

Blockchain-Based Architecture for Secured Cyber-

Attack Features Exchange

Oluwaseyi Ajayi and Tarek Saadawi

Department of Electrical Engineering, City College of New York, New York, NY 10031

Oajayi000@citymail.cuny.edu saadawi@ccny.cuny.edu

Abstract— Despite the increased accuracy of intrusion

detection systems (IDS) in identifying cyberattacks in

computer networks and devices connected to the internet,

distributed or coordinated attacks can still go undetected or

not detected on time. The single vantage point limits the ability

of these IDSs to detect such attacks. Due to this reason, there is

a need for attack characteristics’ exchange among different

IDS nodes. Researchers proposed a cooperative intrusion

detection system to share these attack characteristics

effectively. This approach was useful; however, the security of

the shared data cannot be guaranteed. More specifically,

maintaining the integrity and consistency of shared data

becomes a significant concern. In this paper, we propose a

blockchain-based solution that ensures the integrity and

consistency of attack characteristics shared in a cooperative

intrusion detection system. The proposed architecture achieves

this by detecting and preventing fake features injection and

compromised IDS nodes. It also facilitates scalable attack

features exchange among IDS nodes, ensures heterogeneous

IDS nodes participation, and it is robust to public IDS nodes

joining and leaving the network. We evaluate the security

analysis and latency. The result shows that the proposed

approach detects and prevents compromised IDS nodes,

malicious features injection, manipulation, or deletion, and it is

also scalable with low latency.

Keywords — Blockchain, Cyberattack, Compromised nodes,

Features, Intrusion Detection System, Salability, Latency, Security.

I. INTRODUCTION

The increase in the use of the internet has made data
storage and exchange easily achievable. However, the
vulnerabilities of these data to cyberattacks increase
tremendously. The authors in [1] proposed firewall, data
encryption, and user authentication for keeping the
unauthorized user from assessing stored data, but malicious
intruders still find ways to subvert these protection systems
and gain access to the unauthorized data. Further researches
put forward intrusion detection systems (IDS) to identify
malicious intruders in computer networks and devices
connected to the internet [2,3]. These intrusion detection
systems can either be classified based on their locations in
the network: Host-based detection system (HIDS) and
network-based detection system (NIDS) [4] or their detection
approaches: signature-based and anomaly-based [3].

Intrusion detection systems have proven to be useful in
identifying malicious activities; however, their single
viewpoints limit the ability to detect distributed or
coordinated cyberattacks. The vantage point has made it
possible for some attacks to go undetected or not detected on
time. Due to the escape of some attacks, there is a need for
IDSs to exchange attack features with the view of detecting
new attacks promptly. Apart from this, a zero-day attack (an

attack without a known signature) experienced in an
organization’s IDS located, say in London, the United
Kingdom might be different from that experienced in another
organization’s IDS located, say Washington DC, United
States or another company located in the same region.
Therefore, if IDS nodes exchange this threat information,
more malicious activities can be stopped by coordinating
efforts of participating IDS. A cooperative intrusion
detection system was proposed to improve the detecting
power of single IDS [5-7]. In a cooperative intrusion
detection system, IDS nodes exchange attack features with
the view of promptly detecting an attack that has previously
been detected by other IDS nodes. Users adopted cooperative
intrusion detection system due to its better performance;
however, some of the major problems threatening the
approach are: (i) data manipulation during exchange, (ii) fake
data injection to the database, (iii) data deletion if no one
monitors the database activities and (iv) inability to
guarantee the consistency of the shared data.

The existing cooperative intrusion detection is divided
into four main stages [8]. The main vulnerable stages are
data storage and distribution stages (Fig. 1). Most of the
existing approaches to secure stored data either engage a
centralized approach (which makes the network vulnerable
to single-point-of-failure and man-in-the-middle attacks [9,
10,11]) or uses a decentralized approach in which the
integrity and consistency of the shared data cannot be
guaranteed [12,13].

Fig. 1. Cyber-attack targets of existing cooperative intrusion detection

We propose an approach that leverages distributive

ledger technology, data immutability, and tamper-proof
abilities of blockchain technology to detect and block
malicious activities. The proposed approach extracts
cyberattack features, stores, and securely distribute among
participating nodes in real-time (Fig. 2). We define attack
features as characteristics of attacks, retrieve from attacks
traffic detected by any IDS.

Fig. 2. The proposed blockchain-based solution.

The contributions of our work can be summarized as

follows:

• We propose a private-public blockchain-based

architecture that facilitates scalable and secured

attack features exchange among IDS nodes in

computer networks

• The architecture detects and prevents malicious

activities on the stored data from both outsider and

insider threats.

• The architecture verifies the integrity and

consistency of the retrieved features and present in

a standard format which encourages heterogeneous

IDS nodes participation.

• The architecture permanently stores the verified

attack features and shares among IDS nodes using

a blockchain network.

• The proposed architecture is robust to public IDS
nodes joining and leaving the network in real-time.

The remainder of this paper is organized as follows:

Section II discusses the background and related works on

cooperative intrusion detection and blockchain technology.

Section III describes the proposed architecture. Section IV

presents the results. While section V presents the

conclusions of this paper and possible future works.

II. BACKGROUND AND RELATED WORKS

First introduced as the technology behind bitcoin in 2008

[14], blockchain was implemented to solve the double-

spending problem in a cryptocurrency called bitcoin. Since

its inception, diverse areas have seen the application of

blockchain technology. e.g. health system [15,16], data

integrity security [17], as an intrusion detection system [18 -

20]. Blockchain is an append-only public ledger that records

all transactions that have occurred in the network. Every

participant in a blockchain network is called nodes. The

data in a blockchain is known as a transaction, and it is

divided into blocks. Each block is dependent on the previous

one (parent block). Every block stores some metadata and

hash value of the previous block. So, every block has a

pointer to its parent block. Each transaction in the public

ledger is verified by the consensus of most of the

participants in the system. Once the transaction is verified, it

is impossible to mutate/erase the records [14]. Blockchain is

broadly divided into two: public and private blockchain[21].

A public blockchain is a permissionless blockchain in which

all nodes do verification and validation of transactions. e.g.,

Bitcoin, Ethereum. While private blockchains are

permissioned blockchains where only nodes given

permission can join and participate in the network. e.g.,

Hyperledger.

1. Blockchain application

The authors in [18], [19] and [20] proposed the use of

blockchain technology in detecting an anomaly. In [18], the

authors proposed a blockchain anomaly detection solution

(BAD) that focuses on detecting attacks directed at the

blockchain network. BAD prevents the insertion of a

malicious transaction from spreading further in the

blockchain. BAD leverages blockchain metadata named

forks to collect potentially malicious activities in the

blockchain network. Their works used machine learning to

train blockchain nodes to detect malicious activities. In their

approach, they considered eclipse attack (an attacker infects

node’s list of IP addresses, thus forcing the victim’s node

list of IP addresses to be controlled by that attacker). The

analysis of the result showed that BAD was able to detect

and stop the spread of attack that uses bitcoin forks to

spread malicious codes. However, the solution is specific to

attacks directed towards the blockchain network and use

bitcoin forks. In another research put forward in [19], the

authors proposed collaborative IoT anomaly detection via

blockchain solution (CIoTA). CIoTA uses the blockchain

concept to perform distributed and collaborative anomaly

detection on IoT devices. They used CIoTA to continuously

trained anomaly detection models separately and then

combine their wisdom to differentiate between rare benign

events and malicious activities. The evaluation of the result

showed that combined models could detect malware

activities easily with zero false positives. The proposed

solution uses a collaborative effort of IoT to detect attacks;

hence, it does not solve the security concerns facing

cooperative intrusion detection, and it is specific to malware

attacks.
The authors in [20] proposed a blockchain-based

malware detection solution in mobile devices. In their work,
they extracted installation package, permission package, and
call graph package features for all known malware families
for android based mobile devices and uses it to build a
feature database. Their result showed that their solution
could detect and classify known malware. It also performs
malice determination and malware family classification on
unknown software with higher accuracy and lower time cost.
The solution above is specific to host-based malware attacks
on Android-based mobile devices. Hence, it will be difficult
to extend it to network-based attacks.

2. Cooperative intrusion detection

The authors in [22] proposed a prototype Distributed

Intrusion Detection System (DIDS). Their system combines

distributed monitoring and data reduction with centralized

analysis to monitor a heterogeneous network of computers.

The result showed that their prototype demonstrated the

viability of distributed architecture in solving the network-

user identification problem. However, with the DIDS

director responsible for all evaluation, the system is

susceptible to single-point-of-failure or man-in-the-middle

attacks. Another research put forward in [23] proposed

DOMINO (Distributed Overlay for Monitoring Internet

Outbreaks). DOMINO is an architecture for a distributed

intrusion detection system that fosters collaboration among

heterogeneous nodes organized as an overlay network. In

their system, they used active-sink nodes that respond to and

measure connections to unused IP addresses. This active-

sink node enables efficient detection of attacks from spoofed

IP sources, reduces false positives, enables attack

classification and production of timely blacklists. The result

demonstrated the utility of sharing information between

multiple nodes in a cooperative infrastructure and active-

sink node showed effectiveness in discriminating between

types of attacks based on examining payload data. Although

their system showed a good result, malicious intruders can

hack the database that manages activities, and the integrity

of the stored data can be compromised. The authors in [24]

proposed a message authentication code (MAC) for

detecting any changes in stored data. Although this

approach detects any changes in the stored data, however, it

is not practical for extensive data because downloading and

calculating MAC of large files is overwhelming and time-

consuming. Another method described in [24] secures the

integrity of cloud data by computing the hash values of

every data in the cloud. This solution is lighter than the first

approach in [24]; however, it requires more computation

power, especially for massive data; hence, it is not practical.

The authors in [25] employ the third party to coordinate

activities of the database. The problem with this approach is

that the data is vulnerable to man-in-the-middle or single-

point-of-failure attack.

Despite several kinds of research, the available

solutions have not addressed the security problems

associated with data exchange in a cooperative intrusion

detection system. Hence, the motivation for the work. Our

proposed architecture uses blockchain technology to

guarantee the security of shared attack features among IDS

nodes. The novelty of our architecture is that it facilitates

scalable attack features exchange, encourages heterogeneous

IDS nodes participation, detects and prevents malicious

activities on stored data from both insider and outsider

threats. It is robust to public IDS nodes joining and leaving

the blockchain network in real-time. This novelty

distinguishes our work from previous works.

III. THE PROPOSED ARCHITECTURE

The proposed architecture, which is compatible with any
blockchain platform, is built on the Ethereum blockchain
platform. Ethereum blockchain is an open-source
blockchain-based distributed computing featuring smart
contracts. A smart contract is an agreement among
consortium members, which is stored on the chain and run
by all participants [26]. Although the central Ethereum
platform is a public blockchain, we configure it to a
combination of public and private networks. Fig. 3 shows a
pictorial representation of the proposed architecture.

Fig. 3. The Proposed Architecture

The architecture is composed mainly of the following:

• Authorized Nodes

Also known as miners, these nodes prepare,

submit, and verify transactions. They also run the

consensus algorithm, thus validate

transactions/blocks. All authorized nodes update

database

• Unauthorized Nodes

These are also known as public nodes. They join

the network to retrieve stored attack features.

Public nodes are not privileged to prepare, verify,

validate, or run consensus algorithm. They do not

update the database but can only request the

transaction address of the mined blocks.

• Database

Database, which is accessible to all nodes, stores

the address of the mined blocks. While all public

nodes have read-only access to it, authorized nodes

update block information. Any data manipulation

in the database results in an inability to access the

contents of the blockchain but does not affect data

stored in the blockchain network. Such malicious

activity can be easily detected.

The proposed architecture is divided into three main stages,

as shown below.

Fig. 4. Building blocks of the proposed architecture

1. Extraction

Attack features are characteristics of attack traffic that

differentiate them from regular traffic. Anomaly-based

IDSs detect malicious incoming traffic patterns based on

deviation from typical traffic patterns. The IDSs are trained

with the features extracted from regular traffic, then raise

alert whenever there is a deviation from the known traffic

pattern [3]. In this work, network-based attack features are

extracted based on feature names proposed in [27] using

network traffic analyzing tools. We extract attack features

under two categories: (i) Connection features and (ii) packet

features.

i. Connection features: These features are obtained

from attack network connections. Whenever an

attack is detected, a developed script sniffs,

captures and analyzes network connections using

tcpdump v. 4.9.2., libpcap v. 1.9.0, tcptrace 6.6.0,

and Wireshark v. 3.0.1. Tcpdump captures and

analyzes TCP packets while Wireshark uses

libpcap to capture network connections in real-

time. Tcptrace is used to analyze the captured

attack connections. Some of the features extracted

and exchanged from attack connections are shown

below in Table I.

Table I: Attack Connection Features

S/N Feature Name Definition

1 Source Port Port from which an attack is
launched.

2 Destination Port Target port in the target network.

3 Source IP The IP address of the attack node.

4 Destination IP Target IP address in the target

network

5 Source Bytes The total number of bytes sent from
attack nodes during the attack

period.

6 Destination

Bytes

The total number of bytes sent from

the target network to attack nodes
during the attack period.

7 Source Packets The total number of packets sent
from attack nodes during the attack

period.

8 Connection The total number of connections

initiated with the target network by
attack node.

9 Duration Total time elapsed during an attack.

10 Packets/seconds The number of packets sent by an
attack node within 1 second.

11 Source Host

count

The total number of attack nodes

connecting to the target network.

12 Destination Host

Count

The total number of target nodes in

the target network.

13 Throughput The rate at which attack nodes send
bytes to the target node. (measured

in kbps).

14 Service Count The total number of ports connected

to attack nodes during the attack

period.

15 Same service
count

The total number of connections to
the same port number during the

attack period.

16 Different Host

rate

Percentage of attack nodes attacking

different target nodes.

17 Same service

rate

Percentage of attack nodes attacking

the same port during the attack

period.

18 Same Host rate Percentage of attack nodes attacking

the same target node during the

attack period.

ii. Packet features: These attack features are obtained

by sniffing and analyzing attack packets. During

attack detection, a script that uses Scapy v 2.4.0

analyzes ingress packets. Scapy decodes traffic

packets and matches request with replies. Table II

shows some of the packet features extracted.

Table II. Attack Packet Features

S/N Feature Name Definition

1 Land ‘1’ if the source and destination IP

and ports are the same; otherwise

‘0’.

2 Type of service Class of traffic assigned to attack
packet

3 Protocol Higher layer protocol used in the

data portion of the attack packet

4 Ip flags How packet should be routed or

processed by higher layer

5 TCP Flags Defines the type of packet sent by

attack node

6 Urgent Indicates priority of handling

packets by the router

7 Time to Live Time left for a packet to be

discarded

8 Checksum Error checking in the packet header

9 Wrong Fragment ‘1’ if the checksum is ‘incorrect’;

otherwise ‘0.’

 Based on the features in Tables I and II, a transaction,
which agrees with a standard format, is prepared, signed, and
submitted to the blockchain network. To verify the
authenticity of the submitted data, the owner submits its
verification information. Examples of such verification
information are Transaction account, MAC address, IP
address.

2. Storage:

The conformity of the submitted transaction with

standard format is verified. The architecture also verifies the

privilege of transaction owners to submit transactions and

the cost of mining such transactions. If these verification

steps are successful, the transaction is pushed for validation

(i.e., attached to the blockchain). The storage stage is

divided into the following steps:

i. Transaction and owner’s verification: This step

ensures that all malicious transactions or activities

on the submitted transaction by either insider or

outsider threats are blocked. (i.e., it ensures that no

public node submits transaction and prevents

compromised authorized nodes from participating).

The smart contract monitors the cost of mining

transactions and keeps track of all nodes that

participate in mining a transaction. Algorithm 1

describes the verification process. For verification

step to be successful, no feature fields must be

missing (i.e., all feature field must have values),

verification information must be in their respective

sets, transaction owner must not mine its

transaction, the cost of mining transaction must not

exceed the threshold, and sender's public key must

verify the private key. If any of these conditions fail,

smart contract returns fail, and the transaction is

dropped.

ii. Validation: Blockchain consensus protocols handle

the validation of transactions. In this work, we

combine both Proof-of-Work (PoW) and Proof-of-

Stake (PoS). The pending transaction is built into a

block and the block is broadcasted into the

blockchain network for validation. Every node

receives a broadcasted block, but only authorized

nodes (miners) work to validate the block. Each

block contains a unique code called hash; it also

contains a hash of the previous block. Data from

previous blocks are encrypted or hashed into a

series of numbers and letters.

The authorized nodes work to get the target hash in

order to validate a block. A target hash is a number

that a hashed block header must be less than or

equal to for a new block to be awarded. The miners

achieve this target hash by using an iterative process

such as POW which requires consensus from all

authorized nodes. The characteristics of proof-of-

work are computationally difficult to compute and

easy to verify. We set an upper bound of stake for

every transaction to ensure fair competition among

miners (i.e., to discourage authorized nodes with

lager stake from always emerge as the miner). The

process of guessing the hash starts in the block

header. It contains a block version number, a

timestamp, the hash used in the previous block, the

hash of the Merkle Root, the nonce, and the target

hash. Successfully mining a block requires an

authorized node to be the first to guess the nonce,

which is a random string of numbers and broadcast

to other nodes. Other authorized nodes verify the

correctness of the nonce value by appending this

number to the hashed contents of the block and then

rehashed it. If the new hash meets the requirements

outlined in the target, then the block is added to the

blockchain. The transaction is permanently stored

on the blockchain network, and it is impossible to

mutate/erase the block.

3. Distribution

After a successful validation process, the transaction

address is issued to the owner (sender). The blockchain is

updated, and the transaction is ready to be retrieved. Steps

involved in the secure distribution of mined features are as

follows:

i. Ledger updating: The newly added block reflects

on the ledger which is possessed by every nodes in

the network. The transaction address is sent to the

database by the transaction owner. This database is

opened to the public so that everyone can have

access to this information.

ii. Features Retrieval: All blockchain nodes receive

the notification of the newly added block but do

not have access to the content of the block. The

transaction address obtained from the database is

used to retrieve information stored in the new

block. Nodes extract the stored attack features and

use them to train their intrusion detection systems.

IV. RESULT

We carry out the implementation of the proposed

architecture first in the lab and later extends it to google

cloud platform. The aim is to compare the behavior of the

architecture when the nodes are in closed promixity to each

other with when they are located far apart. We set up eight

blockchain nodes, one database node, and one attack node

for the lab experiment while we employ seven blockchain

nodes located at different regions around United States for

the cloud experiment. Table III shows the configuration of

the nodes used in the lab, while Fig. 5 shows the location of

the nodes when deployed to the cloud. We use Solidity v

0.6.2 implementation for smart contract and geth v 1.9.0 for

Ethereum. A public node becomes a miner after we write its

verification information to the smart contract. Hence, we

create our miners by adding the verification information to

the smart contract.

Table III: Configuration of Lab nodes

Name Machine OS RAM Processor

Node 1 Desktop 18.04 4GB 2.2GHz

Node 2 Laptop 18.04 16GB 2.81Ghz

Node 3 Desktop 16.04 8GB 2.44GHz

Node 4 Laptop 18.04 4GB 2.44GHz

Node 5 Vmware 18.04 4GB 2.2GHz

Node 6 Vmware 18.04 4GB 2.2GHz

Node 7 Vmware 18.04 4GB 2.2GHz

Node 8 Vmware 18.04 4GB 2.2GHz

attacker Laptop 16.04 4GB 2.2GHz

database desktop window 4GB I5@2.44

Fig. 5. Location of blockchain nodes around the United States

We install tcpdump v. 4.9.2., libpcap v. 1.9.0, tcptrace

v.6.6.0, Wireshark v. 3.0.1. and Scapy v.2.4.0 on all

authorized nodes. For the proof of concept, we run

connection and packet analyzing scripts and an anomaly-

based IDS called Dendritic Cell Algorithm (DCA) [24] on

authorized node (node 2). The attacking node launches a

Denial of Service (DoS) attack at node 2 and we extracts the

features as explained section III. The extracted features are

converted to a standard format and submitted to the

blockchain network as a transaction. The architecture

verifies, validates and distributes these transactions among

other nodes (as explained above).

A. SECURITY ANALYSIS

1) Outsider Threat Analysis: We analyze the security of

the architecture against malicious transaction injection in

both experiments. A transaction, prepared by an

unauthorized node, is submitted to the blockchain network

for verification and validation. Although other authorized

nodes work to validate this transaction, we observed that

instead of issuing a transaction address to the sender, the

owner receives a notification that the transaction has been

failed and dropped. The transaction failed because the

sender is not privileged to submit the transaction; hence, it

fails the verification steps. We investigated further by

manually generating the transaction address, then use it to

request for the transaction from the blockchain. We

observed that the blockchain network did not return any

transaction because there is not transaction with such

network address.

2) Insider Threat Analysis: Here, we examined the

security of the architecture in two common ways an

authorized node can be compromised.

a) A large volume of data: We implement a case

where an authorized node sends a large amount of

what appears to be legitimate standard formatted

attack features in an attempt to mount a DoS attack

on the blockchain network. An authorized node

prepare transactions that are massive amount of

data and submit to the blockchain network.

Although other authorized nodes are working to

validate the transaction, we observed that the

transactions are not mined because the cost of

mining these transactions exceeded the threshold

cost. A notification to the owner indicates that the

transaction has failed due to its cost. We

persistently submit such huge transactions from the

same authorized node, and we observed that other

miners stop mining after the sender was flagged to

be compromised. The smart contract automatically

drops all subsequent transactions from the same

authorized node.

b) Fake feature values: We implement a situation

where a compromised authorized node submits

what appears to be legitimate standard formatted

attack features but with fake data values. The cost

of each submitted transaction is within the set

range written in the smart contract. It is assumed

that an attacker is not likely to hold an authorized

node in a compromised state for too long due to

frequent security checks by the network

administrators. Based on this assumption, an

attacker will make all efforts to get its transactions

mined as quickly as possible. The result showed

that such a transaction is not mined, although other

authorized nodes are working to validate the same

transaction. The architecture drops the transaction

because the owner attempts to mine own

transaction, which makes transaction flagged to

have been compromised. Based on these results, it

shows that the architecture has the capability of

verifying the consistency and integrity of submitted

transactions, thereby detecting and preventing any

malicous activities from both the insider and

outsider attackers on the shared data.

B. PERFORMANCE METRICS

 We obtain the following data for each transaction

from every node to analyze the response time.

• Transaction deployment time (t1): This is the time a

transaction is submitted to the network. These data

are collected directly from the sender console.

• Execution time (t3): This is the time taken for the

content of each transaction to appears in designated

files of each node. The time is retrieved by setting

on current time on all node consoles.

1) Response Time: This is also known as latency

(measured in seconds) of the blockchain network.

For each transaction, latency is the difference

between the execution time and the deployment

time (t3-t1). Latency includes verification time,

mining time, and time taken for nodes to request

transaction address and retrieve mined features. We

measure the response time of the architecture in

two different scenarios: (i)Closed proximity, i.e.,

when the nodes are closed to each other (e.g., lab)

and (ii) Wide geographical area, i.e., when the

nodes are far apart from each other. Fig. 6 shows

the average response time of all nodes for both

closed proximity and wide-area deployment. The

average response time is the addition of all

response times for each transaction divided by the

number of transactions. We could observe that the

difference in the average response time is small for

both cases. The slight increase in the response time

(Fig. 6A) is due to the computing power of the

nodes, which is lower than the cloud nodes

employed in Fig. 6B. The result shows that the

architecture can facilitate scalable attack features

exchange among IDS nodes in computer networks

irrespective of the location.

Fig. 6. A)Average response time when performed in the lab. B)Average

response time when deployed to locations around the US.

2) Scalability: We evaluate the change in the response

time of the blockchain network with an increasing

number of nodes. We first implement the effect of

increasing the number of unauthorized (public)

nodes on the response time of two authorized nodes

located in South Carolina and Los Angeles. The

blockchain network is step up as described above

with two authorized nodes and an attack node

(located in New York). The features extracted from

DoS attacks are prepared as transactions and

submitted to the blockchain network. These

transactions are verified, validated, and stored on

the blockchain network. We record the response

time of the two authorized nodes. We increase the

number of public nodes joining the network one at

a time, repeat the experiment, and record the

response time for the two authorized nodes. Fig. 7

shows the response time of the two authorized

nodes for an increasing number of public nodes.

We observed that increasing the number of public

nodes has no effect on the architecture’s response

time, which implies that the solution is robust to

public IDS nodes joining and leaving the network.

Fig.7. The response time with an increasing number of public nodes

 Furthermore, we evaluate the response time with

an increasing number of authorized nodes (i.e.,

miners). We set up a blockchain network, as

described above, with seven nodes. Transactions

are prepared and submitted to the blockchain

network by an authorized node. The submitted

transactions are verified, validated, stored, and

distributed to all nodes in the network. We repeat

the experiment several times, and the average

response time of each node is recorded. We

increase the number of miners One at a time, repeat

the experiment, and record the average response

times of each node. Figs. 8, and 9 show the

response time of all nodes when the architecture is

implemented in closed proximity and large

geographical area with an increasing number of

authorized nodes. We could observe a slight fall in

the response time as more authorized nodes are

added to the network. The decrease in response

time is due to the availability of more miners to

compete for mining, hence, reducing the mining

time (which accounts for a large portion of the

response time). The result further confirms that the

architecture can facilitate scalable and prompt

attack features exchange among IDS nodes.

Fig. 8. A) Response time of nodes with an increasing number of authorized

nodes for closed proximity implementation (B) Response time of nodes

with an increasing number of authorized nodes for wide-area deployment

Fig. 9. A) Response time of nodes with an increasing number of authorized
nodes for closed proximity implementation (B) Response time of nodes

with an increasing number of authorized nodes for wide-area deployment

V. CONCLUSION

In this paper, we propose a permissionless public-private

blockchain-based architecture that detects and prevents

malicious activities on the stored data from both outsider

and insider threats. The proposed solution, which focuses

on network-based attacks, securely extracts, stores, and

shares attack features in real-time with the view of

enhancing the security of shared data in cooperative

intrusion detection. We implement the architecture in closed

proximity and a large geographical area, evaluate the

security analysis and performance metrics. The result

showed that the architecture facilitate scalable and prompt

attack features exchange among IDS nodes, resistant to

familiar insider and outsider attack threats and robust to

public IDS nodes joining and leaving the network. Also, the

result showed that the response time of the architecture

decrease with an increasing number of miners.

In future we wish to expand our work to accommodate the

following :

1. Implementing ways of increasing the throughput of

architecture.

2. Develop an algorithm that restricts mining of

similar attack features by different nodes

REFERENCES

[1] S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas,
“Modeling intrusion detection system using hybrid intelligent
systems,” Journal of network and computer applications, vol. 30, no.
1, pp. 114–132, 2007.

[2] O. Igbe, O. Ajayi, and T. Saadawi, “Denial of Service Attack
Detection using Dendritic Cell Algorithm” 2017 IEEE 8th Annual
Ubiquitous Computing, Electronics and Mobile Communication
Conference (UEMCON 2017) Oct 19th – 21st 2017, Columbia
University, New York, USA.

[3] O. Igbe, O. Ajayi, and T. Saadawi, “Detecting Denial of Service
attacks using a combination of Dendritic Cell Algorithm(DCA) and
Negative Selection Algorithm(NSA)” 2nd International Conference
on Smart Cloud (Smart Cloud 2017) Nov 3rd-5th, 2017, New York,
USA.

[4] F. Gong, ‘‘Next-generation intrusion detection systems (IDS),’’
McAfee Netw. Security. Technol. Group, Santa Clara, CA, USA,
White Paper, 2003

[5] Y. L. Dong, J. Qian, M. L. Shi, “A cooperative intrusion detection
system based on autonomous agents,” IEEE CCECE 2003, Vol. 2, pp.
861– 863, 2003.

[6] C. C. Lo, C. Huang, J. Ku, A cooperative intrusion detection system
framework for cloud computing networks, in: In: Proceedings of the
2010 39th International Conference on Parallel Processing
Workshops,ICPPW '10, 2010, pp. 280-284.

[7] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi, ‘‘Collaborative intrusion
detection system (CIDS): A framework for accurate and efficient
IDS,’’ in Proc. Annu. Comput. Secur. Appl. Conf. (ACSAC), Dec.
2003, pp. 234–244.

[8] O. Ajayi, M. Cherian and T. Saadawi, "Secured Cyber-Attack
Signatures Distribution using Blockchain Technology," 2019 IEEE
International Conference on Computational Science and Engineering
(CSE) and IEEE International Conference on Embedded and
Ubiquitous Computing (EUC), New York, NY, USA, 2019, pp. 482-
488.

[9] Y. L. Dong, J. Qian, M. L. Shi, “A cooperative intrusion detection
system based on autonomous agents,” IEEE CCECE 2003, Vol. 2, pp.
861– 863, 2003.

[10] C. C. Lo, C. Huang, J. Ku, “A cooperative intrusion detection system
framework for cloud computing networks,” In Proceedings of the
2010 39th International Conference on Parallel Processing
Workshops,ICPPW '10, 2010, pp. 280-284.

[11] W. Zhang, S. Teng, H. Zhu, D. Liu, "A Cooperative Intrusion
Detection Model Based on Granular Computing and Agent
Technologies", J. International Journal of Agent Technologies and
Systems, vol. 5, no. 3, pp. 54-74, 2013

[12] S.R. Snapp, J. Brentano, GV dias, T.L. Goan, L.T. Heberlein, C. Ho,
K.N. Levitt, B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal, and D.
Mansur. DIDS (distributed intrusion detection system) — motivation,
architecture, and an early prototype. In Proceedings of the 14th
National Computer Security Conference, pages 167–176, October
1991.

[13] M. Uddin, A. Abdul Rehman, N. Uddin, J. Memon, R. Alsaqour, and
S. Kazi, “Signature-based Multi-Layer Distributed Intrusion
Detection” International Journal of Network Security, Vol.15, No.2,
PP.97-105, Mar. 2013

[14] S. Nakamoto (2008) Bitcoin: a peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf

[15] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B. Amaba.
“Blockchain Technology Innovation”. 2017 IEEE Technology &
Engineering Management Conference (TEMSCON), 2017

[16] Liang, X.; Zhao, J.; Shetty, S.; Liu, J.; Li, D. Integrating blockchain
for data sharing and collaboration in mobile healthcare applications.
In Proceedings of the 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Montreal, QC, Canada, 8–13 October 2017

[17] Zikratov, I., Kuzmin, A., Akimenko, V., Niculichev, V., Yalansky,
L.: Ensuring data integrity using Blockchain technology. In:
Proceeding of the 20th Conference of fruct Association ISSN 2305-
7254 IEEE (2017)

[18] M Signorini and M Pontecorvi, W Kanoun, and R Di Pietro, “BAD:
a Blockchain Anomaly Detection solution” arXiv:1807.03833v2, [cs.
CR] 12 jul 2018

[19] T. Golomb, Y. Mirsky and Y. Elovici “ CIoTA: Collaborative IoT
Anomaly Detection via Blockchain” arXiv:1803.03807v2, [cs.CY] 09
Apr 2018

[20] Gu, J, B Sun, X Du, J Wang, Y Zhuang and Z Wang (2018).
Consortium blockchain-based malware detection in mobile devices.
IEEE Access, 6, 12118–12128

[21] Abdullah, N., Hakansson, A., & Moradian, E. (2017). Blockchain
based approach to enhance big data authentication in distributed
environment. In Ubiquitous and future networks (icufn), 2017 ninth
international conference on (pp. 887–892).

[22] S.R. Snapp, J. Brentano, GV dias, T.L. Goan, L.T. Heberlein, C. Ho,
K.N. Levitt, B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal, and D.
Mansur. DIDS (distributed intrusion detection system) — motivation,
architecture, and an early prototype. In Proceedings of the 14th
National Computer Security Conference, pages 167–176, October
1991.

[23] V. Yegneswaran, P. Barford, S. Jha, "Global intrusion detection in
the DOMINO overlay system", Proc. Netw. Distrib. Syst. Secur.
Symp. (NDSS), pp. 1-17, 2004.

[24] Sultan Aldossary, William Allen. Data Security, Privacy, Availability
and Integrity in Cloud Computing: Issues and Current Solutions.
(IJACSA) International Journal of Advanced Computer Science and
Applications,Vol. 7, No. 4, 2016 pp.485-498

[25] C. Wang, S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” Computers,
IEEE Transactions on, vol. 62, no. 2, pp. 362–375, Feb 2013

[26] Ingo Weber, Vincent Gramoli, Mark Staples, Alex Ponomarev, Ralph
Holz, An Binh Tran, and Paul Rimba. 2017. On Availability for
Blockchain-Based Systems. In SRDS’17: IEEE International
Symposium on Reliable Distributed Systems

[27] L. Dhanabal, S.P. Shantharajah, A study on NSL-KDD dataset for
intrusion detection system based on classification algorithms,
International Journal of Advanced Research in Computer and
Communication Engineering 4 (2015) 446–452

http://bitcoin.org/bitcoin.pdf

