


service to forward the request to. Users can create posts

embedded with text, media, links, and tags to other users,

which are then broadcasted to all their followers. Users

can also read posts on their timelines and create new posts

themselves.

Inter-microservice messages use Thrift RPCs [33]. The

service’s backend uses memcached [8] for caching, and

MongoDB [20] for persistently storing posts, user profiles,

and media. Index information, such as user timeline indices,

are stored in Redis. RabbitMQ [25] instances are added be-

tween business logic and MongoDB to make time-consuming

database write operations asynchronous, and prevent them

from blocking upstream connections. We use the Reed98 [27]

social friendship network to populate the user database. It is

extracted from Facebook, and consists of 962 people and

18.1K edges, where an edge is a follow relationship. We

model user activity according to the behavior of Twitter users

reported in [13], where a user’s posting activity positively

correlates with the number of their followers. The distribution

of post length emulates Twitter’s text length distribution [11].

B. Management Challenges and the Need for ML

Microservices management faces three major challenges.

1. Prohibitively-large action space Given that application

behaviors change frequently, resource management decisions

need to happen online. This means that the resource manager

must traverse a space that includes all possible resource

allocations per microservice in a practical manner. Assuming

N microservice tiers and a pool of C (C ≥ N ) homogeneous

physical cores, each with F frequency levels, the size of the

action space is
(

C−1

N−1

)

· NF . For example, given a cluster

with 150 cores and assuming 10 frequency steps per tier,

the resource allocation space size of the Social Network

application is 7.78 × 10
55. Profiling all actions under dif-

ferent loads would require significant time and computation

resources. As a result, efficient action space pruning methods

and statistical tools with strong generalization capability are

urgently needed for resource scheduling.

2. Delayed queueing effect Consider a queueing system with

processing throughput To under a latency QoS target. To is a

non-decreasing function of the amount of allocated resources

R. For input load Ti, To should equal or slightly surpass Ti

for the system to meet its QoS, and remain stable, while

using the minimum amount of resources R needed. Even in

the case where R is reduced, such that To < Ti, QoS will

not be immediately violated, since queue accumulation takes

time. The converse is also true; by the time QoS is violated,

the built-up queue takes a long time to drain, even if resources

are upscaled immediately upon detecting the QoS violation.

Multi-tier microservices are complex queueing systems with

queues both between and within microservices [9, 10]. This

delayed queueing effect highlights the need for the ML model

to evaluate the long-term effect of resource management ac-

tions, and proactively prevent the resource manager from re-

ducing resources overly-aggressively to avoid latency spikes

that introduce long recovery periods. To mitigate a QoS

violation, the manager must increase resources proactively,

otherwise the QoS violation becomes unavoidable, even if

more resources are allocated a posteriori.

3. Dependencies among tiers Resource management in

microservices is additionally complicated by the fact that

dependent microservices are not perfect pipelines, and hence

can introduce backpressure effects that are hard to detect and

prevent [9, 10]. These dependencies can be further exacer-

bated by the specific RPC and data store API implementation.

Therefore, the resource scheduler should have a global view

of the microservice graph and be able to anticipate the impact

of dependencies on end-to-end performance.

C. Proposed Approach

These challenges suggest that empirical resource manage-

ment, such as autoscaling, is prone to unpredictable per-

formance and/or resource inefficiencies. Sinan takes instead

a data-driven, ML-based approach that automates resource

management for microservices, leveraging a set of scalable

and validated ML models, that allows high and predictable

performance and resource utilization. Sinan’s ML models

predict the end-to-end latency and the probability of a QoS

violation for a resource configuration, given the system’s state

and history. The system uses these predictions to maximize

resource efficiency, while meeting the application’s QoS.

Below, we first describe the ML models (Sec. III-A), and

Sinan’s system architecture (Sec. III).

III. SINAN

A. Machine Learning Models

We initially designed Sinan’s ML model to only predict the

end-to-end latency tail distribution using a CNN, such that

the scheduler can query the model with potential resource

allocations, and 1) choose the one that minimizes the required

resources while meeting the end-to-end QoS, or 2) the

one that minimizes end-to-end latency if there are multiple

allocations satisfying QoS. However, this model experienced

consistently high errors during deployment, due to the de-

layed queueing effect mentioned previously. Therefore, it is

crucial for the model to also predict the long-term impact of

resource allocations.

A straightforward fix is to use a multi-task CNN model that

predicts latency distribution for the immediate future, and the

QoS violation probability in the long term. This approach was

also shown to frequently overpredict latency, due to the large

gap between latency and probability values.

Sinan currently follows a hybrid approach, which uses a

CNN to predict the end-to-end latency of the next decision

interval, and a boosted trees (BT) model to anticipate QoS

violations further into the future. We refer to the CNN model

as the short-term latency predictor, and the BT model as the

long-term violation predictor.

2







of Redis had significantly dropped, in agreement with our

observation that tail latency is no longer sensitive to it.

V. CONCLUSION

We have presented our early work on Sinan, an ML-

driven, online resource manager for interactive microservices.

Sinan highlights the challenges of managing complex mi-

croservices, and leverages a set of scalable and validated ML

models to reduce resource usage while meeting end-to-end

Quality of Service.

REFERENCES

[1] “Decomposing twitter: Adventures in service-oriented architecture,”
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-
serviceoriented-architecture.

[2] “The evolution of microservices,” https://www.slideshare.net/
adriancockcroft/evolution-of-microservices-craft-conference, 2016.

[3] “Microservices workshop: Why, what, and how to get there,”
http://www.slideshare.net/adriancockcroft/microservices-workshop-
craft-conference.

[4] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed
systems,” CoRR, vol. abs/1512.01274, 2015. [Online]. Available:
http://arxiv.org/abs/1512.01274

[5] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura,
and R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud
platforms,” in Proceedings of the 26th Symposium on Operating

Systems Principles, ser. SOSP ’17. New York, NY, USA: ACM,
2017, pp. 153–167. [Online]. Available: http://doi.acm.org/10.1145/
3132747.3132772

[6] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-Aware Scheduling
for Heterogeneous Datacenters,” in Proceedings of the Eighteenth

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS). Houston, TX, USA,
2013.

[7] ——, “Quasar: Resource-Efficient and QoS-Aware Cluster Manage-
ment,” in Proceedings of the Nineteenth International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS). Salt Lake City, UT, USA, 2014.
[8] B. Fitzpatrick, “Distributed caching with memcached,” in Linux Jour-

nal, Volume 2004, Issue 124, 2004.
[9] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,

J. Hu, B. Ritchken, B. Jackson et al., “An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems,” in Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and

Operating Systems. ACM, 2019, pp. 3–18.
[10] Y. Gan, Y. Zhang, K. Hu, Y. He, M. Pancholi, D. Cheng, and

C. Delimitrou, “Seer: Leveraging Big Data to Navigate the Complexity
of Performance Debugging in Cloud Microservices,” in Proceedings of

the Twenty Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), April
2019.

[11] K. Gligorić, A. Anderson, and R. West, “How constraints affect
content: The case of twitter’s switch from 140 to 280 characters,”
in Twelfth International AAAI Conference on Web and Social Media,
2018.

[12] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic ephemeral storage for serverless an-
alytics,” in 13th {USENIX} Symposium on Operating Systems Design

and Implementation ({OSDI} 18), 2018, pp. 427–444.
[13] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social

network or a news media?” in Proceedings of the 19th international

conference on World wide web. AcM, 2010, pp. 591–600.

[14] C.-C. Lin, P. Liu, and J.-J. Wu, “Energy-aware virtual machine
dynamic provision and scheduling for cloud computing,” in
Proceedings of the 2011 IEEE 4th International Conference on

Cloud Computing (CLOUD). Washington, DC, USA, 2011. [Online].
Available: http://dx.doi.org/10.1109/CLOUD.2011.94

[15] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards energy proportionality for large-scale latency-critical work-
loads,” in Proceedings of the 41st Annual International Symposium on

Computer Architecuture (ISCA). Minneapolis, MN, 2014.
[16] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,

“Heracles: Improving resource efficiency at scale,” in Proc. of the 42Nd

Annual International Symposium on Computer Architecture (ISCA).
Portland, OR, 2015.

[17] J. Mars and L. Tang, “Whare-map: heterogeneity in ”homogeneous”
warehouse-scale computers,” in Proceedings of ISCA. Tel-Aviv, Israel,
2013.

[18] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms
as gradient descent,” in Proceedings of the 12th International

Conference on Neural Information Processing Systems, ser. NIPS’99.
Cambridge, MA, USA: MIT Press, 1999, pp. 512–518. [Online].
Available: http://dl.acm.org/citation.cfm?id=3009657.3009730

[19] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power management of online data-intensive services,” in
Proceedings of the 38th annual international symposium on Computer

architecture, 2011, pp. 319–330.
[20] “Mongodb,” https://www.mongodb.com.
[21] R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting platform hetero-

geneity for power efficient data centers,” in Proceedings of ICAC.
Jacksonville, FL, 2007.

[22] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing
performance interference effects for qos-aware clouds,” in Proceedings

of EuroSys. Paris,France, 2010.
[23] “Nginx,” https://www.nginx.com.
[24] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-

tributed, low latency scheduling,” in Proceedings of SOSP. Farminton,
PA, 2013.

[25] “Rabbitmq,” https://www.rabbitmq.com.
[26] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should I trust you?”:

Explaining the predictions of any classifier,” in Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, San Francisco, CA, USA, August 13-17, 2016, 2016, pp.
1135–1144.

[27] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: http://networkrepository.com

[28] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kus-
mierek, P. Nowak, B. Strack, P. Witusowski, S. Hand et al., “Autopilot:
workload autoscaling at google,” in Proceedings of the Fifteenth

European Conference on Computer Systems, 2020, pp. 1–16.
[29] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,

“Omega: flexible, scalable schedulers for large compute clusters,” in
Proceedings of EuroSys. Prague, Czech Republic, 2013.

[30] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic
resource scaling for multi-tenant cloud systems,” in Proceedings of

SOCC. Cascais, Portugal, 2011.
[31] A. Sriraman and T. F. Wenisch, “usuite: A benchmark suite for

microservices,” in 2018 IEEE International Symposium on Workload

Characterization (IISWC). IEEE, 2018, pp. 1–12.
[32] L. Suresh, P. Bodik, I. Menache, M. Canini, and F. Ciucu, “Distributed

resource management across process boundaries,” in Proceedings of

the 2017 Symposium on Cloud Computing. ACM, 2017, pp. 611–
623.

[33] “Apache thrift,” https://thrift.apache.org.
[34] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes, “Large-scale cluster management at Google with Borg,”
in Proceedings of the European Conference on Computer Systems

(EuroSys), Bordeaux, France, 2015.
[35] H. Zhou, M. Chen, Q. Lin, Y. Wang, X. She, S. Liu, R. Gu, B. C. Ooi,

and J. Yang, “Overload control for scaling wechat microservices,” in
Proceedings of the ACM Symposium on Cloud Computing. ACM,
2018, pp. 149–161.

5


	Introduction
	Overview
	Motivating Application
	Management Challenges and the Need for ML
	Proposed Approach

	Sinan
	Machine Learning Models
	Online Scheduler
	Data Collection
	Resource allocation


	Evaluation
	Methodology
	Sinan's Accuracy and Speed
	Online Deployment
	Explainable ML

	Conclusion
	References

