with low latency.  

Keywords — Blockchain, Cyberattack, Compromised nodes, 

Features, Intrusion Detection System, Salability, Latency, Security. 

I. INTRODUCTION 

The increase in the use of the internet has made data 
storage and exchange easily achievable. However, the 
vulnerabilities of these data to cyberattacks increase 
tremendously. The authors in [1] proposed firewall, data 
encryption, and user authentication for keeping the 
unauthorized user from assessing stored data, but malicious 
intruders still find ways to subvert these protection systems 
and gain access to the unauthorized data. Further researches 
put forward intrusion detection systems (IDS) to identify 
malicious intruders in computer networks and devices 
connected to the internet [2,3]. These intrusion detection 
systems can either be classified based on their locations in 
the network:  Host-based detection system (HIDS) and 
network-based detection system (NIDS) [4] or their detection 
approaches: signature-based and anomaly-based [3].  

Intrusion detection systems have proven to be useful in 
identifying malicious activities; however, their single 
viewpoints limit the ability to detect distributed or 
coordinated cyberattacks. The vantage point has made it 
possible for some attacks to go undetected or not detected on 
time. Due to the escape of some attacks, there is a need for 
IDSs to exchange attack features with the view of detecting 
new attacks promptly. Apart from this, a zero-day attack (an 

attack without a known signature) experienced in an 
organization’s IDS located, say in London, the United 
Kingdom might be different from that experienced in another 
organization’s IDS located, say Washington DC, United 
States or another company located in the same region. 
Therefore, if IDS nodes exchange this threat information, 
more malicious activities can be stopped by coordinating 
efforts of participating IDS.  A cooperative intrusion 
detection system was proposed to improve the detecting 
power of single IDS [5-7]. In a cooperative intrusion 
detection system, IDS nodes exchange attack features with 
the view of promptly detecting an attack that has previously 
been detected by other IDS nodes. Users adopted cooperative 
intrusion detection system due to its better performance; 
however, some of the major problems threatening the 
approach are: (i) data manipulation during exchange, (ii) fake 
data injection to the database, (iii) data deletion if no one 
monitors the database activities and (iv) inability to 
guarantee the consistency of the shared data.  

The existing cooperative intrusion detection is divided 
into four main stages [8]. The main vulnerable stages are 
data storage and distribution stages (Fig. 1). Most of the 
existing approaches to secure stored data either engage a 
centralized approach (which makes the network vulnerable 
to single-point-of-failure and man-in-the-middle attacks [9, 
10,11]) or uses a decentralized approach in which the 
integrity and consistency of the shared data cannot be 
guaranteed [12,13]. 

 

Fig. 1.  Cyber-attack targets of existing cooperative intrusion detection 

 
We propose an approach that leverages distributive 

ledger technology, data immutability, and tamper-proof 
abilities of blockchain technology to detect and block 
malicious activities. The proposed approach extracts 
cyberattack features, stores, and securely distribute among 
participating nodes in real-time (Fig. 2). We define attack 
features as characteristics of attacks, retrieve from attacks 
traffic detected by any IDS. 

Fig. 2.  The proposed blockchain-based solution. 



The contributions of our work can be  summarized as 

follows: 

• We propose a private-public blockchain-based  

architecture that facilitates scalable and secured 

attack features exchange among  IDS nodes in 

computer networks 

• The architecture detects and prevents malicious 

activities on the stored data from both outsider and 

insider threats. 

• The architecture verifies the integrity and 

consistency of the retrieved features and present in 

a standard format which encourages heterogeneous 

IDS nodes participation. 

• The architecture permanently stores the verified 

attack features and shares among IDS nodes using 

a blockchain network.  

• The proposed architecture is robust to public IDS 
nodes joining and leaving the network in real-time. 

The remainder of this paper is organized as follows: 

Section II discusses the background and related works on 

cooperative intrusion detection and blockchain technology. 

Section III describes the proposed architecture. Section IV 

presents the results. While section V presents the 

conclusions of this paper and possible future works. 

II. BACKGROUND AND RELATED WORKS  

First introduced as the technology behind bitcoin in 2008 

[14], blockchain was implemented to solve the double-

spending problem in a cryptocurrency called bitcoin. Since 

its inception, diverse areas have seen the application of 

blockchain technology. e.g. health system [15,16], data 

integrity security [17], as an intrusion detection system [18 - 

20]. Blockchain is an append-only public ledger that records 

all transactions that have occurred in the network. Every 

participant in a blockchain network is called nodes.  The 

data in a blockchain is known as a transaction, and it is 

divided into blocks. Each block is dependent on the previous 

one (parent block). Every block stores some metadata and 

hash value of the previous block. So, every block has a 

pointer to its parent block. Each transaction in the public 

ledger is verified by the consensus of most of the 

participants in the system. Once the transaction is verified, it 

is impossible to mutate/erase the records [14]. Blockchain is 

broadly divided into two: public and private blockchain[21]. 

A public blockchain is a permissionless blockchain in which 

all nodes do verification and validation of transactions. e.g., 

Bitcoin, Ethereum. While private blockchains are 

permissioned blockchains where only nodes given 

permission can join and participate in the network. e.g., 

Hyperledger. 

1. Blockchain application 

The authors in [18], [19] and [20] proposed the use of 

blockchain technology in detecting an anomaly. In [18], the 

authors proposed a blockchain anomaly detection solution 

(BAD) that focuses on detecting attacks directed at the 

blockchain network. BAD prevents the insertion of a 

malicious transaction from spreading further in the 

blockchain. BAD leverages blockchain metadata named 

forks to collect potentially malicious activities in the 

blockchain network. Their works used machine learning to 

train blockchain nodes to detect malicious activities. In their 

approach, they considered eclipse attack (an attacker infects 

node’s list of IP addresses, thus forcing the victim’s node 

list of IP addresses to be controlled by that attacker). The 

analysis of the result showed that BAD was able to detect 

and stop the spread of attack that uses bitcoin forks to 

spread malicious codes. However, the solution is specific to 

attacks directed towards the blockchain network and use 

bitcoin forks. In another research put forward in [19],  the 

authors proposed collaborative IoT anomaly detection via 

blockchain solution (CIoTA). CIoTA uses the blockchain 

concept to perform distributed and collaborative anomaly 

detection on IoT devices. They used CIoTA to continuously 

trained anomaly detection models separately and then 

combine their wisdom to differentiate between rare benign 

events and malicious activities. The evaluation of the result 

showed that combined models could detect malware 

activities easily with zero false positives. The proposed 

solution uses a collaborative effort of IoT to detect attacks; 

hence, it does not solve the security concerns facing 

cooperative intrusion detection, and it is specific to malware 

attacks. 
The authors in [20] proposed a blockchain-based 

malware detection solution in mobile devices. In their work, 
they extracted installation package, permission package, and 
call graph package features for all known malware families 
for android based mobile devices and uses it to build a 
feature database. Their result showed that their solution 
could detect and classify known malware. It also performs 
malice determination and malware family classification on 
unknown software with higher accuracy and lower time cost. 
The solution above is specific to host-based malware attacks 
on Android-based mobile devices. Hence, it will be difficult 
to extend it to network-based attacks.  

2. Cooperative intrusion detection 

The authors in [22] proposed a prototype Distributed 

Intrusion Detection System (DIDS). Their system combines 

distributed monitoring and data reduction with centralized 

analysis to monitor a heterogeneous network of computers. 

The result showed that their prototype demonstrated the 

viability of distributed architecture in solving the network-

user identification problem. However, with the DIDS 

director responsible for all evaluation, the system is 

susceptible to single-point-of-failure or man-in-the-middle 

attacks. Another research put forward in [23] proposed 

DOMINO (Distributed Overlay for Monitoring Internet 

Outbreaks). DOMINO is an architecture for a distributed 

intrusion detection system that fosters collaboration among 

heterogeneous nodes organized as an overlay network. In 

their system, they used active-sink nodes that respond to and 

measure connections to unused IP addresses. This active-

sink node enables efficient detection of attacks from spoofed 

IP sources, reduces false positives, enables attack 

classification and production of timely blacklists. The result 

demonstrated the utility of sharing information between 

multiple nodes in a cooperative infrastructure and active-

sink node showed effectiveness in discriminating between 

types of attacks based on examining payload data. Although 

their system showed a good result, malicious intruders can 

hack the database that manages activities,  and the integrity 

of the stored data can be compromised. The authors in [24] 



proposed a message authentication code (MAC) for 

detecting any changes in stored data. Although this 

approach detects any changes in the stored data, however, it 

is not practical for extensive data because downloading and 

calculating MAC of large files is overwhelming and time-

consuming. Another method described in [24] secures the 

integrity of cloud data by computing the hash values of 

every data in the cloud. This solution is lighter than the first 

approach in [24]; however, it requires more computation 

power, especially for massive data; hence, it is not practical. 

The authors in [25] employ the third party to coordinate 

activities of the database. The problem with this approach is 

that the data is vulnerable to man-in-the-middle or single-

point-of-failure attack. 

Despite several kinds of research,  the available 

solutions have not addressed the security problems 

associated with data exchange in a cooperative intrusion 

detection system. Hence, the motivation for the work. Our 

proposed architecture uses blockchain technology to 

guarantee the security of shared attack features among IDS 

nodes. The novelty of our architecture is that it facilitates 

scalable attack features exchange, encourages heterogeneous 

IDS nodes participation, detects and prevents malicious 

activities on stored data from both insider and outsider 

threats. It is robust to public IDS nodes joining and leaving 

the blockchain network in real-time. This novelty 

distinguishes our work from previous works. 

III. THE PROPOSED ARCHITECTURE 

The proposed architecture, which is compatible with any 
blockchain platform, is built on the Ethereum blockchain 
platform. Ethereum blockchain is an open-source 
blockchain-based distributed computing featuring smart 
contracts. A smart contract is an agreement among 
consortium members, which is stored on the chain and run 
by all participants [26]. Although the central Ethereum 
platform is a public blockchain, we configure it to a 
combination of public and private networks. Fig. 3 shows a 
pictorial representation of the proposed architecture.  

 

 
Fig. 3. The Proposed Architecture 

 

The architecture is composed mainly of the following: 

• Authorized Nodes 

Also known as miners, these nodes prepare, 

submit, and verify transactions. They also run the 

consensus algorithm, thus validate 

transactions/blocks. All authorized nodes update 

database 

• Unauthorized Nodes 

These are also known as public nodes. They join 

the network to retrieve stored attack features. 

Public nodes are not privileged to prepare, verify, 

validate, or run consensus algorithm. They do not 

update the database but can only request the 

transaction address of the mined blocks. 

• Database 

Database, which is accessible to all nodes, stores 

the address of the mined blocks. While all public 

nodes have read-only access to it, authorized nodes 

update block information. Any data manipulation 

in the database results in an inability to access the 

contents of the blockchain but does not affect data 

stored in the blockchain network. Such malicious 

activity can be easily detected. 

 

The proposed architecture is divided into three main stages, 

as shown below.  

 

 
 

Fig. 4. Building blocks of the proposed architecture 

1.  Extraction 

Attack features are characteristics of attack traffic that 

differentiate them from regular traffic.  Anomaly-based 

IDSs detect malicious incoming traffic patterns based on 

deviation from typical traffic patterns. The IDSs are trained 

with the features extracted from regular traffic, then raise 

alert whenever there is a deviation from the known traffic 

pattern [3].  In this work, network-based attack features are 

extracted based on feature names proposed in [27] using 

network traffic analyzing tools.  We extract attack features 

under two categories: (i) Connection features and (ii) packet 

features. 

 

i. Connection features: These features are obtained 

from attack network connections. Whenever an 

attack is detected, a developed script sniffs,  

captures and analyzes network connections using 

tcpdump v. 4.9.2., libpcap v. 1.9.0, tcptrace 6.6.0, 

and Wireshark v. 3.0.1. Tcpdump captures and 

analyzes TCP packets while Wireshark uses 

libpcap to capture network connections in real-

time. Tcptrace is used to analyze the captured 

attack connections. Some of the features extracted 

and exchanged from attack connections are shown 

below in Table I. 
 

Table I:  Attack Connection Features 
 

S/N Feature Name Definition 



1 Source Port  Port from which an attack is 
launched. 

2 Destination Port Target port in the target network. 

3 Source IP The IP address of the attack node. 

4 Destination IP Target IP address in the target 

network 

5 Source Bytes The total number of bytes sent from 
attack nodes during the attack 

period. 

6 Destination 

Bytes 

The total number of bytes sent from 

the target network to attack nodes 
during the attack period. 

7 Source Packets The total number of packets sent 
from attack nodes during the attack 

period. 

8 Connection The total number of connections 

initiated with the target network by 
attack node. 

9 Duration Total time elapsed during an attack.  

10 Packets/seconds  The number of packets sent by an 
attack node within 1 second. 

11 Source Host 

count 

The total number of attack nodes 

connecting to the target network. 

12 Destination Host 

Count 

The total number of target nodes in 

the target network. 

13 Throughput  The rate at which attack nodes send 
bytes to the target node. (measured 

in kbps). 

14 Service Count The total number of ports connected 

to attack nodes during the attack 

period.   

15 Same service 
count  

The total number of connections to 
the same port number during the 

attack period. 

16 Different Host 

rate  

Percentage of attack nodes attacking 

different target nodes. 

17 Same service 

rate  

Percentage of attack nodes attacking 

the same port during the attack 

period. 

18 Same Host rate  Percentage of attack nodes attacking 

the same target node during the 

attack period. 

 

ii. Packet features: These attack features are obtained 

by sniffing and analyzing attack packets. During 

attack detection, a script that uses Scapy v 2.4.0  

analyzes ingress packets. Scapy decodes traffic 

packets and matches request with replies. Table II 

shows some of the packet features extracted. 
 

Table II. Attack Packet Features 

S/N Feature Name Definition 

1 Land  ‘1’ if the source and destination IP 

and ports are the same; otherwise 

‘0’. 

2 Type of service Class of traffic assigned to attack 
packet 

3 Protocol  Higher layer protocol used in the 

data portion of the attack packet  

4 Ip flags  How packet should be routed or 

processed by higher layer 

5 TCP Flags Defines the type of packet sent by 

attack node 

6 Urgent  Indicates priority of handling 

packets by the router 

7 Time to Live Time left for a packet to be 

discarded 

8 Checksum  Error checking in the packet header 

9 Wrong Fragment  ‘1’ if the checksum is ‘incorrect’; 

otherwise ‘0.’ 

 Based on the features in Tables I and II, a transaction, 
which agrees with a standard format, is prepared, signed, and 
submitted to the blockchain network. To verify the 
authenticity of the submitted data, the owner submits its 
verification information. Examples of such verification 
information are Transaction account, MAC address, IP 
address.   

2. Storage:  

The conformity of the submitted transaction with 

standard format is verified. The architecture also verifies the 

privilege of transaction owners to submit transactions and 

the cost of mining such transactions. If these verification 

steps are successful, the transaction is pushed for validation 

(i.e., attached to the blockchain). The storage stage is 

divided into the following steps: 

i. Transaction and owner’s verification: This step 

ensures that all malicious transactions or activities 

on the submitted transaction by either insider or 

outsider threats are blocked. (i.e., it ensures that no 

public node submits transaction and prevents 

compromised authorized nodes from participating). 

The smart contract monitors the cost of mining 

transactions and keeps track of all nodes that 

participate in mining a transaction. Algorithm 1 

describes the verification process. For verification 

step to be successful, no feature fields must be 

missing (i.e., all feature field must have values), 

verification information must be in their respective 

sets, transaction owner must not mine its 

transaction, the cost of mining transaction must not 

exceed the threshold, and sender's public key must 

verify the private key. If any of these conditions fail, 

smart contract returns fail, and the transaction is 

dropped. 

 

 
 

ii. Validation: Blockchain consensus protocols handle 

the validation of transactions. In this work, we 

combine both Proof-of-Work (PoW) and Proof-of-

Stake (PoS). The pending transaction is built into a 

block and the block is broadcasted into the 

blockchain network for validation. Every node 



receives a broadcasted block, but only authorized 

nodes (miners) work to validate the block. Each 

block contains a unique code called hash; it also 

contains a hash of the previous block. Data from 

previous blocks are encrypted or hashed into a 

series of numbers and letters.  

 

The authorized nodes work to get the target hash in 

order to validate a block. A target hash is a number 

that a hashed block header must be less than or 

equal to for a new block to be awarded. The miners 

achieve this target hash by using an iterative process 

such as POW which requires consensus from all 

authorized nodes. The characteristics of proof-of-

work are computationally difficult to compute and 

easy to verify. We set an upper bound of stake for 

every transaction to ensure fair competition among 

miners (i.e., to discourage authorized nodes with 

lager stake from always emerge as the miner). The 

process of guessing the hash starts in the block 

header. It contains a block version number, a 

timestamp, the hash used in the previous block, the 

hash of the Merkle Root, the nonce, and the target 

hash. Successfully mining a block requires an 

authorized node to be the first to guess the nonce, 

which is a random string of numbers and broadcast 

to other nodes. Other authorized nodes verify the 

correctness of the nonce value by appending this 

number to the hashed contents of the block and then 

rehashed it. If the new hash meets the requirements 

outlined in the target, then the block is added to the 

blockchain. The transaction is permanently stored 

on the blockchain network, and it is impossible to 

mutate/erase the block.  

3.  Distribution 

After a successful validation process, the transaction 

address is issued to the owner (sender). The blockchain is 

updated, and the transaction is ready to be retrieved. Steps 

involved in the secure distribution of mined features  are as  

follows: 

 

i. Ledger updating: The newly added block reflects 

on the ledger which is possessed by every nodes in 

the network. The transaction address is sent to the 

database by the transaction owner. This database is 

opened to the public so that everyone can have 

access to this information.  

ii. Features Retrieval: All blockchain nodes receive 

the notification of the newly added block but do 

not have access to the content of the block. The 

transaction address obtained from the database is 

used to retrieve information stored in the new 

block. Nodes extract the stored attack features and 

use them to train their intrusion detection systems.  

IV. RESULT 

We carry out the implementation of the proposed 

architecture first in the lab and later extends it to google 

cloud platform. The aim is to compare the behavior of the 

architecture when the nodes are in closed promixity to each 

other with when they are located far apart. We set up eight 

blockchain nodes, one database node, and one attack node 

for the lab experiment while we employ seven blockchain 

nodes located at different regions around United States for 

the cloud experiment. Table III shows the configuration of 

the nodes used in the lab, while Fig. 5 shows the location of 

the nodes when deployed to the cloud. We use Solidity v 

0.6.2 implementation for smart contract and geth v 1.9.0 for 

Ethereum. A public node becomes a miner after we write its 

verification information to the smart contract. Hence, we 

create our miners by adding the verification information to 

the smart contract. 

  
Table III: Configuration of Lab nodes 

 

Name Machine OS RAM Processor 

Node 1 Desktop 18.04 4GB 2.2GHz 

Node 2 Laptop 18.04 16GB 2.81Ghz 

Node 3 Desktop 16.04 8GB 2.44GHz 

Node 4 Laptop 18.04 4GB 2.44GHz 

Node 5 Vmware 18.04 4GB 2.2GHz 

Node 6 Vmware 18.04 4GB 2.2GHz 

Node 7 Vmware 18.04 4GB 2.2GHz 

Node 8 Vmware 18.04 4GB 2.2GHz 

attacker Laptop 16.04 4GB 2.2GHz 

database desktop window 4GB I5@2.44 

 

 

 
 
Fig. 5. Location of blockchain nodes around the United States 

 

We install tcpdump v. 4.9.2., libpcap v. 1.9.0, tcptrace 

v.6.6.0, Wireshark v. 3.0.1. and Scapy v.2.4.0 on all 

authorized nodes.  For the proof of concept, we run 

connection and packet analyzing scripts and an anomaly-

based IDS called Dendritic Cell Algorithm (DCA) [24] on 

authorized node (node 2). The attacking node launches a 

Denial of Service (DoS) attack at node 2 and we extracts the 

features as explained section III. The extracted features are 

converted to a standard format and submitted to the 

blockchain network as a transaction. The architecture 

verifies, validates and distributes these transactions among 

other nodes ( as explained above). 

A. SECURITY ANALYSIS 

1) Outsider Threat Analysis: We analyze the security of 

the architecture against malicious transaction injection in 

both experiments. A transaction, prepared by an 

unauthorized node, is submitted to the blockchain network 

for verification and validation. Although other authorized 

nodes work to validate this transaction, we observed that 



instead of issuing a transaction address to the sender, the 

owner receives a notification that the transaction has been 

failed and dropped. The transaction failed because the 

sender is not privileged to submit the transaction; hence, it 

fails the verification steps. We investigated further by 

manually generating the transaction address, then use it to 

request for the transaction from the blockchain. We 

observed that the blockchain network did not return any 

transaction because there is not transaction with such 

network address. 

 

2) Insider Threat Analysis: Here, we examined the 

security of the architecture in two common ways an 

authorized node can be compromised. 

a) A large volume of data: We implement a case 

where an authorized node sends a large amount of 

what appears to be legitimate standard formatted 

attack features in an attempt to mount a DoS attack 

on the blockchain network. An authorized node 

prepare transactions that are massive amount of 

data and submit to the blockchain network. 

Although other authorized nodes are working to 

validate the transaction, we observed that the 

transactions are not mined because the cost of 

mining these transactions exceeded the threshold 

cost. A notification to the owner indicates that the 

transaction has failed due to its cost. We 

persistently submit such huge transactions from the 

same authorized node, and we observed that other 

miners stop mining after the sender was flagged to 

be compromised. The smart contract automatically 

drops all subsequent transactions from the same 

authorized node.  

b) Fake feature values: We implement a situation 

where a compromised authorized node submits 

what appears to be legitimate standard formatted 

attack features but with fake data values. The cost 

of each submitted transaction is within the set 

range written in the smart contract. It is assumed 

that an attacker is not likely to hold an authorized 

node in a compromised state for too long due to 

frequent security checks by the network 

administrators. Based on this assumption, an 

attacker will make all efforts to get its transactions 

mined as quickly as possible. The result showed 

that such a transaction is not mined, although other 

authorized nodes are working to validate the same 

transaction. The architecture drops the transaction 

because the owner attempts to mine own 

transaction, which makes transaction flagged to 

have been compromised. Based on these results, it 

shows that the architecture has the capability of 

verifying the consistency and integrity of submitted 

transactions, thereby detecting and preventing any 

malicous activities from both the insider and 

outsider attackers on the shared data. 

B. PERFORMANCE METRICS 

 We obtain the following data for each transaction 

from every node to analyze the response time.  

• Transaction deployment time (t1): This is the time a 

transaction is submitted to the network. These data 

are collected directly from the sender console. 

• Execution time (t3): This is the time taken for the 

content of each transaction to appears in designated 

files of each node. The time is retrieved by setting 

on current time on all node consoles. 

1) Response Time: This is also known as latency 

(measured in seconds) of the blockchain network. 

For each transaction, latency is the difference 

between the execution time and the deployment 

time (t3-t1). Latency includes verification time, 

mining time, and time taken for nodes to request 

transaction address and retrieve mined features. We 

measure the response time of the architecture in 

two different scenarios: (i)Closed proximity, i.e., 

when the nodes are closed to each other  (e.g., lab) 

and (ii) Wide geographical area, i.e., when the 

nodes are far apart from each other. Fig. 6 shows 

the average response time of all nodes for both 

closed proximity and wide-area deployment. The 

average response time is the addition of all 

response times for each transaction divided by the 

number of transactions. We could observe that the 

difference in the average response time is small for 

both cases. The slight increase in the response time 

(Fig. 6A) is due to the computing power of the 

nodes, which is lower than the cloud nodes 

employed in Fig. 6B. The result shows that the 

architecture can facilitate scalable attack features 

exchange among  IDS nodes in computer networks 

irrespective of the location. 

 

 
Fig. 6. A)Average response time when performed in the lab. B)Average 

response time when deployed to locations around the US.   
 



2) Scalability: We evaluate the change in the response 

time of the blockchain network with an increasing 

number of nodes. We first implement the effect of 

increasing the number of unauthorized (public) 

nodes on the response time of two authorized nodes 

located in South Carolina and Los Angeles. The 

blockchain network is step up as described above 

with two authorized nodes and an attack node 

(located in New York). The features extracted from 

DoS attacks are prepared as transactions and 

submitted to the blockchain network. These 

transactions are verified, validated, and stored on 

the blockchain network. We record the response 

time of the two authorized nodes.  We increase the 

number of public nodes joining the network one at 

a time, repeat the experiment, and record the 

response time for the two authorized nodes. Fig. 7 

shows the response time of the two authorized 

nodes for an increasing number of public nodes. 

We observed that increasing the number of public 

nodes has no effect on the architecture’s response 

time, which implies that the solution is robust to 

public IDS nodes joining and leaving the network. 

 

 

Fig.7.  The response time with an increasing number of public nodes 

 

 Furthermore, we evaluate the response time with 

an increasing number of authorized nodes (i.e., 

miners). We set up a blockchain network, as 

described above, with seven nodes.  Transactions 

are prepared and submitted to the blockchain 

network by an authorized node. The submitted 

transactions are verified, validated, stored, and 

distributed to all nodes in the network. We repeat 

the experiment several times, and the average 

response time of each node is recorded. We 

increase the number of miners One at a time, repeat 

the experiment, and record the average response 

times of each node.   Figs. 8, and 9 show the 

response time of all nodes when the architecture is 

implemented in closed proximity and large 

geographical area with an increasing number of 

authorized nodes. We could observe a slight fall in 

the response time as more authorized nodes are 

added to the network. The decrease in response 

time is due to the availability of more miners to 

compete for mining, hence, reducing the mining 

time (which accounts for a large portion of the 

response time). The result further confirms that the 

architecture can facilitate scalable and prompt 

attack features exchange among  IDS nodes.  

 

 
 
Fig. 8. A) Response time of nodes with an increasing number of authorized 

nodes for closed proximity implementation (B) Response time of nodes 

with an increasing number of authorized nodes for wide-area deployment 

 

 
 

Fig. 9. A) Response time of nodes with an increasing number of authorized 
nodes for closed proximity implementation (B) Response time of nodes 

with an increasing number of authorized nodes for wide-area deployment 

V. CONCLUSION 

In this paper, we propose a permissionless public-private 

blockchain-based architecture that detects and prevents 

malicious activities on the stored data from both outsider 

and insider threats.  The proposed solution, which focuses 

on network-based attacks, securely extracts, stores, and 

shares attack features in real-time with the view of 

enhancing the security of shared data in cooperative 

intrusion detection. We implement the architecture in closed 

proximity and a large geographical area, evaluate the 

security analysis and performance metrics. The result 

showed that the architecture facilitate scalable and prompt 

attack features exchange among  IDS nodes, resistant to 

familiar insider and outsider attack threats and robust to 



public IDS nodes joining and leaving the network. Also, the 

result showed that the response time of the architecture 

decrease with an increasing number of miners.  

In future we wish to expand our work to accommodate the 

following : 

1. Implementing ways of increasing the throughput of 

architecture. 

2. Develop an algorithm that restricts mining of 

similar attack features by different nodes 
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