


service to forward the request to. Users can create posts

embedded with text, media, links, and tags to other users,

which are then broadcasted to all their followers. Users

can also read posts on their timelines and create new posts

themselves.

Inter-microservice messages use Thrift RPCs [33]. The

service’s backend uses memcached [8] for caching, and

MongoDB [20] for persistently storing posts, user profiles,

and media. Index information, such as user timeline indices,

are stored in Redis. RabbitMQ [25] instances are added be-

tween business logic and MongoDB to make time-consuming

database write operations asynchronous, and prevent them

from blocking upstream connections. We use the Reed98 [27]

social friendship network to populate the user database. It is

extracted from Facebook, and consists of 962 people and

18.1K edges, where an edge is a follow relationship. We

model user activity according to the behavior of Twitter users

reported in [13], where a user’s posting activity positively

correlates with the number of their followers. The distribution

of post length emulates Twitter’s text length distribution [11].

B. Management Challenges and the Need for ML

Microservices management faces three major challenges.

1. Prohibitively-large action space Given that application

behaviors change frequently, resource management decisions

need to happen online. This means that the resource manager

must traverse a space that includes all possible resource

allocations per microservice in a practical manner. Assuming

N microservice tiers and a pool of C (C ≥ N ) homogeneous

physical cores, each with F frequency levels, the size of the

action space is
(

C−1

N−1

)

· NF . For example, given a cluster

with 150 cores and assuming 10 frequency steps per tier,

the resource allocation space size of the Social Network

application is 7.78 × 10
55. Profiling all actions under dif-

ferent loads would require significant time and computation

resources. As a result, efficient action space pruning methods

and statistical tools with strong generalization capability are

urgently needed for resource scheduling.

2. Delayed queueing effect Consider a queueing system with

processing throughput To under a latency QoS target. To is a

non-decreasing function of the amount of allocated resources

R. For input load Ti, To should equal or slightly surpass Ti

for the system to meet its QoS, and remain stable, while

using the minimum amount of resources R needed. Even in

the case where R is reduced, such that To < Ti, QoS will

not be immediately violated, since queue accumulation takes

time. The converse is also true; by the time QoS is violated,

the built-up queue takes a long time to drain, even if resources

are upscaled immediately upon detecting the QoS violation.

Multi-tier microservices are complex queueing systems with

queues both between and within microservices [9, 10]. This

delayed queueing effect highlights the need for the ML model

to evaluate the long-term effect of resource management ac-

tions, and proactively prevent the resource manager from re-

ducing resources overly-aggressively to avoid latency spikes

that introduce long recovery periods. To mitigate a QoS

violation, the manager must increase resources proactively,

otherwise the QoS violation becomes unavoidable, even if

more resources are allocated a posteriori.

3. Dependencies among tiers Resource management in

microservices is additionally complicated by the fact that

dependent microservices are not perfect pipelines, and hence

can introduce backpressure effects that are hard to detect and

prevent [9, 10]. These dependencies can be further exacer-

bated by the specific RPC and data store API implementation.

Therefore, the resource scheduler should have a global view

of the microservice graph and be able to anticipate the impact

of dependencies on end-to-end performance.

C. Proposed Approach

These challenges suggest that empirical resource manage-

ment, such as autoscaling, is prone to unpredictable per-

formance and/or resource inefficiencies. Sinan takes instead

a data-driven, ML-based approach that automates resource

management for microservices, leveraging a set of scalable

and validated ML models, that allows high and predictable

performance and resource utilization. Sinan’s ML models

predict the end-to-end latency and the probability of a QoS

violation for a resource configuration, given the system’s state

and history. The system uses these predictions to maximize

resource efficiency, while meeting the application’s QoS.

Below, we first describe the ML models (Sec. III-A), and

Sinan’s system architecture (Sec. III).

III. SINAN

A. Machine Learning Models

We initially designed Sinan’s ML model to only predict the

end-to-end latency tail distribution using a CNN, such that

the scheduler can query the model with potential resource

allocations, and 1) choose the one that minimizes the required

resources while meeting the end-to-end QoS, or 2) the

one that minimizes end-to-end latency if there are multiple

allocations satisfying QoS. However, this model experienced

consistently high errors during deployment, due to the de-

layed queueing effect mentioned previously. Therefore, it is

crucial for the model to also predict the long-term impact of

resource allocations.

A straightforward fix is to use a multi-task CNN model that

predicts latency distribution for the immediate future, and the

QoS violation probability in the long term. This approach was

also shown to frequently overpredict latency, due to the large

gap between latency and probability values.

Sinan currently follows a hybrid approach, which uses a

CNN to predict the end-to-end latency of the next decision

interval, and a boosted trees (BT) model to anticipate QoS

violations further into the future. We refer to the CNN model

as the short-term latency predictor, and the BT model as the

long-term violation predictor.
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of Redis had significantly dropped, in agreement with our

observation that tail latency is no longer sensitive to it.

V. CONCLUSION

We have presented our early work on Sinan, an ML-

driven, online resource manager for interactive microservices.

Sinan highlights the challenges of managing complex mi-

croservices, and leverages a set of scalable and validated ML

models to reduce resource usage while meeting end-to-end

Quality of Service.
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