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Abstract—Leveraging application-level requirements expressed
in Coflows has been shown to improve application-level com-
munication efficiency. However, most existing works assume all
application traffic is serviced by one monolithic network. This
over-simplified assumption is no longer sufficient in a modern,
evolving data center which operates on multiple generations of
network fabrics, an architecture that we define as Heterogeneous
Parallel Networks (HPNs). In this paper, we present the first
scheduler, called Weaver, that addresses the Coflow management
problem in HPNs.

To exploit HPNs fully, achieving high communication efficiency
for applications is crucial, yet it is also challenging because of
the complex traffic patterns in applications and the heterogeneous
bandwidth distribution in HPNs. Weaver addresses these chal-
lenges at two levels. At the microscopic level, for each application,
Weaver leverages an efficient algorithm to exploit the distributed
bandwidth in HPNs, which we proved to be within a constant
factor of the optimal. At the macroscopic level involving multiple
applications, Weaver can adopt a range of application traffic
scheduling policies as desired by the system operator. Under
realistic traffic, Weaver enables HPNs to service Coflows as
efficiently as a monolithic network with equivalent aggregated
capacity.

I. INTRODUCTION

A range of recent works [1, 2, 3, 4, 5] have demon-
strated the benefits of application-aware network scheduling
by exploiting the structured traffic pattern from distributed
applications. Distributed applications in data centers often
communicate with a collection of related flows. Prevalent
examples are the parallel flows involved in executing a query
in distributed databases [6], a read or write in distributed
storage systems [7], and the data shuffle phase in distributed
MapReduce jobs [8, 9], etc. This typical communication
pattern commonly seen in data centers is captured concisely
by the Coflow traffic abstraction (Section II). A Coflow
represents a collection of related flows whose performance
goal is to finish all related flows as soon as possible. Coflow-
aware scheduling benefits distributed applications by avoiding
stragglers [1, 2, 4] and improving resource utilizations [10].

Prior works on Coflow scheduling mainly focus on the
single-core model, a network model that has been widely used
not only for Coflow studies [1, 2, 3, 4, 5], but also for other
works on data center network [11]. The single-core model
abstracts the whole network fabric as one non-blocking N-port
switch, an assumption considered practical because topological
designs such as Fat-tree or Clos [12, 13] enable building a data
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Fig. 1: Comparison of network models. (a) Prior works: single-core
model. (b) This work: Heterogeneous Parallel Networks (HPNs).

center network with full bisection bandwidth. Nevertheless,
this over-simplified model is limited to the scope where all
Coflow workload is exclusively supported by one generation
of network fabric.

However, this single-core model is no longer sufficient
under recent technology trends [14, 15, 16, 17, 18]. We
observe that an evolving data center would operate on multiple
generations of networks in parallel [19], so as to exploit the
shrinking gap in network speed and to derive benefits for
research and development endeavors (Section II). We define
such network settings as heterogeneous parallel networks
(HPNs), an architecture that is based on multiple network cores
operating in parallel (Figure 1). A network core represents one
generation of network fabric that can service all hosts in a
cluster. Multiple network cores make up parallel networks to
provide a large amount of aggregated bandwidth by servicing
traffic simultaneously. HPNs evolve over time by adding new
cores to work in parallel with the existing ones, and by
retiring old cores whose capacity is significantly less than
the youngest core to reduce system complexity. At any time,
cores with various transmission capacities coexist. In HPNs,
the conventional single-core network model is insufficient.

Based on these observations, we ask a timely and important
question: how to best service Coflows in the data center
supported by multiple generations of network fabrics, i.e. the
HPNs? Coflow scheduling is known to be a hard problem
(NP-hard, [1]) even in a single-core network, because one ap-
plication often depends on multiple flows among its distributed
compute nodes, and thus resource management solutions at the
individual flow level [20, 21] often fail to translate benefits
to the Coflow level [1]. The Coflow scheduling problem
becomes even more challenging in HPNs because bandwidth
resources are distributed among heterogeneous network cores.
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Thus, resource management also needs to decide how Coflow
traffic should be assigned to the appropriate core to utilize the
core’s bandwidth. Furthermore, achieving high-efficiency for
Coflow scheduling usually requires global coordinations, but
a network core in HPNs should operate as independently as
possible for several practical considerations (Section III).

In this paper, we present Weaver, the first Coflow scheduler
for a modern data center operating on HPNs. To address
the above technical challenges, our key design choice is to
decouple (1) bandwidth allocation (BA) within each core and
(2) traffic-to-core assignment (TA). For BA, Weaver desig-
nates a component for each core to coordinate the bandwidth
allocation for the traffic within the core. This design not only
decouples a core’s traffic control from other cores’, but also
allows Weaver to accommodate a variety of traffic priority
policies to achieve the desired scheduling objective. For TA,
Weaver incorporates a flow-level traffic assignment component
to maximally exploit the distributed bandwidth among hetero-
geneous cores. While traffic assignment optimizing for Coflow
performance is a hard problem (NP-hard, Section IV-A), we
propose a TA algorithm that is provably within a constant
factor of the optimal. With testbed implementations and large-
scale simulations, we demonstrate experimentally that Weaver
enables HPNSs to service Coflows as efficiently as a monolithic
network with equivalent aggregated capacity.

II. BACKGROUND

Heterogeneous parallel networks (HPNs): HPNs are de-
ployed in data centers today for several compelling advantages,
such as (1) exploiting the shrinking generation gap in network
speed, (2) serving the transitional period during network
upgrade to provide alternative links, and (3) enabling research
with new experimental technology in situ. We discuss these
important use cases of HPNs as follows.

In recent years, the growth of traffic demand in data centers
is winning the race against network link capacity. Google
recently reported its aggregated server traffic increases by 50 x
in only 6 years from 2008 to 2014 [19]. Similar anecdotes are
often heard [14, 22, 23]. Such immense growth is driven by
bandwidth hungry distributed applications, such as distributed
storage and large-scale data analytics. In contrast, the marginal
gain in speed for new generations of link technology is
shrinking. Figure 2 shows the year when various link rates
were introduced in IEEE 802.3, the industrial standard for
wired Ethernet. Before 2002, each new generation used to
deliver 10x improvement over the previous one. However,
this 10x boom has disappeared after 10 Gbps. Nowadays,

TABLE I: Notations

Symbol Definition

K number of parallel network cores

N port count of parallel networks

in.i, out.j  i-th input port, j-th output port

) link capacity of the k-th core

|C| Number of flows in a Coflow C'

D® a Coflow C’s traffic demand on the k-th core
L(D) bottleneck of matrix D (Section IV-B)

T or T3 CCT lower bound if flow splitting is allowed

(Table II) or prohibited (Table III), respectively

when 100 Gbps links are prohibitively expensive,' 25 Gbps or
40 Gbps remain more attractive to data center operators [18,
19, 25], i.e. a mere 2.5x or 4x improvement over 10 Gbps.
The shrinking gap is due to many reasons, the most important
being the technological barrier: new technology to support
high link rates at low cost is yet to be developed [15, 16,
17].

These conflicting stances call for an incremental approach
for network upgrades. On one hand, traffic growth presses
for more bandwidth [18, 19]. On the other, building a brand
new network on 10x improved link rate becomes prohibitively
expensive [18]. So operators turn to the best affordable link
rate, usually 2.5x or 4x of the legacy network [18, 26]. The
result is that, relative to a new network, a legacy network can
still service a considerable amount of traffic. For example,
there is significant incentive to retain a legacy 10 Gbps
network because it could service 20% of traffic together with
a new 40 Gbps network of the same topology when both work
in parallel.

Operating multiple generations of networks in parallel also
provides additional benefits to facilitate research and devel-
opment endeavors. For instance, to deploy an unproven new
network, Google retains the legacy network to assure quality of
service [19], so that the legacy network may handle important
traffic until the new network has been rigorously tested over
time. In addition, parallel networks can also be added to
test new experimental technology in situ without incurring
host downtime, a common practice widely adopted by the
industry [19] as well as research institutes [27].

Based on these observations, a case could be made for
operating two, or perhaps even three generations of networks
in parallel that provide the above technical advantages. We
have defined such network settings as heterogeneous parallel
networks (HPNs) in Section I. As shown in Figure 1, without
loss of generality, we abstract the HPNs as K non-blocking
N-port switches {s1, ..., sk }, each representing one network
core with link rate {r(1), ..., 7(5)} respectively. This abstract
model is simple yet practical because topology designs such
as Fat-tree or Clos [12] enable building a network with full
bisection bandwidth. Among the /N sender (or receiver) nodes,
the ¢-th sender (or the j-th receiver) is connected to the i-th
input (or the j-th output) port of each parallel switch. Hence,

! Price of one transceiver to support 1km cable distance [24]: 10 Gbps at
$34, 40 Gbps at $220, 100 Gbps at $700.



TABLE II: Generic Assignment Problem

TABLE III: Flow-level Assignment Problem

Formula Definition Formula Definition
Variables:  Vk:d") € D®)  demand sent by k-th core Variables: vk : I*) € {1,0}  f;; sent by k-th core if I.)=1.
Goal: min 7' minimize CCT Goal: min 7' minimize CCT
Constraints: Constraints:
1) Vi, j: S0, d(k) =di demand satisfaction HVfi, €D: Y I(k) =1 each flow sent by one core
2) Vi, k ZN d(k) < r(k)T k-th core’s inbound cap 2) Vi, k Z dml(k) < ™7 k-th core’s inbound cap

3) Vg, k- ZN d(k) < r® k-th core’s outbound cap

3) Vi, k: ZN d;, I(k) < 7T k-th core’s outbound cap

each sender (or receiver) simultaneously has K uplinks (or
downlinks). Each uplink (or downlink) can be a bundle of
multiple physical links in the actual topology. In practice,
the sender (or receiver) nodes are most likely Top-of-Rack
(ToR) switches each connected to a group of hosts. Note that
a network core in our HPNs is an autonomous entity that
transmits data between endpoints without interference from
other cores. It is different from a core switch in a Clos network,
where core switches are merely interchangeable, intermediate
nodes to forward traffic redistributed arbitrarily by upstream
switches in the network.

Coflow traffic abstraction: Data-parallel distributed compu-
tation frameworks [6, 7, 8, 9] usually organize their pipeline
in stages, and each stage need data transfer on a collection
of related flows among two groups of machines. Coflow is
a traffic abstraction designed to concisely characterize this
typical communication pattern. A Coflow is defined by the
endpoints and byte size of each flow in the Coflow. A Coflow
can represent any communication structure, such as many-to-
many, one-to-many, and many-to-one, etc. The traffic demand
of a Coflow can be represented in a demand matrix D, where
each element d; ; € D indicates flow f; ; transfers d; ; amount
of data from in.:i to out.j.

The Coflow transfer phase has paramount impact on the
application performance because the application usually relies
on the completion of a Coflow to continue computation or
generate final results [6, 8, 9] and to fulfill data management
goals [7]. Thus, a Coflow’s performance is measured by its
Coflow Completion Time (CCT), which is the duration to
finish all constituent flows in the Coflow. For a Coflow C,
denote its arrival time as #A™, and the finish time of the flow
fij € Castf; CCT is defined as v]}fcnaéc (tf; —tA™). At the

intra-Coflow level, the goal is to minimize CCT, so as to speed
up application level performance. This scheduling objective is
commonly used in all prior studies [1, 2, 3, 4, 5].

III. WEAVER OVERVIEW

This section presents an overview of Weaver, the first
Coflow scheduler for HPNs. Similar to the scheduler designs
in prior works [1, 2, 3, 4], Weaver serves as a logically
centralized coordinator for Coflow transmissions in HPNs.
Weaver accepts traffic requests expressed in Coflows from
applications. Given multiple Coflow requests, Weaver must
decide how Coflow traffic should be assigned to the appropri-
ate core and, within each core, how to allocate the bandwidth
for constituent flows in Coflows.

Under the single-core assumption, prior Coflow-based so-
lutions generally apply global control on traffic priority and
bandwidth allocation [1, 2, 3, 4, 5], as well as routing [28],
for all constituent flows in Coflows to achieve high com-
munication efficiency. In HPNs, however, global control is
challenging. The heterogeneous cores may differ in various
levels of their network stack, such as control software, trans-
mission protocol, and hardware generation, etc. In certain
cases, it might not be practical to jointly schedule Coflows
across different cores. For example, a network core based on
a new hardware stack would require its specialized bandwidth
allocation policy [4], and it is unknown how different types
of bandwidth allocation policy, such as [4] and [I], may
incorporate efficiently with each other. Thus, a network core
should operate as independently as possible.

Under these technical considerations, Weaver decouples
bandwidth allocation within each core and traffic-to-core
assignment, so that a core may deploy its own bandwidth
allocation policy for Coflows and a Coflow may still exploit
bandwidth distributed in multiple cores. This approach also
enables Weaver to accommodate a variety of Coflow schedul-
ing policies desired by the system operator (Section V). As an
overview, Weaver consists of the following components.

Traffic Assignment (TA): A new Coflow request first goes to
TA, which assigns the requested demand to be fulfilled by each
BA (discussed below). For a Coflow C' with traffic demand D,
its traffic assigned to the K BAs can be represented in demand
matrices {D(), ..., DU}, where each element d J) € DW
indicates the amount of data in flow f; ; from Coﬂow C'to be
fulfilled by the BA on the k-th core.

Bandwidth Allocation (BA): Weaver designates a BA compo-
nent for each core to allocate bandwidth for traffic within the
core. All BAs periodically report traffic status in the system
to a Status Server (SS), which in return helps BAs and TA
to optimize scheduling decisions at the inter-Coflow level
(Section V). Denote r; IE) as the bandwidth allocated for the
link from ¢n.7 to out.j in the k-th core. BAs ensure bandwidth
constraints are satisfied with VEk,j : val (k») < ) and

Vk,i: Z;V 1 r(k) < rk),

IV. TRAFFIC ASSIGNMENT

When a new Coflow arrives, TA assigns its requested
demand to network cores. In this section, we study how to
assign a Coflow’s demand at the intra-Coflow level.



A. Problem Formulation and Hardness

We start by formulating the traffic assignment problem. TA
decomposes C' into K children Coflows, i.e. one child per
BA. Following the common defination of CCT (Section II),
the CCT for the parent C' is the maximum of the CCTs of all
its children, i.e. CCT = %%X(OCT““)).

At first glance, the traffic assignment problem of a par-
ent Coflow can be formulated as in Table II. As we will
show in Section IV-B, this problem can be solved optimally
by setting dz(k) proportionally to ), i.e. dEkJ = d;j ;),
where R=)"," , 7(F) . However, this requires flow splitting, i.e.
splitting a flow into multiple subflows to transmit through
different network cores. Flow splitting is less practical due
to packet reordering. Therefore, we focus on a solution that
assigns Coflow traffic at the flow level, so that data in a flow is
assigned to the same core, while different flows may transmit
through different cores. We formulate this problem in Table III.

This problem (Table III) is NP-hard [29, 30, 31] under
a simplified case of one-to-many (or many-to-one) Coflow,
where we only need to consider the capacity constraints of
the K input (or output) ports associated with the K cores
in HPNs from the same sender (or to the same receiver).
Under these cases, our problem is equivalent to scheduling
independent tasks on heterogeneous processors to minimize
the finish time, where |C| independent flows (tasks) in a
Coflow C are to be assigned on K network cores of various
link rates (processors with various service speed) without
flow splitting (task preemption) to minimize CCT (the finish
time of the last task). However, our problem is more general
because Coflows have various structures other than one-to-
many and many-to-one, which requires us to jointly consider
the inbound and outbound capacity for all input and output
ports of all cores. Classic heuristics [29, 30, 31] designed
for heterogeneous processors assume one resource type on a
processor. Therefore, they cannot be applied to our problem
which involves 2N types of resources (bandwidth of /N input
ports and N output ports) on each processor (network core).
The search space for each Coflow C' is exponentially large —
there are K'C! possible solutions to assign the |C| flows from
the Coflow C to K cores, and |C| can be as large as N2. For
example, in a widely used Coflow benchmark [32], > 30%
Coflows each has > 30 flows, which translates to > 1 billion
possible assignments to be considered in an exhaustive search
for a Coflow under the most common case of K = 2.

B. CCT Lower Bounds

To facilitate theoretical analysis, we begin by deriving the
CCT lower bounds for our problems in Table II and Table III.
Denote T as the optimal CCT without flow splitting, and
T7 as the optimal CCT allowing flow splitting. The problem
without flow splitting is a special case of the problem allowing
flow splitting, and thus T is achievable under the constraints
of T$. Therefore, we have T3 < T/,

We then introduce the bottleneck metric to characterize a
Coflow’s traffic demand matrix D. We define its bottleneck as

Algorithm 1 Weaver’s Flow-level TA Algorithm

1: procedure AsSIGN(Coflow C, link rates rV),..., #(5))
2: Vi :D® = > Demand assigned to the k-th network
3: for all (¢, j,d;, ;) in SORTED(C) do
> Sort flows in the descending order of byte size
4 if 3k - LSD““) Udi;) > L(D®) then
ritical flow: pick a network to minimize CCT

. L(D®uyd;
5: kmin = argmin LM ud; ;)
o (k)

6: else
> Non-critical flow: pick a network to balance load
max (Vi (DM ud; )[i),Va(D® ud; ;)15])
r(k)

7: Kkmin = argmin

8: end if
9 DFmin) ¢« Dlmin) g, 5, i) =1

> Update assignment
10: end for
11: return {7V, .
12: end procedure

[(K)}

the maximum of column sums and row sums in the matrix,
ie. L(D) = max (maxvl Zﬁv 1 dij, maxy; va 1 di, )

The CCT lower bound for a ch11d Coflow C'®) on the k-th
core with link rate (%) is [4] Hence, the CCT of the

parent Coflow is H%%X( L(B:) )) ) The following theorem estab-
lishes that the CCT' in HPNs is no less than the CCT lower

bound in a monolithic network with equivalent aggregated link

capacity R = ZkK Lk
is the CC'T lower bound in a core with

Theorem 4.1: L(D)
link rate R = Zk 1 r(*), and L(T]?k) ) is the CCT lower bound
LO®)\ o
(%) ) =

in the k-th core with link rate 7(*). We have rrﬁx(
L(D)
Proof See Appendix [ ]
Theorem 4.1 implies that an optimal solution for the prob-
lem that allows flow splitting is to set dl(-fcj) proportional to

) e dl(»fcj)=r;%) , so that the CCT lower bound is achieved
K) _ L(D)
cer®) = KD,

in each core, i.e. CCT = ccTV = . =
Thus T3 = £P).

C. Algorithm Design

Algorithm 1 presents Weaver’s flow-level traffic assignment
algorithm. We have shown in Section IV-A that our problem
without flow splitting is NP-hard. We prove Weaver’s TA
algorithm is tightly bounded within a constant factor of 77,
the optimal of the relaxed problem that requires flow splitting.
This optimality guarantee applies in the general case with no
constraints on Coflow structures or HPNs configurations (Sec-
tion IV-D). In other words, without flow splitting, Weaver’s TA
algorithm approximates well the performance of the stringent
case that requires flow splitting. Towards this goal, we leverage
three crucial techniques as follows.

Achieving optimality guarantee with careful assignment
of critical flows. Weaver’s TA algorithm considers flows one-
by-one. The algorithm achieves its performance guarantee by
classifying critical flows in a Coflow and assigning them to
the network core that minimizes CCT after adding the critical



flow. Specifically, when Weaver’s TA considers each flow, the
flow is matched with all K network cores. A flow is defined
as critical if adding the flow would increase the bottleneck of
at least one core’s demand matrix (line 4). In other words, if
the flow is assigned to one of the affected core(s), the CCT
of the child Coflow assigned to that core will increase, which
may further increase the CCT for the parent Coflow, because
the parent’s CCT is the maximum of its children CCTs, as
discussed in Section IV-A. For our optimality guarantee to
hold true (Section IV-D1), a critical flow is assigned to the
core with the minimum CCT for its child Coflow including
the newly added flow (line 5). In this way, Weaver considers
the heterogeneous core capacity and Coflow structures simul-
taneously to optimize Coflow performance.

Achieving better load balancing with busy ratio. The
assignment of non-critical flows can be arbitrary for our
optimality guarantee to hold, because none of the children
CCTs will increase. Nevertheless, it is crucial to balance
load among network cores, so as to improve performance
of inter-Coflow scheduling when multiple Coflows coexist
in the system. We will discuss the details of inter-Coflow
scheduling later in this paper (Section V). When multiple
Coflows coexist in the system, given that the critical flow
condition is observed to achieve the optimality guarantee, TA
should strike a balanced load among various cores for a new
Coflow, so as to reduce contentions between Coflows within
one core. Otherwise, flows on an overloaded core may be
heavily delayed, prolonging CCTs of the affected Coflows.
To balance load for non-critical flows, Weaver takes a
“worst-fit” approach to match the flow with the least busy
core. We avoid using the bottleneck of a core’s demand matrix
D*) because the bottleneck is biased by the highly loaded
input (or output) port, which is usually not the port needed by
the flow. To better evaluate the load of a core for the flow, we
instead use the ratio of the maximum load of the flow’s input
and output port over the core’s link capacity (line 7). The ratio
considers a core’s load on the relevant ports of the flow, as well
as the heterogeneous link capacity. A smaller ratio indicates
that the core is relatively less busy on the flow’s path, so the
flow is assigned to the core with the minimum “busy ratio”.

Achieving better assignment with assignment ordering. The
ordering of the flows to be considered for traffic assignment
can be arbitrary (line 3) for our optimality guarantee to hold
true. Nevertheless, we recommend prioritizing assignment for
flows of larger size because they are more likely to finish later
and impact the CCT. Therefore, before feeding a Coflow as
input to the algorithm, flows in the Coflow may be optionally
sorted in their descending order of flow sizes so that larger
flows are considered earlier.

Example. Putting these crucial techniques together, Weaver’s
TA algorithm is shown as in Algorithm 1. We leverage an
example in Figure 3 to demonstrate how Weaver assigns traffic
for a Coflow C. In this example, we consider two cores, s;
and ss. s; has a lower link rate of () = 1, and s5 has a
higher link rate of r(?) = 4.

(a) (b) (c) (d)
outdoutSouts =1 > 10110 > 10 150
in1[90[10]10] 7 D"
in2 {90 5 |How to
assign?
in3 |90 ~ DO 90 90 90
D =4 90 —> (90 > (90
90 90 90

Fig. 3: Weaver’s TA example: Assigning flows from a Coflow to two
network cores, s1 and sz, with link capacity rM =1 and r® = 4,
respectively. (a) Coflow traffic demand. (b) Three critical flows are
assigned to s; to minimize CCT. (c) Two critical flows are assigned
to s2 to minimize CCT. (d) One non-critical flows are assigned to s
to balance load and avoid overloading at in.2 on s.

D®) is Coflow C’s traffic demand assigned to the k-th core.
When considering a new Coflow for HPNs with K cores, all
K matrices are initialized to be empty (line 2). When a flow
is assigned to a specific core, the core’s demand matrix is
updated with the flow’s byte size (line 9). In our example, we
have DM for s; and D@ for s,.

As discussed in Section IV-C, Weaver achieves better as-
signment by considering larger flows first. Therefore, Weaver
starts with the three flows to out.4, each flow of size 90.

Each of the flows with size 90 are critical, because adding
the flow would increase the bottleneck of both D(*) and D)
at out.4. To achieve its performance guarantee, Weaver assigns
a critical flow to the network core which minimizes CCT after
adding the flow. Therefore, all three flows, one flow at a time,
are assigned to s, with higher link capacity () = 4, as
shown in Figure 3b. Then, Weaver continues to consider the
flows of size 10. Again, each of the them are critical due to
increasing the bottleneck of D® atin.1. Therefore, the flows
are assigned to s which yields lower CCT = 2x 10/1 = 20,
when compared with s2 and its CCT = 3 x 90/4 = 67.5, as
shown in Figure 3c.

In Figure 3d, the flow of size 5 is non-critical because
adding the flow to either s; or s would neither impact the
bottleneck of D) at in.1 nor the bottleneck of D) at out.4.
Weaver uses the busy ratios to achieve load balancing. The
ratios on s; is (10 + 5)/1 = 15, lower than s3’s ratio of
(90 4+ 5)/4 = 23.75. This indicates s; is less busy on the
paths of the non-critical flow, so the flow is assigned to s;.

D. Theoretical Analysis

1) Optimality Guarantee: Exploiting all cores in HPNs
is crucial to optimize Coflow performance. A TA algorithm
should never perform worse than operating the fastest core
alone, otherwise it defeats the purpose of operating multiple
cores. However, in the presence of slower cores, a Coflow
might end up with worse performance than using the fastest
core alone due to a deficient TA. For an extreme example,
when the fastest core is mostly idle, CCT suffers if the Coflow
is assigned to a slower core. In contrast, we prove that CCT
under Algorithm 1 is never worse than assigning the whole
Coflow to the fastest core, as shown in Theorem 4.2.

Theorem 4.2: Denote D(*) as the matrix of traffic demand
assigned for the k-th network core under Algorithm 1, and



— = D, where 1S the tratfic demand o ornow C,
X D® =D, where D is the traffic demand of Coflow C
k
then max (L(D( ))) < min(XB)y,
Vk Vk

(k) r(F)

Proof: See Appendix. [ ]
Theorem 4.1 and Theorem 4.2 imply that Algorithm 1
achieves a CCT within a constant factor (i.e. « in Theorem 4.3)
of the optimal CCT under any specific configuration of HPNs,

as shown in the following Theorem 4.3.
Theorem 4.3: Denote T' as the CCT achieved by Algo-
rithm 1, 7 as the optimal CCT without flow splitting, and
T7 as the optimal CCT allowing flow splitting. Then we have

K (k)
T < oT? < oTf, where a = =b=10_ < K.

() =
Proof: See Appendix [ |

In HPNs with K network cores, Theorem 4.3 shows that
Algorithm 1’s optimality approximation factor, or «, is always
better than K in HPNs where parallel networks have heteroge-
neous link capacity. Under K uniform parallel networks, i.e.
r) = = r(E) o = K. In the extreme case where one core
provides the majority of bandwidth, @ — 1.

Note that the optimality guarantee of Weaver’s TA algorithm
holds true regardless of the ordering of flows to be assigned
or the assignment of non-critical flows. Nevertheless, special
treatments for assignment ordering and assignment of non-
critical flow are beneficial to achieve better Coflow perfor-
mance in practice, as shown later in this paper (Section VI-C).

2) Time Complexity: For each Coflow C, Algorithm 1 scans
each flow in C' (line 3), which results in |C| iterations. For
each flow, K cores are compared to find the best that optimizes
CCT after adding the flow (line 5 or line 7). Therefore, the
time complexity of Algorithm 1 is O(K|C/).

V. BANDWIDTH ALLOCATION

In the presence of multiple Coflows, how to share band-
width at the inter-Coflow level is also critical to optimize
Coflow performance. At this inter-Coflow level, the scheduling
objective will depend on the resource management policy
employed by the system. A commonly studied objective is to
minimize the average CCT, which is already NP-hard [1] in the
simplified case of monolithic network (/=1). To achieve this
objective, a variety of Coflow schedulers, such as Varys [1]
and Aalo [2], are proposed to schedule Coflows of various
types, e.g. volume-based Coflows from distributed storage
applications vs. streaming-based Coflows from distributed data
analysis applications, by adopting a different priority policy
for Coflows. These schedulers are designed to coordinate
Coflows within one network core, and they enforce bandwidth
allocation decisions by flow-level transmission rate control at
the senders.

Weaver can accommodate a variety of Coflow scheduling
policies desired by the system operator, by adopting the
corresponding inter-Coflow schedulers, e.g. Varys or Aalo, as
the BA in Weaver. Following Weaver’s design (Section III), TA
decomposes a newly arrived Coflow into K children Coflows,
i.e. one child per BA, so that a child Coflow’s demand is
submitted to and managed by the corresponding BA.

Our objective is to optimize CCTs for parent Coflows.
Because a parent Coflow is managed by multiple BAs, sharing
the status of parent Coflows is necessary for BAs and TA
to optimize our objective. Towards this goal, we introduce a
Status Server (SS) in Weaver, so each BA periodically reports
to SS with the status of children Coflows being managed,
revealing status such as residual demand and transmitted bytes.
SS aggregates the status of children Coflows to infer the status
of their parents.

A. Optimizing BA with SS

The priority ordering of a child Coflow should be deter-
mined based on its parent. It is possible for applications
to specify the priority of parent Coflows. In the common
case of optimizing the average CCT, smaller parent Coflows
that are expected to finish sooner should be prioritized in
scheduling. However, a smallest-children-Coflows-first policy
in each BA does not necessarily lead to our goal of smallest-
parent-Coflows-first. For example, consider two Coflows C}
and Cy serviced simultaneously by two network cores s; and
so. If BAs on s7 and sy each adopt a different priority ordering
for the children of C'y and C, say, BA for s; demoting C';’s
child while BA for s, demoting C5’s child, both Coflows
would be delayed due the fact that both Coflows have a low
priority child.

To ensure a consistent priority ordering among BAs based
on parent Coflows, each BA assigns priority for a child
Coflow based on its parent’s status queried from SS, and
allocates resource for the child based on its actual demand.
This approach ensures Coflow children are scheduled towards
the goal of optimizing performance for the parents.

B. Optimizing TA with SS

In the presence of multiple Coflows in the system, residual
demand from unfinished Coflows should be considered. For
example, consider two cores s; and so with capacity (D=1
and 7?=1.5. An active Coflow C, has residual demand of
3 at in.1 of so. For a new Coflow (', with a flow of size 3
from in.1, the slower core sy turns out to be a more favorable
choice for Cj, to optimize its CCT when C',’s residual demand
is simultaneously considered. In the common case of using
smallest-Coflow-first priority to optimize the average CCT,
smaller Coflows are prioritized and thus less sensitive to the
residual demand. In contrast, large Coflows are more likely to
yield to other Coflows, and thus more exposed to the impact
from residual demand.

To optimize traffic assignment for Coflows that are most im-
pacted by residual demand, we extend Weaver’s TA algorithm
as follows. TA classifies a new Coflow to be “large” if the
bottleneck of its demand matrix is larger than the bottleneck
of the aggregated demand matrix of all unfinished Coflows in
the system. To optimize performance for a large Coflow, TA
includes the residual demand queried from SS in computing
the Coflow’s traffic assignment, by initializing a core’s as-
signed demand matrix D) with the core’s aggregated residual



demand (line 2). This approach enables TA to adjust its CCT
estimation based on the residual demand.

VI. PERFORMANCE EVALUATIONS

We begin our performance evaluations with testbed ex-
periments. We then extend our evaluations to large-scale
simulations to analyze Weaver’s performance at scale.

A. Methodology

Workload: We use a realistic workload based on a one-hour
MapReduce trace collected from a Facebook production clus-
ter [32]. The trace contains more than 500 Coflows observed
in a 150-port fabric with 150 Gbps bisection bandwidth. The
Coflows are in various structures (one-to-one, one-to-many,
many-to-one and many-to-many).

HPNs configurations: We evaluate a range of configurations
of HPNs, as shown in Table IV. The ideal case is a monolithic
network (K = 1), where all bandwidth is provided by one net-
work core. When K > 1, bandwidth is distributed among K
cores. For each configuration of HPNs, the bandwidth distribu-
tion is displayed in ratios of (% x 100% : % x100% : ...),
where 7(¥) is the link rate of the k-th core, and R = Zszl (k)
is the sum of link capacity of all K cores. The total ratio of
one configuration is 100%. We evaluate configurations at a
step of 10% under a specific K € {2,3,4}. One can map
the actual settings of HPNs with our configuration setups by
comparing the ratio of bandwidth split. For example, for a
10G/40G HPNSs, the results for the 20%:80% split is relevant.
Similarly, for a 40G/100G HPNs, 30%:70% split is relevant.

Performance metric: The average CCT is commonly used
in prior works [1, 2, 3, 4] to measure Coflow performance
when multiple Coflows coexist in the system. As discussed in
Section V, scheduling Coflows to minimize the average CCT is
an NP-hard problem even in the simplified case of monolithic
network (K'=1), and heuristic Coflow schedulers are proposed
for this simplified case. To quantify the Coflow performance
in HPNs (K > 2), our baseline for comparison is the average
CCT in the monolithic network scheduled by Weaver’s BA,
which is typically a state-of-the-art Coflow scheduler designed
to minimize the average CCT in the monolithic network. This
baseline assumes an ideal scenario which does not involve
traffic assignment to different network cores.

Theorem 4.3 considers an initially idle network where there
is no waiting time before a Coflow starts. In a real network,
CCT is determined by both the waiting time for other Coflows
using the network as well as the service time incurred for the
Coflow. Thus, the total CCT slowdown of a Coflow tends to
be larger than « in Theorem 4.3, which is observed in our
experiments, especially for less efficient scheduling schemes.

B. Testbed Evaluations

Implementations: We build a testbed on 30 hosts connected
to one Ethernet switch. Each host has 128GB RAM and six
3.5GHz dual hyper-threaded CPU cores. Each physical link is
partitioned into K virtual links to emulate K network cores.
Traffic congestion is experienced at the ingress and the egress

TABLE 1V: Configuration index of bandwidth distribution under
various K. The ideal case is a monolithic network (K=1) providing
100% bandwidth.

Index K=2 K=3 K=4
1 10%:90%  10%:10%:80%  10%:10%:10%:70%
2 20%:80%  10%:20%:70%  10%:10%:20%:60%
3 30%:70%  10%:30%:60%  10%:10%:30%:50%
4 40%:60%  10%:40%:50%  10%:10%:40%:40%
5 50%:50%  20%:20%:60%  10%:20%:20%:50%
6 20%:30%:50%  10%:20%:30%:40%
7 20%:40%:40%  10%:30%:30%:30%
8 30%:30%:40%  20%:20%:20%:40%
9 20%:20%:30%:30%

due to the transmission rate control at the senders, and there is
no congestion in the Ethernet switch. This behavior is identical
to the behavior of HPNs, where congestion is experienced at
the ingress/egress but not in the HPNs cores.

We adopt the Coflow scheduling platform in prior work [1]
along with its default settings such as coordination intervals.
Our baseline is Varys scheduling on the monolithic network.
For Weaver that operates on HPNs, we reuse the bandwidth
allocation component of Varys as the BAs, and we implement
Weaver’s TA algorithm.

The original Coflow trace is based on a 150-port fabric
with 150 Gbps bisection bandwidth. To match the 30-port with
30 Gbps bisection bandwidth setting in our testbed, we scale
down each Coflow by randomly selecting 1/5 of its senders
and 1/5 of its receivers and remapping them to our testbed
hosts, while preserving the traffic characteristics between the
selected senders and receivers. The fraction number of senders
(receivers) is rounded to the floor plus 1, so that each Coflow
has at least one sender (receiver).

Weaver achieves performance close to the ideal monolithic
network for Coflows: Figure 4 highlights that, over a range of
HPNs configurations, Weaver achieves consistent performance
close to the baseline scheduler that operates in the monolithic
network. The normalized average CCT is as low as 1.02x and
no larger than 1.1x for the most common case of K = 2.

Our testbed results generally resemble those of simulations,
which we will show in Section VI-C. Compared to simula-
tions, testbed CCTs are generally longer due to coordination
overhead, such as extra delay to distribute control decisions
and to adjust flow transmission rate. In addition, such overhead
could have a multiplicative effect to prolong CCTs because
a delayed Coflow can be further delayed due to bandwidth
preemption by newly arrived Coflows.

C. Coflow Scheduling Efficiency

Settings: We implement a flow-level trace-driven discrete-
event simulator? with various algorithms for traffic assignment
and inter-Coflow scheduling. Our simulator performs detailed
trace replay based on the realistic Coflow workload.

In the previous Section VI-A, we have introduced one com-
parison baseline as the Coflow performance under the ideal
monolithic network. To understand the Coflow scheduling

Zhttps://github.com/sunnyxhuang/weaver
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Fig. 4: [Testbed] Average CCT. Normalized over the average CCT
in the baseline system that operates on the ideal monolithic network
(K=1). Definitions of configuration indexes are in Table IV.
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efficiency in HPNs, we adapt two relevant schedulers to be
two additional baselines for comparison, as follows.

Additional baseline #1: Weighted Stochastic Load Balance
(WS-LB) leverages a weighted random TA algorithm to achieve
stochastic load balance among the multiple cores with various
capacity in HPNs. Its TA algorithm takes a Coflow demand
matrix as the input and assigns a network core to each flow.
Each flow is considered independently and the probability
that a flow is assigned to a network core is proportional to
the link capacity of the core. Then the flow is scheduled by
the BA of the assigned core. Because of the randomness in
its TA algorithm, the WS-LB scheduler is evaluated over 50
runs under each HPNs configuration, and in each run its TA
algorithm is initialized with a different random seed.

Additional baseline #2: Rapier [28] is a linear programming
(LP) based Coflow scheduler designed to minimize average
CCT in a generic topology. To schedule a Coflow, Rapier
will (1) determine the flow-level traffic assignment, i.e. the
network core assigned for each flow, and then depending on
(1) Rapier will (2) calculate the Coflow’s bandwidth share,
which is further translated to flow-level transmission rate. Both
steps rely on an LP solver. These steps are also highly coupled
because their combined results further impact the scheduling
for other Coflows. In the context of our paper, Rapier controls
TA as well as all BAs, and decisions for TA and BAs are
mutually dependent.

We have evaluated two types of BAs, i.e. Varys [1] and
Aalo [2], which are two state-of-the-art Coflow schedulers
both designed to minimize the average CCT. Varys is designed
to optimize performance for volume-based Coflows, while
Aalo is designed to service streaming-based Coflows. The
default type of BA is Varys for Weaver and WS-LB. Rapier has
highly coupled its traffic assignment and scheduling policy, so
Rapier is evaluated as a whole.

Weaver achieves Coflow performance comparable to the
ideal monolithic network. We start by comparing all sched-
ulers under the default settings. Figure 5 highlights that
Weaver’s average CCT is comparable to that of the ideal
monolithic network, across a range of HPNs configurations.
We observe Weaver is at most 1.03x of the ideal for K=2
and 1.05x for K=3 or K=4. In contrast, WS-LB performs
worse due to its inefficiency in traffic assignment, as we will
discuss in Section VI-D.

Compare with the competitive schemes, Rapier is signifi-
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Fig. 5: Average CCT under various K. Normalized over the average
CCT in the ideal monolithic network (/K=1) under Varys scheduling.
Definitions of configuration indexes are in Table IV.

cantly worse due to its Coflow scheduling policy. To optimize
the average CCT, both Rapier and Weaver prioritize the
smaller Coflows that are expected to finish sooner. Weaver
tends to be more strict in observing the priority, while Rapier
may not fully observe the priority order. In the second step of
Rapier to decide the bandwidth share for a Coflow by solving
a LP problem, if a Coflow contends with higher priority
Coflows, the Coflow is forced to pause because the LP solution
indicates the Coflow will never finish. As a result, residual
bandwidth goes to lower priority Coflows, rather than the
paused Coflows with higher priority, which prolongs the CCTs
of paused Coflows. On the other hand, lower priority Coflows
can hardly benefit from the bandwidth leftover, because they
must yield to the previously-paused higher-priority Coflows
when the contention is resolved. Both effects combined,
Rapier’s scheduling policy becomes significantly inefficient.

D. Optimality of Traffic Assignment

As we have shown in Section IV-A, the traffic assignment
problem (Table III) is NP-hard. Theorem 4.3 proves that,
in HPNs where all parallel networks are not identical, the
optimum approximation ratio of Weaver’s TA algorithm is
always better than that of Rapier or WS-LB. In the common
case of K = 2, Table V compares the approximation ratio of
various TA algorithms.

We demonstrate how Weaver achieves better performance
guarantee with an example in Figure 6, where the traffic
demand of an incast Coflow (Figure 6a) is to be assigned to
two network cores with link capacity #(!) = 1 and (?) = 4
respectively. The CCT of the incast Coflow is determined
primarily by the most congested port out.4.

Weaver benefits from the critical flow classification (Algo-
rithm 1 line 4), so that critical flows that are more likely
to prolong CCT are assigned to the less congested network
core to speed up the Coflow. While Weaver seeks utilizing
bandwidth from multiple network cores to speed up a Coflow,
the algorithm guarantees to be no worse than assigning all
traffic to the fastest core. In this example, all flows from the
incast Coflow are critical because they impact CCT on out.4.
By measuring the children CCTs (line 5), Weaver decides to
assign all flows to the faster core sy, as shown in Figure 6b.

On the other hand, WS-LB could significantly delay a
Coflow by assigning all traffic to the slowest core due to



TABLE V: Approximation ratio of various traffic assignment al-
gorithms under K=2. Lower values indicate better performance
guarantee with closer approximation to the optimum.

Weaver WS-LB  Rapier
10%:90%  1.11x 10.0x 2x
20%:80%  1.25x 5.00 % 2%
30%:70%  1.43x 3.33 % 2x
40%:60%  1.67x 2.50% 2x
out.4 out.4 (b) :
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Fig. 6: Traffic assignment of one Coflow to two network cores, s1
and s2, with link capacity M =1 and +® = 4. (a) Traffic demand
for an incast Coflow, whose CCT is determined by out.4. (b-d) show
the timeline and traffic load on out.4 for s; and s2. (b) Weaver’s TA.
(c, e) Solution of the relaxed problem allowing flow splitting. A flow
may split among two cores. (d, f) Solution after rounding to avoid
flow splitting. The split flow is assigned to the core that takes up
more portion of the flow in the solution of relaxed LP.

randomness. We omit this case in Figure 6 to simplify repre-
sentation. For the LP-based Rapier algorithm, its inefficiency
stems from the alternate optima under problem relaxation.
As discussed in Section IV-A, our problem without flow
splitting (Table III) can not be efficiently solved by LP
techniques. Hence, an LP-based algorithm must start from
a relaxed problem and round the solution to satisfy the
broken constraints. Rapier relaxes the problem by allowing
flow spitting. The relaxed problem is likely to have multiple
optimal solutions, as shown in Figure 6¢c and Figure 6e.
However, the optimal solutions of the relaxed problem are
not equally efficient after rounding. For example, while one
solution (Figure 6¢) produces an efficient traffic assignment
as Weaver’s TA algorithm, the other solution (Figure 6e)
mistakenly assigns one flow to the slower core and delays
the Coflow. An optimal solution of the relaxed problem can
not guarantee the efficiency of its rounded result, and thus
Rapier fails to achieve the performance guarantee as good as
Weaver’s TA algorithm.

E. Sensitivity Analysis

We also evaluate Weaver’s robustness over various factors.
Sensitivity to assignment ordering. To evaluate how the
ordering of traffic assignment affects Coflow performance,
we conduct a sensitivity test. In this test, we change the
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Fig. 7: Sensitivity to (a) assignment ordering and (b) assignment of
non-critical flows. The presented average CCT is normalized over
the average CCT in the ideal monolithic network (/K'=1) under Varys
scheduling.

assignment ordering by sorting flows in the following ways
(line 3 in Algorithm 1): (1) descending sort by flow sizes,
which is used as the default, (2) ascending sort by tuple
of input and output port index, and (3) ascending sort by
flow sizes. As shown in Figure 7a, we observe prioritizing
larger flows in assignment is the most efficient. In contrast,
the reversed ordering that considers smaller flows first is
the least efficient. This confirms our previous observation
that larger flows are more likely to determine CCT and thus
they should receive priority to take up faster network cores.
As expected, when the capacity of network cores becomes
uniform, the performance gap resulted from various ordering
becomes smaller, because the penalty of mismatching flow
sizes and core capacity becomes smaller.

Sensitivity to assignment of non-critical flows. We conduct
another sensitivity test to evaluate how the load balancing
(LB) technique for non-critical flows impact on Coflow per-
formance. In this test, we change the assignment of non-
critical flows (line 7) by assigning the flow to the network
core (1) which has the minimum busy ratio (called LB by busy
ratio, used as the default), and (2) which has the minimum
CCT for the flows assigned on the core from the Coflow in
consideration (called LB by min child CCT). Note that (2) is
equivalent to reusing the assignment strategy of critical flows
(line 5) for non-critical flows. We found LB by busy ratio is
the most efficient in various cases. LB by min child CCT is the
least efficient because the faster cores tend to be overloaded
due to bias of the bottleneck, as discussed in Section IV-C.

Weaver remains robust under different scheduling policies.
To understand how Weaver performs with another Coflow
scheduling policy, we change all BAs from Varys to Aalo.
Under Weaver with Aalo (or Varys) scheduling, for HPNs
configurations of 10%:90%, 20%:80%, 30%:70%, 40%:60%,
and 50%:50% respectively, CCT is on average 1.08x (or
1.07x), 1.15x (or 1.13x), 1.20x (or 1.18x), 1.23x (or



1.21x), and 1.29% (or 1.28x) of the CCT in the ideal
monolithic network with Aalo (or Varys) scheduling. The CCT
slowdown with Aalo scheduling is comparable to that with
Varys when moved from the ideal monolithic network to HPNs
in a range of settings. In summary, Weaver remains robust
from Varys to Aalo scheduling.

VII. RELATED WORK

Coflow scheduling in data center networks: A range of
recent works [1, 2, 3, 4] have demonstrated the benefits
of leveraging application-level traffic requirements, expressed
in Coflows, to improve application-level communication per-
formance. These inter-Coflow schedulers [1, 2, 3, 4] are
limited by their over-simplified assumption that abstracts the
whole network fabric as one network core. Our work is
complementary to these existing works in Coflow scheduling,
so that Coflow traffic is assigned to network cores in a way
that allows efficient inter-Coflow scheduling in each individual
core. Rapier [28] is proposed to schedule Coflows in a generic
topology, but Rapier is not efficient in HPNs due to a range
of factors as discussed in Section VI.

Heterogeneous parallel networks (HPNs): We have intro-
duced HPNs in data centers in Section I and Section II.
In the context of wireless networks, HPNs is also relevant
because multiple wireless networks usually overlap in space
for users to access simultaneously, such as Wifi and cellular
networks. Recent works have studied how to exploit such
wireless networks in parallel to support web content deliv-
ery [33] and video streaming [34]. Exploiting heterogeneous
parallel wireless networks is fundamentally different from our
problem settings. For example, traffic in wireless networks
tends to be simplex point-to-point flows to service web and
video applications, while traffic in data centers often comes
in structured flows from the distributed data-parallel applica-
tions. As for design goals, wireless networks often stress on
latency and energy efficiency to service mobile users in high-
interference environments, while we aim at application-level
performance and incremental network evolutions to achieve
higher performance at lower cost for data center networks.

Flow-level load balancing schemes: ECMP [35] and MPTCP
[36] are commonly known techniques for transmission over
multiple alternative paths. They aim at load balancing among
alternative paths to maximize bandwidth utilization. These
schemes assume bandwidth fair sharing among contending
flows. However, they are incapable of optimizing Coflow level
scheduling objectives such as reducing the average CCT, and
flow level fair sharing is known to result in poor Coflow per-
formance [1]. In contrast, our work considers the assignment
and scheduling of Coflows to improve application performance
in HPNs.

VIII. CONCLUSIONS

We present Weaver, the first scheduler to service Coflows in
HPNs with high application level communication efficiency.
Weaver leverages an efficient traffic assignment algorithm
which is proven to be within a constant factor of the optimal.

Weaver also serves as a framework to accommodate a variety
of traffic scheduling policies to improve performance at the ap-
plication level. The Weaver-orchestrated HPNs achieve Coflow
performance comparable to the ideal monolithic network. As
incremental upgrades of infrastructure becomes the trend, our
work demonstrates how an evolving data center can make the
most out of its multiple generations of network fabrics.

APPENDIX

Proof of Theorem 4.1 We prove by contradiction. Assume
vk L0 o D) Then we have Vk : L(DW) <

r & L(D). Without loss of generality, assume the m-th row
in D yields L(D), i.e. Z;V:l dpm,; = L(D). Therefore, we

have
( N
<R Xm0

K} in Equation (1),

N
Yk : Zd(k) < L(D™) <
j=1

Adding up all K equations for k € {1, ..,

N K N *)
D)= duy=2 D du)
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results in a contradiction of L(D) < L(D). Similarly, when
L(D) is given by a column of D, a contradiction is derived
by replacing the row sum with column sum in Equation (1).
These complete the proof by contradiction. B

Proof of Theorem 4.2 We begin by proving a proposition

L (D)
r(kl)

L(D)

Vkl,kg : ~ T(k2) .

When k; = ko, our proposition is true because L(D*1)) <

L(D). When ki # ko, we prove our proposition by contradic-

(k1)
: L(D o
tion. Assume ——5—= > r<(k2>) , then there must be an iteration

in Algorithm 1 line 3 where the traffic demand of d; ; from
flow f; ; is assigned to the ki-th network core to make up
D). Denote D'*) as the traffic demand allocated to the k-
th core before adding f; ;, and D*) = D'*®y d; ;. Because

d; ; is added to the ki-th core, we should have Vko # ki :
(k1) r(k1) o 1(k2) . .
D) e ) MR i) o0

r(k1) . - r(fcl)_ = r(k2) .=
results in a contradiction with our assumption.

Thus, our proposition is proved and Theorem 4.2 is an
immediate result of our proposition. B

Proof of Theorem 4.3 We know T < TJ. Theorem 4.1
shows T7 % and Theorem 4.2 shows T° <
k=1T

ngn(%) = L(D)/%%XT(k). Therefore, Theorem 4.3 is
proved because
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