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a b s t r a c t 

In this paper, we prove bounds for the unique, positive zero of O � G (z) := 1 − O G (z) , where 

O G ( z ) is the so-called orbit polynomial [1]. The orbit polynomial is based on the multiplic- 

ity and cardinalities of the vertex orbits of a graph. In [1] , we have shown that the unique, 

positive zero δ ≤1 of O � G (z) can serve as a meaningful measure of graph symmetry. In this 

paper, we study special graph classes with a specified number of orbits and obtain bounds 

on the value of δ. 
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1. Introduction 

A number of structural graph measures designed to capture symmetry have been developed [1–5] . Most of these mea-

sures depend on determining the orbits of the automorphism group of a graph, a task that can be computationally demand-

ing, especially if it is first necessary to compute the automorphism group itself. There is no general formula for the size of

the automorphism group of a graph [6,7] , and no efficient algorithm for determining the elements of the group. Symmetry

is an indicator of structural complexity that can be useful for analyzing graphs. For example, symmetry-based measures

have been used to characterize network aesthetics [8] . These measures have also been used to determine the structural

complexity of molecules represented by graphs [5] . A shortcoming of symmetry-based measures is the so-called problem

of degeneracy [9] . This problem is characterized by the existence of many pairs of non-isomorphic graphs with the same

measured value of the index. An attempt to overcome this problem in the case of classical orbit-based entropy measures is

presented in [10] . 

In this paper, we elaborate further on the unique, positive root of the orbit polynomial introduced in [1] . This polyno-

mial is designed as an aid in detecting symmetry in networks. In general, graph polynomials have proven useful in many

disciplines such as mathematical chemistry, bioinformatics, and applied mathematics, see [11–14] . In these areas, graph

polynomials have been used for counting [13] and also for defining new topological graph measures, see [1,15] . Moreover,

well-known graph polynomials such as the chromatic, Tutte, and Jones polynomials have turned out to be useful and im-

portant graph invariants for studying problems in applied and pure graph theory, see [16,17] . 

This paper extends results in [1] . In that earlier paper, we introduced the orbit polynomial O G ( z ) and the related graph

polynomial 1 − O G (z) . The root δ of 1 − O G (z) = 0 can be calculated in a straightforward way using a standard root finding

method, see [18] . Various properties of δ have been established in [1] . This paper extends the earlier results by proving

bounds on δ for graphs with given orbit sizes and multiplicities. Analytical results are given for graphs with two and three

orbit sizes and also for more general graphs. In particular, properties of δ are presented for exhaustive sets of isomers of

hydrocarbons with 14 carbon atoms. The methods presented here can be applied to any class of graphs. 

2. Methods and results 

The concept of the orbit polynomial was introduced in [1] . In this section we calculate this polynomial for graphs with

a given number of vertex orbits [4,19] . Clearly, the number of vertices in each orbit, as well as the multiplicity of orbits

of a given cardinality, can vary. In [1] , the polynomial 1 − O G (z) , derived from the orbit polynomial O G ( z ), has been used

to measure the symmetry of graphs. The positive zero δ of the polynomial 1 − O G (z) was found to be a useful symmetry

measure, see [1] . 

In short, it is worthwhile to study this algebraic measure because it serves as an index of complexity based on the

symmetry structure of a graph. [16] . In this paper, we continue our investigation of the graph measure δ ∈ (0, 1] [1] , defined

as the root of the equation 1 − O G (z) = 0 . In particular, the measure is applied to graphs whose automorphism group has a

specified number of vertex orbits. Since δ ∈ (0, 1], we establish lower bounds on δ, as well as other useful properties. 

2.1. Preliminaries 

This section is devoted to graph-theoretical preliminaries. 

An automorphism is an edge preserving bijection of the vertices of a graph [19] . The set of automorphisms under com-

position of mappings forms the automorphism group of the graph [19] and is usually denoted by Aut( G ). |Aut( G )| is the

number of elements in the automorphism group of G . The equivalence classes of the vertices of a graph under the action of

the automorphisms are called vertex orbits [19] . 

Consider a graph G = (V, E) with | V | < ∞ , and let V 1 , V 2 , . . . , V ρ be its vertex orbits, where ρ denotes the total number of

vertex orbits of G . Let k be the number of different cardinalities among the orbit sizes, and suppose the number of orbits of

size i j is a ( i j ) for 1 ≤ j ≤ k , so that 
∑ k 

j=1 i j a (i j ) = | V | . ∑ k 
j=1 a (i j ) = ρ . 

For ease of reference, the definitions of orbit polynomial O G ( z ) and 1 − O G (z) , [1] , are reproduced here. 

Definition 2.1. The orbit polynomial of G is defined by 

O G (z) := 

k ∑ 

j=1 

a i j z 
i j . (1) 

Definition 2.2. The graph polynomial O 
� 
G 
(z) of G is defined by 

O 
� 
G (z) := 1 − O G (z) . (2) 

The proof that δ ∈ (0, 1] is the unique, positive root of the equation O 
� 
G 
(z) = 0 and other properties of δ can be found in

[1] . Note also that the Definitions (2.1) and (2.2) are valid for directed graphs and edge- or vertex-labeled graphs. Examples

of these graphs can be found in [20,21] . For example, the measure δ is directly applicable to molecular graphs [22] possess-

ing different atoms and multiple bonds [21] . 
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2.2. Graphs with two orbits sizes 

Here, we investigate δ for graphs with orbits whose size can be of two distinct values. That is to say, the orbits come in

two sizes, but there may be several orbits of the same size. The path graph with an odd number of vertices, e.g., | V | = 5 , is

a simple example. Labeling the vertices one to five in sequence starting from one end, the orbits are {1, 5}, {2, 4}, {3}. This

graph thus has orbits of two sizes, namely one and two, but the multiplicity of the two-element orbit is two. Obviously,

2 · 2 + 1 · 1 = | V | = 5 . 

The following states a lower bound for δ in the case of graphs with two orbit sizes. 

Theorem 2.1. Let G = (V, E) be a graph with two orbit sizes n 1 and n 2 with corresponding multiplicities a n 1 and a n 2 , respectively,

so that a n 1 · n 1 + a n 2 · n 2 = | V | . Let δ be the unique, positive root of the equation 

O 
� 
G (δ) = 1 − (a n 1 δ

n 1 + a n 2 δ
n 2 ) = 0 . (3)

Then 

δ > 

1 

M + 1 
, where M := max { a n 1 , a n 2 } . (4)

Proof. In [1] , we proved that the unique, positive zero δ of any given O 
� 
G (z) is less or equal one. Now, we wish to establish

a tighter upper bound for δ, where δ is the unique positive root of Eq. (3) . 

First we find an upper bound for 

O G (δ) = a n 1 δ
n 1 + a n 2 δ

n 2 , (5)

if δ < 1. 

From this we obtain 

a n 1 δ
n 1 + a n 2 δ

n 2 ≤ M(δn 1 + δn 2 ) < M 

∞ ∑ 

j=1 

δ j = M 

(
1 

1 − δ
− 1 

)
= M 

δ

1 − δ
. (6)

Hence 

a n 1 δ
n 1 + a n 2 δ

n 2 < M 

δ

1 − δ
. (7)

Now, we examine the values of δ for which 

a n 1 δ
n 1 + a n 2 δ

n 2 > 1 , (8)

such that 

O 
� 
G (δ) = 1 − (a n 1 δ

n 1 + a n 2 δ
n 2 ) < 0 . (9)

Applying the inequality (7) , we find that 

1 < a n 1 δ
n 1 + a n 2 δ

n 2 < M 

δ

1 − δ
, (10)

and, hence, 

δ > 

1 

M + 1 
, (11)

which completes the proof. �

Consider the path graph P 5 introduced earlier. P 5 has a two-element orbit with multiplicity equal to 2 and a singleton

orbit with multiplicity equal to 1. So, we obtain the polynomial 

O 
� 
P 5 
(z) = 1 − (2 z 2 + z) . (12)

Calculating the unique, positive root δ of O 
� 
P 5 

(z) = 0 gives δ = 
1 
2 . Clearly, M = 2 . Finally, Theorem (2.1) implies that δ > 

1 
3 . 

The star graph S n offers another example. In [1] , we proved that δ( S n ) ∈ (0.6823, 1), n > 4, where δ( S n ) is the unique,
positive root of 

O 
� 
S n 

(z) = 1 − O S n (z) = 1 − (z n −1 + z) = 0 . (13)

Theorem (2.1) implies that δ > 
1 
2 . 

Theorem 2.2. Let G = (V, E) be a graph with two orbit sizes n 1 and n 2 with corresponding multiplicities a n 1 and a n 2 , respec-

tively,so that a n 1 · n 1 + a n 2 · n 2 = | V | . Let δ1 be the zero of Eq. (3) where n 1 and n 2 are fixed, but arbitrary. Assuming n 1 is fixed,

but n ′ 
2 
varies, let δ2 be the root of the equation 

O 
� 
G (δ) = 1 − (a n 1 δ2 

n 1 + a n ′ δ2 
n ′ 2 ) = 0 , (14)
2 
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If δ2 > δ1 , then 

n ′ 2 > 

ln 

(
1 −a n 1 δ1 

n 1 

a 
n ′ 
2 

)

ln (δ1 ) 
. (15) 

Proof. According to [1] , the root of Eq. (3) , denoted by δ1 , lies in the interval (0,1]. Now, we locate the root of Eq. (3) when

n 1 is fixed but n 
′ 
2 varies. For this, we calculate 

O 
� 
G (δ1 ) = 1 − (a n 1 δ1 

n 1 + a n ′ 
2 
δ1 

n ′ 2 ) = −a n 1 δ1 
n 1 − a n ′ 

2 
δ1 

n ′ 2 + 1 . (16)

If 

O 
� 
G (δ1 ) = −a n 1 δ1 

n 1 − a n ′ 
2 
δ1 

n ′ 2 + 1 > 0 , (17) 

then δ2 > δ1 . The last inequality also holds as O 
� 
G 
(z) is strictly monotonic decreasing. Clearly, the inequality 

(O 
� 
G (z)) 

′ = −a n 1 n 1 z 
n 1 −1 − a n 2 n 2 z 

n 2 −1 < 0 , (18) 

is satisfied for z > 0. To calculate n ′ 
2 
, we use Inequality (17) . Performing elementary calculations, we obtain Inequality

(15) . �

To demonstrate Theorem (2.2) , we again consider the star graph S 4 . According to [1] , the positive root of 

O 
� 
S 4 

(z) = 1 − (z 3 + z) = 0 , (19) 

is δ1 := δ( S 4 ) � 0.682328. So, a n 1 = a n 2 = 1 and n 1 = 3 , n 2 = 1 . From the second equation 

O 
� 
G (z) = 1 − (z 3 + z 2 ) = 0 , (20) 

we obtain δ2 � 0.754878. So, δ1 > δ2 and thus n 
′ 
2 > 1 , using the given parameters a n 1 , a n 2 , n 1 , n 2 in Inequality (15) . In fact,

n ′ 
2 

= 2 . 

2.3. Graphs with three orbits sizes 

In this section, we study δ for graphs with three orbit sizes, where the multiplicity of orbits of a given size can be greater

that one. 

The same lower bound as proven in Section (2.2) holds for graphs with three orbit sizes. 

Theorem 2.3. Let G = (V, E) be a graph with three orbit sizes n 1 , n 2 , n 3 , with corresponding multiplicities a n 1 , a n 2 , a n 3 , so that

a n 1 · n 1 + a n 2 · n 2 + a n 3 · n 3 = | V | . Let δ be the unique, positive root of the equation 

O 
� 
G (δ) = 1 − (a n 1 δ

n 1 + a n 2 δ
n 2 + a n 3 δ

n 3 ) = 0 . (21)

Then 

δ > 

1 

M + 1 
, where M := max { a n 1 , a n 2 , a n 3 } . (22) 

Proof. The proof is very similar to the proof of Theorem (2.1) . 

Now, we prove a result giving the limiting value of the graph measure δ when one orbit size tends to infinity. �

Theorem 2.4. Let G = (V, E) be a graph with three orbit sizes n 1 , n 2 , n 3 , with corresponding multiplicities a n 1 , a n 2 , a n 3 , so that

a n 1 · n 1 + a n 2 · n 2 + a n 3 · n 3 = | V | . Let δ be the unique, positive root of the equation 

O 
� 
G (z) = 1 − (a n 1 δ

n 1 + a n 2 δ
n 2 + a n 3 δ

n 3 ) = 0 . (23)

We assume that the numbers n 2 and n 3 are fixed, but arbitrary, and n 1 is unbounded. The limiting value of δ ∈ (0, 1) is the

root of the equation 

−a n 2 δ
n 2 − a n 3 δ

n 3 + 1 = 0 . (24) 

Proof. Our first observation is 

O 
� 
G (z) = 1 − (a n 1 δ

n 1 + a n 2 δ
n 2 + a n 3 δ

n 3 ) = −a n 1 δ
n 1 − a n 2 δ

n 2 − a n 3 δ
n 3 + 1 = 0 , (25)

where n 2 and n 3 are fixed, but arbitrary. Any other combination of the n i could be chosen as well. Since δ ∈ (0, 1), 

lim 

n 1 →∞ 

( −a n 1 δ
n 1 − a n 2 δ

n 2 − a n 3 δ
n 3 + 1 ) = 0 , (26) 

becomes 

−a n 2 δ
n 2 − a n 3 δ

n 3 + 1 = 0 . (27) 

Now, define F (δ) := −a n 2 δ
n 2 − a n 3 δ

n 3 + 1 . Clearly, F (0) = 1 and lim δ→∞ 
F (δ) = −∞ . From Descartes’ rule of sign [23] , it

follows that F ( δ) has a unique, positive zero. In order for δ ∈ (0, 1), F (1) = −a n − a n + 1 < 0 must be satisfied; but this is

2 3 
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equivalent to a n 2 + a n 3 > 1 . This inequality is obviously satisfied. The statement also holds if the orbit sizes are changed so

that n 2 → ∞ and n 3 → ∞ , instead of n 1 → ∞ . �

Theorem 2.5. Let G = (V, E) be a graph with three orbit sizes n 1 , n 2 , n 3 , with corresponding multiplicities a n 1 , a n 2 , a n 3 , so that

a n 1 · n 1 + a n 2 · n 2 + a n 3 · n 3 = | V | . 
Let δ1 be the zero of Eq. (21) if, for example, n 1 , n 2 , n 3 are fixed, but arbitrary. Let δ2 be the root of the equation 

O 
� 
G (z) = 1 − (a n ′ 

1 
δ2 

n ′ 1 + a n 2 δ2 
n 1 + a n 3 δ2 

n 1 ) = 0 , (28)

where we assume that n 2 , n 3 are fixed but n 
′ 
1 
varies. If δ2 > δ1 , then 

n ′ 1 > 

ln 

(
1 −a n 2 δ1 

n 2 −a n 3 δ1 
n 3 

a 
n ′ 
1 

)

ln (δ1 ) 
. (29)

Proof. According to [1] , the root of Eq. (21) , denoted by δ1 , lies in the interval (0,1]. Now, we locate the root of Eq. (3) , if

n 2 and n 3 are fixed but n 
′ 
1 varies. Clearly, these variables can be interchanged. 

Consider

O 
� 
G (δ1 ) = 1 − (a n ′ 

1 
δ1 

n ′ 1 + a n 2 δ1 
n 2 + n 3 δ1 

n 3 ) = −a n ′ 
1 
δ1 

n ′ 1 − a n 2 δ1 
n 2 − n 3 δ1 

n 3 + 1 , (30)

and observe that the function 

O 
� 
G (z) = −a n 1 z 

n 1 − a n 2 z 
n 2 − a n 3 z 

n 3 + 1 , (31)

is strictly monotonic decreasing as 

(O 
� 
G (z)) 

′ = −a n 1 n 1 z 
n 1 −1 − a n 2 n 2 z 

n 2 −1 − a n 3 n 3 z 
n 3 −1 < 0 , (32)

for z > 0. 

Combined with the claim 

O 
� 
G (δ1 ) = −a n ′ 

1 
δ1 

n ′ 1 − a n 2 δ1 
n 2 − n 3 δ1 

n 3 + 1 > 0 , (33)

this implies δ2 > δ1 . To establish an inequality for n 
′ 
1 
, observe that Inequality (33) holds, which allows for concluding with

Inequality (29) . 

Finally, we show that the numerator of the logarithmic term in the numerator of the right hand side of Inequality (29) is

greater than zero. If 

F (δ) := −a n 1 δ
n 1 − a n 2 δ

n 2 − a n 3 δ
n 3 + 1 , (34)

F 1 (δ) := −a n 2 δ
n 2 − a n 3 δ

n 3 + 1 , (35)

then 

F (δ) < F 1 (δ) . (36)

As seen in the proof of Theorem (2.4) , the zero δ1 of F ( δ) (also see Eq. (21) ) lies between zero and one. It can be

shown similarly that the unique, positive root δ� of F 1 ( δ) also lies between zero and one. Using the technique applied to

Eq. (33) , as stated above, it follows immediately that F ( δ) and F 1 ( δ) are strictly monotonic decreasing for positive δ. From
this observation together with Inequality (36) , it follows that δ1 < δ� . However, from Inequality (36) , we finally obtain 

F 1 (δ1 ) = 1 − a n 2 δ1 
n 2 − a n 3 δ1 

n 3 > 0 , (37)

which completes the proof. �

2.3.1. Special case of graphs with three orbit sizes 

In this section, we investigate δ for graphs with three orbit sizes and given multiplicities. 

Although there is no known general method for constructing graphs with prescribed orbit structure (i.e., a given number

and specified sizes of the orbits), various heuristics can be used [24] . Perhaps the simplest heuristic is first to build a

disconnected graph G with the prescribed orbit structure. The complement of disconnected G is connected and has the

same group as G . Suppose, for example, a connected graph with four orbits of sizes 3,4,5,and 6, respectively is wanted.

The disconnected graph with pairwise non-isomorphic components G 1 , G 2 , G 3 , and G 4 , with vertex sets of sizes 3,4,5,and

6, respectively, whose automorphism groups are transitive provides the requisite orbit structure. Taking the complement of

this disconnected graph completes the construction. Among the transitive graphs that could be used in this construction are

cycles and complete graphs. A more direct heuristic for building a connected graph with prescribed orbit structure is also

given in [24] . 

Now, we turn to the special case of graphs with three orbits. Consider the graph shown in Fig. (1 ).One orbit of this graph

contains m vertices, the second is a singleton set, and the third contains n vertices, see Fig. (1 ). The orbit polynomial is

easily computed to be 

O (z) = z n + z m + z, (38)
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m nodes

n nodes

Fig. 1. A graph with three orbits. The first orbit contains m vertices, the second one is a singleton set, and the third contains n vertices. 

Fig. 2. The graph from Fig. (1 ) with m = n = 2 . 

 

 

 

 

 

 

and 

O 
� 
G (z) = 1 − O G (z) = 1 − (z n + z m + z) . (39)

First, consider the case m = n . This implies 

O 
� 
G (z) = 1 − (2 z n + 1) = −2 z n − z + 1 . (40)

We start by establishing a lower bound for the zero of Eq. (40) . An example showing a graph with m = n = 2 is presented

in Fig. (2 ). 

Theorem 2.6. Setting n = m = 2 , we get δn =2 = 
1 
2 . This value is a lower bound for all polynomials given by Eq. (40) , when n > 2 .

Proof. If n = m = 2 , then 

O 
� 
G (δ) = −2 δ2 − δ + 1 = 0 . (41) 

From direct calculations, it is easily seen that this implies δn =2 = 
1 
2 . Also, Eq. (40) is strictly monotonic decreasing since

(O 
� 
G (z)) 

′ = −2 nz n −1 − 1 < 0 , (42) 

for z > 0. This observation supports the claim that 

O 
� 
G (δ

n =2 ) = −2 
(
δn =2 

)n − δn =2 + 1 > 0 . (43) 

Elementary calculations on Inequality (42) show that 

n > 

ln 
(
1 −δn =2 

2 

)
ln 

(
δn =2 

) . (44) 

Substituting δn =2 = 
1 
2 in Inequality (44) shows that n > 2. So, δn =2 = 

1 
2 is a lower bound for all polynomials given by

Eq. (40) . �

Theorem 2.7. Let δ < 1 be the unique, positive root of the equation 

O 
� 
G (δ) = −2 δn − δ + 1 = 0 . (45) 

The limiting value of δ is one if n goes to infinity. 

Proof. First observe that 

lim ( −2 δn − δ + 1 ) = −δ + 1 . (46) 

Clearly, −δ + 1 = 0 implies δ = 1 . �

The next theorems improve on the lower bounds. 



M. Dehmer, F. Emmert-Streib and A. Mowshowitz et al. / Applied Mathematics and Computation 380 (2020) 125239 7 

n=3

m=5

n=3

m=4

Fig. 3. The graph from Fig. (1 ) with m = 4 and n = 3 and m = 5 and n = 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 2.8. Let n = m . The unique positive root δ of the equation 

O 
� 
G (z) = 1 − (2 z n + z) = −2 z n − z + 1 = 0 , (47)

satisfies δ ≥ 1 
3 . 

Proof. The first step in the proof is to give an upper bound for 

O G (δ) = 2 δn + δ, (48)

if δ < 1. 

From this we derive 

2 δn + δ < 2(δn + δ) < 

∞ ∑ 

j=1 

δ j = 2 

(
1 

1 − δ
− 1 

)
= 

2 δ

1 − δ
. (49)

Now consider the values of δ for which 

2 δn + δ > 1 , (50)

such that 

1 − (2 δn + δ) < 0 . (51)

Together with Inequality (52) , this implies 

1 < 2 δn + δ < 

2 δ

1 − δ
, (52)

and, finally, 

1 < 

2 δ

1 − δ
, (53)

Since δ < 1, Inequality (53) gives δ > 
1 
3 . Also, if n = 1 is chosen for 

O 
� 
G (δ) = −2 δn − δ + 1 = 0 , (54)

we get 

−2 δ − δ + 1 = 0 . (55)

This leads to δ = 
1 
3 . Using the proof technique of Theorem (2.6) , the result of the theorem follows. �

The next assertion deals with the case n 	 = m . Fig. (3 ) also shows an example with m = 5 and n = 3 . 

Theorem 2.9. Suppose n 	 = m. The unique positive root δ of the equation 

O 
� 
G m,n 

(z) = 1 − (z n + z m + z) = −z m − z n − z + 1 = 0 , (56)

satisfies δ ∈ [ 
√ 

2 − 1 , 1) if 

m > 

ln [1 − ( δ� ) n − δ� ] 

ln (δ� ) 
, (57)

where δ� = 

√ 

2 − 1 
. = 0 . 41421 is the unique root of the Eq. (58) . 

Proof. The simplest case to consider is m = 2 and n = 1 . This gives the equation 

O 
� 
G 2 , 1 

(z) = −z 2 − 2 z + 1 = 0 , (58)
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and δ� = 

√ 

2 − 1 
. = 0 . 41421 < 1 . Furthermore, the polynomial represented by the left-hand-side of the Eq. (56) is strictly

monotonic decreasing for z > 0 because the inequality 

(O 
� 
G m,n 

(z)) ′ = −mz m −1 − nz n −1 < 0 , (59) 

is satisfied. In order to prove the lower bound, we must determine m ( n is fixed) such that 

O 
� 
G m,n 

(z) = −( δ� ) m − ( δ� ) n − δ� + 1 > 0 . (60) 

From elementary calculations, we obtain Inequality (57) . Now Inequality (57) is a valid expression since 1 − ( δ� ) n − δ� > 0

for n > 
ln (1 −δ� 

ln (δ� ) 

. = 0 . 60677 . Let δ < 1 with δ > δ� be the positive root of the equation 

O 
� 
G m,n 

(δ) = −δm − δn − δ + 1 = 0 . (61) 

This implies 

lim 

n,m →∞ 

(−δm − δn − δ + 1) = −δ + 1 (62) 

which gives the limiting value δ = 1 . �

Theorem (2.9) can be improved by utilizing Bernoulli’s inequality [25] to obtain a better upper bound instead of 1.

Namely, let’s set 

F (z) = z m + z n + z − 1 , (63) 

and, we will prove that F ( y ) > 0 where y = 1 − 2 
m + n +1 . By applying Bernoulli’s inequality, we conclude 

F 

(
1 − 2 

m + n + 1 

)
≥ 1 − 2 m 

n + m + 1 
+ 1 − 2 n 

n + m + 1 
+ 1 − 2 

m + n + 1 
− 1 

= 2 − 2 m + 2 n + 2 

m + n + 1 
= 0 . (64) 

Therefore, we arrived at a better upper bound namely 1 − 2 
m + n +1 . �

Theorem 2.10. Suppose n 	 = m , and consider 

O 
� 
G m,n 

(z) = 1 − (z n + z m + z) = −z m − z n − z + 1 = 0 . (65)

Let δ1 be the root of Eq. 65 for fixed but arbitrary n and m; and for fixed n but varying m 
′ , let δ2 be the root of equation 

O 
� 
G m,n 

(z) = −z m 
′ − z n − z + 1 = 0 . (66) 

If δ2 > δ1 , then 

m > 

ln [1 − δ1 
n − δ1 ] 

ln ( δ1 ) 
. (67) 

Proof. By hypothesis, 

O 
� 
G m,n 

(δ1 ) = −δ1 
m − δ1 

n − δ1 + 1 = 0 . (68) 

In addition, assume that 

O 
� 
G m,n 

(δ2 ) = −δ2 
m 

′ − δ2 
n − δ2 + 1 = 0 . (69) 

From the proof of Theorem (2.9) , it is clear that O 
� 
G m,n 

(z) is strictly monotonic decreasing for z > 0. Given this fact together

with the assertion 

O 
� 
G m,n 

(δ1 ) = −δ1 
m 

′ − δ1 
n − δ1 + 1 > 0 , (70) 

it is clear that δ2 > δ1 . From Inequality (70) and elementary calculations, we obtain Inequality (67) . �

The following is an example of Theorem (2.10) with m = 4 and n = 3 , which gives 

O 
� 
G 4 , 3 

(z) = −z 4 − z 3 − z + 1 = 0 . (71) 

The unique, positive root δ1 � 0.618034. Substituting this value in Inequality (67) , gives m 
′ > 4. Suppose, m 

′ = 5 and n = 3

is fixed. Equation 

O 
� 
G 5 , 3 

(z) = −z 5 − z 3 − z + 1 = 0 , (72) 

implies δ2 � 0.636883. Thus, δ2 > δ1 . The corresponding graphs are shown in Fig. (3 ). 

Now we prove a special case of Theorem (2.9) . 
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Theorem 2.11. Let δ < 1 be the unique, positive root of Eq. (65) . If m → ∞ , n fixed, the limiting value of the Eq. (65) is the unique,

positive root ˆ δ of 

F n (z) = −z n − z + 1 = 0 . (73)

Proof. By hypothesis, δ is the unique, positive root of Eq. (65) . 

Hence, 

lim 

m →∞ 

(−δm − δn − δ + 1) = −δn − δ + 1 . (74)

In order to determine δ, it is necessary to calculate the unique, positive root ˆ δ such that 

F n ( ̂  δ) = − ˆ δn − ˆ δ + 1 = 0 . (75)

This completes the proof. �

The following result improves Theorem (2.8) . 

Theorem 2.12. Let n 	 = m. The unique positive root δ of Eq. (65) lies in the interval ( δ� , 1), where δ� is the unique, positive root

of 

−z m + 2 z − 1 = 0 , (76)

Proof. We need to establish a lower bound for the root of equation 

O 
� 
G m,n 

(δ) = 1 − (δn + δm + δ) = −δm − δn − δ + 1 = 0 . (77)

First, we give an upper bound for δm + δn + δ and immediately obtain 

δm + (δn + δ) < δm + 

(
1 

1 − δ
− 1 

)
, (78)

by means of an infinite geometric series when δ < 1. Next we turn our attention to the values of δ for which 

δm + 

(
1 

1 − δ
− 1 

)
> 1 , (79)

such that 

1 −
[ 
δm + 

(
1 

1 − δ
− 1 

)] 
< 0 . (80)

From this it follows that 

1 < δm + 

1 

1 − δ
− 1 , (81)

or, 

δm + 2 δ − 1 > 0 . (82)

So, we have found the value of δ satisfying Inequality (82) . Suppose 

F (δ) := δm + 2 δ − 1 , (83)

where δ� with F (δ� ) = 0 is the lower bound. Now, we prove that δ� < 1. Obviously, F (0) = −1 and lim δ→∞ 
F (δ) = ∞ , and

F (1) = 2 . So, the root δ� lies between zero and one. To prove uniqueness, we observe that the sequence of coefficients of

F ( δ) has exactly one sign change. Descartes’ rule of signs [23] implies F ( δ) has a unique, positive zero δ� , which concludes

the proof. �

Now, we illustrate Theorem (2.12) with an example. Consider 

O 
� 
G 3 , 2 

(z) = 1 − (z 3 + z 2 + z) = −z 3 − z 2 − z + 1 = 0 . (84)
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m nodes n nodes

Fig. 4. Another graph with three orbit sizes. We suppose that n 	 = m . One orbit contains n vertices, the second contains m vertices, and we have two 

singleton sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The real root of Eq. (84) is δ� 0.543689. Theorem (2.8) gives the lower bound δ ≥ 1 
3 . In order to determine δ� , we need

to solve 

δ3 + 2 δ − 1 = 0 , (85) 

which yields δ� = 0 . 453398 . 

Another example of a graph with three orbits is given in Fig. (4 ). Compared to the graph shown in Fig. (1 ), the multiplicity

of the singleton orbits is two. So, the associated graph polynomial based on the orbit polynomial is 

O 
�, 2 
G m,n 

(z) := 1 − (z n + z m + 2 z) = −z n − z m − 2 z + 1 . (86)

To obtain a lower bound in connection with O 
�, 2 
G m,n 

(δ) = 0 , we apply Theorem (2.3 . This gives δ ≥ 1 
2+1 = 

1 
3 , as M =

max { 1 , 1 , 2 } = 2 . Now it is possible to state a result giving the location of the root δ of O 
�, 2 
G m,n 

(z) . 

Theorem 2.13. The unique, positive root of the equation 

O 
�, 2 
G m,n 

(z) := 1 − (z n + z m + 2 z) = −z n − z m − 2 z + 1 = 0 , (87)

lies in the interval 

[ 
1 
3 , 

1 
2 

)
. 

Proof. According to Theorem (2.3) , we obtain δ ≥ 1 
2+1 = 

1 
3 , i.e., M = 2 . It is clear that the unique, positive root δ is less than

one, see Section (2.1) . Defining F (z) := 1 − 2 z gives 

O 
�, 2 
G m,n 

(z) = 1 − (z n + z m + 2 z) < 1 − 2 z = F (z) , for z > 0 . (88)

As demonstrated in the foregoing proofs, we can easily verify that O 
�, 2 
G m,n 

(z) and F ( z ) are strictly monotonic decreasing

for z > 0. Also O 
�, 2 
G m,n 

(0) = F (0) = 1 . Inequality (88) implies that δ is less than the root of F (z) = 0 . But the root of F (z) = 0

equals z = 
1 
2 . �

As a conclusive remark, we demonstrate that Theorem (2.13) can be slightly improved. Let’s define 

F (z) = z n + z m + 2 z − 1 . (89) 

So, F 
(
1 
2 

)
> 0 . By assuming m ≥n > 2, we can simply put y = 

1 
2 − 1 

2 n 
. This yields to 

F (y ) = 

(
1 

2 
− 1 

2 n 

)n 

+ 

(
1 

2 
− 1 

2 n 

)m 

+ 2 

(
1 

2 
− 1 

2 n 

)
− 1 < 

1 

2 n 
+ 

1 

2 m 
− 1 

2 n 
− 1 

2 n 
< 0 . (90)

Therefore, there exists is a root between 1 2 and 
1 
2 − 1 

2 n 
. 

2.3.2. Symmetry of chemical structures 

Molecular structures in organic chemistry can be represented as graphs whose vertices denote atoms and whose edges

correspond to chemical bonds. Invariants of such graphs, selected from numerical molecular descriptors [5] that have been

used successfully in chemoinformatics [26] , form groups of topological descriptors. Similarities of chemical structures are de-

fined in terms of sets of descriptors. Furthermore, they serve as variables in multivariate models describing the relationship

between chemical structures and substance properties or activities. Such models describe so-called quantitative structure- 

property (activity) relationships, QSP(A)R. The quantity δ defined above has been proposed as a new topological descriptor

characterizing the symmetry of molecular structures. 

As an application we calculate δ for three molecular structures to demonstrate the ability of the measure to capture

symmetry. The graphs representing these molecular structures are shown in Fig. (5 ). The relevant polynomials are 

O 
� 
G 1 

(z) = 1 − (z 4 + 4 z 2 + 2 z) , (91) 

O 
� 
G 2 

(z) = 1 − (z 6 + z 4 + 2 z 2 ) , (92) 

O 
� 
G 3 

(z) = 1 − (3 z 2 + 8 z) . (93) 
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Fig. 5. G 1 : An isomer of the set C 14 H 30 . δ( G 1 ) � 0.307026. G 2 : The isomer of the set C 14 H 28 . δ( G 2 ) � 0.626615. An isomer of the set C 14 H 26 . δ( G 3 ) � 0.119633. 

The vertices are labelled by orbit numbers, i.e., a given vertex is in the orbit 1,2,3,4,5. If a vertex is not labeled by this number, then this vertex represents 

a singleton orbit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From these we obtain the values δ( G 1 ) � 0.307026, δ( G 2 ) � 0.626615 and δ( G 3 ) � 0.119633. In [1] , we analyzed the meaning

of the symmetry measures δ and found that the higher the value of δ, the greater is the symmetry of the corresponding

graph. Recall that the maximum value of δ is 1, which is achieved in vertex transitive graphs. The following inequalities

hold: δ( G 2 ) > δ( G 1 ) > δ( G 3 ). For example, G 2 has a higher degree of symmetry than G 1 . This seems to be plausible as G 2

contains at least one ring and G 1 is just a branched path. 

From the triangular inequality, we can easily obtain a lower bound for the zeros of the Eqs. (91) –(93) . For example,

assuming | z | < 1, the bound on δ( G 2 ) is given by 

| O 
� 
G 2 

(z) | = | 1 − (z 6 + z 4 + 2 z 2 ) | , 
≥ 1 − | z 6 + z 4 + 2 z 2 | , 
≥ 1 − {| z| 6 + | z| 4 + 2 | z| 2 } , 
≥ 1 − 2 {| z| 6 + | z| 4 + | z| 2 } , 
≥ 1 − 2 { 3 | z| 2 } > 0 . (94)

So, if | O 
� 
G 2 

(z) | > 0 , then | z| < 
1 √ 

6 
. Therefore, all zeros of O 

� 
G 2 

(z) lie in | z| ≥ 1 √ 

6 

. = 0 . 40825 . In fact, δ( G 2 ) � 0.626615. 

Now consider δ for hydrocarbons which are essential constituents of mineral oils and other products. These compounds

have chemical formulae C n H m . A carbon atom (C) has four chemical valences so each vertex of the graph representing it has

degree at most four. The maximum number of hydrogen atoms (H) in the compound is 2 n + 2 , defining the class of alkanes,

whose graphs are trees. The different topologies of n connected C-atoms define the set of isomers. In the example presented

here, we use graphs with n = 14 C-atoms (vertices). The number of possible trees (isomers of C 14 H 30 ) is 1858, ranging from

the 14-member chain to highly branched graphs; an example is G 1 shown in Fig. (5 ). The chemical structures are shown in

the figure without H-atoms (H-depleted). the numbering of the vertices is arbitrary, and all the edges are identical; such

uncolored graphs represent the skeletons of molecular structures. A second set of graphs used here are the isomers derived

from C 14 H 28 , which contain one ring of size ranging from 3 to 14; these cycloalkanes consist of 22,565 isomers. One of the

isomers is G 2 shown in Fig. (5 ). The third set contains the isomers derived from C 14 H 26 , restricted to structures with two

rings with minimum size of 5. These bicycloalkanes consist of 22,314 isomers, one of which is G 3 shown in Fig. (5 ). 

The graphs of the isomeric chemical structures have been generated by the program Molgen [27] ; automorphism data

has been calculated by software SubMat [28,29] . 

Table 1 contains the results obtained for the sets of chemical molecular graphs described above. Due to the integer pa-

rameters of the orbit polynomials, a discrete set of δ-values appears. The number of different δ-values for each of the three
sets is 43, 41 and 36, respectively. These relatively small numbers indicate that δ is a generalized measure for symmetry,

rather than a highly unique identifier. 

The histograms for the frequencies of the particular δ-values are presented as bar plots in Fig. (6 ). The distributions for
the three sets appear similar with high frequencies at low symmetry; the medians are 0.09808, 0.098080 and 0.08276. 

The minimum value of δ, δmin , for a graph with n vertices (C-atoms here) occurs for asymmetric graphs having each

atom in a separate orbit.In this case the atoms are all topologically different. The polynomial is 1 − nz and δmin = 
1 
n ; here

1 
14 = 0.07143. For each set of isomeric structures the δmin is equal to this theoretical minimum; the number of asymmetric

graphs is 139, 3028 and 8785, respectively, for the three sets. Examples are presented in Fig. (7 ). 

The maximum value of δ, δmax , for a graph with n vertices (C-atoms here) is obtained if all atoms are in a single or-

bit, in which case the atoms all topologically equal. The polynomial is 1 − z n and δ = 1 . Such a graph exists in set 2
max 
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Table 1 

Data sets from chemical structures with 14 carbon atoms and automorphism 

parameter. 

Set 1 Set 2 Set 3 

Chemical formula C 14 H 30 C 14 H 28 C 14 H 26 
No. of rings 0 1 2 

No. of isomeric structures 1858 22,565 22,314 

δmin 0.07143 0.07143 0.07143 

δmedian 0.09808 0.09808 0.08276 

δmax 0.76795 1.00000 0.76795 

No. of unique δ 43 41 36 

No. of structures with δmin 139 3028 8785 

No. of structures with δmax 1 1 2 

|Aut( G )| range 1–1296 1–288 1–48 

No. of structures with max(|Aut( G )|) 1 1 4 

Fig. 6. Distribution of the δ-values for the three sets containing chemical structures. The frequency, f , is plotted as log 10 ( f + 1) . 

Set 1 Set 2                              Set 3
alkanes cycloalkanes bicycloalkanes

Fig. 7. Examples of asymmetric graphs for the three sets with chemical structure graphs, all with the theoretical minimum of δ for 14 vertices. δmin = 
1 
14 

= 0.07143. 

 

 

 

 

 

 

 

(cycloalkanes), consisting of a 14-member ring. In set 1 (alkanes) δmax = 0 . 76795 for one graph; in set 2 (bicycloalkanes)

with the same δmax for two graphs; in Fig. 8 these three graphs are presented. All three have 1 orbit with 2 atoms, and

2 orbits with 6 atoms, giving the polynomial 1 − 2 z − 2 z 6 , with identical δ values for symmetry, despite different visual

impressions of the molecular skeletons. 

The orbit data - defining the symmetry measure δ - can be obtained from the automorphism group of the graph, consist-

ing of all possible bijective, edge preserving mappings of the vertices. The size, |Aut( G )|, of the automorphism group of an

asymmetric graph G (see Section 2.1 ) is one. Here δmin = 
1 
n . However, in the three sets, the numerical relationship between

δ and |Aut( G )| is weak with Pearson correlation coefficients of 0.33, 0.45, and 0.50, respectively. The maximum values of
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Fig. 8. Graphs with highest δ = 0.76795 in the sets with chemical structure graphs for alkanes (set 1) and bicycloalkanes (set 3). The vertices are labeled 

by orbit numbers, i.e., a given vertex is in the orbit 1,2,3. 

Fig. 9. Graphs with highest size of the automorphism group, |Aut( G )|, in the three sets with chemical structure graphs. 

 

 

 

 

 

 

 

 

 

 

 

|Aut( G )| in the three sets are 1296, 288, and 48, respectively; the number of graphs with maximum |Aut( G )| in the three

sets is 1, 1, and 4. Fig. 9 shows these six structures. 

3. Summary and conclusion 

This paper has addressed the problem of determining bounds on the unique positive roots of certain graph polynomials.

These polynomials capture the orbit structure of the automorphism group of a graph, and as such give information about

symmetry. The results suggest that the roots of these polynomial can be used to classify graphs according to degree of

symmetry. Specific bounds have been given for several classes of graphs. Also, we applied the measures δ to special sets

of isomers. The results revealed that the measure captures symmetry meaningfully, however δ shows a certain kind of

degeneracy for these sets. We could overcome this problem by defining an appropriate super index. Also, we plan to extend

these results to other classes of graphs and to build a foundation for classification. 
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