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Abstract

Cloud applications are increasingly shifting from large mono-
lithic services, to complex graphs of loosely-coupled mi-
croservices. Despite their advantages, microservices also in-
troduce cascading QoS violations in cloud applications, which
are difficult to diagnose and correct.

We present Sage, a ML-driven root cause analysis system
for interactive cloud microservices. Sage leverages unsuper-
vised learning models to circumvent the overhead of trace
labeling, determines the root cause of unpredictable perfor-
mance online, and applies corrective actions to restore per-
formance. On experiments on both dedicated local clusters
and large GCE clusters we show that Sage achieves high root
cause detection accuracy and predictable performance.

1 Introduction

Cloud computing has reached proliferation by offering re-
source flexibility, cost efficiency, and fast deployment [13, 15,
18,20,26,37]. As the cloud scale and complexity increased,
cloud services have undergone a major shift from large mono-
lithic designs to complex graphs of single-concerned, loosely-
coupled microservices. This shift is becoming increasingly
pervasive, with large cloud providers, such as Amazon, Twit-
ter, Netflix, and eBay having already adopted this application
model [2, 11, 12]. Microservices are appealing for several rea-
sons, such as facilitating development, promoting elasticity,
and enabling software heterogeneity.

Despite their advantages, microservices also complicate re-
source management, as dependencies between tiers introduce
backpressure, causing unpredictable performance to prop-
agate through the system [23,25]. Diagnosing such issues
empirically is cumbersome and prone to errors, especially
as typical microservices deployments include hundreds/thou-
sands of tiers. Similarly, current cluster managers [19, 20, 32—
34,36,37,42,43,47,52,53]. are not expressive enough to ac-
count for the impact of dependencies, putting more pressure
on the need for automated root cause analysis systems.

Over the past few years, there has been increased atten-
tion on trace-based methods to analyze [21], diagnose, and
in some cases anticipate [22,25] performance issues in cloud
services. While most of these systems target cloud applica-
tions, the only one focusing on microservices is Seer [25],
a DL-based system that anticipates cases of unpredictable
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performance by inferring the impact of outstanding requests
on end-to-end performance. Despite its high accuracy, Seer
leverages supervised learning to anticipate QoS violations,
which require offline and online trace labeling. In a produc-
tion system, this is non-trivial, as it involves injecting resource
contention in live applications, hurting user experience.

We present Sage, a root cause analysis system for inter-
active microservices that leverages unsupervised learning to
identify the culprit of unpredictable performance in complex
graphs of microservices. Sage does not rely on data label-
ing, hence it can be entirely transparent to both cloud users
and application developers, scales well with the number of
microservices and machines, and only relies on lightweight
tracing that does not require application changes or kernel in-
strumentaion. We have evaluated Sage both on dedicated local
clusters and large GCE settings and showed high root cause
detection accuracy and improved performance predictability.

2 ML for Performance Debugging
2.1 Overview

Sage is a performance debugging and root cause analysis
system for large-scale cloud applications. While the design
centers around interactive microservices, where dependencies
between tiers are more impactful, Sage is also applicable to
traditional monolithic or SOA services. Sage relies on two
broad techniques, each of which is described in detail below;
first, it uses Causal Bayesian Networks (CBN) to model the
RPC-level dependencies between microservices, and the la-
tency propagation from the backend to frontend. Second, it
uses a graphical variational auto-encoder (GVAE) to generate
examples of counterfactuals [40], and infer the hypothetical
end-to-end latency had some occurring events not happened.
Using these two techniques, Sage determines which set of mi-
croservices initiated an end-to-end QoS violation, and moves
to adjust deployment and/or resource allocation to correct it.

2.2 Microservice Latency Propagation

Multiple RPCs between microservices form a tree of nested
traces in a distributed monitoring system. Figure 1 shows
an example of the RPC dependency graph containing five
services, four RPCs, and its corresponding latency traces.
The server-side latency of any non-leaf RPC is determined
by the processing time of the RPC itself and the waiting time
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Figure 1. The dependency graph and traces of nested RPCs.
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(i.e., client-side latency) of its child RPCs. The latency of
any RPC will propagate through the RPC dependency graph
to the frontend and impact the end-to-end latency. Since the
latency of a child RPC cannot propagate to its parent without
impacting its own latency, the RPC latency propagation fol-
lows a local Markov property, where each latency variable is
conditionally independent on its non-ancestor RPC latencies,
given its child RPC latencies [31]. For instance, the latency
of RPCO is conditionally independent on the latency of RPC2
and RPC3, given the latency of RPC1.

2.3 Modeling Microservice Dependency Graphs

Causal Bayesian Networks (CBN) are a common tool to
model causal relationships [44,46]. A CBN is a directed
acyclic graph (DAG), where the nodes are different random
variables and the edges indicate their conditional dependen-
cies. More specifically, each edge represents a causal relation-
ship, directed from the cause to the effect. We define three
types of nodes in the Bayesian network:

e Metric nodes (X): The metric nodes contain primarily
resource-related metrics of all services and network
channels, such as CPU and memory utilization and net-
work bandwidth, collected via the in-place monitoring
tools [14,17,48].

e Latency nodes (Y): The latency nodes include client-
side latency (Y°), server-side latency (Y*), and request/re-
sponse network delay (Y7 and Y"**?) of all RPCs.

e Latent variables (Z): The latent variables contain the
unobserved and immeasurable factors that are responsi-
ble for latency stochasticity. They are critical to gener-
ate the counterfactual latencies Sage relies on to diag-
nose root causes of QoS violations.

We can construct the CBN among the three-node classes
of all RPCs based on the inherent causal relationships and
latency propagation observations obtained via a distributed
tracing system, such as Dapper or Zipkin.

Figure 2 shows an example of the CBN constructed for
a three-microser-vice chain based on the RPC dependency
graph. The nodes with solid lines (X and Y) are observed,
while the nodes with dashed lines (Z) are latent variables
that need to be inferred. The arrows in the RPC dependency

graph and CBN have opposite directions because the latency
of one RPC is determined by the latency of its child RPCs.

2.4 Counterfactual
Queries “
In a typical cloud .
environment, site v
reliability engineers
(SREs) can ver-
ify if a suspected
root cause is cor-
rect by reverting
a microservice’s 12!
configuration to a
state known to be safe, while keeping the remaining microser-
vices unchanged. If the problem is resolved, the suspected
culprit is causally related to the QoS violation. Sage uses a
similar process, where “suspected root causes” are generated
using counterfactuals, which determine the causal effect by
asking what the outcome would be if the state of a microser-
vice had been different [27,38,41].

To avoid impacting the performance of live services during
this process, Sage leverages historical tracing data to generate
realistic counterfactuals [41, 46], taking into account that
the exact situation may not have occurred in the past. If the
probability that the end-to-end tail latency meets QoS after
intervention is greater than a threshold, then those services
are the root cause of the performance issue.

Conditional deep generative models, such as the condi-
tional variational autoencoders (CVAE) [50] and conditional
generative adversarial nets [39], are common tools to generate
new data of a class from an original distribution. Generally,
they compress a high-dimensional target (Y) and tag (X) into
low-dimensional latent space variables (Z), and use the latent
space variables and tags to generate new target data. Recent
studies have showed that these techniques can also be used to
generate counterfactuals for causal inference [35,55].

To generate counterfactuals, we build a network of CVAEs
according to the structure of the CBN. Although using one
CVAE for the entire microservice graph would be simple, it
has several drawbacks. First, it lacks the CBN’s structural
information which is useful in terms of avoiding ineffectual
counterfactuals based on spurious correlations. Second, it
prohibits partial retraining and transfer learning, which is
essential given the frequent update cadence of microservices.
Finally, the black-box model is less explainable since it cannot
reveal any information on how the latency of a problematic
service propagates to the frontend. Therefore, we construct
one lightweight CVAE per microservice, and connect the
different CVAEs according to the structure of the CBN to
form the graphical variational autoencoder (GVAE).

The encoders and prior networks take the observed metrics
as inputs, and are trained in parallel. The decoders require the
outputs of the parent decoders in the CBN as inputs, and are
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Figure 3. Overview of Sage’s system design.

trained serially. The maximum depth of the CBN determines
the maximum number of serially-cascaded decoders.

3 Sage Design

Sage is a root cause analysis system for complex graphs of
interactive microservices. Sage relies on RPC-level tracing to
compose the Causal Bayesian network of the microservice
topology, and per-node tracing to track the per-tier latency
distribution. Below we discuss the training and inference
pipeline (Sec. 3.1), Sage’s actuation system once a root cause
has been identified (Sec. 5.2), and the way Sage handles
changes in application design (Sec. 3.3).

Fig. 3 shows an overview of Sage. The system uses Jaeger [5],
a distributed RPC-level tracing system to collect end-to-end
request execution traces. Jaeger uses sampling to reduce
tracing oveheads. Sage also uses the Prometheus Node Ex-
porter [8], Prometheus Blackbox Exporter [7], and cAdvi-
sor [4] to collect machine- and container-level hardware/OS
metrics, and network latencies. Each metric’s timeseries is
stored in the Prometheus TSDB [6]. At runtime, Sage queries
Jaeger and Prometheus periodically to obtain real-time latency
and usage metrics. The GVAE then uses this data to infer the
root cause of any QoS violation(s). Once a root cause is diag-
nosed, Sage’s actuator takes action to restore performance by
adjusting the offending microservice’s resources.

Sage uses a centralized master for trace processing and
root cause analysis, and per-node agents for trace collection
and container deployment. It also maintains two hot stand-by
copies of the Sage master for fault tolerance.

3.1 Root Cause Analysis

Sage first uses the Data Streamer to fetch and pre-process
the latency and usage statistics. Sage initializes and trains
the GVAE model offline with all initially available data. It
then periodically retrains the model, even when there are no
changes in application design, to account for changes in user
behavior [16, 28,45, 54]. Online learning models are prone to
catastrophic forgetting, where the model forgets previously-
learned knowledge upon learning new information [30, 45].

To avoid this, we interleave the current and previous data in
the training batches. In addition, to avoid class imbalance, i.e.,
cases where the datapoints that meet QoS are significantly
more than those which violate it, the model oversamples the
minority classes to create a more balanced training dataset.

At runtime, Sage uses the latest version of the GVAE model
to infer the root cause of QoS violations. Sage first calculates
the medians of usage and performance metrics where QoS is
met, and labels them as normal values. If at any point QoS is
not met, the GVAE will generate counterfactuals by replacing
a microservice’s metrics with their respective normal values.
The service whose counterfactual would resolve the QoS
violation is identified as the culprit behind it.

Sage implements a two-level approach to locate the root
cause of a QoS violation. It first uses service-level counter-
factuals to locate the culprit microservices, and then uses
metric-level counterfactuals of the offending service to iden-
tify the underlying reason that caused it to become the culprit.

3.2 Actuation

Once Sage determines the root cause of a QoS violation it
takes action. Depending on which resource is identified by
the GVAE as the one instigating the QoS violation, Sage will
dynamically adjust the CPU frequency, scale up or scale out
the problematic microservices, limit the rate of the collocated
interference jobs, partition the last level cache (LLC) with
Intel Cache Allocation Technology (CAT), and partition the
network bandwidth with Linux traffic control queuing disci-
plines. Sage first tries to resolve the performance issue by only
adjusting resources on the offending node, and only when
that is insufficient it scales out the problematic microservice
on new nodes and/or migrate it.

3.3 Handling Microservice Updates

Training the complete model from scratch for large clusters
takes tens of minutes to hours, so it is impractical to hap-
pen for every change in application design/deployment. Sage
instead implements selective partial retraining and incremen-
tal retraining with a dynamically reshapable GVAE similar
to [54], thanks to VAE’s ability to be decomposed using the
CBN. On the one hand, with selective partial retraining, we
only retrain the neurons corresponding to the updated nodes
and their descendents in the CBN, because the causal relation-
ships guarantee that all other nodes are not affected by the
change. On the other hand, with incremental retraining, we ini-
tialize the parameters of the network to those of the previous
model, while adding/removing/reshaping the corresponding
networks if microservices are added/dropped/updated. The
combination of these two transfer learning approaches re-
duces retraining time by more than 10X, especially when
there is large fanout in the RPC dependency graph.
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Figure 4. Detection accuracy and false negatives/positives.

4 Methodology
4.1 Cloud Services

Generic Thrift microservices: Apache Thrift [1,49] is a
popular RPC framework. We implement a code generator for
composable Thrift microservices, and evaluate two topolo-
gies; a Chain and a Fanout. In Chain, each microservice
receives a request from its parent, sends it to its downstream
service, and responds to its parent once it gets the results from
its child. In Fanout, the root service broadcast each request
to all leaf services and returns to the client only after all chil-
dren have responded. Most real microservice architectures
are combinations of these two topologies [24,29,51].

Social Network: One of the end-to-end microservice in the
DeathStarBench suite [24] that implements a broadcast-style
social network with uni-directional follow relationships.

4.2 Systems

Local Cluster: We use a dedicated local cluster with five
2-socket 40-core servers with 128 GB RAM each, and two
2-socket 88-core servers with 188GB RAM each. Each server
is connected to a 40Gbps ToR switch over 10Gbe NICs.

Google Compute Engine: We also deploy the Social Net-
work service to Google Compute Engine (GCE) with 84 nodes
in us-centrall-a to study Sage’s scalability. All nodes are
dedicated, so there is no interference from external jobs.

4.3 Training Dataset for Validation

We use wrk2 [3] as the open-loop HTTP workload generator
for all three applications. To verify the ground truth during val-
idation, we use stress-ng [9] and tc-netem [10] to inject
CPU-, memory-, disk-, and network-intensive microbench-
marks to different, randomly-chosen subsets of microservices.

5 Evaluation
5.1 Sage Validation

Fig. 4 shows the accuracy of Sage in the local cluster across
services, compared to two autoscaling techniques, and an
oracular scheme that sets thresholds for each tier and metric
offline, beyond which point resources are upscaled. Autoscale
Strict increases resource allocation when the utilization of a
microservice exceeds 50% and Autoscale Relaxed when it
exceeds 70% (on par with AWS’s autoscaling policy). Sage

significantly outperforms the other methods, even the offline
oracular one, by learning the impact of dependencies between
neighboring microservices. Similarly, Sage’s false negative
and false positive rates are marginal, which avoids QoS viola-
tions and resource inefficiencies respectively.
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Figure 5. End-to-end latency for Social Network in the pres-
ence of QoS violations.

5.2 Actuation

Fig. 5 shows the impact of root cause analysis on the end-
to-end tail latency of the Social Network, with Sage and the
offline oracular technique. To create unpredictable perfor-
mance whose source is known, we inject resource intensive
kernels in a randomly-selected subset of microservices. While
there are cases that the threshold-based scheme identifies cor-
rectly, more often performance takes a long time to recover.
In comparison, Sage immediately identifies the correct root
cause, and applies corrective action to restore performance.
We have also introduced changes to several microservices
and have validated that the transfer learning in Sage reduces
training time by at least an order of magnitude compared to
retraining from scratch, without impacting accuracy.

5.3 Scalability

We now evaluate Sage’s accuracy when deploying the Social
Network on 188 instances on GCE using Docker Swarm. We
replicate the stateless microservices and shard the caching
systems and databases across instances during periods of
higher load. Each service has 1-10 replicas, depending on
the maximum single-process throughput. Accuracy on GCE
is within 1% of the detection accuracy on the local cluster,
while the difference in false positives and false negatives is
also marginal. We also evaluate the difference in training and
inference time between the local cluster and GCE. We use two
Intel Xeon 6152 processors with 44 cores in total for training
and inference. Training from scratch takes 124 minutes for
the local cluster and 148 minutes for GCE. Inference takes
49ms on the local cluster and 62ms on GCE. Although we
deploy 6.7x more containers on GCE than on the local cluster,
the training and inference time only increase by 19.4% and
26.5% respectively.

6 Conclusions

We have presented Sage, an ML-driven root cause analysis
system for interactive, cloud microservices. Sage leverages



entirely unsupervised models to detect the sources of un-
predictable performance, removing the need for empirical
diagnosis or expensive data labeling. Sage adapts to frequent
design changes, and takes action to restore QoS. We shows
that Sage achieves high root cause detection accuracy and
improved performance. Given the increasing complexity of
cloud services, data-driven systems like Sage can improve
performance predictability without sacrificing efficiency.
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