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Density functional theory (DFT) prediction of nuclear magnetic resonance (NMR) chemical shifts comple-
ments NMR experiments. Predicting chemical shifts accurately with DFT requires many different modeling
decisions. Intended for novice modelers and non-experts, this article discusses the considerations one should
take in selecting a density functional, van der Waals dispersion correction, and basis set. It examines different
strategies for handling systems in complex environments such as liquids, biomolecules, and crystals. Strategies
include the use of cluster models, electrostatic embedding, continuum representations, periodic boundary con-
ditions, and fragment-based approaches. Finally, approaches for referencing the predicted absolute chemical
shieldings for comparison against experimental chemical shifts are discussed.
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First-principles quantum chemical calculation of nu-
clear magnetic resonance (NMR) chemical shifts plays an
increasingly important role in interpreting NMR spec-
troscopy experiments. In the context of NMR crystal-
lography, the agreement between predicted and experi-
mentally observed chemical shifts is used to assess and
discriminate among candidate structures. Such interpre-
tations and assessments rely on accurate chemical shift
predictions. The challenge of computational chemistry
arises in striving for meaningful predictions in real-world
systems and assessing the reliability or uncertainties of
those predictions. Making reasonable modeling decisions
becomes easier with experience, but acquiring basic back-
ground knowledge can facilitate the decision-making and
help avoid common pitfalls. This review surveys the ma-
jor choices one must make when predicting NMR chemi-
cal shifts and provides a starting point for how to address
them in an informed manner.
Before predicting NMR chemical shifts, one must

choose the so-called model chemistry. Due to its extreme
complexity, one never solves the molecular Schrödinger
equation exactly. Instead, a number of different ap-
proximations are typically made, starting with the Born-
Oppenheimer approximation and including subsequent
approximations to the resulting electronic Schrödinger
equation. A model chemistry represents a particular
set of user-chosen approximations, including the method
(e.g. a specific density functional), basis set, and numeri-
cal approximations (e.g. k-point sampling in periodic sys-
tems, integration grids, density fitting approximations,
etc).
Next, one must also decide what structure to model.

Aspects such as conformation, protonation state, and
tautomers can be particularly subtle. Furthermore, the
full system may be too large to model directly, in which
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case it becomes necessary to introduce additional approx-
imations. One might wish to truncate the system some-
how, model different parts of the system at different levels
of theory, or perhaps mimic the environment via an im-
plicit model. In complex systems with many degrees of
freedom, one should also assess whether a single static
structure is sufficient, or whether one needs to consider
dynamical averaging of the structure.
Once the chemical shieldings have been predicted, they

must be referenced against a chemical shielding standard
to obtain chemical shifts that can be compared directly
against experimental measurements. The following sec-
tions provide context and guidance on how one should
approach each of these challenges. Selected literature ci-
tations are provided, but these are far from exhaustive.

I. ELECTRONIC STRUCTURE TREATMENT

The two most important choices in a model chemistry
are the electronic structure model and basis set. The
vast majority of chemical shift predictions are currently
performed using density functional theory (DFT). Other
models such as Hartree-Fock (HF) theory, second-order
Møller-Plesset perturbation theory (MP2), and coupled
cluster techniques do exist, but they either provide lower
accuracy (for HF) or come with much higher computa-
tional costs (MP2 & coupled cluster models). DFT pro-
vides a pragmatic balance between accuracy and compu-
tational efficiency.

A. Selecting a density functional

Novice users of DFT are faced with a baffling ar-
ray of possible density functionals to choose from. The
Hohenburg-Kohn theorems prove the existence of a den-
sity functional that maps directly between the three-
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Table I lists “typical” errors one can expect for NMR
chemical shifts predicted with appropriate methodologies
and cites a handful of selected studies upon which these
estimates are based. The actual accuracy in a given sys-
tem will depend on the modeling choices and the type of
system.
While one can find numerous benchmark studies ar-

guing in favor of one particular density functional or an-
other for predicting NMR chemical shifts, molecular crys-
tal benchmarks on half a dozen functionals performed in
the author’s research group found that functionals within
a given rung of Jacob’s ladder generally perform similarly
to one another. This means, for example, that the prac-
tical differences between hybrid functionals B3LYP and
PBE0 are small—e.g. a few hundredths of a ppm for 13C,
or a couple tenths of a ppm for 15N isotropic shifts.5,6,14

Calculations employing hybrid density functionals typ-
ically require around 50% more computational effort than
GGAs when Gaussian basis sets are used. In practice,
therefore, this means that one can (and probably should)
routinely use hybrid functionals for molecular predic-
tions. For solid-state DFT calculations in a plane wave
basis set, however, the computational cost of using hy-
brid density functionals is an order of magnitude higher
than that of GGAs. For this reason, hybrid functionals
are rarely used in plane wave DFT calculations. Instead,
the vast majority of plane wave DFT calculations em-
ploy GGA functionals (most often PBE). Recent devel-
opments in fragment- and cluster-based techniques have
demonstrated a route to capturing the benefits of hybrid
functionals in many solids, as will be discussed in Sec-
tion IIC.

B. Accounting for van der Waals dispersion

Van der Waals dispersion is neglected in virtually all
approximate density functionals, including PBE, PBE0,
and B3LYP. Dispersion plays a substantial role in both
intra- and intermolecular non-covalent interactions, and
its omission makes non-covalent interactions artificially
repulsive. For example, the molar volume of crystalline
benzene is overestimated by ∼45% with B3LYP.15 Sim-
ilarly, neglecting dispersion artificially causes the Ace-
Ala-Gly-Ala-NMe tetrapeptide to prefer an unfolded β-
sheet-like conformation over the correct folded α-helix-
like conformation.16

Dispersion arises from correlated, non-local electron
fluctuations. In the simplest picture, a fluctuation in the
electron density on one atom creates an instantaneous
dipole that then induces a corresponding fluctuation in
another atom, leading to an attraction. Standard local
and semi-local functionals incorporate information about
the electron density ρ(r) at point r and perhaps its imme-
diate vicinity (via ∇ρ(r)), but they cannot capture the
long-range correlated fluctuations needed for dispersion.
The most pragmatic solution for capturing van der

Waals dispersion in DFT is to employ a post-hoc dis-

persion correction. Evaluating these corrections re-
quires only a small fraction of the computational ef-
fort of the underlying DFT calculation. Whereas early
dispersion corrections were highly empirical, present-
generation dispersion corrections are derived largely
from first-principles. Widely used corrections include
Grimme’s D3 dispersion correction,17 Becke and John-
son’s Exchange-Hole Dipole Moment (XDM) model,18–20

the Tkatchenko-Scheffler (TS) pairwise correction,21 and
the Tkatchenko and Distasio many-body dispersion
(MBD) model.22,23 The D4 correction, which is a mod-
estly revised version of D3, was reported in 2017,24

though it has not yet entered widespread use as of this
writing. See recent reviews for more details on these and
other dispersion corrections.16,25,26

In the end, if dispersion plays any role in the sys-
tem of interest, one should include a dispersion correc-
tion during the geometry optimization stage. The ad-
ditional computational cost incurred by the correction is
small, and it generally improves the physics of the model.
While theoretical debates continue among proponents of
the different models, many of them perform well. Models
such as D3, XDM, or MBD all represent good options.
Because these post-hoc dispersion corrections do not di-
rectly impact the electron density, they are not employed
in the final chemical shielding calculations. The effects of
self-consistently including dispersion in determining the
electron density appear to be small.27

C. Choosing a Gaussian basis set

Once a density functional has been chosen, one must
decide on the basis set that will be used to represent the
orbitals and electronic density. Atom-centered Gaussian
basis functions are typically employed in molecular and
biomolecular calculations, while plane waves are more
commonly used in periodic calculations on liquids and
solids. For atom-centered orbitals, gauge invariance is
not satisfied in finite basis sets, due to imperfect cancel-
lation between the diamagnetic and paramagnetic terms.
Several solutions have been proposed to this problem.1

At present, the gauge-including atomic orbital (GIAO)
approach, which assigns a gauge origin to each basis func-
tion, is the most frequently used.
Gaussian basis sets include several different types of

basis functions. A minimal basis set contains one atomic
orbital (AO) per valence orbital present according to the
periodic table. Minimal basis sets are too small and un-
reliable, however. Double, triple, or quadruple-ζ basis
sets increase the flexibility of the basis by including two,
three, or four basis functions for each valence orbital.
These extra sets of basis functions allow the electron den-
sity around an atom to expand or contract, for example.
Polarization functions, or basis functions with higher an-
gular momentum (e.g. d orbitals on carbon or p orbitals
on hydrogen), are added to allow the electron density to
shift off-center from the nucleus, as is required when it
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FIG. 2. Distribution of errors between theory and experi-
ment for 110 13C isotropic chemical shifts from 21 molecular
crystals as a function of basis set. The smallest aug-cc-pVDZ
basis set gives an rms error of 1.69 ppm, which is reduced to
1.42 ppm for the larger aug-cc-pVTZ and aug-cc-pVQZ ba-
sis sets. Shifts were computed with PBE0 and the 2-body
fragment approach of Ref 14.

is polarized between atoms with different electronegativ-
ities. Diffuse functions are very large basis functions de-
signed to, for example, saturate the space between atoms
for non-covalent interactions or to allow the substantial
expansion of the electron cloud that occurs in anions.
Finally, magnetic properties such as nuclear quadrupole
coupling constants can be very sensitive to the treat-
ment of the wavefunction near the nucleus, which can
make the addition of unusually tight core basis functions
important.28 While most basis sets ignore these tight ba-
sis functions, the pcSseg-n basis sets have been specifi-
cally designed for computing such properties.29 The cost
of a DFT calculation grows asymptotically asO(N4) with
the number of basis functions. However, not all basis
functions are created equal in determining computational
cost. Modern electronic structure codes make extensive
use of integral estimation and screening to avoid com-
puting integrals that contribute negligibly. Tighter ba-
sis functions have far fewer significant interactions with
other orbitals than do diffuse functions, and adding more
tight basis functions will have a smaller impact on the
computational cost than would adding the same number
of diffuse functions.

Generally speaking, one should not use basis sets
smaller than double-ζ sets with polarization like 6-
31G(d), def2-SVP, or pcSseg-1 for DFT. Results ob-
tained with triple-ζ basis sets such as 6-311+G(2d,p),
def2-TZVP, or pcSseg-2 are often appreciably improved
over double-ζ ones. The gains achieved by increasing to
a quadruple-ζ basis set like def2-QZVP or pcSseg-3 are
often smaller and may not be worth the additional com-
putational cost. Geometry optimizations frequently re-
quire more computer time than NMR chemical shielding
calculations. Because geometry is generally less sensi-

FIG. 3. Example of locally dense basis sets for a cluster
of atoms consisting of a substrate plus 7 Å of surrounding
protein environment from the β-subunit of tryptophan syn-
thase. The substrate atoms (ball-and-stick model) of interest
are represented with the large 6-311++G(d,p) basis, nearby
atoms out to 4 Å (stick representation) are treated with the
medium 6-311G(d,p) basis set, and the more distant atoms
(wireframe) are modeled with the crude 6-31G basis.32

tive to basis set, optimizations in double-ζ basis sets are
common. Absolute chemical shieldings converge rather
slowly with basis set, but chemical shifts relative to a
reference compound converge much faster due to consis-
tent error cancellation. In a set of 21 molecular crystals
and 110 13C isotropic shifts, for example, the accuracy of
the predicted chemical shifts improves appreciably upon
increasing the basis set from double-ζ to triple-ζ (Fig-
ure 2). No significant further improvement occurs for
the even larger quadruple-ζ basis set.

Locally dense basis sets30,31 provide an effective strat-
egy for lowering the computational cost of Gaussian basis
NMR chemical shielding calculations. Chemical shield-
ing is a highly local phenomenon, and one can often use
much smaller basis sets on atoms that are far away from
the atom(s) of interest. Specifically, a large basis should
be used on the atoms of interest, but only a medium-
sized basis is needed on atoms within a few Å, and a
small basis can be used for more distant atoms. Physi-
cally, this implies that one needs to model the local elec-
tronic structure accurately (out to about the size of the
van der Waals cavity surrounding the molecule of inter-
est), but that even a relatively simple quantum mechan-
ical representation of the electrostatic effects is sufficient
to capture longer-range effects outside the regime where
wavefunctions overlap significantly. For slightly longer
distances (e.g. beyond ∼6 Å), one can potentially even
switch to a point-charge representation.6,14

For example, in an investigation of a substrate in
an enzyme active site, the combination of a large 6-
311++G(d,p) basis for the substrate atoms, 6-311G(d,p)
on atoms within 4 Å of the substrate, and 6-31G on more
distant atoms (Figure 3) reproduced the carbon atom
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shieldings on the substrate to within root-mean-square
error of 0.16 ppm compared to the full calculation in
the largest basis set.32 Furthermore, the errors become
negligible14 if a linear regression referencing model is ap-
plied. This locally dense basis combination reduces the
number of basis functions in this particular example from
19,638 if all atoms employed 6-311++G(d,p) to 5,111
with the locally dense basis set. The same combination,
albeit with the slightly faster 6-311+G(2df,p) large ba-
sis has also proved effective.14 Similar analysis has been
demonstrated for molecules using the pcS-n basis sets.33

Perhaps the biggest practical basis set challenge facing
the user lies in determining whether the chosen basis set
is adequate and for assessing the degree of uncertainty
in the prediction associated with basis set incomplete-
ness. Good agreement between theory and experiment
is a poor criterion for assessing the basis set. One com-
monly finds an intermediately sized basis set which for-
tuitously predicts some property in good agreement with
experiment. However, other properties or species will
not necessarily exhibit the same fortuitous error cancel-
lation. A much better approach is to employ empirical
sensitivity testing—performing a series of calculations in
different basis sets to ascertain: How sensitive is the pre-
diction/interpretation to the chosen basis set? Have the
predictions converged sufficiently with respect to basis
set size? Using systematically growing basis sets (like
the pcSseg-n, cc-pVXZ, or def2-type sets) facilitates such
analysis.

D. Plane wave basis sets for periodic systems

When modeling liquids and solids, it is common to rep-
resent the system via a plane wave basis set under peri-
odic boundary conditions. Plane waves are well-suited to
densely packed condensed-phase systems, and integrals
involving plane wave basis functions are inexpensive to
evaluate. Plane waves also have the advantage of sim-
plicity in that the basis set size is determined by a single
parameter, the plane wave cutoff. The basis set includes
all plane waves with periodicity consistent with the unit
cell and which have kinetic energies less than the plane
wave cutoff. A larger plane wave cutoff (or larger unit
cell) increases the size of the basis set. Because they are
not atom-centered, the number of plane waves present in
the basis set is independent of the actual atoms present
in the unit cell.
Evaluating the necessary integrals in a plane wave ba-

sis is computationally inexpensive compared to the cor-
responding integrals involving Gaussian orbitals. On the
other hand, plane wave basis sets are typically ∼1–2 or-
ders of magnitude larger than Gaussian basis sets. De-
scribing the sharp changes in the density about the core
electrons with plane waves is particularly difficult and
would require even larger basis sets. Instead, the core
electrons are generally replaced with pseudopotentials
that mimic their effects on the valence electrons. Tradi-

tionally this was done with norm-conserving pseudopo-
tentials, but in more recent years ultrasoft pseudopo-
tentials have become more widely used because their
“softer” shapes allow the use of smaller basis sets and
make the calculations more efficient overall.
Pseudopotentials create a challenge for NMR, since

many NMR properties depend critically on the behavior
of the electron density near the nucleus. The projector
augmented wave (PAW) approach reconstructs the all-
electron density from pseudopotential schemes. However,
this reintroduces a gauge dependence to the model. The
gauge-including PAW (GIPAW)34,35 approach addresses
the gauge dependence similarly to how the GIAO model
does for Gaussian basis sets.
On a final note, performing periodic DFT calculations

requires solving the Kohn-Sham equations at multiple re-
ciprocal space k-points throughout the Brillouin zone. A
smaller unit cell dimension in real (direct) space requires
a larger number of k-points along the corresponding axis
in reciprocal space. Typically the k-points are positioned
according to a Monkhorst-Pack grid, and the user has to
determine only how many k-points to place along each
axis (or alternatively, what k-point mesh density to use).
Best practice is to increase the k-point sampling until
the desired level of convergence in energy or chemical
shielding/shift is achieved.

II. MODELING THE CHEMICAL SYSTEM AND ITS

ENVIRONMENT

A. Representing the system

After selecting the level of theory to use, one must
decide how to represent the system. In many-cases,
the full system will be comprised of a region of interest
and surrounded by an environment. For ease of discus-
sion here, “system” refers to the atoms of interest, and
“environment” refers to all remaining atoms/molecules.
The system and environment may correspond to different
molecules, as is the case for a molecule in solution. In
an enzyme, the system might represent a substrate and
the active site residues, while the environment represents
the rest of the protein and the surrounding solvent. Such
cases can generally be represented via some sort of clus-
ter model which includes the system plus a portion of the
environment.
In other systems, it may make more sense to repre-

sent a system as a relatively small unit cell with periodic
boundary conditions instead of as a large finite cluster.
Molecular crystals, solids, and solutions can all be de-
scribed readily with periodic boundary conditions. The
GIPAW method enables NMR chemical shielding calcu-
lations in periodic systems with plane wave DFT and has
transformed NMR crystallography.36

For biomolecules, one may obtain initial atomic po-
sitions from a known crystal structure. For molecules,
structures may be constructed from either chemical in-
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tuition or crystallographic data. Either way, one should
generally perform a geometry optimization to relax the
atomic positions. In the case of a cluster extracted from a
larger experimental structure (e.g. part of a protein), one
might freeze the positions of atoms on the outer edge of
the cluster to retain structural features that would oth-
erwise be imposed by the atoms being ignored.

In flexible molecules, the optimal conformation may
not be obvious. One may need to explore the conforma-
tional energy landscape via a series of geometry optimiza-
tions from different initial guess structures to identify the
most stable one(s). Care should be taken in that the op-
timal conformation of the system may vary depending on
the environment. Flexible molecules that “fold” and/or
adopt intramolecular hydrogen bonds in the gas phase
may elongate or form intermolecular hydrogen bonds in
condensed phases. Finally, in some cases, the protonation
state of ionizable sites or tautomer may not be obvious
a priori. Assessment of the energetic stability and com-
parison between predicted and observed NMR chemical
shifts can help resolve such ambiguities.

As the number of flexible degrees of freedom increases,
it becomes increasingly likely that a system will not be
well-represented by a single static structure. Instead, dy-
namical averaging over many structure snapshots from a
molecular dynamics (MD) simulation may be needed to
achieve good agreement between theory and experimen-
tal NMR parameters.37–39 Dynamical averaging generally
becomes more important as the number of degrees of free-
dom in the system increases, especially for “softer” mo-
tions like low-frequency bond torsions or solvent dynam-
ics. Dynamical averaging proved key to achieving atomic-
level understanding of HIV-1 Capsid, for example.40 Un-
fortunately, chemical shifts converge relatively slowly
with the number of snapshots, with dozens of snapshots
being needed in small molecules, and perhaps hundreds
or thousands in large biomolecules37,38 The use of classi-
cal force fields to generate the snapshots greatly reduces
the computational cost of the molecular dynamics, but
classical force fields may or may not reproduce the correct
ensemble of structures compared to ab initio MD.39 For
hydrogen bonds, quantum mechanical treatment of the
hydrogen nucleus via path integral MD simulations can
significantly alter the hydrogen probability distribution
and therefore its NMR parameters.41

Modeling well-ordered solids with periodic boundary
conditions can readily be done using the crystallographic
unit cell, assuming the structure is known experimen-
tally. The biggest question is which degrees of free-
dom to relax via geometry optimization prior to comput-
ing the chemical shifts. Relaxation of the experimental
crystallographic atom positions typically improves agree-
ment between the theoretical and experimental chem-
ical shifts.36 This has been found both hydrogen and
heavier atoms. The decision of whether or not to op-
timize the unit cell parameters is more subtle. A fully
optimized unit cell with an accurate electronic struc-
ture model will typically underestimate the molar vol-

ume due to the neglect of zero-point vibrational energy
and thermal expansion.42,43 Thermal expansion occurs
more readily in molecular crystals with relatively weak
intermolecular interactions along certain directions (e.g.
van der Waals dispersion instead of hydrogen bonding).
If available, constraining the lattice parameters at their
room-temperature experimental values provides a sim-
ple means of maintaining a crystal structure close to the
room-temperature one. On the other hand, if experimen-
tal structural data is limited or of questionable quality,
it may be better to optimize the cell.
If the structure is not known experimentally, one

can potentially combine crystal structure prediction to-
gether with NMR chemical shift prediction to solve the
structure.12,44 Random structure generation followed by
DFT relaxation has proved an effective combination for
smaller unit cells comprised of fairly rigid molecules.45

Crystal structure prediction becomes increasingly chal-
lenging as the number of flexible degrees of freedom
or the number of molecules in the asymmetric unit in-
creases, though many advances have been made in recent
years.46–49

Disordered materials are considerably more challeng-
ing to model than ordered ones.50 Any defects, substi-
tutions, or other forms of disorder introduced into the
unit cell will be replicated with a periodicity/defect den-
sity determined by the unit cell dimensions. The defect
density can be reduced via use of a supercell comprised
of multiple crystallographic unit cells, but the computa-
tional costs increase rapidly with cell size. Construct-
ing a good single model of the disordered solid that is
tractable with DFT is difficult. A better approach can be
to consider a set of many different representative struc-
tures. Certain disorders, such as positional disorder, may
be representable with a fairly small number of struc-
tures. For more complex cases, one might consider the
distribution of predicted chemical shifts obtained over a
large number of randomly generated and DFT-optimized
structures.50 Such an approach was used to help interpret
the spectrum of the mineral wadsleyite, for instance.51

B. Addressing the size challenge in non-periodic systems

Handling large system sizes presents one of the ma-
jor challenges of ab initio chemical shift predictions.
The cost of DFT calculations grows steeply with sys-
tem size. While linear-scaling DFT algorithms have been
developed,52 the onset of linear scaling only occurs for
very large systems and/or small basis sets. Cubic or
quartic scaling with system size are observed more typi-
cally. As a result, biomolecules are generally too large to
model quantum mechanically in their entirety. The en-
vironment often plays a significant role in solution- and
solid-phase systems as well, which complicates the mod-
eling. One generally has several options for modeling
such complex systems:

1. Neglect part or all of the environment entirely.
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FIG. 4. Errors in the predicted aminopyrazole 13C chemi-
cal shieldings in explicit water solvent. The electrostatically
embedded QM/MM chemical shielding simulations converge
more with size of the QM region compared to purely QM
calculations. Figure adapted from Ref 54.

2. Model the environment at lower level of theory than
the system of interest, either using explicit or im-
plicit treatments.

3. Employ periodic boundary conditions to represent
a large system/environment with a smaller unit
cell.

4. Partition the entire system into many smaller sys-
tems via a fragment approach.

Neglecting part or all the environment is the most
straightforward strategy, and it can be sufficient in sim-
ple cases (e.g. perhaps for a small molecule in solution
with weak solute-solvent interactions and little ambiguity
in the chemical shift assignment). The impact of neglect-
ing the environment can be lessened by treating a large
enough group of atoms/molecules that the portion of the
environment that is being neglected does not strongly
interact with the system. In an enzyme where one is
interested primarily in the active site, for example, one
might include several Å of the surrounding protein in
the calculations. Unfortunately, the size of the system
that needs to be included is quite large—often a 6+ Å
radius,53,54 which can translate 500 atoms or more (Fig-
ure 4). Such calculations can be made more tractable
via the locally dense basis set approximations described
in Section IC. The symmetry adapted clusters approach
for modeling molecular crystal chemical shifts represents
another example of this.11,55 Computational savings can
also be obtained by predicting the NMR chemical shifts
only for selected nuclei,56 though such algorithms are not
widely available in standard quantum chemistry software
packages.
Alternatively, one might represent part or all of the

environment at a lower level of theory, either explicitly
or implicitly. In an explicit representation, one might

employ hybrid quantum mechanical/molecular mechan-
ics (QM/MM) representations, where for example the
enzyme active site and surrounding atoms are modeled
with DFT, while more distant atoms are approximated
classically. A simple version of this would be electro-
static embedding via atom-centered point charges for the
environment. Early models such as the embedded ion
method (EIM)57 and the surface charge representation
of the electrostatic embedding potential (SCREEP)58,59

can be considered examples of this approach. The farther
away the point charges lie from the atoms of interest, the
better. Such hybrid QM/MM approaches can reduce the
radius of the system that needs to be treated with QM
from 6+ Å with no MM embedding down to 4–6 Å (Fig-
ure 4).54 In practice, that decrease in QM cluster size can
potentially reduce the number of QM atoms in half. Even
greater reductions in the size of the QM region may be
possible via the use of polarizable MM environments.60

Instead of modeling the environment explicitly, one can
model it implicitly using a polarizable continuum model
(PCM) or related model.61 A typical PCM embeds the
calculation within a cavity in a polarizable dielectric. Be-
cause they omit all local structuring of the environment,
polarizable continuum environment approximations work
best when the coupling between the system and environ-
ment is weak, such as when there are no direct hydrogen
bonds or other strong specific interactions between the
system and environment.

One notable difference between different PCM mod-
els lies in how the size and shape of the solute cavity is
chosen. The spherical cavities employed in early mod-
els can be problematic for molecules whose shapes are
far from spherical. More recent models employ cavities
constructed from the union of spheres derived from each
atom’s van der Waals radius or by rolling a virtual probe
around the molecule to determine the solvent accessible
surface. Generally the user need only select the dielec-
tric of the desired solvent. PCMs can also potentially be
used to represent more complex environments, such as a
protein environment. Defining an appropriate dielectric
for those environments can be challenging, however.62–65

Overall, implicit and explicit models each have advan-
tages and disadvantages. Explicit models capture key,
specific interactions (e.g. hydrogen bonding) that are
missed by implicit models. On the other hand, implicit
models can be simpler to use (since they don’t require
atomic-level structural knowledge of the environment be-
ing approximated), and they provide a natural means
for reaching the bulk limit. The reduction in degrees of
freedom in the PCM models can also reduce the need
for configurational sampling/dynamical averaging. Note
that one need not pick explicit or implicit models exclu-
sively. It can be very productive to model local inter-
actions such as key hydrogen bonding partners or other
nearby atoms explicitly, and then surround those models
with an implicit environment to capture the longer-range
contributions. Additional discussion of the merits of dif-
ferent strategies and examples can be found in Ref 66.
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FIG. 5. Comparison of predicted 13C isotropic chemical
shifts (sticks) against experiment for crystalline form I ac-
etaminophen using 2-body fragment PBE0, fragment PBE,
and GIPAW PBE.13 The fragment and GIPAW PBE models
perform similarly, but the fragment PBE0 shifts are signifi-
cantly more accurate.

In all of these approaches, care should be taken at the
interface/edge regions, especially when covalent bonds
must be cut. Any “dangling bonds” at those cuts must
be handled carefully. First, not all cut points are equally
good. One should ideally make cuts on single bonds with
atoms of similar electronegativity (e.g. C-C bonds) well
away from the region of interest. Second, they must be
terminated with hydrogen atoms, link atoms, or other
schemes.67 Other subtleties can arise when electrostatic
embedding is employed. For example, the placement of
an embedding charge from a deleted atom very close to
the hydrogen or link atom used to saturate the bond can
lead to problems. Strategies for addressing these chal-
lenges in QM/MM simulations are discussed in Ref 67
and elsewhere.

C. Reducing computational costs via fragment techniques

Fragmentation provides a different strategy for reduc-
ing the computational costs in large systems. Instead
of performing a single chemical shielding calculation on
the entire system, one performs many smaller chemical
shielding calculations on portions of the system. These
individual fragment calculations are then combined in
some fashion to obtain results for the whole system.
Fragmentation offers a number of advantages. Parti-

tioning the system into many smaller fragments generally
decreases the overall computational costs. It may also
be possible to perform more accurate chemical shielding

calculations on the fragments. Furthermore, the individ-
ual fragment calculations that contribute to the whole
can typically be run independently and in parallel, mak-
ing them amenable to current distributed computer ar-
chitectures. Finally, the same fragment model can be
applied to both periodic and non-periodic systems. As
discussed in Section III below, well-ordered and charac-
terized molecular crystals provide a nice data set for de-
veloping chemical shift referencing models that can then
be applied to more complex systems such as biomolecules.
Of course, fragment methods also have the downside of
approximating the treatment of the interactions between
fragments. This makes them most suitable for systems
with localized electronic structure (e.g. organic species,
biomolecules, insulators). Capturing the important elec-
tronic structure of a metal or semi-conductor with a frag-
ment approach would be difficult. Furthermore, parti-
tioning non-covalent interactions between molecules is
easier than fragmenting across a covalent bond within
a molecule.

Quite a few different successful fragment approaches
have been developed. The specific formulation often de-
pends on the type of systems being targeted. In molec-
ular crystals, for example, an electrostatically embed-
ded fragment model has proved quite effective.5,13,14,68

This model computes the shielding for a key monomer
of interest and then adds a series of corrections to it
based on pairwise interactions between it and nearby
molecules (e.g. out to 6 Å). To approximate overall polar-
ization effects from the crystalline lattice, these monomer
and dimer calculations are embedded in a set of self-
consistently polarized charges designed to reproduce the
Madelung potential,6 similar to the embedding used in
the embedded ion model.57 Even better treatment of the
lattice polarization effects can be obtained by a model
that combines a cluster calculation with a series of longer-
range pairwise fragment corrections.5,6 Fragment meth-
ods and cluster representations11,55 of periodic systems
have much in common.

Because it employs Gaussian basis functions, this elec-
trostatically embedded fragment approach allows routine
application of hybrid density functionals instead of GGAs
to molecular crystals. Compared to either GIPAW or
fragment calculations with the PBE functional, switching
to PBE0 via the fragment approach reduces 13C chem-
ical shift errors in organic crystals by about a third,5

from ∼2.1 ppm to ∼1.4 ppm. Figure 5 compares frag-
ment and GIPAW chemical shift calculations for form I
crystalline acetaminophen (paracetamol).13 In principle,
fragment methods can be used to perform chemical shift
calculations at very high levels of theory (e.g. coupled
cluster techniques69), but this has not been widely ex-
plored in practice. One challenge is that properties pre-
dicted from correlated wave function methods generally
converge more slowly with basis set than do ones from
DFT. So not only are the models more expensive for a
given basis set, but they require larger basis sets as well.

A number of fragment methods have been designed to
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address the challenge of cutting across covalent bonds as
well. One strategy is to perform a series of cluster cal-
culations, where shieldings typically are taken only from
the central atoms in the cluster. In the automated frag-
mentation QM/MM approach in proteins,70–72 for exam-
ple, the system is divided into non-overlapping residues,
called core regions. To compute the shieldings on each
residue, these core regions are surrounded by a buffer re-
gion of nearby residues and embedded with point charges
corresponding to the remainder of the protein. This
larger embedded cluster provides a more realistic envi-
ronment for the evaluation of the chemical shieldings in
the core region. In the end, this amounts to performing
a series of overlapping embedded cluster calculations to
compute the shifts throughout the system, keeping only
the shifts obtained from the core of each cluster. Addi-
tional ways of combining the fragments exist as well.73–75

Other approaches employ quantum mechanical embed-
ding via the fragment molecular orbital method76,77 or
adjustable density matrix assembly.78,79 A third strategy
is to perform low-level calculations on a large system to-
gether with higher-level ones on small subsystems, as in
the molecules-in-molecules approach.80 Capping atoms
are frequently required to terminate dangling bonds at
the cut locations, and cuts should be made at appropri-
ate bond types and sufficiently far from the atoms whose
shieldings are of interest in a given fragment.

III. REFERENCING PREDICTED CHEMICAL

SHIELDINGS

A. Approaches for chemical shift referencing

Quantum chemistry calculations predict absolute
chemical shieldings σi, while NMR experiments measure
chemical shifts δi. The chemical shift is the difference
between the chemical shielding of the target nucleus σi

and that of a reference nucleus σref . To compare with
experiment, the predicted chemical shieldings must be
converted to chemical shifts via appropriate referencing,

δi = σref − σi (3)

There are several ways to perform this referencing.
The most straightforward would be to compute the chem-
ical shielding of the reference compound at the exact
same model chemistry as the system of interest. Common
chemical shift referencing scales include neat tetram-
ethylsilane (TMS) for 1H and 13C, solid ammonium chlo-
ride or liquid ammonia for 15N, and liquid water for 17O.
Unfortunately, computing the chemical shielding of the
reference compound is not always straightforward. For
example, properly modeling liquid ammonia would re-
quire computing the ensemble-averaged chemical shield-
ing over many liquid-state configurations in a fairly large,
periodic simulation cell.
The linear regression referencing approach circumvents

FIG. 6. Top: Sample linear regression of 169 predicted
13C isotropic chemical shieldings and experimental chemical
shifts.5 Bottom: Errors in the predicted shifts resulting from
the linear regression model.

these difficulties. In this approach, Eq 3 is re-written as,

δi = A+Bσi (4)

where A and B are empirical parameters. One then per-
forms linear regression between a set of predicted shield-
ings and experimentally measured chemical shifts (Fig-
ure 6). Ideally, intercept A would correspond to the
chemical shielding of the reference nucleus, and slope B
would equal −1, thereby reducing Eq 4 back to Eq 3. In
fact, some authors constrain B = −1 and fit only the in-
tercept A. Allowing B to vary partially compensates for
systematic errors in the computational model chemistry
(e.g. incomplete basis sets or density functional errors).
In well-behaved model chemistries, the deviations in B
should typically be no more than ±5–10%, and ideally
less. Large deviations from unity are indicative of prob-
lems in the modeling or the experimental chemical shift
assignment.
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trained. This includes factors such as the density func-
tional, basis set, exchange-correlation integration grid,
solvation model, etc. Predicted chemical shieldings are
rarely converged with respect to model parameters in ab-
solute terms. Instead, the accuracy of the chemical shift
predictions relies heavily on the cancellation of finite ba-
sis set error and other approximations between the target
and reference nuclei.
Second, the user should note that two different con-

ventions for reporting the regression parameters can be
found in the literature. Some authors use the convention
in Eq 4, in which the predicted shielding is the indepen-
dent variable and the experimental shift is the dependent
one.5 However, other authors swap the dependent and in-
dependent variables, σi = A′ + B′δi, in which case the
chemical shift is computed as:

δi =
A′

− σi

−B′
(5)

This latter convention is used on the Chemical Shift
Repository website, for example. Both conventions are
equally valid, and the parameter values can be intercon-
verted trivially.
Finally, while plots such as Figure 6 are visually ap-

pealing, they should be interpreted with some caution.
Because the chemical shift range is ∼1–2 orders of mag-
nitude larger than the typical errors in the chemical shift
predictions, these regression plots can visually obscure
chemically significant errors. Differences in the coeffi-
cients of determination (R2 values) are also often quite
small. For example, switching the density functional
from the PBE0 hybrid functional to the GGA functional
PBE increases the rms error between the predicted and
experimental shifts from 1.5 ppm to 2.1 ppm,5 but the R2

value only decreases from 0.9987 to 0.9975. Analysis of
the errors between the predicted and experimental chem-
ical shifts (e.g. lower part of Figure 6) provides a much
clearer gauge of how well a given model is performing.

IV. SUMMARY RECOMMENDATIONS AND FUTURE

DIRECTIONS

In summary, when predicting chemical shifts from
DFT, one should typically employ hybrid or GGA density
functionals and pair them with a dispersion correction,
if appropriate. Basis sets of triple-ζ quality provide a
good balance between accuracy and computational cost.
Locally dense basis set strategies can reduce computa-
tional costs without impacting the quality of the pre-
dicted shifts significantly. Special basis sets may be re-
quired for selected properties, such as electric field gra-
dients. Atomic positions should generally be optimized
with quantum chemistry prior to computing the chemical
shifts, though finite truncations of the system (e.g. clus-
ter models) may necessitate holding some atoms fixed at
their crystallographic positions.

Modeling of the environment surrounding the
atoms/molecules of interest is important. In some
cases, this can be done with a simple continuum model.
Otherwise, explicit treatments of the environment
should be used, such as a large 4–6 Å cluster augmented
with electrostatic embedding, or periodic boundary
conditions. Fragmentation strategies can reduce the
computational costs associated with predicting chemical
shifts in large systems. It is always a good idea to assess
the sensitivity of one’s predictions to both the model
chemistry (functional/basis set) and the atomic repre-
sentation (e.g. size of the QM region). Finally, effective
chemical shift referencing can be performed via the
linear regression approach, preferably using a regression
model trained on an external and well-characterized
data set.
During the next several years, several trends in chemi-

cal shift prediction are likely to emerge. Increasing com-
puter power makes it easier to treat larger portions of
system with explicit QM methods. Machine-learning
techniques are likely to gain importance for rapid pre-
dictions of chemical shifts across a wide range of chem-
ical species. They have already been useful in protein
systems for several years,85 but new research is show-
ing that they can perform well for more general organic
molecules and crystals.86,87 While the current accuracy of
these general-purpose machine-learning models is some-
what worse than true DFT calculations (e.g. ∼4 ppm for
13C versus ∼1.5–2 ppm from DFT), the calculations can
be performed in seconds instead of hours.
The treatment of dynamics and its impact on NMR

parameters is likely to improve and become more com-
monplace as well. Better potentials (machine-learned or
otherwise) are likely to make performing ab initio-quality
molecular dynamics simulations more affordable, from
which one will be able to compute ensemble-averaged
chemical shifts. Fast, accurate chemical shift prediction
models will also enable averaging over the hundreds or
thousands of configurational snapshots required to con-
verge the chemical shieldings in large systems. These
advances will all combine to improve and accelerate our
ability to analyze and solve structures via NMR spec-
troscopy.
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point, T. Azäıs, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F.
Mauri, and C. J. Pickard, Chem. Rev. 112, 5733 (2012).

36S. E. Ashbrook and D. McKay, Chem. Commun. 52, 7186 (2016).
37T. E. Exner, A. Frank, I. Onila, and H. M. Möller, J. Chem.
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