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Abstract—Leveraging application-level requirements expressed
in Coflows has been shown to improve application-level com-
munication efficiency. However, most existing works assume all
application traffic is serviced by one monolithic network. This
over-simplified assumption is no longer sufficient in a modern,
evolving data center which operates on multiple generations of
network fabrics, an architecture that we define as Heterogeneous
Parallel Networks (HPNs). In this paper, we present the first
scheduler, called Weaver, that addresses the Coflow management
problem in HPNs.

To exploit HPNs fully, achieving high communication efficiency
for applications is crucial, yet it is also challenging because of
the complex traffic patterns in applications and the heterogeneous
bandwidth distribution in HPNs. Weaver addresses these chal-
lenges at two levels. At the microscopic level, for each application,
Weaver leverages an efficient algorithm to exploit the distributed
bandwidth in HPNs, which we proved to be within a constant
factor of the optimal. At the macroscopic level involving multiple
applications, Weaver can adopt a range of application traffic
scheduling policies as desired by the system operator. Under
realistic traffic, Weaver enables HPNs to service Coflows as
efficiently as a monolithic network with equivalent aggregated
capacity.

I. INTRODUCTION

A range of recent works [1, 2, 3, 4, 5] have demon-

strated the benefits of application-aware network scheduling

by exploiting the structured traffic pattern from distributed

applications. Distributed applications in data centers often

communicate with a collection of related flows. Prevalent

examples are the parallel flows involved in executing a query

in distributed databases [6], a read or write in distributed

storage systems [7], and the data shuffle phase in distributed

MapReduce jobs [8, 9], etc. This typical communication

pattern commonly seen in data centers is captured concisely

by the Coflow traffic abstraction (Section II). A Coflow

represents a collection of related flows whose performance

goal is to finish all related flows as soon as possible. Coflow-

aware scheduling benefits distributed applications by avoiding

stragglers [1, 2, 4] and improving resource utilizations [10].

Prior works on Coflow scheduling mainly focus on the

single-core model, a network model that has been widely used

not only for Coflow studies [1, 2, 3, 4, 5], but also for other

works on data center network [11]. The single-core model

abstracts the whole network fabric as one non-blocking N -port

switch, an assumption considered practical because topological

designs such as Fat-tree or Clos [12, 13] enable building a data

†Work done while Yiting Xia was at Rice University.
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center network with full bisection bandwidth. Nevertheless,

this over-simplified model is limited to the scope where all

Coflow workload is exclusively supported by one generation

of network fabric.

However, this single-core model is no longer sufficient

under recent technology trends [14, 15, 16, 17, 18]. We

observe that an evolving data center would operate on multiple

generations of networks in parallel [19], so as to exploit the

shrinking gap in network speed and to derive benefits for

research and development endeavors (Section II). We define

such network settings as heterogeneous parallel networks

(HPNs), an architecture that is based on multiple network cores

operating in parallel (Figure 1). A network core represents one

generation of network fabric that can service all hosts in a

cluster. Multiple network cores make up parallel networks to

provide a large amount of aggregated bandwidth by servicing

traffic simultaneously. HPNs evolve over time by adding new

cores to work in parallel with the existing ones, and by

retiring old cores whose capacity is significantly less than

the youngest core to reduce system complexity. At any time,

cores with various transmission capacities coexist. In HPNs,

the conventional single-core network model is insufficient.

Based on these observations, we ask a timely and important

question: how to best service Coflows in the data center

supported by multiple generations of network fabrics, i.e. the

HPNs? Coflow scheduling is known to be a hard problem

(NP-hard, [1]) even in a single-core network, because one ap-

plication often depends on multiple flows among its distributed

compute nodes, and thus resource management solutions at the

individual flow level [20, 21] often fail to translate benefits

to the Coflow level [1]. The Coflow scheduling problem

becomes even more challenging in HPNs because bandwidth

resources are distributed among heterogeneous network cores.
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Thus, resource management also needs to decide how Coflow

traffic should be assigned to the appropriate core to utilize the

core’s bandwidth. Furthermore, achieving high-efficiency for

Coflow scheduling usually requires global coordinations, but

a network core in HPNs should operate as independently as

possible for several practical considerations (Section III).

In this paper, we present Weaver, the first Coflow scheduler

for a modern data center operating on HPNs. To address

the above technical challenges, our key design choice is to

decouple (1) bandwidth allocation (BA) within each core and

(2) traffic-to-core assignment (TA). For BA, Weaver desig-

nates a component for each core to coordinate the bandwidth

allocation for the traffic within the core. This design not only

decouples a core’s traffic control from other cores’, but also

allows Weaver to accommodate a variety of traffic priority

policies to achieve the desired scheduling objective. For TA,

Weaver incorporates a flow-level traffic assignment component

to maximally exploit the distributed bandwidth among hetero-

geneous cores. While traffic assignment optimizing for Coflow

performance is a hard problem (NP-hard, Section IV-A), we

propose a TA algorithm that is provably within a constant

factor of the optimal. With testbed implementations and large-

scale simulations, we demonstrate experimentally that Weaver

enables HPNs to service Coflows as efficiently as a monolithic

network with equivalent aggregated capacity.

II. BACKGROUND

Heterogeneous parallel networks (HPNs): HPNs are de-

ployed in data centers today for several compelling advantages,

such as (1) exploiting the shrinking generation gap in network

speed, (2) serving the transitional period during network

upgrade to provide alternative links, and (3) enabling research

with new experimental technology in situ. We discuss these

important use cases of HPNs as follows.

In recent years, the growth of traffic demand in data centers

is winning the race against network link capacity. Google

recently reported its aggregated server traffic increases by 50×
in only 6 years from 2008 to 2014 [19]. Similar anecdotes are

often heard [14, 22, 23]. Such immense growth is driven by

bandwidth hungry distributed applications, such as distributed

storage and large-scale data analytics. In contrast, the marginal

gain in speed for new generations of link technology is

shrinking. Figure 2 shows the year when various link rates

were introduced in IEEE 802.3, the industrial standard for

wired Ethernet. Before 2002, each new generation used to

deliver 10× improvement over the previous one. However,

this 10× boom has disappeared after 10 Gbps. Nowadays,

TABLE I: Notations

Symbol Definition

K number of parallel network cores
N port count of parallel networks
in.i, out.j i-th input port, j-th output port

r(k) link capacity of the k-th core
|C| Number of flows in a Coflow C

D
(k) a Coflow C’s traffic demand on the k-th core

L(D) bottleneck of matrix D (Section IV-B)

T f
o or T s

o CCT lower bound if flow splitting is allowed
(Table II) or prohibited (Table III), respectively

when 100 Gbps links are prohibitively expensive,1 25 Gbps or

40 Gbps remain more attractive to data center operators [18,

19, 25], i.e. a mere 2.5× or 4× improvement over 10 Gbps.

The shrinking gap is due to many reasons, the most important

being the technological barrier: new technology to support

high link rates at low cost is yet to be developed [15, 16,

17].

These conflicting stances call for an incremental approach

for network upgrades. On one hand, traffic growth presses

for more bandwidth [18, 19]. On the other, building a brand

new network on 10× improved link rate becomes prohibitively

expensive [18]. So operators turn to the best affordable link

rate, usually 2.5× or 4× of the legacy network [18, 26]. The

result is that, relative to a new network, a legacy network can

still service a considerable amount of traffic. For example,

there is significant incentive to retain a legacy 10 Gbps

network because it could service 20% of traffic together with

a new 40 Gbps network of the same topology when both work

in parallel.

Operating multiple generations of networks in parallel also

provides additional benefits to facilitate research and devel-

opment endeavors. For instance, to deploy an unproven new

network, Google retains the legacy network to assure quality of

service [19], so that the legacy network may handle important

traffic until the new network has been rigorously tested over

time. In addition, parallel networks can also be added to

test new experimental technology in situ without incurring

host downtime, a common practice widely adopted by the

industry [19] as well as research institutes [27].

Based on these observations, a case could be made for

operating two, or perhaps even three generations of networks

in parallel that provide the above technical advantages. We

have defined such network settings as heterogeneous parallel

networks (HPNs) in Section I. As shown in Figure 1, without

loss of generality, we abstract the HPNs as K non-blocking

N -port switches {s1, ..., sK}, each representing one network

core with link rate {r(1), ..., r(K)} respectively. This abstract

model is simple yet practical because topology designs such

as Fat-tree or Clos [12] enable building a network with full

bisection bandwidth. Among the N sender (or receiver) nodes,

the i-th sender (or the j-th receiver) is connected to the i-th
input (or the j-th output) port of each parallel switch. Hence,

1 Price of one transceiver to support 1km cable distance [24]: 10 Gbps at
$34, 40 Gbps at $220, 100 Gbps at $700.



TABLE II: Generic Assignment Problem

Formula Definition

Variables: ∀k : d
(k)
i,j ∈ D

(k) demand sent by k-th core

Goal: minT minimize CCT

Constraints:

1) ∀i, j :
∑K

k=1 d
(k)
i,j = di,j demand satisfaction

2) ∀i, k :
∑N

j=1 d
(k)
i,j ≤ r(k)T k-th core’s inbound cap

3) ∀j, k :
∑N

i=1 d
(k)
i,j ≤ r(k)T k-th core’s outbound cap

each sender (or receiver) simultaneously has K uplinks (or

downlinks). Each uplink (or downlink) can be a bundle of

multiple physical links in the actual topology. In practice,

the sender (or receiver) nodes are most likely Top-of-Rack

(ToR) switches each connected to a group of hosts. Note that

a network core in our HPNs is an autonomous entity that

transmits data between endpoints without interference from

other cores. It is different from a core switch in a Clos network,

where core switches are merely interchangeable, intermediate

nodes to forward traffic redistributed arbitrarily by upstream

switches in the network.

Coflow traffic abstraction: Data-parallel distributed compu-

tation frameworks [6, 7, 8, 9] usually organize their pipeline

in stages, and each stage need data transfer on a collection

of related flows among two groups of machines. Coflow is

a traffic abstraction designed to concisely characterize this

typical communication pattern. A Coflow is defined by the

endpoints and byte size of each flow in the Coflow. A Coflow

can represent any communication structure, such as many-to-

many, one-to-many, and many-to-one, etc. The traffic demand

of a Coflow can be represented in a demand matrix D, where

each element di,j ∈ D indicates flow fi,j transfers di,j amount

of data from in.i to out.j.

The Coflow transfer phase has paramount impact on the

application performance because the application usually relies

on the completion of a Coflow to continue computation or

generate final results [6, 8, 9] and to fulfill data management

goals [7]. Thus, a Coflow’s performance is measured by its

Coflow Completion Time (CCT), which is the duration to

finish all constituent flows in the Coflow. For a Coflow C,

denote its arrival time as tArr, and the finish time of the flow

fi,j ∈ C as tFi,j . CCT is defined as max
∀fi,j∈C

(tFi,j − tArr). At the

intra-Coflow level, the goal is to minimize CCT, so as to speed

up application level performance. This scheduling objective is

commonly used in all prior studies [1, 2, 3, 4, 5].

III. WEAVER OVERVIEW

This section presents an overview of Weaver, the first

Coflow scheduler for HPNs. Similar to the scheduler designs

in prior works [1, 2, 3, 4], Weaver serves as a logically

centralized coordinator for Coflow transmissions in HPNs.

Weaver accepts traffic requests expressed in Coflows from

applications. Given multiple Coflow requests, Weaver must

decide how Coflow traffic should be assigned to the appropri-

ate core and, within each core, how to allocate the bandwidth

for constituent flows in Coflows.

TABLE III: Flow-level Assignment Problem

Formula Definition

Variables: ∀k : I
(k)
i,j ∈ {1, 0} fi,j sent by k-th core if I

(k)
i,j =1.

Goal: minT minimize CCT

Constraints:

1) ∀fi,j ∈ D :
∑K

k=1 I
(k)
i,j = 1 each flow sent by one core

2) ∀i, k :
∑N

j=1 di,jI
(k)
i,j ≤ r(k)T k-th core’s inbound cap

3) ∀j, k :
∑N

i=1 di,jI
(k)
i,j ≤ r(k)T k-th core’s outbound cap

Under the single-core assumption, prior Coflow-based so-

lutions generally apply global control on traffic priority and

bandwidth allocation [1, 2, 3, 4, 5], as well as routing [28],

for all constituent flows in Coflows to achieve high com-

munication efficiency. In HPNs, however, global control is

challenging. The heterogeneous cores may differ in various

levels of their network stack, such as control software, trans-

mission protocol, and hardware generation, etc. In certain

cases, it might not be practical to jointly schedule Coflows

across different cores. For example, a network core based on

a new hardware stack would require its specialized bandwidth

allocation policy [4], and it is unknown how different types

of bandwidth allocation policy, such as [4] and [1], may

incorporate efficiently with each other. Thus, a network core

should operate as independently as possible.

Under these technical considerations, Weaver decouples

bandwidth allocation within each core and traffic-to-core

assignment, so that a core may deploy its own bandwidth

allocation policy for Coflows and a Coflow may still exploit

bandwidth distributed in multiple cores. This approach also

enables Weaver to accommodate a variety of Coflow schedul-

ing policies desired by the system operator (Section V). As an

overview, Weaver consists of the following components.

Traffic Assignment (TA): A new Coflow request first goes to

TA, which assigns the requested demand to be fulfilled by each

BA (discussed below). For a Coflow C with traffic demand D,

its traffic assigned to the K BAs can be represented in demand

matrices {D(1), ..., D(K)}, where each element d
(k)
i,j ∈ D

(k)

indicates the amount of data in flow fi,j from Coflow C to be

fulfilled by the BA on the k-th core.

Bandwidth Allocation (BA): Weaver designates a BA compo-

nent for each core to allocate bandwidth for traffic within the

core. All BAs periodically report traffic status in the system

to a Status Server (SS), which in return helps BAs and TA

to optimize scheduling decisions at the inter-Coflow level

(Section V). Denote r
(k)
i,j as the bandwidth allocated for the

link from in.i to out.j in the k-th core. BAs ensure bandwidth

constraints are satisfied with ∀k, j :
∑N

i=1 r
(k)
i,j ≤ r(k) and

∀k, i :
∑N

j=1 r
(k)
i,j ≤ r(k).

IV. TRAFFIC ASSIGNMENT

When a new Coflow arrives, TA assigns its requested

demand to network cores. In this section, we study how to

assign a Coflow’s demand at the intra-Coflow level.



A. Problem Formulation and Hardness

We start by formulating the traffic assignment problem. TA

decomposes C into K children Coflows, i.e. one child per

BA. Following the common defination of CCT (Section II),

the CCT for the parent C is the maximum of the CCTs of all

its children, i.e. CCT = max
∀k

(CCT (k)).

At first glance, the traffic assignment problem of a par-

ent Coflow can be formulated as in Table II. As we will

show in Section IV-B, this problem can be solved optimally

by setting d
(k)
i,j proportionally to r(k), i.e. d

(k)
i,j = di,j

r(k)

R
,

where R=
∑K

k=1 r
(k). However, this requires flow splitting, i.e.

splitting a flow into multiple subflows to transmit through

different network cores. Flow splitting is less practical due

to packet reordering. Therefore, we focus on a solution that

assigns Coflow traffic at the flow level, so that data in a flow is

assigned to the same core, while different flows may transmit

through different cores. We formulate this problem in Table III.

This problem (Table III) is NP-hard [29, 30, 31] under

a simplified case of one-to-many (or many-to-one) Coflow,

where we only need to consider the capacity constraints of

the K input (or output) ports associated with the K cores

in HPNs from the same sender (or to the same receiver).

Under these cases, our problem is equivalent to scheduling

independent tasks on heterogeneous processors to minimize

the finish time, where |C| independent flows (tasks) in a

Coflow C are to be assigned on K network cores of various

link rates (processors with various service speed) without

flow splitting (task preemption) to minimize CCT (the finish

time of the last task). However, our problem is more general

because Coflows have various structures other than one-to-

many and many-to-one, which requires us to jointly consider

the inbound and outbound capacity for all input and output

ports of all cores. Classic heuristics [29, 30, 31] designed

for heterogeneous processors assume one resource type on a

processor. Therefore, they cannot be applied to our problem

which involves 2N types of resources (bandwidth of N input

ports and N output ports) on each processor (network core).

The search space for each Coflow C is exponentially large –

there are K |C| possible solutions to assign the |C| flows from

the Coflow C to K cores, and |C| can be as large as N2. For

example, in a widely used Coflow benchmark [32], > 30%
Coflows each has > 30 flows, which translates to > 1 billion

possible assignments to be considered in an exhaustive search

for a Coflow under the most common case of K = 2.

B. CCT Lower Bounds

To facilitate theoretical analysis, we begin by deriving the

CCT lower bounds for our problems in Table II and Table III.

Denote T f
o as the optimal CCT without flow splitting, and

T s
o as the optimal CCT allowing flow splitting. The problem

without flow splitting is a special case of the problem allowing

flow splitting, and thus T f
o is achievable under the constraints

of T s
o . Therefore, we have T s

o ≤ T f
o .

We then introduce the bottleneck metric to characterize a

Coflow’s traffic demand matrix D. We define its bottleneck as

Algorithm 1 Weaver’s Flow-level TA Algorithm

1: procedure ASSIGN(Coflow C, link rates r(1),..., r(K))
2: ∀k : D(k) = ∅ ⊲ Demand assigned to the k-th network
3: for all (i, j, di,j) in SORTED(C) do

⊲ Sort flows in the descending order of byte size

4: if ∃k : L
(

D
(k) ∪ di,j

)

> L
(

D
(k)

)

then

⊲ Critical flow: pick a network to minimize CCT

5: kmin = argmin
k

L(D(k)
∪di,j)

r(k)

6: else
⊲ Non-critical flow: pick a network to balance load

7: kmin = argmin
k

max(V1(D
(k)

∪di,j)[i],V2(D
(k)

∪di,j)[j])
r(k)

8: end if
9: D

(kmin) ← D
(kmin) ∪ di,j , I

(kmin)
i,j = 1

⊲ Update assignment
10: end for
11: return {I(1), ..., I(K)}
12: end procedure

the maximum of column sums and row sums in the matrix,

i.e. L(D) = max
(

max∀i
∑N

j=1 di,j , max∀j
∑N

i=1 di,j
)

.

The CCT lower bound for a child Coflow C(k) on the k-th

core with link rate r(k) is
L(D(k))

r(k) [4]. Hence, the CCT of the

parent Coflow is max
∀k

(L(D(k))
r(k) ). The following theorem estab-

lishes that the CCT in HPNs is no less than the CCT lower

bound in a monolithic network with equivalent aggregated link

capacity R =
∑K

k=1 r
(k).

Theorem 4.1:
L(D)
R

is the CCT lower bound in a core with

link rate R =
∑K

k=1 r
(k), and

L(D(k))
r(k) is the CCT lower bound

in the k-th core with link rate r(k). We have max
∀k

(L(D(k))
r(k) ) ≥

L(D)
R

.

Proof: See Appendix

Theorem 4.1 implies that an optimal solution for the prob-

lem that allows flow splitting is to set d
(k)
i,j proportional to

r(k), i.e. d
(k)
i,j = r(k)

R
, so that the CCT lower bound is achieved

in each core, i.e. CCT = CCT
(1) = ... = CCT

(K) = L(D)
R

.

Thus T s
o = L(D)

R
.

C. Algorithm Design

Algorithm 1 presents Weaver’s flow-level traffic assignment

algorithm. We have shown in Section IV-A that our problem

without flow splitting is NP-hard. We prove Weaver’s TA

algorithm is tightly bounded within a constant factor of T s
o ,

the optimal of the relaxed problem that requires flow splitting.

This optimality guarantee applies in the general case with no

constraints on Coflow structures or HPNs configurations (Sec-

tion IV-D). In other words, without flow splitting, Weaver’s TA

algorithm approximates well the performance of the stringent

case that requires flow splitting. Towards this goal, we leverage

three crucial techniques as follows.

Achieving optimality guarantee with careful assignment

of critical flows. Weaver’s TA algorithm considers flows one-

by-one. The algorithm achieves its performance guarantee by

classifying critical flows in a Coflow and assigning them to

the network core that minimizes CCT after adding the critical



flow. Specifically, when Weaver’s TA considers each flow, the

flow is matched with all K network cores. A flow is defined

as critical if adding the flow would increase the bottleneck of

at least one core’s demand matrix (line 4). In other words, if

the flow is assigned to one of the affected core(s), the CCT

of the child Coflow assigned to that core will increase, which

may further increase the CCT for the parent Coflow, because

the parent’s CCT is the maximum of its children CCTs, as

discussed in Section IV-A. For our optimality guarantee to

hold true (Section IV-D1), a critical flow is assigned to the

core with the minimum CCT for its child Coflow including

the newly added flow (line 5). In this way, Weaver considers

the heterogeneous core capacity and Coflow structures simul-

taneously to optimize Coflow performance.

Achieving better load balancing with busy ratio. The

assignment of non-critical flows can be arbitrary for our

optimality guarantee to hold, because none of the children

CCTs will increase. Nevertheless, it is crucial to balance

load among network cores, so as to improve performance

of inter-Coflow scheduling when multiple Coflows coexist

in the system. We will discuss the details of inter-Coflow

scheduling later in this paper (Section V). When multiple

Coflows coexist in the system, given that the critical flow

condition is observed to achieve the optimality guarantee, TA

should strike a balanced load among various cores for a new

Coflow, so as to reduce contentions between Coflows within

one core. Otherwise, flows on an overloaded core may be

heavily delayed, prolonging CCTs of the affected Coflows.

To balance load for non-critical flows, Weaver takes a

“worst-fit” approach to match the flow with the least busy

core. We avoid using the bottleneck of a core’s demand matrix

D
(k), because the bottleneck is biased by the highly loaded

input (or output) port, which is usually not the port needed by

the flow. To better evaluate the load of a core for the flow, we

instead use the ratio of the maximum load of the flow’s input

and output port over the core’s link capacity (line 7). The ratio

considers a core’s load on the relevant ports of the flow, as well

as the heterogeneous link capacity. A smaller ratio indicates

that the core is relatively less busy on the flow’s path, so the

flow is assigned to the core with the minimum “busy ratio”.

Achieving better assignment with assignment ordering. The

ordering of the flows to be considered for traffic assignment

can be arbitrary (line 3) for our optimality guarantee to hold

true. Nevertheless, we recommend prioritizing assignment for

flows of larger size because they are more likely to finish later

and impact the CCT. Therefore, before feeding a Coflow as

input to the algorithm, flows in the Coflow may be optionally

sorted in their descending order of flow sizes so that larger

flows are considered earlier.

Example. Putting these crucial techniques together, Weaver’s

TA algorithm is shown as in Algorithm 1. We leverage an

example in Figure 3 to demonstrate how Weaver assigns traffic

for a Coflow C. In this example, we consider two cores, s1
and s2. s1 has a lower link rate of r(1) = 1, and s2 has a

higher link rate of r(2) = 4.

in.3

in.1

in.2

out.4 out.5 out.6

90

90

90

5

1010 D(1)

D(2)

r(1)=1

r(2)=4

How to
assign?

D

(a) (b)

90

90

90

(c)

90

90

90

1010

(d)

90

90

90

10 10

5

Fig. 3: Weaver’s TA example: Assigning flows from a Coflow to two
network cores, s1 and s2, with link capacity r(1) = 1 and r(2) = 4,
respectively. (a) Coflow traffic demand. (b) Three critical flows are
assigned to s1 to minimize CCT. (c) Two critical flows are assigned
to s2 to minimize CCT. (d) One non-critical flows are assigned to s2
to balance load and avoid overloading at in.2 on s1.

D
(k) is Coflow C’s traffic demand assigned to the k-th core.

When considering a new Coflow for HPNs with K cores, all

K matrices are initialized to be empty (line 2). When a flow

is assigned to a specific core, the core’s demand matrix is

updated with the flow’s byte size (line 9). In our example, we

have D
(1) for s1 and D

(2) for s2.
As discussed in Section IV-C, Weaver achieves better as-

signment by considering larger flows first. Therefore, Weaver

starts with the three flows to out.4, each flow of size 90.
Each of the flows with size 90 are critical, because adding

the flow would increase the bottleneck of both D
(1) and D

(2)

at out.4. To achieve its performance guarantee, Weaver assigns

a critical flow to the network core which minimizes CCT after

adding the flow. Therefore, all three flows, one flow at a time,

are assigned to s2 with higher link capacity r(2) = 4, as

shown in Figure 3b. Then, Weaver continues to consider the

flows of size 10. Again, each of the them are critical due to

increasing the bottleneck of D(2) at in.1. Therefore, the flows

are assigned to s1 which yields lower CCT = 2×10/1 = 20,

when compared with s2 and its CCT = 3× 90/4 = 67.5, as

shown in Figure 3c.
In Figure 3d, the flow of size 5 is non-critical because

adding the flow to either s1 or s2 would neither impact the

bottleneck of D(1) at in.1 nor the bottleneck of D(2) at out.4.

Weaver uses the busy ratios to achieve load balancing. The

ratios on s1 is (10 + 5)/1 = 15, lower than s2’s ratio of

(90 + 5)/4 = 23.75. This indicates s1 is less busy on the

paths of the non-critical flow, so the flow is assigned to s1.

D. Theoretical Analysis

1) Optimality Guarantee: Exploiting all cores in HPNs

is crucial to optimize Coflow performance. A TA algorithm

should never perform worse than operating the fastest core

alone, otherwise it defeats the purpose of operating multiple

cores. However, in the presence of slower cores, a Coflow

might end up with worse performance than using the fastest

core alone due to a deficient TA. For an extreme example,

when the fastest core is mostly idle, CCT suffers if the Coflow

is assigned to a slower core. In contrast, we prove that CCT

under Algorithm 1 is never worse than assigning the whole

Coflow to the fastest core, as shown in Theorem 4.2.
Theorem 4.2: Denote D

(k) as the matrix of traffic demand

assigned for the k-th network core under Algorithm 1, and



∑K

k=1 D
(k) = D, where D is the traffic demand of Coflow C,

then max
∀k

(

L(D(k))
r(k)

)

≤ min
∀k

(L(D)
r(k) ).

Proof: See Appendix.

Theorem 4.1 and Theorem 4.2 imply that Algorithm 1

achieves a CCT within a constant factor (i.e. α in Theorem 4.3)

of the optimal CCT under any specific configuration of HPNs,

as shown in the following Theorem 4.3.

Theorem 4.3: Denote T as the CCT achieved by Algo-

rithm 1, T f
o as the optimal CCT without flow splitting, and

T s
o as the optimal CCT allowing flow splitting. Then we have

T ≤ αT s
o ≤ αT f

o , where α =
∑

K
k=1 r(k)

max
∀k

(r(k))
≤ K .

Proof: See Appendix

In HPNs with K network cores, Theorem 4.3 shows that

Algorithm 1’s optimality approximation factor, or α, is always

better than K in HPNs where parallel networks have heteroge-

neous link capacity. Under K uniform parallel networks, i.e.

r(1) =...= r(K), α = K . In the extreme case where one core

provides the majority of bandwidth, α → 1.

Note that the optimality guarantee of Weaver’s TA algorithm

holds true regardless of the ordering of flows to be assigned

or the assignment of non-critical flows. Nevertheless, special

treatments for assignment ordering and assignment of non-

critical flow are beneficial to achieve better Coflow perfor-

mance in practice, as shown later in this paper (Section VI-C).

2) Time Complexity: For each Coflow C, Algorithm 1 scans

each flow in C (line 3), which results in |C| iterations. For

each flow, K cores are compared to find the best that optimizes

CCT after adding the flow (line 5 or line 7). Therefore, the

time complexity of Algorithm 1 is O(K|C|).

V. BANDWIDTH ALLOCATION

In the presence of multiple Coflows, how to share band-

width at the inter-Coflow level is also critical to optimize

Coflow performance. At this inter-Coflow level, the scheduling

objective will depend on the resource management policy

employed by the system. A commonly studied objective is to

minimize the average CCT, which is already NP-hard [1] in the

simplified case of monolithic network (K=1). To achieve this

objective, a variety of Coflow schedulers, such as Varys [1]

and Aalo [2], are proposed to schedule Coflows of various

types, e.g. volume-based Coflows from distributed storage

applications vs. streaming-based Coflows from distributed data

analysis applications, by adopting a different priority policy

for Coflows. These schedulers are designed to coordinate

Coflows within one network core, and they enforce bandwidth

allocation decisions by flow-level transmission rate control at

the senders.

Weaver can accommodate a variety of Coflow scheduling

policies desired by the system operator, by adopting the

corresponding inter-Coflow schedulers, e.g. Varys or Aalo, as

the BA in Weaver. Following Weaver’s design (Section III), TA

decomposes a newly arrived Coflow into K children Coflows,

i.e. one child per BA, so that a child Coflow’s demand is

submitted to and managed by the corresponding BA.

Our objective is to optimize CCTs for parent Coflows.

Because a parent Coflow is managed by multiple BAs, sharing

the status of parent Coflows is necessary for BAs and TA

to optimize our objective. Towards this goal, we introduce a

Status Server (SS) in Weaver, so each BA periodically reports

to SS with the status of children Coflows being managed,

revealing status such as residual demand and transmitted bytes.

SS aggregates the status of children Coflows to infer the status

of their parents.

A. Optimizing BA with SS

The priority ordering of a child Coflow should be deter-

mined based on its parent. It is possible for applications

to specify the priority of parent Coflows. In the common

case of optimizing the average CCT, smaller parent Coflows

that are expected to finish sooner should be prioritized in

scheduling. However, a smallest-children-Coflows-first policy

in each BA does not necessarily lead to our goal of smallest-

parent-Coflows-first. For example, consider two Coflows C1

and C2 serviced simultaneously by two network cores s1 and

s2. If BAs on s1 and s2 each adopt a different priority ordering

for the children of C1 and C2, say, BA for s1 demoting C1’s

child while BA for s2 demoting C2’s child, both Coflows

would be delayed due the fact that both Coflows have a low

priority child.

To ensure a consistent priority ordering among BAs based

on parent Coflows, each BA assigns priority for a child

Coflow based on its parent’s status queried from SS, and

allocates resource for the child based on its actual demand.

This approach ensures Coflow children are scheduled towards

the goal of optimizing performance for the parents.

B. Optimizing TA with SS

In the presence of multiple Coflows in the system, residual

demand from unfinished Coflows should be considered. For

example, consider two cores s1 and s2 with capacity r(1)=1

and r(2)=1.5. An active Coflow Ca has residual demand of

3 at in.1 of s2. For a new Coflow Cb with a flow of size 3

from in.1, the slower core s1 turns out to be a more favorable

choice for Cb to optimize its CCT when Ca’s residual demand

is simultaneously considered. In the common case of using

smallest-Coflow-first priority to optimize the average CCT,

smaller Coflows are prioritized and thus less sensitive to the

residual demand. In contrast, large Coflows are more likely to

yield to other Coflows, and thus more exposed to the impact

from residual demand.

To optimize traffic assignment for Coflows that are most im-

pacted by residual demand, we extend Weaver’s TA algorithm

as follows. TA classifies a new Coflow to be “large” if the

bottleneck of its demand matrix is larger than the bottleneck

of the aggregated demand matrix of all unfinished Coflows in

the system. To optimize performance for a large Coflow, TA

includes the residual demand queried from SS in computing

the Coflow’s traffic assignment, by initializing a core’s as-

signed demand matrix D
(k) with the core’s aggregated residual



demand (line 2). This approach enables TA to adjust its CCT

estimation based on the residual demand.

VI. PERFORMANCE EVALUATIONS

We begin our performance evaluations with testbed ex-

periments. We then extend our evaluations to large-scale

simulations to analyze Weaver’s performance at scale.

A. Methodology

Workload: We use a realistic workload based on a one-hour

MapReduce trace collected from a Facebook production clus-

ter [32]. The trace contains more than 500 Coflows observed

in a 150-port fabric with 150 Gbps bisection bandwidth. The

Coflows are in various structures (one-to-one, one-to-many,

many-to-one and many-to-many).

HPNs configurations: We evaluate a range of configurations

of HPNs, as shown in Table IV. The ideal case is a monolithic

network (K = 1), where all bandwidth is provided by one net-

work core. When K > 1, bandwidth is distributed among K
cores. For each configuration of HPNs, the bandwidth distribu-

tion is displayed in ratios of
(

r(1)

R
×100% : r(2)

R
×100% : ...

)

,

where r(k) is the link rate of the k-th core, and R =
∑K

k=1 r
(k)

is the sum of link capacity of all K cores. The total ratio of

one configuration is 100%. We evaluate configurations at a

step of 10% under a specific K ∈ {2, 3, 4}. One can map

the actual settings of HPNs with our configuration setups by

comparing the ratio of bandwidth split. For example, for a

10G/40G HPNs, the results for the 20%:80% split is relevant.

Similarly, for a 40G/100G HPNs, 30%:70% split is relevant.

Performance metric: The average CCT is commonly used

in prior works [1, 2, 3, 4] to measure Coflow performance

when multiple Coflows coexist in the system. As discussed in

Section V, scheduling Coflows to minimize the average CCT is

an NP-hard problem even in the simplified case of monolithic

network (K=1), and heuristic Coflow schedulers are proposed

for this simplified case. To quantify the Coflow performance

in HPNs (K ≥ 2), our baseline for comparison is the average

CCT in the monolithic network scheduled by Weaver’s BA,

which is typically a state-of-the-art Coflow scheduler designed

to minimize the average CCT in the monolithic network. This

baseline assumes an ideal scenario which does not involve

traffic assignment to different network cores.

Theorem 4.3 considers an initially idle network where there

is no waiting time before a Coflow starts. In a real network,

CCT is determined by both the waiting time for other Coflows

using the network as well as the service time incurred for the

Coflow. Thus, the total CCT slowdown of a Coflow tends to

be larger than α in Theorem 4.3, which is observed in our

experiments, especially for less efficient scheduling schemes.

B. Testbed Evaluations

Implementations: We build a testbed on 30 hosts connected

to one Ethernet switch. Each host has 128GB RAM and six

3.5GHz dual hyper-threaded CPU cores. Each physical link is

partitioned into K virtual links to emulate K network cores.

Traffic congestion is experienced at the ingress and the egress

TABLE IV: Configuration index of bandwidth distribution under
various K. The ideal case is a monolithic network (K=1) providing
100% bandwidth.

Index K=2 K=3 K=4

1 10%:90% 10%:10%:80% 10%:10%:10%:70%
2 20%:80% 10%:20%:70% 10%:10%:20%:60%
3 30%:70% 10%:30%:60% 10%:10%:30%:50%
4 40%:60% 10%:40%:50% 10%:10%:40%:40%
5 50%:50% 20%:20%:60% 10%:20%:20%:50%
6 20%:30%:50% 10%:20%:30%:40%
7 20%:40%:40% 10%:30%:30%:30%
8 30%:30%:40% 20%:20%:20%:40%
9 20%:20%:30%:30%

due to the transmission rate control at the senders, and there is

no congestion in the Ethernet switch. This behavior is identical

to the behavior of HPNs, where congestion is experienced at

the ingress/egress but not in the HPNs cores.

We adopt the Coflow scheduling platform in prior work [1]

along with its default settings such as coordination intervals.

Our baseline is Varys scheduling on the monolithic network.

For Weaver that operates on HPNs, we reuse the bandwidth

allocation component of Varys as the BAs, and we implement

Weaver’s TA algorithm.

The original Coflow trace is based on a 150-port fabric

with 150 Gbps bisection bandwidth. To match the 30-port with

30 Gbps bisection bandwidth setting in our testbed, we scale

down each Coflow by randomly selecting 1/5 of its senders

and 1/5 of its receivers and remapping them to our testbed

hosts, while preserving the traffic characteristics between the

selected senders and receivers. The fraction number of senders

(receivers) is rounded to the floor plus 1, so that each Coflow

has at least one sender (receiver).

Weaver achieves performance close to the ideal monolithic

network for Coflows: Figure 4 highlights that, over a range of

HPNs configurations, Weaver achieves consistent performance

close to the baseline scheduler that operates in the monolithic

network. The normalized average CCT is as low as 1.02× and

no larger than 1.1× for the most common case of K = 2.

Our testbed results generally resemble those of simulations,

which we will show in Section VI-C. Compared to simula-

tions, testbed CCTs are generally longer due to coordination

overhead, such as extra delay to distribute control decisions

and to adjust flow transmission rate. In addition, such overhead

could have a multiplicative effect to prolong CCTs because

a delayed Coflow can be further delayed due to bandwidth

preemption by newly arrived Coflows.

C. Coflow Scheduling Efficiency

Settings: We implement a flow-level trace-driven discrete-

event simulator2 with various algorithms for traffic assignment

and inter-Coflow scheduling. Our simulator performs detailed

trace replay based on the realistic Coflow workload.

In the previous Section VI-A, we have introduced one com-

parison baseline as the Coflow performance under the ideal

monolithic network. To understand the Coflow scheduling

2https://github.com/sunnyxhuang/weaver

https://github.com/sunnyxhuang/weaver
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Fig. 4: [Testbed] Average CCT. Normalized over the average CCT
in the baseline system that operates on the ideal monolithic network
(K=1). Definitions of configuration indexes are in Table IV.

efficiency in HPNs, we adapt two relevant schedulers to be

two additional baselines for comparison, as follows.

Additional baseline #1: Weighted Stochastic Load Balance

(WS-LB) leverages a weighted random TA algorithm to achieve

stochastic load balance among the multiple cores with various

capacity in HPNs. Its TA algorithm takes a Coflow demand

matrix as the input and assigns a network core to each flow.

Each flow is considered independently and the probability

that a flow is assigned to a network core is proportional to

the link capacity of the core. Then the flow is scheduled by

the BA of the assigned core. Because of the randomness in

its TA algorithm, the WS-LB scheduler is evaluated over 50

runs under each HPNs configuration, and in each run its TA

algorithm is initialized with a different random seed.

Additional baseline #2: Rapier [28] is a linear programming

(LP) based Coflow scheduler designed to minimize average

CCT in a generic topology. To schedule a Coflow, Rapier

will (1) determine the flow-level traffic assignment, i.e. the

network core assigned for each flow, and then depending on

(1) Rapier will (2) calculate the Coflow’s bandwidth share,

which is further translated to flow-level transmission rate. Both

steps rely on an LP solver. These steps are also highly coupled

because their combined results further impact the scheduling

for other Coflows. In the context of our paper, Rapier controls

TA as well as all BAs, and decisions for TA and BAs are

mutually dependent.

We have evaluated two types of BAs, i.e. Varys [1] and

Aalo [2], which are two state-of-the-art Coflow schedulers

both designed to minimize the average CCT. Varys is designed

to optimize performance for volume-based Coflows, while

Aalo is designed to service streaming-based Coflows. The

default type of BA is Varys for Weaver and WS-LB. Rapier has

highly coupled its traffic assignment and scheduling policy, so

Rapier is evaluated as a whole.

Weaver achieves Coflow performance comparable to the

ideal monolithic network. We start by comparing all sched-

ulers under the default settings. Figure 5 highlights that

Weaver’s average CCT is comparable to that of the ideal

monolithic network, across a range of HPNs configurations.

We observe Weaver is at most 1.03× of the ideal for K=2

and 1.05× for K=3 or K=4. In contrast, WS-LB performs

worse due to its inefficiency in traffic assignment, as we will

discuss in Section VI-D.

Compare with the competitive schemes, Rapier is signifi-
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Fig. 5: Average CCT under various K. Normalized over the average
CCT in the ideal monolithic network (K=1) under Varys scheduling.
Definitions of configuration indexes are in Table IV.

cantly worse due to its Coflow scheduling policy. To optimize

the average CCT, both Rapier and Weaver prioritize the

smaller Coflows that are expected to finish sooner. Weaver

tends to be more strict in observing the priority, while Rapier

may not fully observe the priority order. In the second step of

Rapier to decide the bandwidth share for a Coflow by solving

a LP problem, if a Coflow contends with higher priority

Coflows, the Coflow is forced to pause because the LP solution

indicates the Coflow will never finish. As a result, residual

bandwidth goes to lower priority Coflows, rather than the

paused Coflows with higher priority, which prolongs the CCTs

of paused Coflows. On the other hand, lower priority Coflows

can hardly benefit from the bandwidth leftover, because they

must yield to the previously-paused higher-priority Coflows

when the contention is resolved. Both effects combined,

Rapier’s scheduling policy becomes significantly inefficient.

D. Optimality of Traffic Assignment

As we have shown in Section IV-A, the traffic assignment

problem (Table III) is NP-hard. Theorem 4.3 proves that,

in HPNs where all parallel networks are not identical, the

optimum approximation ratio of Weaver’s TA algorithm is

always better than that of Rapier or WS-LB. In the common

case of K = 2, Table V compares the approximation ratio of

various TA algorithms.

We demonstrate how Weaver achieves better performance

guarantee with an example in Figure 6, where the traffic

demand of an incast Coflow (Figure 6a) is to be assigned to

two network cores with link capacity r(1) = 1 and r(2) = 4
respectively. The CCT of the incast Coflow is determined

primarily by the most congested port out.4.

Weaver benefits from the critical flow classification (Algo-

rithm 1 line 4), so that critical flows that are more likely

to prolong CCT are assigned to the less congested network

core to speed up the Coflow. While Weaver seeks utilizing

bandwidth from multiple network cores to speed up a Coflow,

the algorithm guarantees to be no worse than assigning all

traffic to the fastest core. In this example, all flows from the

incast Coflow are critical because they impact CCT on out.4.

By measuring the children CCTs (line 5), Weaver decides to

assign all flows to the faster core s2, as shown in Figure 6b.

On the other hand, WS-LB could significantly delay a

Coflow by assigning all traffic to the slowest core due to



TABLE V: Approximation ratio of various traffic assignment al-
gorithms under K=2. Lower values indicate better performance
guarantee with closer approximation to the optimum.

Weaver WS-LB Rapier

10%:90% 1.11× 10.0× 2×
20%:80% 1.25× 5.00× 2×
30%:70% 1.43× 3.33× 2×
40%:60% 1.67× 2.50× 2×
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Fig. 6: Traffic assignment of one Coflow to two network cores, s1
and s2, with link capacity r(1) = 1 and r(2) = 4. (a) Traffic demand
for an incast Coflow, whose CCT is determined by out.4. (b-d) show
the timeline and traffic load on out.4 for s1 and s2. (b) Weaver’s TA.
(c, e) Solution of the relaxed problem allowing flow splitting. A flow
may split among two cores. (d, f) Solution after rounding to avoid
flow splitting. The split flow is assigned to the core that takes up
more portion of the flow in the solution of relaxed LP.

randomness. We omit this case in Figure 6 to simplify repre-

sentation. For the LP-based Rapier algorithm, its inefficiency

stems from the alternate optima under problem relaxation.

As discussed in Section IV-A, our problem without flow

splitting (Table III) can not be efficiently solved by LP

techniques. Hence, an LP-based algorithm must start from

a relaxed problem and round the solution to satisfy the

broken constraints. Rapier relaxes the problem by allowing

flow spitting. The relaxed problem is likely to have multiple

optimal solutions, as shown in Figure 6c and Figure 6e.

However, the optimal solutions of the relaxed problem are

not equally efficient after rounding. For example, while one

solution (Figure 6c) produces an efficient traffic assignment

as Weaver’s TA algorithm, the other solution (Figure 6e)

mistakenly assigns one flow to the slower core and delays

the Coflow. An optimal solution of the relaxed problem can

not guarantee the efficiency of its rounded result, and thus

Rapier fails to achieve the performance guarantee as good as

Weaver’s TA algorithm.

E. Sensitivity Analysis

We also evaluate Weaver’s robustness over various factors.

Sensitivity to assignment ordering. To evaluate how the

ordering of traffic assignment affects Coflow performance,

we conduct a sensitivity test. In this test, we change the
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Fig. 7: Sensitivity to (a) assignment ordering and (b) assignment of
non-critical flows. The presented average CCT is normalized over
the average CCT in the ideal monolithic network (K=1) under Varys
scheduling.

assignment ordering by sorting flows in the following ways

(line 3 in Algorithm 1): (1) descending sort by flow sizes,

which is used as the default, (2) ascending sort by tuple

of input and output port index, and (3) ascending sort by

flow sizes. As shown in Figure 7a, we observe prioritizing

larger flows in assignment is the most efficient. In contrast,

the reversed ordering that considers smaller flows first is

the least efficient. This confirms our previous observation

that larger flows are more likely to determine CCT and thus

they should receive priority to take up faster network cores.

As expected, when the capacity of network cores becomes

uniform, the performance gap resulted from various ordering

becomes smaller, because the penalty of mismatching flow

sizes and core capacity becomes smaller.

Sensitivity to assignment of non-critical flows. We conduct

another sensitivity test to evaluate how the load balancing

(LB) technique for non-critical flows impact on Coflow per-

formance. In this test, we change the assignment of non-

critical flows (line 7) by assigning the flow to the network

core (1) which has the minimum busy ratio (called LB by busy

ratio, used as the default), and (2) which has the minimum

CCT for the flows assigned on the core from the Coflow in

consideration (called LB by min child CCT). Note that (2) is

equivalent to reusing the assignment strategy of critical flows

(line 5) for non-critical flows. We found LB by busy ratio is

the most efficient in various cases. LB by min child CCT is the

least efficient because the faster cores tend to be overloaded

due to bias of the bottleneck, as discussed in Section IV-C.

Weaver remains robust under different scheduling policies.

To understand how Weaver performs with another Coflow

scheduling policy, we change all BAs from Varys to Aalo.

Under Weaver with Aalo (or Varys) scheduling, for HPNs

configurations of 10%:90%, 20%:80%, 30%:70%, 40%:60%,

and 50%:50% respectively, CCT is on average 1.08× (or

1.07×), 1.15× (or 1.13×), 1.20× (or 1.18×), 1.23× (or



1.21×), and 1.29× (or 1.28×) of the CCT in the ideal

monolithic network with Aalo (or Varys) scheduling. The CCT

slowdown with Aalo scheduling is comparable to that with

Varys when moved from the ideal monolithic network to HPNs

in a range of settings. In summary, Weaver remains robust

from Varys to Aalo scheduling.

VII. RELATED WORK

Coflow scheduling in data center networks: A range of

recent works [1, 2, 3, 4] have demonstrated the benefits

of leveraging application-level traffic requirements, expressed

in Coflows, to improve application-level communication per-

formance. These inter-Coflow schedulers [1, 2, 3, 4] are

limited by their over-simplified assumption that abstracts the

whole network fabric as one network core. Our work is

complementary to these existing works in Coflow scheduling,

so that Coflow traffic is assigned to network cores in a way

that allows efficient inter-Coflow scheduling in each individual

core. Rapier [28] is proposed to schedule Coflows in a generic

topology, but Rapier is not efficient in HPNs due to a range

of factors as discussed in Section VI.

Heterogeneous parallel networks (HPNs): We have intro-

duced HPNs in data centers in Section I and Section II.

In the context of wireless networks, HPNs is also relevant

because multiple wireless networks usually overlap in space

for users to access simultaneously, such as Wifi and cellular

networks. Recent works have studied how to exploit such

wireless networks in parallel to support web content deliv-

ery [33] and video streaming [34]. Exploiting heterogeneous

parallel wireless networks is fundamentally different from our

problem settings. For example, traffic in wireless networks

tends to be simplex point-to-point flows to service web and

video applications, while traffic in data centers often comes

in structured flows from the distributed data-parallel applica-

tions. As for design goals, wireless networks often stress on

latency and energy efficiency to service mobile users in high-

interference environments, while we aim at application-level

performance and incremental network evolutions to achieve

higher performance at lower cost for data center networks.

Flow-level load balancing schemes: ECMP [35] and MPTCP

[36] are commonly known techniques for transmission over

multiple alternative paths. They aim at load balancing among

alternative paths to maximize bandwidth utilization. These

schemes assume bandwidth fair sharing among contending

flows. However, they are incapable of optimizing Coflow level

scheduling objectives such as reducing the average CCT, and

flow level fair sharing is known to result in poor Coflow per-

formance [1]. In contrast, our work considers the assignment

and scheduling of Coflows to improve application performance

in HPNs.

VIII. CONCLUSIONS

We present Weaver, the first scheduler to service Coflows in

HPNs with high application level communication efficiency.

Weaver leverages an efficient traffic assignment algorithm

which is proven to be within a constant factor of the optimal.

Weaver also serves as a framework to accommodate a variety

of traffic scheduling policies to improve performance at the ap-

plication level. The Weaver-orchestrated HPNs achieve Coflow

performance comparable to the ideal monolithic network. As

incremental upgrades of infrastructure becomes the trend, our

work demonstrates how an evolving data center can make the

most out of its multiple generations of network fabrics.

APPENDIX

Proof of Theorem 4.1 We prove by contradiction. Assume

∀k : L(D(k))
r(k) < L(D)

R
. Then we have ∀k : L(D(k)) <

r(k)

R
L(D). Without loss of generality, assume the m-th row

in D yields L(D), i.e.
∑N

j=1 dm,j = L(D). Therefore, we

have

∀k :

N
∑

j=1

d
(k)
m,j ≤ L(D(k)) <

r(k)

R

N
∑

j=1

dm,j . (1)

Adding up all K equations for k ∈ {1, ..,K} in Equation (1),

L(D) =

N
∑

j=1

dm,j =

K
∑

k=1

N
∑

j=1

d
(k)
m,j

< (
r(1)

R
+ ...+

r(K)

R
)

N
∑

j=1

dm,j =

∑K

k=1 r
(k)

R
L(D) = L(D)

results in a contradiction of L(D) < L(D). Similarly, when

L(D) is given by a column of D, a contradiction is derived

by replacing the row sum with column sum in Equation (1).

These complete the proof by contradiction.

Proof of Theorem 4.2 We begin by proving a proposition

∀k1, k2 :
L
(

D
(k1)

)

r(k1)
≤

L(D)

r(k2)
.

When k1 = k2, our proposition is true because L(D(k1)) ≤
L(D). When k1 6= k2, we prove our proposition by contradic-

tion. Assume
L(D(k1))

r(k1) > L(D)

r(k2) , then there must be an iteration

in Algorithm 1 line 3 where the traffic demand of di,j from

flow fi,j is assigned to the k1-th network core to make up

D
(k1). Denote D

′(k) as the traffic demand allocated to the k-

th core before adding fi,j , and D
(k) = D

′(k) ∪ di,j . Because

di,j is added to the k1-th core, we should have ∀k2 6= k1 :
L(D(k1))

r(k1) =
L(D′(k1)∪di,j)

r(k1) ≤
L(D′(k2)∪di,j)

r(k2) ≤ L(D)

r(k2) , which

results in a contradiction with our assumption.

Thus, our proposition is proved and Theorem 4.2 is an

immediate result of our proposition.

Proof of Theorem 4.3 We know T s
o ≤ T f

o . Theorem 4.1

shows T s
o = L(D)

∑
K
k=1 r(k) and Theorem 4.2 shows T ≤

min
∀k

(L(D)
r(k) ) = L(D)/max

∀k
r(k). Therefore, Theorem 4.3 is

proved because

T/T s
o ≤

∑K

k=1 r
(k)

max
∀k

r(k)
=

r(1)

max
∀k

r(k)
+ ...+

r(K)

max
∀k

r(k)
≤ K.
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