Grasp the Root Causes in the Data Plane: Diaghosing
Latency Problems with SpiderMon

Weitao Wang

Rice University

Ang Chen

Rice University

ABSTRACT

Unexplained performance degradation is one of the most severe prob-
lems in data center networks. The increasing scale of the network
makes it even harder to maintain good performance for all users with
a low-cost solution. Our system SpiderMon monitors network per-
formance and debugs performance failures inside the network with
little overhead. SpiderMon provides a two-phase solution that runs
in the data plane. In the monitoring phase, it keeps track of the per-
formance of every flow in the network; upon detecting performance
problems, it triggers a debugging phase using a causality analyzer to
find out the root cause of performance degradation. To implement
these two phases, SpiderMon exploits the capabilities of high-speed
programmable switches (e.g., per-packet monitoring, stateful mem-
ory). We prototype SpiderMon on using the BMv2 model of P4, and
our preliminary evaluation shows that SpiderMon is able to quickly
find the root cause of performance degradation problems with mini-
mal overhead. SpiderMon achieves nearly-zero overhead during the
monitoring phase and efficiently collects relevant data from switches
during the debugging phase.

CCS CONCEPTS

* Networks Network monitoring; Programmable net-
works; Data center networks.

KEYWORDS

Performance diagnosis, in-network telemetry, P4, network prove-
nance

1 INTRODUCTION

A low-cost network diagnostic system is essential to meeting per-
formance requirements of modern applications. Many performance
degradation problems are caused by traffic contention [5], and such
contention can lead to high end-to-end delays for both related and
unrelated traffic [31]. Therefore, it is critical to monitor performance
by collecting fine-grained information and process the information
to pinpoint the root causes of performance degradation. By doing
so, network operators can understand their networks better and use

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SOSR ’20, March 3, 2020, San Jose, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7101-8/20/03. .. $15.00
https://doi.org/10.1145/3373360.3380835

Praveen Tammana
Princeton University

T. S. Eugene Ng

Rice University

appropriate configurations to meet the performance requirements.
However, as the network size grows, collecting and processing the
information for diagnosis become extremely expensive and challeng-
ing.

Broadly, the task of performance diagnosis can be divided into
monitoring and debugging phases. In the monitoring phase, a system
needs to detect high end-to-end delay that traffic may experience.
In the debugging phase, the system should identity the root cause
for the abnormally high delay. To do this, each phase requires dif-
ferent types of information at different locations in the network.
For instance, consider a problem where packets experienced high
end-to-end delay due to traffic contention (therefore queuing delay)
across multiple hops. Detecting the delay would require tracking
the time that packets spent at each hop; further identifying the root
cause would require tracking flows that shared the same queues with
these packets. Moreover, such information needs to be collected in a
network-wide manner.

There has been much recent work on network diagnosis. On the
one hand, we have systems that run either at hosts or switches [6, 9,
11, 18, 20, 21] which leverage programmable switches to monitor
traffic and collect fine-grained information (e.g., flow-level, packet-
level) on small time scales (e.g., milliseconds to seconds). This
design choice enables high network-wide visibility, but incurs a
large resource overheads (e.g., network bandwidth, processing, and
storage). Alternatively, query-based systems [10, 13, 25, 26, 32, 34,
35] reduce the overhead by executing a set of diagnostic queries on
packet streams and filter the relevant data. However, these systems
do not keep track of the flows that share the queues across switches,
thus cannot do network-wide diagnosis accurately. On the other hand,
systems relying on both switches and hosts [7, 12, 14, 16, 19, 23, 24,
29-31, 36] for network-wide diagnosis leverage the resources at the
hosts to collect historical data and maintain flow-level statistics. But,
they tend to be too slow to react to “gray failures” (e.g., performance
degradation) as the problem might disappear by the time the hosts
detect it, inform a controller, and the controller retrieves data; thus,
they are inaccurate.

Therefore, having a diagnosis system that achieves either high
accuracy or low overhead is not hard, but achieving both simultane-
ously is challenging.

We present SpiderMon, a network-wide diagnosis system that
aims to bridge the gap between accuracy and overhead by monitoring
and collecting relevant telemetry data in a distributed manner. The
key idea is that every switch maintains fine-grained telemetry data
(e.g., per-flow records) in the data plane for a short period of time
depending on the available memory resources, and the information
is offloaded to a central entity only when a performance degradation

https://doi.org/10.1145/3373360.3380835

SOSR 20, March 3, 2020, San J ose, CA, USA

(e.g., high latency) is detected. In this way, the central entity would
receive only a tiny fraction of network-wide telemetry data while
still be able to accurately find the root cause of the performance
problem by correlating the telemetry data received from a small
subset of relevant switches.

To realize this idea in practice, SpiderMon resolves two technical
challenges. The first challenge is to detect the performance degrada-
tion without interfering with the actual packet processing. For this
we leverage a capability of programmable switches that provides
the amount of time a packet is spent in a queue. SpiderMon piggy-
backs the accumulated delay information in every packet header,
and checks whether the delay exceeds a certain threshold at every
hop. If so, a problem is detected (more details in §3.1).

The second challenge is to debug and find the root cause of the
performance degradation. For this, SpiderMon notifies and offloads
telemetry data (e.g., per-flow records) relevant to the degradation
from the involved switches in the network. SpiderMon views this
as a provenance graph of the network events that are related to the
performance degradation. The abstraction of the provenance graph
captures all the events which cause the degradation as nodes in the
graph, and the causalities among events (e.g., flow contentions) are
represented using edges in the graph (more details in §2.2).

To notify relevant switches in the graph, SpiderMon provides an

audit request system using stateful memory in the programmable
switches. The system maintains two compact data structures: (1)
a per-switch timeout bloom filter that keeps track of flows-to-port
mappings; (2) a per-port per-epoch data structure that keeps track of
the incoming ports on which traffic is received (more details in §3.3).
When SpiderMon detects a performance degradation, the system
issues a notification (i.e., audit request) and uses these two data
structures to propagate the audit request to relevant switches in the
network. Every switch that receives the audit request would offload
its local telemetry data (e.g., flow records) to a central monitoring
server for analysis. For instance, to find the root cause, we can
construct a flow-level provenance graph and find the root cause by
correlating the flow-level information in both temporal and spatial
dimensions.
Contributions. We present SpiderMon, a lightweight system to
diagnose latency problems accurately. We have implemented an
initial prototype of SpiderMon, and our preliminary results show
that SpiderMon can diagnose latency problems with high accuracy
while consuming minimal switch memory (tens of KBs) and control
plane bandwidth (tens of Mbps).

2 OVERVIEW
2.1 Network Performance Degradation

As a concrete example, consider the case presented in Figs.1(a)
and 1(b). The green flow shows a victim TCP connection which
is forwarded from switch 5 to switch 8 through switches 1, 0 and
4. In the middle of the transfer, two UDP flows start transferring
from switch 6 to 7 and from 7 to 8 separately. From this time,
the green TCP flow will get delayed at switch O, then switch 4,
and the accumulated delay would exceed an acceptable threshold
at switch 4. Here, the high end-to-end delay is the accumulated
result of multiple smaller delays along the victim flow’s path, so
it requires information from all the switches along that path for

Weitao Wang, Praveen Tammana, Ang Chen, and T. S. Eugene Ng

R — f Core \ —
Switch 0 l (Switch Of -+ N
’ [] ‘]
Aggre Aggre Aggre Aggre | | Asgre Aggre Aggre
Switch1| |Switch2| |switch3] |Switch4) \SWitch1] — [Switch2] [switch3)

< X

- L . N . y N
ToR ToR ToR [TorR ToR ToR ToR ToR
Switch5| |Switch6| |Switch7| |Switchg |SWitch5| |Switch6 [Switch7) |Switch 8]

—— | Core | ——

Normal traffic
e

Microburst traffic

(a) No conflict
Figure 1: Multiple contentions have caused a transient perfor-
mance problem

(b) Accumulated conflict

a successful diagnosis. Besides, such performance problems can
be sporadic, because they do not deterministically depend on the
network configuration. Because multiple contention happening at
the same time is not a high-probability event, and a contention only
lasts for a short amount of time, these problems are also transient in
their appearance.

As we can see, network performance degradation problems are a
kind of “gray failures”, which are subtle to detect and diagnose but
can cause significant problems to the applications, such as contention
between multiple flows, priority contention, and load imbalance.
There are three common key features that make these problems
challenging to diagnose.

Sporadic. Performance degradation are usually sporadic—i.e., they
happen occasionally at different places and at unpredictable times [3].
In order to detect these problems, an effective solution needs to
monitor every flow all the time.

Network-wide. The root causes for complex performance problems’
may be network-wide, e.g., due to the contention of multiple flows
at different hops. The interfering flows may even have normal perfor-
mance [31], despite the fact that they cause performance degradation
to other flows. Thus root cause diagnosis requires network-wide
monitoring.

Transient. Traffic contentions sometimes are transient and disappear
quickly [17], because degradation happens when there are multiple
flows contending for resources. This feature requires the debugging
system to keep fine-grained information about recent events.

2.2 The Provenance Model

To diagnose network performance problems in a sufficient and ef-
ficient way, we need flow-level information from all switches that
are causally related. Determining which types of information are
relevant can be guided by the following provengnee model.

We define the provenance graph model G := 'V, E for all events
in the network. G is a directed acyclic graph, H/here each node v
represents an event, and each directed edge e = v; ! v, between
two nodes represents the provenance relation that v leads to the
event v». One node can have multiple incoming edges and multiple
outgoing edges to represent multiple causes and multiple outcomes,
respectively. G can provide all the information needed by the diagno-
sis system. If one packet experiences higher accumulative delay than
a threshold, the diagnosis system will be triggered to start construct-
ing the provenance graph of this high latency problem. A typical
provenance graph query would require tracing back all the events
which receive and send packet p in the graph G and also those send
events to the same port P as the packet p at each hop.

Grasp the Root Causes in the Data Plane: Diagnosing Latency Problems with SpiderMon SOSR '20, March 3, 2020, San Jose, CA, USA

In order to capture the provenance of events, a diagnosis system
needs to perform two tasks. First, the monitoring component detects
the anomalies—i.e., high latency. Second, the debugging component
needs to be invoked to nd the root cause of anomalies based on
the telemetry information provided by all the related nodes in the
problems' provenance graphs. Besides, minimizing the volume of
the retrieved telemetry data is also important for scalability.
Precision.The precision requirement refers to the need to capture all
relevant events and their timing. Performance degradation problems
happen sporadically in the network, so the accumulated d2lay
at each hop of every ow needs to be monitored to capture all
problems in the network. Ideally, we only collect information from
all the relevant nodes in the problem's provenance graph [8].
Scalability. To make the monitoring and debugging system scalable, Figure 2: System architecture
we need to keep the overhead of the whole system low. A related
consideration, for instance, is how much involvement of a controller
is required for problem diagnosis. The debugging information sent
to the analyzer should also be tailored to reduce data volume.

accumulated latency problems and other performance degradation
events inside the network. The causality data structure keeps track of
the most recent contention information. The telemetry data structure
preserves the most recent packet-level information in a logically

2.3 Existing Solutions Fall Short circular buffer.

E_xi_sting solutionslgll fall short in simultaneously meeting both pre- 3 DESIGN

cision and scalability requirements.)

Monitoring solutions. Network monitoring systems install moni- 3.1 Problem Detection

toring agents in switches or hosts. For the monitoring system im- The accumulated queuing latency is used to identify the ow's con-
plemented in the switches, normally the agents will report the data gestion level. SpiderMon monitors every ow at every hop by piggy-
extracted from the ows to a central controller for analysis, like backing the accumulated delay information with an additional header
LOCO [1], Netow [2], sow [4] and owradar [20]. These solu- eld L. Whenever a packet enters the egress pipélimvl be up-

tions can detect the problem and perform some simple diagnosisdated by adding the queuing delay L queuetime delta Then
based on the telemetry data collected from the network. However, it will be compared with the thresholAX_L to check whether

the overhead of collecting and analyzing such data is very high, there is an accumulated performance problem. In contrast to lever-
because the telemetry data is collected by the monitoring systemaging switch data structures to remember latency information, this
constantly. Other solutions like NetSight4] collect information method does not require the switches to be synchronized. Also, in
network-wide, even on network nodes that are not relevant to the contrast to storing per-hop latency information in multiple headers,
problem, making it hard to scale. There are also some solutions comthe accumulated latency eld guarantees that one header is enough
bining in-network and end-host monitoring, e.g., SwitchPoirtdf [regardless of the hop count. Once the problem has been detected, the
and PathDump30]. However, since they need to retrieve data from latency monitor will notify the audit request agent in the switch data
multiple switches and hosts, a central controller must be invoked plane with the 5-tuple of the congested ow, along with its egress
to retrieve the data from all relevant nodes. Due to the slowness of and ingress port information. SpiderMon limits the number of events
this process, the relevant information that needs to be sent to thethat can be triggered in a period on the same switch. If the queuing
analyzer might have been purged from memory by the switch. delay exceeds a threshold, a global audit request will be broadcasted
Query-driven solutions. These solutions compile queries into SO information needed for diagnosis is collected once globally, and
telemetry programs and collect data from all the query-related net-Subsequently all switches are prevented from generating new audit
work nodes. Example systems in this class include Sor8}apd requests for a xed amount of time.

Marple 25]. They require that the operators know the nature and lo- ~ Other than the high accumulated latency trigger, SpiderMon can
cation of the problems. Performance problems are different because?lso support other user-dened triggers such as packet drops, packet
they could arise from random congestion—the problem may happen timeout events, and pause frames. Take the pause frame as an exam-
at random switches sporadically. Query-driven solutions need to Ple: receiving the PAUSE request packet would be a proper trigger

monitor all the switches and collect information continuously, which for this problem, and once the problem is detected in the switch,
is resource-intensive and unscalable. SpiderMon can use the same mechanism to trigger the diagnosis

procedure for further analysis.
2.4 The SpiderMon System

SpiderMon uses packets to carry latency information and detects ac3-2 Provenance Graph Approximation

cumulated latency inside the network, and uses the switch hardwareThe audit request agent sends the audit requests from the problematic
to provide ow-level information and ow contention information switch to all relevant switches with a unique event ID. It aims to
to identify the root cause of the problem. As shown in Fig. 2, Spi- cover an approximate graph which contains the switches in the
derMon uses an always-on performance monitor to capture the highprovenance graph at low overhead.

SOSR '20, March 3, 2020, San Jose, CA, USA

Figure 3: Audit requests propagation
We dene two kinds of switches: switches along the historical
path of the victim ow are “trunk” switches, and switches which send
a large amount of trafc to the “trunk” switches during congestion
are “branch” switches. The coverage for a specic problem is a tree
whose root is the problematic switch, trunk is the historical path,

Weitao Wang, Praveen Tammana, Ang Chen, and T. S. Eugene Ng

Algorithm 1: Timeout bloomlter data structure

Input: B: Timeout Bloomilter, inPort: Incoming port index,
5 tuple 5-tuple, TS TimestampjsAR Is audit
request?

if isSAR== Falsethen

ifHit 1
for hashValue in hashValue®
isValid TS A ifHit

1

2 hashValues HASH 5 tuple
3 for hashValu& hashValueslo

4 | B hashValue inPort TS
5 end

6 else

7 hashValues HASH 5 tuple
8

9

10 | ifHit
end
12 in ReturnifHit

13 end

1

o

Algorithm 13, Fig. 4(a) and Fig. 4(b). The memory footprint of this

and the branches are the traversed paths of the interfering trafc. To data structure can be reduced by shrinking the timeout threshold for
guarantee the full coverage of relevant switches, the audit requestshe bloom Iter, namely, storing the path information for a shorter

will also be sent several hops away from “trunk” switches. With a
higher hop count, more telemetry information will be collected, and

time. Therefore, there is a trade-off between the length of path history
and memory usage.

this will also result in higher overhead. Take Fig. 3 as an example: Flow Contention Information. A per-port per-epoch data structure
the high latency was detected at switch 7. Then the audit request will s ysed to collect the ow contention information, tracking all rele-

be sent to the reverse path of the victim ow—trunk switches 6, 5, vant ingress ports that are sending trafc to the victim's egress queue.
and 4, as well as branch switches 0 and 10. SpiderMon uses this agor each egress port, the switch maintains a bit array whose size
an approximation of the provenance graph. Thus, audit requests args the same as the number of switch ports. And each bit in the bit
generated at the problematic switch, then propagated back via thearray represents whether a port has sent data to this egress port in
victim's historical path and multicasted along the branches at every the |ast epoch. All ports with bit 1 will be considered as suspect of
hop along the reverse path. contending ows, and the audit request will be sent to them if the
SpiderMon chooses to maintain monitoring data that provides gydit request of the victim ow is received.
provenance in the switch rather than piggybacking it in the packet Muylticast Group Vector. The per-port per-epoch bitarray serves as
headers. This is because the packet header cannot carry historicahe multicast group vector for the audit request multicast. Because
contention information in the network; and 2) the overhead of addi- switches have limited number of pre-dened multicast groups, the
tional headers increases with the hop count. In contrast, the overheadnulticast group indexes cannot be mapped to multicast groups arbi-
of maintaining data inside the switch remains the same regardless oftrarily. Thus, SpiderMon performs a broadcast and uses the multicast

the average hop count.

3.3 Supporting Data Structures

SpiderMon introduces causality data structures to help the audit

request agent to nd all relevant switches in the provenance graph.
Historical Path Information. SpiderMon uses timeout bloomlter
to track the victim ow's historical path. Regular bloomlters allow
the insertion of ow IDs and the testing of the presence of a ow ID.
However, bloomlter is an accumulative data structure which can
only support insertions; its false positive rate will increase with the
number of ow IDs inserted. So we need a timeout feature to remove
the outdated data from the bloomlter, which requires more memory
but provides a “sliding window” of the historical ow information.
For a switch withN ports, each egress pipeline maintains a bloom
Iter with - M rows andN cells per row, and each column represents
a bloom lter for the corresponding port. The timeout bloom Iter

group vector to drop the packets that are not required to be sent from
some egress ports. For instance, the vector 0101 will drop packets
for port 0 and 2.

3.4 Telemetry Information

SpiderMon requires switches to maintain per-ow records for further
analysis. Our main focus here is not to develop a new data structure
for monitoring; rather, we explore how SpiderMon can be inte-
grated with existing in-network telemetry systerasy, Marple [29],
*Flow [28]) and end-host based telemetry systemg),(Switch-
Pointer B1], Conuo [19)). Below, we analyze SpiderMon's re-
quirement on the time duration for which a switch must maintain
telemetry data. Consider the maximum allowed end-to-end delay to
beT. The time it takes to propagate audit requests from the initiator
to relevant switches—assuming there is no congestion in the reverse

replaces the bit record with a short timestamp, which can be usedpath—is halfRT T in the worst case. Since the congestion is detected

to remove outdated record when querying the bloom Iter. The
details about maintaining and querying the bloom Iter are shown in

after accumulated queuing delay exceeds the maximum allowed la-
tency, i.e.,T, the lower bound on the time durationTsRT T. For

	Abstract
	1 Introduction
	2 Overview
	2.1 Network Performance Degradation
	2.2 The Provenance Model
	2.3 Existing Solutions Fall Short
	2.4 The SpiderMon System

	3 Design
	3.1 Problem Detection
	3.2 Provenance Graph Approximation
	3.3 Supporting Data Structures
	3.4 Telemetry Information
	3.5 The Provenance Analyzer

	4 Initial Validation
	4.1 Overhead
	4.2 Effectiveness

	5 Conclusion
	Acknowledgments
	References

