Blockchain-Based Architecture for Secured Cyber-
Attack Features Exchange

Oluwaseyi Ajayi and Tarek Saadawi

Department of Electrical Engineering, City College of New York, New York, NY 10031

Oajayi000@citymail.cuny.edu

Abstract— Despite the increased accuracy of intrusion
detection systems (IDS) in identifying cyberattacks in
computer networks and devices connected to the internet,
distributed or coordinated attacks can still go undetected or
not detected on time. The single vantage point limits the ability
of these IDSs to detect such attacks. Due to this reason, there is
a need for attack characteristics’ exchange among different
IDS nodes. Researchers proposed a cooperative intrusion
detection system to share these attack characteristics
effectively. This approach was useful; however, the security of
the shared data cannot be guaranteed. More specifically,
maintaining the integrity and consistency of shared data
becomes a significant concern. In this paper, we propose a
blockchain-based solution that ensures the integrity and
consistency of attack characteristics shared in a cooperative
intrusion detection system. The proposed architecture achieves
this by detecting and preventing fake features injection and
compromised IDS nodes. It also facilitates scalable attack
features exchange among IDS nodes, ensures heterogeneous
IDS nodes participation, and it is robust to public IDS nodes
joining and leaving the network. We evaluate the security
analysis and latency. The result shows that the proposed
approach detects and prevents compromised IDS nodes,
malicious features injection, manipulation, or deletion, and it is
also scalable with low latency.

Keywords — Blockchain, Cyberattack, Compromised nodes,
Features, Intrusion Detection System, Salability, Latency, Security.

1. INTRODUCTION

The increase in the use of the internet has made data
storage and exchange easily achievable. However, the
vulnerabilities of these data to cyberattacks increase
tremendously. The authors in [1] proposed firewall, data
encryption, and wuser authentication for keeping the
unauthorized user from assessing stored data, but malicious
intruders still find ways to subvert these protection systems
and gain access to the unauthorized data. Further researches
put forward intrusion detection systems (IDS) to identify
malicious intruders in computer networks and devices
connected to the internet [2,3]. These intrusion detection
systems can either be classified based on their locations in
the network: Host-based detection system (HIDS) and
network-based detection system (NIDS) [4] or their detection
approaches: signature-based and anomaly-based [3].

Intrusion detection systems have proven to be useful in
identifying malicious activities; however, their single
viewpoints limit the ability to detect distributed or
coordinated cyberattacks. The vantage point has made it
possible for some attacks to go undetected or not detected on
time. Due to the escape of some attacks, there is a need for
IDSs to exchange attack features with the view of detecting
new attacks promptly. Apart from this, a zero-day attack (an

saadawi@ccny.cuny.edu

attack without a known signature) experienced in an
organization’s IDS located, say in London, the United
Kingdom might be different from that experienced in another
organization’s IDS located, say Washington DC, United
States or another company located in the same region.
Therefore, if IDS nodes exchange this threat information,
more malicious activities can be stopped by coordinating
efforts of participating IDS. A cooperative intrusion
detection system was proposed to improve the detecting
power of single IDS [5-7]. In a cooperative intrusion
detection system, IDS nodes exchange attack features with
the view of promptly detecting an attack that has previously
been detected by other IDS nodes. Users adopted cooperative
intrusion detection system due to its better performance;
however, some of the major problems threatening the
approach are: (i) data manipulation during exchange, (ii) fake
data injection to the database, (iii) data deletion if no one
monitors the database activities and (iv) inability to
guarantee the consistency of the shared data.

The existing cooperative intrusion detection is divided
into four main stages [8]. The main vulnerable stages are
data storage and distribution stages (Fig. 1). Most of the
existing approaches to secure stored data either engage a
centralized approach (which makes the network vulnerable
to single-point-of-failure and man-in-the-middle attacks [9,
10,11]) or uses a decentralized approach in which the
integrity and consistency of the shared data cannot be
guaranteed [12,13].

EXISTING COOPERATIVE INTRUSION DETECTION

}—)‘ CLOUD STORAGE }—b{ DISTRIBUTION
A -

R .

~ e

ATTACKER

FEATURES
EXTRACTION

ATTACK
DETECTION

Fig. 1. Cyber-attack targets of existing cooperative intrusion detection

We propose an approach that leverages distributive
ledger technology, data immutability, and tamper-proof
abilities of blockchain technology to detect and block
malicious activities. The proposed approach extracts
cyberattack features, stores, and securely distribute among
participating nodes in real-time (Fig. 2). We define attack
features as characteristics of attacks, retrieve from attacks
traffic detected by any IDS.

BLOCKCHAIN-BASED NETWORK

ATTACK FEATURES FEATURES/SENDER DISTRIBUTED DATA
DETECTION EXTRACTION VERIFICATION EDGER STORAGE RETRIEVAL

ATTACKER

Fig. 2. The proposed blockchain-based solution.

The contributions of our work can be summarized as

follows:

e We propose a private-public blockchain-based
architecture that facilitates scalable and secured
attack features exchange among IDS nodes in
computer networks

e The architecture detects and prevents malicious
activities on the stored data from both outsider and
insider threats.

e The architecture verifies the integrity and
consistency of the retrieved features and present in
a standard format which encourages heterogeneous
IDS nodes participation.

e The architecture permanently stores the verified
attack features and shares among IDS nodes using
a blockchain network.

e The proposed architecture is robust to public IDS
nodes joining and leaving the network in real-time.

The remainder of this paper is organized as follows:
Section II discusses the background and related works on
cooperative intrusion detection and blockchain technology.
Section III describes the proposed architecture. Section IV
presents the results. While section V presents the
conclusions of this paper and possible future works.

II. BACKGROUND AND RELATED WORKS

First introduced as the technology behind bitcoin in 2008
[14], blockchain was implemented to solve the double-
spending problem in a cryptocurrency called bitcoin. Since
its inception, diverse areas have seen the application of
blockchain technology. e.g. health system [15,16], data
integrity security [17], as an intrusion detection system [18 -
20]. Blockchain is an append-only public ledger that records
all transactions that have occurred in the network. Every
participant in a blockchain network is called nodes. The
data in a blockchain is known as a transaction, and it is
divided into blocks. Each block is dependent on the previous
one (parent block). Every block stores some metadata and
hash value of the previous block. So, every block has a
pointer to its parent block. Each transaction in the public
ledger is wverified by the consensus of most of the
participants in the system. Once the transaction is verified, it
is impossible to mutate/erase the records [14]. Blockchain is
broadly divided into two: public and private blockchain[21].
A public blockchain is a permissionless blockchain in which
all nodes do verification and validation of transactions. e.g.,
Bitcoin, Ethereum. While private blockchains are
permissioned blockchains where only nodes given
permission can join and participate in the network. e.g.,
Hyperledger.

1. Blockchain application

The authors in [18], [19] and [20] proposed the use of
blockchain technology in detecting an anomaly. In [18], the
authors proposed a blockchain anomaly detection solution
(BAD) that focuses on detecting attacks directed at the
blockchain network. BAD prevents the insertion of a
malicious transaction from spreading further in the
blockchain. BAD leverages blockchain metadata named
forks to collect potentially malicious activities in the
blockchain network. Their works used machine learning to

train blockchain nodes to detect malicious activities. In their
approach, they considered eclipse attack (an attacker infects
node’s list of IP addresses, thus forcing the victim’s node
list of IP addresses to be controlled by that attacker). The
analysis of the result showed that BAD was able to detect
and stop the spread of attack that uses bitcoin forks to
spread malicious codes. However, the solution is specific to
attacks directed towards the blockchain network and use
bitcoin forks. In another research put forward in [19], the
authors proposed collaborative IoT anomaly detection via
blockchain solution (CIoTA). CIoTA uses the blockchain
concept to perform distributed and collaborative anomaly
detection on IoT devices. They used CIoTA to continuously
trained anomaly detection models separately and then
combine their wisdom to differentiate between rare benign
events and malicious activities. The evaluation of the result
showed that combined models could detect malware
activities easily with zero false positives. The proposed
solution uses a collaborative effort of IoT to detect attacks;
hence, it does not solve the security concerns facing
cooperative intrusion detection, and it is specific to malware
attacks.

The authors in [20] proposed a blockchain-based
malware detection solution in mobile devices. In their work,
they extracted installation package, permission package, and
call graph package features for all known malware families
for android based mobile devices and uses it to build a
feature database. Their result showed that their solution
could detect and classify known malware. It also performs
malice determination and malware family classification on
unknown software with higher accuracy and lower time cost.
The solution above is specific to host-based malware attacks
on Android-based mobile devices. Hence, it will be difficult
to extend it to network-based attacks.

2. Cooperative intrusion detection

The authors in [22] proposed a prototype Distributed
Intrusion Detection System (DIDS). Their system combines
distributed monitoring and data reduction with centralized
analysis to monitor a heterogeneous network of computers.
The result showed that their prototype demonstrated the
viability of distributed architecture in solving the network-
user identification problem. However, with the DIDS
director responsible for all evaluation, the system is
susceptible to single-point-of-failure or man-in-the-middle
attacks. Another research put forward in [23] proposed
DOMINO (Distributed Overlay for Monitoring Internet
Outbreaks). DOMINO is an architecture for a distributed
intrusion detection system that fosters collaboration among
heterogeneous nodes organized as an overlay network. In
their system, they used active-sink nodes that respond to and
measure connections to unused IP addresses. This active-
sink node enables efficient detection of attacks from spoofed
IP sources, reduces false positives, enables attack
classification and production of timely blacklists. The result
demonstrated the utility of sharing information between
multiple nodes in a cooperative infrastructure and active-
sink node showed effectiveness in discriminating between
types of attacks based on examining payload data. Although
their system showed a good result, malicious intruders can
hack the database that manages activities, and the integrity
of the stored data can be compromised. The authors in [24]

proposed a message authentication code (MAC) for
detecting any changes in stored data. Although this
approach detects any changes in the stored data, however, it
is not practical for extensive data because downloading and
calculating MAC of large files is overwhelming and time-
consuming. Another method described in [24] secures the
integrity of cloud data by computing the hash values of
every data in the cloud. This solution is lighter than the first
approach in [24]; however, it requires more computation
power, especially for massive data; hence, it is not practical.
The authors in [25] employ the third party to coordinate
activities of the database. The problem with this approach is
that the data is vulnerable to man-in-the-middle or single-
point-of-failure attack.

Despite several kinds of research, the available
solutions have not addressed the security problems
associated with data exchange in a cooperative intrusion
detection system. Hence, the motivation for the work. Our
proposed architecture uses blockchain technology to
guarantee the security of shared attack features among IDS
nodes. The novelty of our architecture is that it facilitates
scalable attack features exchange, encourages heterogeneous
IDS nodes participation, detects and prevents malicious
activities on stored data from both insider and outsider
threats. It is robust to public IDS nodes joining and leaving
the blockchain network in real-time. This novelty
distinguishes our work from previous works.

ITII. THE PROPOSED ARCHITECTURE

The proposed architecture, which is compatible with any
blockchain platform, is built on the Ethereum blockchain
platform. Ethereum blockchain is an open-source
blockchain-based distributed computing featuring smart
contracts. A smart contract is an agreement among
consortium members, which is stored on the chain and run
by all participants [26]. Although the central Ethereum
platform is a public blockchain, we configure it to a
combination of public and private networks. Fig. 3 shows a
pictorial representation of the proposed architecture.

Unauthorized Node

— - <
ue - ATTACKER

]
e o=
- Authorized
| Node

Transaction
ddress

Sl
B N (X
-l e |
—a \ == =
52
D Request Address DATABASE

_—
Unauthorized
Node

Fig. 3. The Proposed Architecture

The architecture is composed mainly of the following:
e Authorized Nodes
Also known as miners, these nodes prepare,
submit, and verify transactions. They also run the

consensus algorithm, thus validate
transactions/blocks. All authorized nodes update
database

e Unauthorized Nodes
These are also known as public nodes. They join
the network to retrieve stored attack features.
Public nodes are not privileged to prepare, verify,
validate, or run consensus algorithm. They do not
update the database but can only request the
transaction address of the mined blocks.

e Database
Database, which is accessible to all nodes, stores
the address of the mined blocks. While all public
nodes have read-only access to it, authorized nodes
update block information. Any data manipulation
in the database results in an inability to access the
contents of the blockchain but does not affect data
stored in the blockchain network. Such malicious
activity can be easily detected.

The proposed architecture is divided into three main stages,
as shown below.

/ EXTRACTION

STORAGE

DISTRIBUTION \

LEDGER UPDATE

NETWORK ;

N

I TRANSACTION i
| . VERIFICATION I :
| OWNER B

FEATURE
EXTRACTION

TRAFFIC

FEATURE STANDARD
FORMAT VERIFICATION

4

FEATURES
RETRIEVER

VALIDATION

TRANSACTION :

N D,

Fig. 4. Building blocks of the proposed architecture

1. Extraction

Attack features are characteristics of attack traffic that
differentiate them from regular traffic. ~Anomaly-based
IDSs detect malicious incoming traffic patterns based on
deviation from typical traffic patterns. The IDSs are trained
with the features extracted from regular traffic, then raise
alert whenever there is a deviation from the known traffic
pattern [3]. In this work, network-based attack features are
extracted based on feature names proposed in [27] using
network traffic analyzing tools. We extract attack features
under two categories: (i) Connection features and (ii) packet
features.

i Connection features: These features are obtained
from attack network connections. Whenever an
attack is detected, a developed script sniffs,
captures and analyzes network connections using
tepdump v. 4.9.2., libpcap v. 1.9.0, tcptrace 6.6.0,
and Wireshark v. 3.0.1. Tcpdump captures and
analyzes TCP packets while Wireshark uses
libpcap to capture network connections in real-
time. Tcptrace is used to analyze the captured
attack connections. Some of the features extracted
and exchanged from attack connections are shown
below in Table I.

Table I: Attack Connection Features

| S/N | Feature Name | Definition

il.

1 Source Port Port from which an attack is
launched.

2 Destination Port Target port in the target network.

3 Source IP The IP address of the attack node.

4 Destination IP Target IP address in the target
network

5 Source Bytes The total number of bytes sent from
attack nodes during the attack
period.

6 Destination The total number of bytes sent from

Bytes the target network to attack nodes
during the attack period.

7 Source Packets The total number of packets sent
from attack nodes during the attack
period.

8 Connection The total number of connections
initiated with the target network by
attack node.

9 Duration Total time elapsed during an attack.

10 | Packets/seconds The number of packets sent by an
attack node within 1 second.

11 | Source Host The total number of attack nodes

count connecting to the target network.

12 | Destination Host | The total number of target nodes in

Count the target network.

13 | Throughput The rate at which attack nodes send
bytes to the target node. (measured
in kbps).

14 | Service Count The total number of ports connected
to attack nodes during the attack
period.

15 | Same service The total number of connections to

count the same port number during the
attack period.

16 | Different Host | Percentage of attack nodes attacking

rate different target nodes.

17 | Same service | Percentage of attack nodes attacking

rate the same port during the attack
period.

18 | Same Host rate Percentage of attack nodes attacking
the same target node during the
attack period.

Packet features: These attack features are obtained
by sniffing and analyzing attack packets. During
attack detection, a script that uses Scapy v 2.4.0
analyzes ingress packets. Scapy decodes traffic
packets and matches request with replies. Table 11

shows some of the packet features extracted.

Table II. Attack Packet Features

S/N Feature Name Definition

1 Land ‘1 if the source and destination IP
and ports are the same; otherwise
‘0.

2 | Type of service Class of traffic assigned to attack
packet

3 Protocol Higher layer protocol used in the
data portion of the attack packet

4 | Ip flags How packet should be routed or
processed by higher layer

5 TCP Flags Defines the type of packet sent by
attack node

6 Urgent Indicates priority of handling
packets by the router

7 Time to Live Time left for a packet to be
discarded

8 Checksum Error checking in the packet header

9 Wrong Fragment ‘1’ if the checksum is ‘incorrect’;
otherwise ‘0.

Based on the features in Tables I and II, a transaction,
which agrees with a standard format, is prepared, signed, and
submitted to the blockchain network. To verify the
authenticity of the submitted data, the owner submits its
verification information. Examples of such verification
information are Transaction account, MAC address, IP

address.

2. Storage:

The conformity of the submitted transaction with
standard format is verified. The architecture also verifies the
privilege of transaction owners to submit transactions and
the cost of mining such transactions. If these verification
steps are successful, the transaction is pushed for validation
(i.e., attached to the blockchain). The storage stage is
divided into the following steps:

i

Transaction and owner’s verification: This step
ensures that all malicious transactions or activities
on the submitted transaction by either insider or
outsider threats are blocked. (i.e., it ensures that no
public node submits transaction and prevents
compromised authorized nodes from participating).
The smart contract monitors the cost of mining
transactions and keeps track of all nodes that
participate in mining a transaction. Algorithm 1
describes the verification process. For verification
step to be successful, no feature fields must be
missing (i.e., all feature field must have values),
verification information must be in their respective
sets, transaction owner must not mine its
transaction, the cost of mining transaction must not
exceed the threshold, and sender's public key must
verify the private key. If any of these conditions fail,
smart contract returns fail, and the transaction is
dropped.

Algorithm 1: Verification

L

w =~ &,

[1=]

10

12

Procedure: Verification (Transaction, V.I)
Inputs: Transaction, Verification Information (V.I)

If (Transaction agrees with Standard Format) and
(Transaction owner does not mine) and

(V.I in respective V.I sets) and

(public key verifies private key):

Return Success

Push transaction to format creation step
else:

Return fail

Drop transaction
end if
end procedure

il.

Validation: Blockchain consensus protocols handle
the validation of transactions. In this work, we
combine both Proof-of-Work (PoW) and Proof-of-
Stake (PoS). The pending transaction is built into a
block and the block is broadcasted into the
blockchain network for validation. Every node

receives a broadcasted block, but only authorized
nodes (miners) work to validate the block. Each
block contains a unique code called hash; it also
contains a hash of the previous block. Data from
previous blocks are encrypted or hashed into a
series of numbers and letters.

The authorized nodes work to get the target hash in
order to validate a block. A target hash is a number
that a hashed block header must be less than or
equal to for a new block to be awarded. The miners
achieve this target hash by using an iterative process
such as POW which requires consensus from all
authorized nodes. The characteristics of proof-of-
work are computationally difficult to compute and
easy to verify. We set an upper bound of stake for
every transaction to ensure fair competition among
miners (i.e., to discourage authorized nodes with
lager stake from always emerge as the miner). The
process of guessing the hash starts in the block
header. It contains a block version number, a
timestamp, the hash used in the previous block, the
hash of the Merkle Root, the nonce, and the target
hash. Successfully mining a block requires an
authorized node to be the first to guess the nonce,
which is a random string of numbers and broadcast
to other nodes. Other authorized nodes verify the
correctness of the nonce value by appending this
number to the hashed contents of the block and then
rehashed it. If the new hash meets the requirements
outlined in the target, then the block is added to the
blockchain. The transaction is permanently stored
on the blockchain network, and it is impossible to
mutate/erase the block.

3. Distribution

After a successful validation process, the transaction
address is issued to the owner (sender). The blockchain is
updated, and the transaction is ready to be retrieved. Steps
involved in the secure distribution of mined features are as
follows:

i. Ledger updating: The newly added block reflects
on the ledger which is possessed by every nodes in
the network. The transaction address is sent to the
database by the transaction owner. This database is
opened to the public so that everyone can have
access to this information.

il. Features Retrieval: All blockchain nodes receive
the notification of the newly added block but do
not have access to the content of the block. The
transaction address obtained from the database is
used to retrieve information stored in the new
block. Nodes extract the stored attack features and
use them to train their intrusion detection systems.

IV. RESULT

We carry out the implementation of the proposed
architecture first in the lab and later extends it to google
cloud platform. The aim is to compare the behavior of the
architecture when the nodes are in closed promixity to each
other with when they are located far apart. We set up eight

blockchain nodes, one database node, and one attack node
for the lab experiment while we employ seven blockchain
nodes located at different regions around United States for
the cloud experiment. Table III shows the configuration of
the nodes used in the lab, while Fig. 5 shows the location of
the nodes when deployed to the cloud. We use Solidity v
0.6.2 implementation for smart contract and geth v 1.9.0 for
Ethereum. A public node becomes a miner after we write its
verification information to the smart contract. Hence, we
create our miners by adding the verification information to
the smart contract.

Table III: Configuration of Lab nodes

Name Machine [ON) RAM Processor
Node 1 Desktop 18.04 4GB 2.2GHz
Node 2 Laptop 18.04 16GB 2.81Ghz
Node 3 Desktop 16.04 8GB 2.44GHz
Node 4 Laptop 18.04 4GB 2.44GHz
Node 5 Vmware 18.04 4GB 2.2GHz
Node 6 Vmware 18.04 4GB 2.2GHz
Node 7 Vmware 18.04 4GB 2.2GHz
Node 8 Vmware 18.04 4GB 2.2GHz
attacker Laptop 16.04 4GB 2.2GHz
database desktop window | 4GB 5@2.44

Fig. 5. Location of blockchain nodes around the United States

We install tcpdump v. 4.9.2., libpcap v. 1.9.0, tcptrace
v.6.6.0, Wireshark v. 3.0.1. and Scapy v.2.4.0 on all
authorized nodes. For the proof of concept, we run
connection and packet analyzing scripts and an anomaly-
based IDS called Dendritic Cell Algorithm (DCA) [24] on
authorized node (node 2). The attacking node launches a
Denial of Service (DoS) attack at node 2 and we extracts the
features as explained section III. The extracted features are
converted to a standard format and submitted to the
blockchain network as a transaction. The architecture
verifies, validates and distributes these transactions among
other nodes (as explained above).

A. SECURITY ANALYSIS

1) Outsider Threat Analysis: We analyze the security of
the architecture against malicious transaction injection in
both experiments. A transaction, prepared by an
unauthorized node, is submitted to the blockchain network
for verification and validation. Although other authorized
nodes work to validate this transaction, we observed that

instead of issuing a transaction address to the sender, the
owner receives a notification that the transaction has been
failed and dropped. The transaction failed because the
sender is not privileged to submit the transaction; hence, it
fails the wverification steps. We investigated further by
manually generating the transaction address, then use it to
request for the transaction from the blockchain. We
observed that the blockchain network did not return any
transaction because there is not transaction with such
network address.

2) Insider Threat Analysis: Here, we examined the
security of the architecture in two common ways an
authorized node can be compromised.

a) A large volume of data: We implement a case
where an authorized node sends a large amount of
what appears to be legitimate standard formatted
attack features in an attempt to mount a DoS attack
on the blockchain network. An authorized node
prepare transactions that are massive amount of
data and submit to the blockchain network.
Although other authorized nodes are working to
validate the transaction, we observed that the
transactions are not mined because the cost of
mining these transactions exceeded the threshold
cost. A notification to the owner indicates that the
transaction has failed due to its cost. We
persistently submit such huge transactions from the
same authorized node, and we observed that other
miners stop mining after the sender was flagged to
be compromised. The smart contract automatically
drops all subsequent transactions from the same
authorized node.

b) Fake feature values: We implement a situation
where a compromised authorized node submits
what appears to be legitimate standard formatted
attack features but with fake data values. The cost
of each submitted transaction is within the set
range written in the smart contract. It is assumed
that an attacker is not likely to hold an authorized
node in a compromised state for too long due to
frequent security checks by the network
administrators. Based on this assumption, an
attacker will make all efforts to get its transactions
mined as quickly as possible. The result showed
that such a transaction is not mined, although other
authorized nodes are working to validate the same
transaction. The architecture drops the transaction
because the owner attempts to mine own
transaction, which makes transaction flagged to
have been compromised. Based on these results, it
shows that the architecture has the capability of
verifying the consistency and integrity of submitted
transactions, thereby detecting and preventing any
malicous activities from both the insider and
outsider attackers on the shared data.

B. PERFORMANCE METRICS

We obtain the following data for each transaction
from every node to analyze the response time.

e Transaction deployment time (¢;): This is the time a
transaction is submitted to the network. These data
are collected directly from the sender console.

e FExecution time (t3): This is the time taken for the
content of each transaction to appears in designated
files of each node. The time is retrieved by setting
on current time on all node consoles.

1) Response Time: This is also known as latency
(measured in seconds) of the blockchain network.
For each transaction, latency is the difference
between the execution time and the deployment
time (ts-t;). Latency includes verification time,
mining time, and time taken for nodes to request
transaction address and retrieve mined features. We
measure the response time of the architecture in
two different scenarios: (i)Closed proximity, i.c.,
when the nodes are closed to each other (e.g., lab)
and (ii) Wide geographical area, i.e., when the
nodes are far apart from each other. Fig. 6 shows
the average response time of all nodes for both
closed proximity and wide-area deployment. The
average response time is the addition of all
response times for each transaction divided by the
number of transactions. We could observe that the
difference in the average response time is small for
both cases. The slight increase in the response time
(Fig. 6A) is due to the computing power of the
nodes, which is lower than the cloud nodes
employed in Fig. 6B. The result shows that the
architecture can facilitate scalable attack features
exchange among IDS nodes in computer networks
irrespective of the location.

91 Average Response Time
Noded Node5
3.04 Node2 |\ 4os s Nodeg MNode7 nodes
Node1

w 254
o
=
]
@
w20
]
E
= 3.04
] Oregon
§ jowa N Vimina Salt Lake Sao Paulo
a 254 Los Angeles
4 S Carohna
]
o

2.0

15

Fig. 6. A)Average response time when performed in the lab. B)Average
response time when deployed to locations around the US.

Response time(Seconds)

2)

4.0

3.5+

3.0

2.54

2.0+

Scalability: We evaluate the change in the response
time of the blockchain network with an increasing
number of nodes. We first implement the effect of
increasing the number of unauthorized (public)
nodes on the response time of two authorized nodes
located in South Carolina and Los Angeles. The
blockchain network is step up as described above
with two authorized nodes and an attack node
(located in New York). The features extracted from
DoS attacks are prepared as transactions and
submitted to the blockchain network. These
transactions are verified, validated, and stored on
the blockchain network. We record the response
time of the two authorized nodes. We increase the
number of public nodes joining the network one at
a time, repeat the experiment, and record the
response time for the two authorized nodes. Fig. 7
shows the response time of the two authorized
nodes for an increasing number of public nodes.
We observed that increasing the number of public
nodes has no effect on the architecture’s response
time, which implies that the solution is robust to
public IDS nodes joining and leaving the network.

The Response time with increasing number of
Public nodes

® S, Carolina
® Los Angeles

1.5

Fig.7.

T T T T T T

0 1 2 3 4 5
Number of Public Nodes

The response time with an increasing number of public nodes

Furthermore, we evaluate the response time with
an increasing number of authorized nodes (i.e.,
miners). We set up a blockchain network, as
described above, with seven nodes. Transactions
are prepared and submitted to the blockchain
network by an authorized node. The submitted
transactions are verified, validated, stored, and
distributed to all nodes in the network. We repeat
the experiment several times, and the average
response time of each node is recorded. We
increase the number of miners One at a time, repeat
the experiment, and record the average response
times of each node. Figs. 8, and 9 show the
response time of all nodes when the architecture is
implemented in closed proximity and large
geographical area with an increasing number of
authorized nodes. We could observe a slight fall in
the response time as more authorized nodes are

added to the network. The decrease in response
time is due to the availability of more miners to
compete for mining, hence, reducing the mining
time (which accounts for a large portion of the
response time). The result further confirms that the
architecture can facilitate scalable and prompt
attack features exchange among IDS nodes.

40
Response Time of Nodes with increasing - = Node1
35 number of Authorized nodes ® Node2
3.0 4 Node3
- v Node4
w < 4
- et !
g 20 ¥ s : i *
o |
O 1.5 T T T T T T T 1
% 1 2 3 4 5 6 7 8 9
£ A ,
= 10 = S Carolina
L g ® L. Angeles
g lowa
=3 6 ¥ v N.Virginia
o 4
o 1 1
2
I ¥ 3 ¢
0 T T T T T T T
1 2 3 g 4 5 6 7

Number of Authorized nodes

Fig. 8. A) Response time of nodes with an increasing number of authorized
nodes for closed proximity implementation (B) Response time of nodes
with an increasing number of authorized nodes for wide-area deployment

35 Response Time of Nodes with increasing
number of Authorized nodes #— Noded
20 ® Node6
m : A Node7
-E v Node8
8 25 3 7
e A
) w
B 20 v : i M M * v
] H ¥
I I T T T T T T T 1
= 1 2 4 5 A 6 7 8 9
2
c 10
]
a a m - Salt-Lake
K] ® Oregon
o 63 Sao Paulo
4
= & 2
2 * = § ™ n
T T T T T T T
1 2 3 4 g 5 6 7

Number of Authorized Nodes

Fig. 9. A) Response time of nodes with an increasing number of authorized
nodes for closed proximity implementation (B) Response time of nodes
with an increasing number of authorized nodes for wide-area deployment

V. CONCLUSION

In this paper, we propose a permissionless public-private
blockchain-based architecture that detects and prevents
malicious activities on the stored data from both outsider
and insider threats. The proposed solution, which focuses
on network-based attacks, securely extracts, stores, and
shares attack features in real-time with the view of
enhancing the security of shared data in cooperative
intrusion detection. We implement the architecture in closed
proximity and a large geographical area, evaluate the
security analysis and performance metrics. The result
showed that the architecture facilitate scalable and prompt
attack features exchange among IDS nodes, resistant to
familiar insider and outsider attack threats and robust to

public IDS nodes joining and leaving the network. Also, the
result showed that the response time of the architecture
decrease with an increasing number of miners.

In future we wish to expand our work to accommodate the
following :

[12]

1. Implementing ways of increasing the throughput of
architecture.

2. Develop an algorithm that restricts mining of
similar attack features by different nodes

REFERENCES

S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas,
“Modeling intrusion detection system using hybrid intelligent
systems,” Journal of network and computer applications, vol. 30, no.
1, pp. 114-132,2007.

O. Igbe, O. Ajayi, and T. Saadawi, “Denial of Service Attack
Detection using Dendritic Cell Algorithm” 2017 IEEE 8th Annual
Ubiquitous Computing, Electronics and Mobile Communication
Conference (UEMCON 2017) Oct 19th — 21st 2017, Columbia
University, New York, USA.

0. Igbe, O. Ajayi, and T. Saadawi, “Detecting Denial of Service
attacks using a combination of Dendritic Cell Algorithm(DCA) and
Negative Selection Algorithm(NSA)” 2nd International Conference
on Smart Cloud (Smart Cloud 2017) Nov 3rd-5th, 2017, New York,
USA.

F. Gong, ‘‘Next-generation intrusion detection systems (IDS),”’
McAfee Netw. Security. Technol. Group, Santa Clara, CA, USA,
White Paper, 2003

Y. L. Dong, J. Qian, M. L. Shi, “A cooperative intrusion detection
system based on autonomous agents,” IEEE CCECE 2003, Vol. 2, pp.
861863, 2003.

C. C. Lo, C. Huang, J. Ku, A cooperative intrusion detection system
framework for cloud computing networks, in: In: Proceedings of the
2010 39th International Conference on Parallel Processing
Workshops,ICPPW '10, 2010, pp. 280-284.

Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi, ‘‘Collaborative intrusion
detection system (CIDS): A framework for accurate and efficient
IDS,”” in Proc. Annu. Comput. Secur. Appl. Conf. (ACSAC), Dec.
2003, pp. 234-244.

O. Ajayi, M. Cherian and T. Saadawi, "Secured Cyber-Attack
Signatures Distribution using Blockchain Technology," 2019 IEEE
International Conference on Computational Science and Engineering
(CSE) and IEEE International Conference on Embedded and
Ubiquitous Computing (EUC), New York, NY, USA, 2019, pp. 482-
488.

Y. L. Dong, J. Qian, M. L. Shi, “A cooperative intrusion detection
system based on autonomous agents,” IEEE CCECE 2003, Vol. 2, pp.
861-863,2003.

C. C. Lo, C. Huang, J. Ku, “A cooperative intrusion detection system
framework for cloud computing networks,” In Proceedings of the
2010 39th International Conference on Parallel Processing
Workshops,ICPPW '10, 2010, pp. 280-284.

W. Zhang, S. Teng, H. Zhu, D. Liu, "A Cooperative Intrusion
Detection Model Based on Granular Computing and Agent
Technologies", J. International Journal of Agent Technologies and
Systems, vol. 5, no. 3, pp. 54-74, 2013

S.R. Snapp, J. Brentano, GV dias, T.L. Goan, L.T. Heberlein, C. Ho,
K.N. Levitt, B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal, and D.
Mansur. DIDS (distributed intrusion detection system) — motivation,
architecture, and an early prototype. In Proceedings of the 14th
National Computer Security Conference, pages 167-176, October
1991.

[13]

M. Uddin, A. Abdul Rehman, N. Uddin, J. Memon, R. Alsaqour, and
S. Kazi, “Signature-based Multi-Layer Distributed Intrusion
Detection” International Journal of Network Security, Vol.15, No.2,
PP.97-105, Mar. 2013

[14] S. Nakamoto (2008) Bitcoin: a peer-to-peer electronic cash system,

http://bitcoin.org/bitcoin.pdf

[15] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B. Amaba.

[1e]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

“Blockchain Technology Innovation”. 2017 IEEE Technology &
Engineering Management Conference (TEMSCON), 2017

Liang, X.; Zhao, J.; Shetty, S.; Liu, J.; Li, D. Integrating blockchain
for data sharing and collaboration in mobile healthcare applications.
In Proceedings of the 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Montreal, QC, Canada, 8-13 October 2017

Zikratov, 1., Kuzmin, A., Akimenko, V., Niculichev, V., Yalansky,
L.: Ensuring data integrity using Blockchain technology. In:
Proceeding of the 20th Conference of fruct Association ISSN 2305-
7254 TEEE (2017)

M Signorini and M Pontecorvi, W Kanoun, and R Di Pietro, “BAD:
a Blockchain Anomaly Detection solution” arXiv:1807.03833v2, [cs.
CR] 12 jul 2018

T. Golomb, Y. Mirsky and Y. Elovici “ CIoTA: Collaborative IoT
Anomaly Detection via Blockchain” arXiv:1803.03807v2, [cs.CY] 09
Apr 2018

Gu, J, B Sun, X Du, J] Wang, Y Zhuang and Z Wang (2018).
Consortium blockchain-based malware detection in mobile devices.
IEEE Access, 6, 12118-12128

Abdullah, N., Hakansson, A., & Moradian, E. (2017). Blockchain
based approach to enhance big data authentication in distributed
environment. In Ubiquitous and future networks (icufn), 2017 ninth
international conference on (pp. 887-892).

S.R. Snapp, J. Brentano, GV dias, T.L. Goan, L.T. Heberlein, C. Ho,
K.N. Levitt, B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal, and D.
Mansur. DIDS (distributed intrusion detection system) — motivation,
architecture, and an early prototype. In Proceedings of the 14th
National Computer Security Conference, pages 167-176, October
1991.

V. Yegneswaran, P. Barford, S. Jha, "Global intrusion detection in
the DOMINO overlay system", Proc. Netw. Distrib. Syst. Secur.
Symp. (NDSS), pp. 1-17, 2004.

Sultan Aldossary, William Allen. Data Security, Privacy, Availability
and Integrity in Cloud Computing: Issues and Current Solutions.

(IJACSA) International Journal of Advanced Computer Science and
Applications,Vol. 7, No. 4, 2016 pp.485-498

C. Wang, S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” Computers,
IEEE Transactions on, vol. 62, no. 2, pp. 362-375, Feb 2013

[26] Ingo Weber, Vincent Gramoli, Mark Staples, Alex Ponomarev, Ralph

Holz, An Binh Tran, and Paul Rimba. 2017. On Auvailability for
Blockchain-Based Systems. In SRDS’17: IEEE International
Symposium on Reliable Distributed Systems

[27] L. Dhanabal, S.P. Shantharajah, A study on NSL-KDD dataset for

intrusion detection system based on classification algorithms,
International Journal of Advanced Research in Computer and
Communication Engineering 4 (2015) 446452

http://bitcoin.org/bitcoin.pdf

