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Abstract

Cloud applications are increasingly shifting from large mono-

lithic services, to complex graphs of loosely-coupled mi-

croservices. Despite their advantages, microservices also in-

troduce cascading QoS violations in cloud applications, which

are difficult to diagnose and correct.

We present Sage, a ML-driven root cause analysis system

for interactive cloud microservices. Sage leverages unsuper-

vised learning models to circumvent the overhead of trace

labeling, determines the root cause of unpredictable perfor-

mance online, and applies corrective actions to restore per-

formance. On experiments on both dedicated local clusters

and large GCE clusters we show that Sage achieves high root

cause detection accuracy and predictable performance.

1 Introduction

Cloud computing has reached proliferation by offering re-

source flexibility, cost efficiency, and fast deployment [13, 15,

18, 20, 26, 37]. As the cloud scale and complexity increased,

cloud services have undergone a major shift from large mono-

lithic designs to complex graphs of single-concerned, loosely-

coupled microservices. This shift is becoming increasingly

pervasive, with large cloud providers, such as Amazon, Twit-

ter, Netflix, and eBay having already adopted this application

model [2, 11, 12]. Microservices are appealing for several rea-

sons, such as facilitating development, promoting elasticity,

and enabling software heterogeneity.

Despite their advantages, microservices also complicate re-

source management, as dependencies between tiers introduce

backpressure, causing unpredictable performance to prop-

agate through the system [23, 25]. Diagnosing such issues

empirically is cumbersome and prone to errors, especially

as typical microservices deployments include hundreds/thou-

sands of tiers. Similarly, current cluster managers [19, 20, 32–

34, 36, 37, 42, 43, 47, 52, 53]. are not expressive enough to ac-

count for the impact of dependencies, putting more pressure

on the need for automated root cause analysis systems.

Over the past few years, there has been increased atten-

tion on trace-based methods to analyze [21], diagnose, and

in some cases anticipate [22, 25] performance issues in cloud

services. While most of these systems target cloud applica-

tions, the only one focusing on microservices is Seer [25],

a DL-based system that anticipates cases of unpredictable
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performance by inferring the impact of outstanding requests

on end-to-end performance. Despite its high accuracy, Seer

leverages supervised learning to anticipate QoS violations,

which require offline and online trace labeling. In a produc-

tion system, this is non-trivial, as it involves injecting resource

contention in live applications, hurting user experience.

We present Sage, a root cause analysis system for inter-

active microservices that leverages unsupervised learning to

identify the culprit of unpredictable performance in complex

graphs of microservices. Sage does not rely on data label-

ing, hence it can be entirely transparent to both cloud users

and application developers, scales well with the number of

microservices and machines, and only relies on lightweight

tracing that does not require application changes or kernel in-

strumentaion. We have evaluated Sage both on dedicated local

clusters and large GCE settings and showed high root cause

detection accuracy and improved performance predictability.

2 ML for Performance Debugging

2.1 Overview

Sage is a performance debugging and root cause analysis

system for large-scale cloud applications. While the design

centers around interactive microservices, where dependencies

between tiers are more impactful, Sage is also applicable to

traditional monolithic or SOA services. Sage relies on two

broad techniques, each of which is described in detail below;

first, it uses Causal Bayesian Networks (CBN) to model the

RPC-level dependencies between microservices, and the la-

tency propagation from the backend to frontend. Second, it

uses a graphical variational auto-encoder (GVAE) to generate

examples of counterfactuals [40], and infer the hypothetical

end-to-end latency had some occurring events not happened.

Using these two techniques, Sage determines which set of mi-

croservices initiated an end-to-end QoS violation, and moves

to adjust deployment and/or resource allocation to correct it.

2.2 Microservice Latency Propagation

Multiple RPCs between microservices form a tree of nested

traces in a distributed monitoring system. Figure 1 shows

an example of the RPC dependency graph containing five

services, four RPCs, and its corresponding latency traces.

The server-side latency of any non-leaf RPC is determined

by the processing time of the RPC itself and the waiting time
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Figure 1. The dependency graph and traces of nested RPCs.

(i.e., client-side latency) of its child RPCs. The latency of

any RPC will propagate through the RPC dependency graph

to the frontend and impact the end-to-end latency. Since the

latency of a child RPC cannot propagate to its parent without

impacting its own latency, the RPC latency propagation fol-

lows a local Markov property, where each latency variable is

conditionally independent on its non-ancestor RPC latencies,

given its child RPC latencies [31]. For instance, the latency

of RPC0 is conditionally independent on the latency of RPC2

and RPC3, given the latency of RPC1.

2.3 Modeling Microservice Dependency Graphs

Causal Bayesian Networks (CBN) are a common tool to

model causal relationships [44, 46]. A CBN is a directed

acyclic graph (DAG), where the nodes are different random

variables and the edges indicate their conditional dependen-

cies. More specifically, each edge represents a causal relation-

ship, directed from the cause to the effect. We define three

types of nodes in the Bayesian network:

• Metric nodes (𝑋 ): The metric nodes contain primarily

resource-related metrics of all services and network

channels, such as CPU and memory utilization and net-

work bandwidth, collected via the in-place monitoring

tools [14, 17, 48].

• Latency nodes (𝑌 ): The latency nodes include client-

side latency (𝑌 𝑐 ), server-side latency (𝑌 𝑠 ), and request/re-

sponse network delay (𝑌 𝑟𝑒𝑞 and 𝑌
𝑟𝑒𝑠𝑝 ) of all RPCs.

• Latent variables (𝑍 ): The latent variables contain the

unobserved and immeasurable factors that are responsi-

ble for latency stochasticity. They are critical to gener-

ate the counterfactual latencies Sage relies on to diag-

nose root causes of QoS violations.

We can construct the CBN among the three-node classes

of all RPCs based on the inherent causal relationships and

latency propagation observations obtained via a distributed

tracing system, such as Dapper or Zipkin.

Figure 2 shows an example of the CBN constructed for

a three-microser-vice chain based on the RPC dependency

graph. The nodes with solid lines (𝑋 and 𝑌 ) are observed,

while the nodes with dashed lines (𝑍 ) are latent variables

that need to be inferred. The arrows in the RPC dependency

graph and CBN have opposite directions because the latency

of one RPC is determined by the latency of its child RPCs.
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Figure 2. Latency propagation CBN.

2.4 Counterfactual

Queries

In a typical cloud

environment, site

reliability engineers

(SREs) can ver-

ify if a suspected

root cause is cor-

rect by reverting

a microservice’s

configuration to a

state known to be safe, while keeping the remaining microser-

vices unchanged. If the problem is resolved, the suspected

culprit is causally related to the QoS violation. Sage uses a

similar process, where “suspected root causes” are generated

using counterfactuals, which determine the causal effect by

asking what the outcome would be if the state of a microser-

vice had been different [27, 38, 41].

To avoid impacting the performance of live services during

this process, Sage leverages historical tracing data to generate

realistic counterfactuals [41, 46], taking into account that

the exact situation may not have occurred in the past. If the

probability that the end-to-end tail latency meets QoS after

intervention is greater than a threshold, then those services

are the root cause of the performance issue.

Conditional deep generative models, such as the condi-

tional variational autoencoders (CVAE) [50] and conditional

generative adversarial nets [39], are common tools to generate

new data of a class from an original distribution. Generally,

they compress a high-dimensional target (𝑌 ) and tag (𝑋 ) into

low-dimensional latent space variables (𝑍 ), and use the latent

space variables and tags to generate new target data. Recent

studies have showed that these techniques can also be used to

generate counterfactuals for causal inference [35, 55].

To generate counterfactuals, we build a network of CVAEs

according to the structure of the CBN. Although using one

CVAE for the entire microservice graph would be simple, it

has several drawbacks. First, it lacks the CBN’s structural

information which is useful in terms of avoiding ineffectual

counterfactuals based on spurious correlations. Second, it

prohibits partial retraining and transfer learning, which is

essential given the frequent update cadence of microservices.

Finally, the black-box model is less explainable since it cannot

reveal any information on how the latency of a problematic

service propagates to the frontend. Therefore, we construct

one lightweight CVAE per microservice, and connect the

different CVAEs according to the structure of the CBN to

form the graphical variational autoencoder (GVAE).

The encoders and prior networks take the observed metrics

as inputs, and are trained in parallel. The decoders require the

outputs of the parent decoders in the CBN as inputs, and are

2



Sage 
Master

Actuation 
Controller

Data 
Streamer

GVAE

TraceDB

Jaeger Querier

Cassandra

Jaeger Collector

MetricsDB

Prometheus

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

Jaeger Agent

Node Exporter

Blackbox Exporter

cAdvisor

Actuation Agent

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

Jaeger Agent

Node Exporter

Blackbox Exporter

cAdvisor

Actuation Agent

Worker Nodes

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

µService

<latexit sha1_base64="90hZ2j5f620napmdWk6Ndlzu8h4=">AAAB+nicbVDJSgNBEO1xTeI20aOXwSB4kDAjgnoLePEY0SyQDKGnU5M06VnoromGMRcvfoUXD4qIN7/Em1+jneWgiQ8KHu9VUVXPiwVXaNtfxsLi0vLKaiabW1vf2Nwy89tVFSWSQYVFIpJ1jyoQPIQKchRQjyXQwBNQ83rnI7/WB6l4FF7jIAY3oJ2Q+5xR1FLLzDeDpIlwi+kVyD5nMGyZBbtoj2HNE2dKCqXsQ/v9+/6w3DI/m+2IJQGEyARVquHYMboplciZgGGumSiIKevRDjQ0DWkAyk3Hpw+tfa20LT+SukK0xurviZQGSg0CT3cGFLtq1huJ/3mNBP1TN+VhnCCEbLLIT4SFkTXKwWpzCQzFQBPKJNe3WqxLJWWo08rpEJzZl+dJ9ajoHBfPLp1CySYTZMgu2SMHxCEnpEQuSJlUCCM35JE8kxfjzngyXo23SeuCMZ3ZIX9gfPwAzjmYAg==</latexit>

Jaeger Agent

Node Exporter

Blackbox Exporter

cAdvisor

Actuation Agent

TSDB

Data processing and inferenceMonitoring Actuation

Figure 3. Overview of Sage’s system design.

trained serially. The maximum depth of the CBN determines

the maximum number of serially-cascaded decoders.

3 Sage Design

Sage is a root cause analysis system for complex graphs of

interactive microservices. Sage relies on RPC-level tracing to

compose the Causal Bayesian network of the microservice

topology, and per-node tracing to track the per-tier latency

distribution. Below we discuss the training and inference

pipeline (Sec. 3.1), Sage’s actuation system once a root cause

has been identified (Sec. 5.2), and the way Sage handles

changes in application design (Sec. 3.3).

Fig. 3 shows an overview of Sage. The system uses Jaeger [5],

a distributed RPC-level tracing system to collect end-to-end

request execution traces. Jaeger uses sampling to reduce

tracing oveheads. Sage also uses the Prometheus Node Ex-

porter [8], Prometheus Blackbox Exporter [7], and cAdvi-

sor [4] to collect machine- and container-level hardware/OS

metrics, and network latencies. Each metric’s timeseries is

stored in the Prometheus TSDB [6]. At runtime, Sage queries

Jaeger and Prometheus periodically to obtain real-time latency

and usage metrics. The GVAE then uses this data to infer the

root cause of any QoS violation(s). Once a root cause is diag-

nosed, Sage’s actuator takes action to restore performance by

adjusting the offending microservice’s resources.

Sage uses a centralized master for trace processing and

root cause analysis, and per-node agents for trace collection

and container deployment. It also maintains two hot stand-by

copies of the Sage master for fault tolerance.

3.1 Root Cause Analysis

Sage first uses the Data Streamer to fetch and pre-process

the latency and usage statistics. Sage initializes and trains

the GVAE model offline with all initially available data. It

then periodically retrains the model, even when there are no

changes in application design, to account for changes in user

behavior [16, 28, 45, 54]. Online learning models are prone to

catastrophic forgetting, where the model forgets previously-

learned knowledge upon learning new information [30, 45].

To avoid this, we interleave the current and previous data in

the training batches. In addition, to avoid class imbalance, i.e.,

cases where the datapoints that meet QoS are significantly

more than those which violate it, the model oversamples the

minority classes to create a more balanced training dataset.

At runtime, Sage uses the latest version of the GVAE model

to infer the root cause of QoS violations. Sage first calculates

the medians of usage and performance metrics where QoS is

met, and labels them as normal values. If at any point QoS is

not met, the GVAE will generate counterfactuals by replacing

a microservice’s metrics with their respective normal values.

The service whose counterfactual would resolve the QoS

violation is identified as the culprit behind it.

Sage implements a two-level approach to locate the root

cause of a QoS violation. It first uses service-level counter-

factuals to locate the culprit microservices, and then uses

metric-level counterfactuals of the offending service to iden-

tify the underlying reason that caused it to become the culprit.

3.2 Actuation

Once Sage determines the root cause of a QoS violation it

takes action. Depending on which resource is identified by

the GVAE as the one instigating the QoS violation, Sage will

dynamically adjust the CPU frequency, scale up or scale out

the problematic microservices, limit the rate of the collocated

interference jobs, partition the last level cache (LLC) with

Intel Cache Allocation Technology (CAT), and partition the

network bandwidth with Linux traffic control queuing disci-

plines. Sage first tries to resolve the performance issue by only

adjusting resources on the offending node, and only when

that is insufficient it scales out the problematic microservice

on new nodes and/or migrate it.

3.3 Handling Microservice Updates

Training the complete model from scratch for large clusters

takes tens of minutes to hours, so it is impractical to hap-

pen for every change in application design/deployment. Sage

instead implements selective partial retraining and incremen-

tal retraining with a dynamically reshapable GVAE similar

to [54], thanks to VAE’s ability to be decomposed using the

CBN. On the one hand, with selective partial retraining, we

only retrain the neurons corresponding to the updated nodes

and their descendents in the CBN, because the causal relation-

ships guarantee that all other nodes are not affected by the

change. On the other hand, with incremental retraining, we ini-

tialize the parameters of the network to those of the previous

model, while adding/removing/reshaping the corresponding

networks if microservices are added/dropped/updated. The

combination of these two transfer learning approaches re-

duces retraining time by more than 10×, especially when

there is large fanout in the RPC dependency graph.
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entirely unsupervised models to detect the sources of un-

predictable performance, removing the need for empirical

diagnosis or expensive data labeling. Sage adapts to frequent

design changes, and takes action to restore QoS. We shows

that Sage achieves high root cause detection accuracy and

improved performance. Given the increasing complexity of

cloud services, data-driven systems like Sage can improve

performance predictability without sacrificing efficiency.
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