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Abstract—Cloud applications are increasingly shifting to
interactive and loosely-coupled microservices. Despite their ad-
vantages, microservices complicate resource management, due
to inter-tier dependencies. We present Sinan, a cluster manager
for interactive microservices that leverages easily-obtainable
tracing data instead of empirical decisions, to infer the impact
of a resource allocation on on end-to-end performance, and
allocate appropriate resources to each tier. In a preliminary
evaluation of Sinan with an end-to-end social network built
with microservices, we show that Sinan’s data-driven approach,
allows the service to always meet its QoS without sacrificing
resource efficiency.

I. INTRODUCTION

Over the past few years, the design of online interactive
applications has shifted from monolithic services that encom-
pass the entire functionality in a single binary, to microser-
vices that divide application to a graph of tens or hundreds of
single-purpose and loosely-coupled tiers [1,2,3,9,31,32].
Microservices are appealing for several reasons, including
modularity, flexible development and deployment, and high
tolerance of software heterogeneity.

Despite their advantages, microservices also introduce new
system challenges, primarily in resource management. The
dependencies between microservices exacerbate queueing
and introduce cascading QoS violations that are difficult
to identify and correct in a timely manner [9,35]. Current
cluster managers that optimize for monolithic applications
or applications consisting of few tiers are not expressive
enough to capture the complexity of microservices [6, 14,
15,19,21,22,24,29, 30, 34]. Furthermore, given that typical
microservice deployments include tens to hundreds of unique
tiers, exhaustively exploring the resource allocation space is
prohibitively expensive [7, 16, 17].

Instead in this work we take a data-driven approach to mi-
croservices management. Previous work [5,28] highlighted
the potential of data-driven approaches to address resource
scheduling for large-scale systems, but they do not directly
apply to microservices.

We present our preliminary work on Sinan, an ML-based
cluster manager for microservices that leverages the cloud’s
tracing data and a set of practical ML techniques to infer
the impact of resource allocation on end-to-end performance,
and assign appropriate resources to each application tier.

Sinan leverages efficient action space pruning to reduce the
overheads of exploration, and trains two models with the trac-
ing data; a CNN model for detailed short-term performance
prediction, and, a Boosted Trees model that evaluates the
long-term performance evolution. The combination of the two
models allows Sinan to both examine the near-future outcome
of a resource allocation, and account for the system’s inertia
in building up queues. Sinan operates online, adjusting per-
tier resources dynamically according to the service’s runtime
status and end-to-end Quality of Service (QoS) target.

We evaluate Sinan using an end-to-end, microservices-
based application that implements a social network [9], and
compare it against traditional autoscaling approaches. We
also validate the accuracy of Sinan’s ML models, and show
that QoS does not come at the price of resource inefficiency.
Finally, we emphasize the need for explainable ML models,
which provide design insights for large-scale systems, using
an example of Redis’s log synchronization, which Sinan
identified as the source of unpredictable performance.

II. OVERVIEW

A. Motivating Application

We use the Social Network from DeathStarBench [9].
The service implements a broadcast-style social network with
uni-directional follow relationships, and its architecture is
shown in Fig. 1.
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Fig. 1: Social Network: vertical lines separate different
types of tiers (front-end, logic, backend), while colors show
microservices for different request types. Blue: read own
timeline, green: read user timeline, orange: compose post.

Functionality: Users (client) send requests over http to
NGINX [23] front-end, which selects a specific downstream



service to forward the request to. Users can create posts
embedded with text, media, links, and tags to other users,
which are then broadcasted to all their followers. Users
can also read posts on their timelines and create new posts
themselves.

Inter-microservice messages use Thrift RPCs [33]. The
service’s backend uses memcached [8] for caching, and
MongoDB [20] for persistently storing posts, user profiles,
and media. Index information, such as user timeline indices,
are stored in Redis. RabbitMQ [25] instances are added be-
tween business logic and MongoDB to make time-consuming
database write operations asynchronous, and prevent them
from blocking upstream connections. We use the Reed98 [27]
social friendship network to populate the user database. It is
extracted from Facebook, and consists of 962 people and
18.1K edges, where an edge is a follow relationship. We
model user activity according to the behavior of Twitter users
reported in [13], where a user’s posting activity positively
correlates with the number of their followers. The distribution
of post length emulates Twitter’s text length distribution [11].

B. Management Challenges and the Need for ML

Microservices management faces three major challenges.
1. Prohibitively-large action space Given that application
behaviors change frequently, resource management decisions
need to happen online. This means that the resource manager
must traverse a space that includes all possible resource
allocations per microservice in a practical manner. Assuming
N microservice tiers and a pool of C' (C' > N) homogeneous
physical cores, each with F' frequency levels, the size of the
action space is ({_1) - N¥. For example, given a cluster
with 150 cores and assuming 10 frequency steps per tier,
the resource allocation space size of the Social Network
application is 7.78 x 10°°. Profiling all actions under dif-
ferent loads would require significant time and computation
resources. As a result, efficient action space pruning methods
and statistical tools with strong generalization capability are
urgently needed for resource scheduling.

2. Delayed queueing effect Consider a queueing system with
processing throughput 7, under a latency QoS target. T}, is a
non-decreasing function of the amount of allocated resources
R. For input load Tj;, T, should equal or slightly surpass T;
for the system to meet its QoS, and remain stable, while
using the minimum amount of resources R needed. Even in
the case where R is reduced, such that T, < T;, QoS will
not be immediately violated, since queue accumulation takes
time. The converse is also true; by the time QoS is violated,
the built-up queue takes a long time to drain, even if resources
are upscaled immediately upon detecting the QoS violation.
Multi-tier microservices are complex queueing systems with
queues both between and within microservices [9, 10]. This
delayed queueing effect highlights the need for the ML model
to evaluate the long-term effect of resource management ac-
tions, and proactively prevent the resource manager from re-

ducing resources overly-aggressively to avoid latency spikes
that introduce long recovery periods. To mitigate a QoS
violation, the manager must increase resources proactively,
otherwise the QoS violation becomes unavoidable, even if
more resources are allocated a posteriori.

3. Dependencies among tiers Resource management in
microservices is additionally complicated by the fact that
dependent microservices are not perfect pipelines, and hence
can introduce backpressure effects that are hard to detect and
prevent [9, 10]. These dependencies can be further exacer-
bated by the specific RPC and data store API implementation.
Therefore, the resource scheduler should have a global view
of the microservice graph and be able to anticipate the impact
of dependencies on end-to-end performance.

C. Proposed Approach

These challenges suggest that empirical resource manage-
ment, such as autoscaling, is prone to unpredictable per-
formance and/or resource inefficiencies. Sinan takes instead
a data-driven, ML-based approach that automates resource
management for microservices, leveraging a set of scalable
and validated ML models, that allows high and predictable
performance and resource utilization. Sinan’s ML models
predict the end-to-end latency and the probability of a QoS
violation for a resource configuration, given the system’s state
and history. The system uses these predictions to maximize
resource efficiency, while meeting the application’s QoS.
Below, we first describe the ML models (Sec. III-A), and
Sinan’s system architecture (Sec. III).

III. SINAN
A. Machine Learning Models

We initially designed Sinan’s ML model to only predict the
end-to-end latency tail distribution using a CNN, such that
the scheduler can query the model with potential resource
allocations, and 1) choose the one that minimizes the required
resources while meeting the end-to-end QoS, or 2) the
one that minimizes end-to-end latency if there are multiple
allocations satisfying QoS. However, this model experienced
consistently high errors during deployment, due to the de-
layed queueing effect mentioned previously. Therefore, it is
crucial for the model to also predict the long-term impact of
resource allocations.

A straightforward fix is to use a multi-task CNN model that
predicts latency distribution for the immediate future, and the
QoS violation probability in the long term. This approach was
also shown to frequently overpredict latency, due to the large
gap between latency and probability values.

Sinan currently follows a hybrid approach, which uses a
CNN to predict the end-to-end latency of the next decision
interval, and a boosted trees (BT) model to anticipate QoS
violations further into the future. We refer to the CNN model
as the short-term latency predictor, and the BT model as the
long-term violation predictor.
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Fig. 2: Sinan’s hybrid model, consisting of a CNN and
a boosted trees model. The CNN predicts the end-to-end
latency (yr), and the boosted trees predicts the probability
of a QoS violation (py).

As shown in Fig. 2, the latency predictor takes as input
the resource usage history (X ), the latency history (X r),
and the potential resource configuration (X pg¢) for the next
timestep, and predicts the end-to-end tail latency distribution
(yr) (95" to 99" percentiles) of the next timestep. X gy
is formed as a 3D tensor whose x-axis is [V tiers in the
microservices graph, y-axis is 1" timestamps (7' > 1 accounts
for the non-Markovian nature of microservice graph), and
channels are F' resource usage information related to cpu,
memory, network and I/0. Xro and Xy are 2D matrices.
For X e, x-axis is NV tiers and y-axis is core number and cpu
frequency. For X gy, x-axis is 7" timestamps, and y-axises are
latency tail distribution (95" to 99" percentiles). The three
inputs are firstly individually processed with convolution
(Conv) and fully connected (FC) layers and then concatenated
to form the latent representation L ¢, from which the predicted
latency distribution L is derived with another FC layer. The
loss function of the CNN is shown below:

L(X, g, W Ly~ 2 1
where fy(-) represents the forward function of the CNN
network, g is the ground truth, and n is the number of
training samples. The CNN is implemented with MxNet [4],
and trained with Stochastic Gradient Descent (SGD).

The violation predictor addresses a binary classification
task of whether a given allocation will cause a QoS violation
further in the future, to filter out undesirable resource options.
Ensemble methods are good candidates for this, as they
usually perform well in classification tasks, and are robust to
overfitting. We use XGBoost [18], which realizes an accurate
non-linear model by combining a series of simple regression
trees. It models the target as the sum of trees, each of which
maps the features to a score. The final prediction is the
accumulation of scores across all trees. We use the compact
latent variable Ly, extracted from the CNN as the input to
the BT, to reduce the computation cost. Moreover, since the
latent variable L is significantly smaller than Xgrc, Xgrpy,

and X7,y in dimensionality, using Ly as the input also makes
the model more robust to overfitting.

B. Online Scheduler

Sinan consists of three components: a centralized sched-
uler, distributed operators deployed on each server, and a
performance forecaster hosting the ML models.

Sinan makes decisions periodically, once every ls, con-
sistent with the granularity at which QoS is defined. The
centralized scheduler queries the distributed operators to
obtain the CPU, memory, network, and I/O usage information
of each tier in the previous interval through Docker’s cgroup
stats API. Aside from per-tier information, the scheduler also
queries the API gateway to get statistics of user load (imple-
mented via workload generator for simplicity in our experi-
ments). Using the model’s output, the scheduler chooses one
allocation that is beneficial to QoS and resource-efficient, i.c.,
uses the least resources needed to meet QoS, and sends its
decision to the per-node agents for enforcement.

1) Data Collection: Representative training data is key to
the accuracy of ML models. Ideally, the training and testing
data should follow similar distributions, to avoid covariate
shift, which means that the training dataset needs to cover
a sufficient spectrum of application behaviors. Meanwhile,
because of the impractical size of resource allocation space,
Sinan’s data collection agent is only able to cover a limited
fraction of the entire space within the permitted time and
computation budgets. As a result, we design the data collec-
tion agent to follow two principles. Firstly, we quantize the
minimum amount of resources by which Sinan can adjust an
allocation, to reduce the size of the explored resource space.
Secondly, we enforce the data collection agent to only explore
allocations in the [0,QoS + «] tail latency region, where
« is a small value compared to QoS, so that the trained
model is able to learn the behavior of resource allocations
which initiate QoS violations without biasing the collected
distribution severely towards values greater than QoS. We
have also compared Sinan’s data collection scheme against
collecting data randomly and when a resource autoscaler is
in place, and showed that Sinan consistently explores a larger
and more useful region of the resource space, improving the
accuracy of the ML models.

2) Resource allocation: Online scheduling in Sinan cur-
rently involves has two phases: core allocation and power
management. In core allocation, the scheduler minimizes the
number of cores until no further reduction is considered
feasible by the ML model. Then the scheduler enters the
power management phase and gradually reduces frequency.
After the two phases are complete, the scheduler keeps the
resulting allocation, and increases resources when required by
the ML model. The scheduler also has a safety mechanism for
cases where the ML model fails to correctly predict a QoS
violation. Whenever the number of missed QoS violations
exceeds that threshold, the scheduler trusts the model less,



and is more conservative when reclaiming resources. In
practice, Sinan never had to lower its trust to the ML model.

IV. EVALUATION
A. Methodology
We use a local cluster with 150 physical cores in total
for data collection and online deployment. Each microservice
runs in a Docker container. We collected 192,031 samples,
and split them by 9:1 as training and testing set.

B. Sinan’s Accuracy and Speed

We first compare the CNN in Sinan against a multilayer
perceptron (MLP), and a long short-term memory (LSTM)
network. Sinan’s CNN achieves the lowest RMSE (9.5ms
vs. 19.6ms for MLP and 13.1ms for LSTM), while also
having the smallest model size (264KB). Although the CNN’s
speed is slightly slower than the LSTM (6.7ms/batch vs.
3.6ms/batch for LSTM), its inference latency is within 1%
of the decision interval (1s), which does not delay online
decisions. In terms of the BT model, validation accuracy is
higher than 93%, with 3.1% false positives, and 3.9% false
negatives. In all cases, Sinan runs on a single NVidia Titan
XP GPU with average utilization below 2%.

C. Online Deployment

We now evaluate Sinan’s ability to meet QoS during online
deployment. We compare Sinan against two autoscaling poli-
cies. AS_Opt is configured according to [12], which reduces
cores and frequency when the CPU utilization of a tier drops
below 30% and 40% respectively, and increases cores when
utilization exceeds 70%. AS_Cons is more conservative, and
optimizes for QoS. It uses 20% and 30% CPU utilization,
to downsize cores and frequency respectively, and 50% to
upscale cores. For each service, we run 10 experiments with
constant load from 10% to 100% of the max QPS, and a
diurnal load pattern, where load starts from 10%, gradually
rises to peak QPS, and then decreases back to 10%.

At near-saturation load, differences between schedulers
are small because of the limited size of our cpu pool. The
difference becomes more apparent at low loads, where Sinan
reduces tail latency and latency variability considerably. In
contrast, tail latency varies widely for the two autoscalers,
and especially for AS_Opt. The violations in AS_Opt are
caused by not upscaling NGINX, whose utilization did not
exceed the upscale threshold. The difference is more dramatic
for the diurnal load, where AS_Opt violates QoS by more
than an order of magnitude.

Note that Sinan’s tail latency reduction also comes
with significant resource savings. Even when compared to
AS_Cons, Sinan reduces the active cores by 16.3% on
average, and up to 29.1%. Sinan also reduces the average
frequency of active cores by 37.2% on average, and up to
57.47%.

Fig. 3 shows the detailed results of Sinan’s resource
allocation over time for the diurnal pattern. Sinan is able to
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Fig. 3: Latency and resources under a diurnal load.

dynamically adjust resources to handle the fluctuating load,
and the predicted tail latency closely follows the ground truth.

D. Explainable ML

For users to trust ML used in systems, it is important to
interpret its output with respect to the system it manages,
instead of treating ML as a black box. We are specifically
interested in understanding what makes some features in the
model more important than others. The benefits of under-
standing this are threefold: 1) debugging the ML models;
2) identifying and fixing performance issues; 3) filtering out
insignificant features to reduce the model size and speed up
inference.

We adopt a widely-used ML interpretability approach
called LIME [26]. LIME interprets NNs by identifying key
input features which contribute most to predictions. Given
an input X, LIME perturbs X to obtain a set of artificial
samples, close to X in the feature space. Then, LIME labels
the perturbed samples by classifying them with the NN, and
uses the labeled data to fit a linear regression model, and
uses it to identify important features based on the regression
parameters. Since we are mainly interested in understanding
the culprit of QoS violations, we choose input samples X
close to when QoS violations occur, and apply LIME. We
perturb resource usage statistics, and construct a dataset with
all perturbed and original data to train a linear regression
model. Lastly, we rank the importance of each feature.

We applied LIME to diagnose performance issues in cases
where tail latency experienced spikes despite the low load.
First, we find that the most important tier for the model’s
prediction is social-graph Redis, instead of tiers with heavy
CPU utilization, like NGINX. We then examine the importance
of each resource metric for Redis, and find that the most
meaningful resources are cache and resident working set size,
which correspond to data cached in memory and non-cached
memory for a process, including stacks and heaps. Using
these hints, we check the memory-related configuration and
runtime statistics of social-graph Redis, and find that it is
configured to record logging data in persistent storage every
minute. For each persistence operation, Redis forks a new
process and copies all written memory to disk; during that
time it stops serving user requests. Disabling logging resulted
in most latency spikes being eliminated. Re-applying LIME
to the modified Social Network showed that the importance



of Redis had significantly dropped, in agreement with our
observation that tail latency is no longer sensitive to it.

V. CONCLUSION

We have presented our early work on Sinan, an ML-
driven, online resource manager for interactive microservices.
Sinan highlights the challenges of managing complex mi-
croservices, and leverages a set of scalable and validated ML
models to reduce resource usage while meeting end-to-end
Quality of Service.
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