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Abstract

Inspired by the Thomson problem in physics where the
distribution of multiple propelling electrons on a unit sphere
can be modeled via minimizing some potential energy, hy-
perspherical energy minimization has demonstrated its po-
tential in regularizing neural networks and improving their
generalization power. In this paper, we first study the impor-
tant role that hyperspherical energy plays in neural network
training by analyzing its training dynamics. Then we show
that naively minimizing hyperspherical energy suffers from
some difficulties due to highly non-linear and non-convex
optimization as the space dimensionality becomes higher,
therefore limiting the potential to further improve the gen-
eralization. To address these problems, we propose the
compressive minimum hyperspherical energy (CoMHE) as
a more effective regularization for neural networks. Specif-
ically, CoMHE utilizes projection mappings to reduce the
dimensionality of neurons and minimizes their hyperspheri-
cal energy. According to different designs for the projection
mapping, we propose several distinct yet well-performing
variants and provide some theoretical guarantees to jus-
tify their effectiveness. Our experiments show that CoMHE
consistently outperforms existing regularization methods,
and can be easily applied to different neural networks.

1. Introduction

Recent years have witnessed the tremendous success of
deep neural networks in a variety of tasks. With its over-
parameterization nature and hierarchical structure, deep
neural networks achieve unprecedented performance on
many challenging problems [1, 2, 3], but their strong ap-
proximation ability also makes it easy to overfit the training
set, which greatly affects the generalization on unseen sam-
ples. Therefore, how to restrict the huge parameter space
and properly regularize the deep networks becomes increas-
ingly important. Regularizations for neural networks can be
roughly categorized into implicit and explicit ones. Implicit
regularizations usually do not directly impose explicit con-
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Figure 1: Comparison of original MHE and compressive MHE. In (c), the
top figure shows the hyperspherical energy, and the bottom one shows the
testing error (CIFAR-100). Experimental details are given in Appendix B.

straints on neuron weights, and instead they regularize the
networks in an implicit manner in order to prevent overfit-
ting and stabilize the training. A lot of prevailing meth-
ods fall into this category, such as batch normalization [4],
dropout [5], weight normalization [6], etc. Explicit regular-
izations [7, 8, 9, 10, 11, 12] usually introduce some penalty
terms for neuron weights, and jointly optimize them along
with the other objective functions.

Among many existing explicit regularizations, minimum
hyperspherical energy (MHE) [12] stands out as a simple
yet effective regularization that promotes the hyperspheri-
cal diversity among neurons and significantly improves the
network generalization. MHE regularizes the directions of
neuron weights by minimizing a potential energy on a unit
hypersphere that characterizes the hyperspherical diversity
(such energy is defined as hyperspherical energy [12]). In
contrast, standard weight decay only regularizes the norm
of neuron weights, which essentially can be viewed as reg-
ularizing one dimension of the weights. MHE completes an
important missing piece by regularizing the neuron direc-
tions (i.e., regularizing the rest dimensions of the weights).

Although minimizing hyperspherical energy has already
been empirically shown useful in a number of applica-
tions [12], two fundamental questions remain unanswered:
(1) what is the role that hyperspherical energy plays in
training a well-performing neural network? and (2) How
can the hyperspherical energy be effectively minimized? To



study the first question, we plot the training dynamics of
hyperspherical energy (on CIFAR-100) in Fig. 1(c) for a
baseline convolutional neural network (CNN) without any
MHE variant, a CNN regularized by MHE [12] and a CNN
regularized by our CoMHE. More experimental details and
full results (with more interesting baselines) are given in
Appendix B. From the empirical results in Fig. 1(c), we find
that both MHE and CoMHE can achieve much lower hyper-
spherical energy and testing error than the baseline, show-
ing the effectiveness of minimizing hyperspherical energy.
It also implies that lower hyperspherical energy typically
leads to better generalization. We empirically observe that
a trained neural network with lower hyperspherical energy
often generalizes better (i.e., higher hyperspherical diversity
leads to better generalization), and therefore we argue that
hyperspherical energy is closely related to the generaliza-
tion power of neural networks. In the rest of the paper, we
delve into the second question that remains an open chal-
lenge: how to effectively minimize hyperspherical energy.

By adopting the definition of hyperspherical energy as
the regularization objective and naively minimizing it with
back-propagation, MHE suffers from a few critical prob-
lems which limit it to further unleash its potential. First, the
original MHE objective has a huge number of local min-
ima and stationary points due to its highly non-convex and
non-linear objective function. The problem can get even
worse when the space dimension gets higher and the num-
ber of neurons becomes larger [13, 14]. Second, the gradi-
ent of the original MHE objective w.r.t the neuron weight
is deterministic. Unlike the weight decay whose objective
is convex, MHE has a complex and non-convex regulariza-
tion term. Therefore, deterministic gradients may make the
solution quickly fall into one of the bad local minima and
get stuck there. Third, MHE defines an ill-posed problem
in general. When the number of neurons is smaller than the
dimension of the space (it is often the case in neural net-
works), it will be less meaningful to encourage the hyper-
spherical diversity since the neurons can not fully occupy
the space. Last, in high-dimensional spaces, randomly ini-
tialized neurons are likely to be orthogonal to each other
(see Appendix C). Therefore, these high-dimensional neu-
rons can be trivially “diverse”, leading to small gradients in
original MHE that cause optimization difficulties.

In order to address these problems and effectively min-
imize hyperspherical energy, we propose the compressive
minimum hyperspherical energy (CoMHE) as a generic
regularization for neural networks. The high-level intu-
ition behind CoMHE is to project neurons to some suit-
able subspaces such that the hyperspherical energy can
get minimized more effectively. Specifically, CoMHE first
maps the neurons from a high-dimensional space to a low-
dimensional one and then minimizes the hyperspherical en-
ergy of these neurons. Therefore, how to map these neu-

rons to a low-dimensional space while preserving the de-
sirable information in high-dimensional space is our major
concern. Since we aim to regularize the directions of neu-
rons, what we care most is the angular similarity between
different neurons. To this end, we explore multiple novel
methods to perform the projection and heavily study two
main approaches: random projection and angle-preserving
projection, which can reduce the dimensionality of neurons
while still partially preserving the pairwise angles.

Random projection (RP) is a natural choice to perform
the dimensionality reduction in MHE due to its simplicity
and nice theoretical properties. RP can provably preserve
the angular information, and most importantly, introduce
certain degree of randomness to the gradients, which may
help CoMHE escape from some bad local minima. The role
that the randomness serves in CoMHE is actually similar to
the simulated annealing [15, 16] that is widely used to solve
Thomson problem. Such randomness is often shown to ben-
efit the generalization [17, 18]. We also provably show that
using RP can well preserve the pairwise angles between
neurons. Besides RP, we propose the angle-preserving pro-
jection (AP) as an effective alternative. AP is motivated by
the goal that we aim to preserve the pairwise angles between
neurons. Constructing an AP that can project neurons to a
low-dimensional space that well preserves the angles is of-
ten difficult even with powerful non-linear functions, which
is suggested by the strong conditions required for confor-
mal mapping in complex analysis [19]. Therefore, we frame
the AP construction as an optimization problem which can
be solved jointly with hyperspherical energy minimization.
More interestingly, we consider the adversarial projection
for CoMHE, which minimizes the maximal energy attained
by learning the projection. We formulate it as a min-max
optimization and optimize it jointly with the neural network.

However, it is inevitable to lose some information in low-
dimensional spaces and the neurons may only get diverse in
some particular low-dimensional spaces. To address it, we
adopt multiple projections to better approximate the MHE
objective in the original high-dimensional space. Specifi-
cally, we project the neurons to multiple subspaces, com-
pute the hyperspherical energy in each space separately and
then minimize the aggregation (i.e., average or max). More-
over, we reinitialize these projection matrix randomly every
certain number of iterations to avoid trivial solutions.

In contrast to MHE that imposes a static regularization
to the neurons, CoMHE dynamically regularizes the neu-
rons based on the projection matrices. Such dynamic reg-
ularization is equivalent to adjusting the CoMHE objective
function, making it easier to escape some bad local minima.
Our contributions can be summarized as:
• We first show that hyperspherical energy is closely re-

lated to generalization and then reveal the role it plays in
training a neural network that generalizes well.



• To address the drawbacks of MHE, we propose CoMHE
as a dynamic regularization to effectively minimize hy-
perspherical energy of neurons for better generalizability.

• We explore different ways to construct a suitable pro-
jection for CoMHE. Random projection and angle-
preserving projection are proposed to reduce the dimen-
sionality of neurons while preserving the angular infor-
mation. We also consider several variants such as adver-
sarial projection CoMHE and group CoMHE.

• We provide some theoretical insights for the proposed
projections on the quality of preserving the angular simi-
larity between different neurons.

• We show that CoMHE consistently outperforms the orig-
inal MHE in different tasks. Notably, a 9-layer plain
CNN regularized by CoMHE outperforms a standard
1001-layer ResNet by more than 2% on CIFAR-100.

2. Related Work
Diversity-based regularization has been found useful in

sparse coding [20, 21], ensemble learning [22, 23], self-
paced learning [24], metric learning [25], latent variable
models [26], etc. Early studies in sparse coding [20, 21]
model the diversity with the empirical covariance matrix
and show that encouraging such diversity can improve the
dictionary’s generalizability. [27] promotes the uniformity
among eigenvalues of the component matrix in a latent
space model. [28, 29, 30, 9, 8, 30] characterize diversity
among neurons with orthogonality, and regularize the neu-
ral network by promoting the orthogonality. Inspired by
the Thomson problem in physics, MHE [12] defines the hy-
perspherical energy to characterize the diversity on a unit
hypersphere and shows significant and consistent improve-
ment in supervised learning tasks. There are two MHE vari-
ants in [12]: full-space MHE and half-space MHE. Com-
pared to full-space MHE, the half-space variant [12] further
eliminates the collinear redundancy by constructing virtual
neurons with the opposite direction to the original ones and
then minimizing their hyperspherical energy together. The
importance of regularizing angular information is also dis-
cussed in [31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

3. Compressive MHE
3.1. Revisiting Standard MHE

MHE characterizes the diversity of N neurons (WN =
{w1, · · · ,wN ∈Rd+1}) on a unit hypersphere using hyper-
spherical energy which is defined as

Es,d(ŵi|Ni=1) =
N∑

i=1

N∑
j=1,j 6=i

fs
(
‖ŵi − ŵj‖

)
=

{ ∑
i 6=j ‖ŵi − ŵj‖−s , s > 0∑
i6=j log

(
‖ŵi − ŵj‖−1

)
, s = 0

(1)

where ‖·‖ denotes `2 norm, fs(·) is a decreasing real-
valued function (we use fs(z)=z−s, s>0, i.e., Riesz s-

kernels), and ŵi=
wi

‖wi‖ is the i-th neuron weight projected
onto the unit hypersphere Sd={v∈Rd+1| ‖v‖=1}. For
convenience, we denote ŴN ={ŵ1, · · · , ŵN ∈Sd}, and
Es=Es,d(ŵi|Ni=1). Note that, each neuron is a convolution
kernel in CNNs. MHE minimizes the hyperspherical energy
of neurons using gradient descent during back-propagation,
and MHE is typically applied to the neural network in a
layer-wise fashion. We first write down the gradient of E2

w.r.t ŵi and make the gradient to be zero:

∇ŵi
E2 =

N∑
j=1,j 6=i

−2(ŵi − ŵj)

‖ŵi − ŵj‖4
= 0⇒ ŵi =

∑N
j=1,j 6=i αjŵj∑N

j=1,j 6=i αj

(2)

where αj=‖ŵi−ŵj‖−4. We use toy and informal exam-
ples to show that high dimensional space (i.e., d is large)
leads to much more stationary points than low-dimensional
one. Assume there areK=K1+K2 stationary points in to-
tal for ŴN to satisfy Eq. 2, where K1 denotes the number
of stationary points in which every element in the solution
is distinct and K2 denotes the number of the rest stationary
points. We give two examples: (i) For (d+2)-dimensional
space, we can extend the solutions in (d+1)-dimensional
space by introducing a new dimension with zero value. The
new solutions satisfy Eq. 2. Because there are d+2 ways to
insert the zero, we have at least (d+2)K stationary points
in (d+2)-dimensional space. (ii) We denote K ′1=

K1

(d+1)!

as the number of unordered sets that construct the station-
ary points. In (2d+2)-dimensional space, we can construct
ŵE
j = 1√

2
{ŵj ; ŵj}∈S2d+1, ∀j that satisfies Eq. 2. There-

fore, there are at least (2d+2)!
2d+1 K ′1+K2 stationary points for

ŴN in (2d+2)-dimensional space, and besides this con-
struction, there are much more stationary points. Therefore,
MHE have far more stationary points in higher dimensions.

3.2. General Framework
To overcome MHE’s drawbacks in high dimensional

space, we propose the compressive MHE that projects the
neurons to a low-dimensional space and then minimizes the
hyperspherical energy of the projected neurons. In general,
CoMHE minimizes the following form of energy:

E
C
s (ŴN ) :=

N∑
i=1

N∑
j=1,j 6=i

fs

(
‖g(ŵi)− g(ŵj)‖

)
(3)

where g :Sd→Sk takes a normalized (d+1)-dimensional
input and outputs a normalized (k+1)-dimensional vector.
g(·) can be either linear or nonlinear mapping. We only con-
sider the linear case here. Using multi-layer perceptrons as
g(·) is one of the simplest nonlinear cases. Similar to MHE,
CoMHE also serves as a regularization in neural networks.

3.3. Random Projection for CoMHE
Random projection is in fact one of the most straightfor-

ward way to reduce dimensionality while partially preserv-
ing the angular information. More specifically, we use a



random mapping g(v)= Pv
‖Pv‖ where P ∈R(k+1)×(d+1) is

a Gaussian distributed random matrix (each entry follows
i.i.d. normal distribution). In order to reduce the variance,
we use C random projection matrices to project the neurons
and compute the hyperspherical energy separately:

E
R
s (ŴN ) :=

1

C

C∑
c=1

N∑
i=1

N∑
j=1,j 6=i

fs

( ∥∥∥∥ Pcŵi

‖Pcŵi‖
−

Pcŵj

‖Pcŵj‖

∥∥∥∥) (4)

where Pc, ∀c is a random matrix with each entry following
the normal distribution N (0, 1). According to the proper-
ties of normal distribution [41], every normalized row of
the random matrix P is uniformly distributed on a hyper-
sphere Sd, which indicates that the projection matrix P is
able to cover all the possible subspaces. Multiple projec-
tion matrices can also be interpreted as multi-view projec-
tion, because we are making use of information from mul-
tiple projection views. In fact, we do not necessarily need
to average the energy for multiple projections, and instead
we can use maximum operation (or some other meaning-
ful aggregation operations). Then the objective becomes
maxc

∑N
i=1

∑N
j=1,j 6=i fs(‖

Pcŵi

‖Pcŵi‖ −
Pcŵj

‖Pcŵj‖‖). Consider-
ing that we aim to minimize this objective, the problem is in
fact a min-max optimization. Note that, we will typically re-
initialize the random projection matrices every certain num-
ber of iterations to avoid trivial solutions. Most importantly,
using RP can provably preserve the angular similarity.

3.4. Angle-preserving Projection for CoMHE
Recall that we aim to find a projection to project the neu-

rons to a low-dimensional space that best preserves angular
information. We transform the goal to an optimization:

P
?
= argmin

P
LP :=

∑
i6=j

(θ(ŵi,ŵj)
− θ(Pŵi,Pŵj)

)
2 (5)

where P ∈R(k+1)×(d+1) is the projection matrix and
θ(v1,v2) denotes the angle between v1 and v2. For imple-
mentation convenience, we can replace the angle with the
cosine value (e.g., use cos(θ(ŵi,ŵj)) to replace θ(ŵi,ŵj)),
so that we can directly use the inner product of normalized
vectors to measure the angular similarity. With P̂ obtained
in Eq. 5, we use a nested loss function:

E
A
s (ŴN ,P

?
) :=

N∑
i=1

N∑
j=1,j 6=i

fs
( ∥∥∥∥ P ?ŵi

‖P ?ŵi‖
−

P ?ŵj

‖P ?ŵj‖

∥∥∥∥ )
s.t. P

?
= argmin

P

∑
i6=j

(θ(ŵi,ŵj)
− θ(Pŵi,Pŵj)

)
2

(6)

for which we propose two different ways to optimize the
projection matrix P . We can approximate P ? using a few
gradient descent updates. Specifically, we use two different
ways to perform the optimization. Naively, we use a few
gradient descent steps to update P in order to approximate
P ? and then update WN , which proceeds alternately. The
number of iteration steps that we use to update P is a hyper-
paremter and needs to be determined by cross-validation.

Besides the naive alternate one, we also use a different op-
timization of WN by unrolling the gradient update of P .

Alternating optimization. The alternating optimization
is to optimize P alternately with the network parameters
WN . Specifically, in each iteration of updating the network
parameters, we update P every number of inner iterations
and use it as an approximation to P ? (the error depends on
the number of gradient steps we take). Essentially, we are
alternately solving two separate optimization problems for
P and WN with gradient descent.

Unrolled optimization. Instead of naively updating
WN with approximate P ? in the alternating optimization,
the unrolled optimization further unrolls the update rule of
P and embed it within the optimization of network param-
eters WN . If we denote the CoMHE loss with a given pro-
jection matrix P as EA

s (WN ,P ) which takes WN and P
as input, then the unrolled optimization is essentially op-
timizing EA

s (WN ,P −η · ∂LP

∂P ). It can also be viewed as
minimizing the CoMHE loss after a single step of gradient
descent w.r.t. the projection matrix. This optimization in-
cludes the computation of second-order partial derivatives.
Note that, it is also possible to unroll multiple gradient de-
scent steps. Similar unrolling is also applied in [42, 43, 44].

3.5. Notable CoMHE Variants
We provide more interesting CoMHE variants as an ex-

tension. We will have some preliminary empirical study on
these variants, but our main focus is still on RP and AP.

Adversarial Projection for CoMHE. We consider a
novel CoMHE variant that adversarially learns the projec-
tion. The intuition behind is that we want to learn a projec-
tion basis that maximizes the hyperspherical energy while
the final goal is to minimize this maximal energy. With such
intuition, we can construct a min-max optimization:

min
ŴN

max
P

E
V
s (ŴN ,P ) :=

N∑
i=1

N∑
j=1,j 6=i

fs

( ∥∥∥∥ Pŵi

‖Pŵi‖
−

Pŵj

‖Pŵj‖

∥∥∥∥) (7)

which can be solved by gradient descent similar to [45].
From a game-theoretical perspective, P and ŴN can be
viewed as two players that are competing with each other.
However, due to the instability of solving the min-max
problem, the performance of this projection is unstable.

Group CoMHE. Group CoMHE is a very special case
in the CoMHE framework. The basic idea is to divide the
weights of each neuron into several groups and then min-
imize the hyperspherical energy within each group. For
example in CNNs, group MHE divides the channels into
groups and minimizes within each group the MHE loss.
Specifically, the objective function of group CoMHE is

E
G
s (ŴN ) :=

1

C

C∑
c=1

N∑
i=1

N∑
j=1,j 6=i

fs

( ∥∥∥∥ Pcŵi

‖Pcŵi‖
−

Pcŵj

‖Pcŵj‖

∥∥∥∥) (8)

where Pc is a diagonal matrix with every diagonal entry be-
ing either 0 or 1, and

∑
c Pc=I (in fact, this is optional).



There are multiple ways to divide groups for the neurons,
and typically we will divide groups according to the chan-
nels, similar to [46]. More interestingly, one can also divide
the groups in a stochastic fashion.

3.6. Shared Projection Basis in Neural Networks
In general, we usually need different projection bases for

neurons in different layers of the neural network. However,
we find it beneficial to share some projection bases across
different layers. We only share the projection matrix for the
neurons in different layers that have the same dimensional-
ity. For example in a neural network, if the neurons in the
first layer have the same dimensionality with the neurons in
the second layer, we will share their projection matrix that
reduces the dimensionality. Sharing the projection basis can
effectively reduce the number of projection parameters and
may also reduce the inconsistency within the hyperspherical
energy minimization of projected neurons in different lay-
ers. Most importantly, it can empirically improve the net-
work generalizability while using much fewer parameters
and saving more computational overheads.

4. Theoretical Insights
4.1. Angle Preservation

We start with highly relevant properties of random pro-
jection and then delve into the angular preservation.

Lemma 1 (Mean Preservation of Random Projection).
For any w1,w2 ∈ Rd and any random Gaussian dis-
tributed matrix P ∈ Rk×d where Pij = 1√

n
rij , if

rij , ∀i, j are i.i.d. random variables from N (0, 1), we have
E(〈Pw1,Pw2〉) = 〈w1,w2〉.

This lemma indicates that the mean of randomly pro-
jected inner product is well preserved, partially justifying
why using random projection actually makes senses.

Johnson-Lindenstrauss lemma (JLL) [47, 48] (in Ap-
pendix D) establishes a guarantee for the Euclidean distance
between randomly projected vectors. However, JLL does
not provide the angle preservation guarantees. It is nontriv-
ial to provide a guarantee for angular similarity from JLL.

Theorem 1 (Angle Preservation I). Given w1,w2 ∈ Rd,
P ∈ Rk×d is a random projection matrix that has i.i.d.
0-mean σ-subgaussian entries, and Pw1,Pw2 ∈ Rk are
the randomly projected vectors of w1,w2 under P . Then
∀ε ∈ (0, 1), we have that

cos(θ(w1,w2))− ε
1 + ε

< cos(θ(Pw1,Pw2)) <
cos(θ(w1,w2)) + ε

1− ε
(9)

which holds with probability
(
1− 2 exp(−kε

2

8 )
)2

.

Theorem 2 (Angle Preservation II). Given w1,w2 ∈ Rd,
P ∈ Rk×d is a Gaussian random projection matrix where
Pij=

1√
n
rij (rij , ∀i, j are i.i.d. random variables from

N (0, 1)), and Pw1,Pw2 ∈ Rk are the randomly pro-
jected vectors of w1,w2 under P . Then ∀ε ∈ (0, 1) and
w>1 w2 > 0, we have that

1 + ε

1− ε
cos(θ(w1,w2))−

2ε

1− ε
< cos(θ(Pw1,Pw2))

<
1− ε
1 + ε

cos(θ(w1,w2)) +
1 + 2ε

1 + ε
−
√

(1− ε2)
1 + ε

(10)

which holds with probability 1− 6 exp(−k2 (
ε2

2 −
ε3

3 )).

Theorem 1 is one of our main theoretical results and re-
veals that the angle between randomly projected vectors is
well preserved. Note that, the parameter σ of the subgaus-
sian distribution is not related to our bound for the angle,
so any Gaussian distributed random matrix has the prop-
erty of angle preservation. The projection dimension k is
related to the probability that the angle preservation bound
holds. Theorem 2 is a direct result from [49]. It again shows
that the angle between randomly projected vectors is prov-
ably preserved. Both Theorem 1 and Theorem 2 give upper
and lower bounds for the angle between randomly projected
vectors. If θ(w1,w2)>arccos( ε+3ε2

3ε+ε2 ), then the lower bound
in Theorem 1 is tighter than the lower bound in Theorem 2.
If θ(w1,w2)>arccos( 1−3ε

2−(1−ε)
√
1−ε2

3ε−ε2 ), the upper bound
in Theorem 1 is tighter than the upper bound in Theorem 2.
To conclude, Theorem 1 gives tighter bounds when the an-
gle of original vectors is large. Since AP is randomly ini-
tialized every certain number of iterations and minimizes
the angular difference before and after the projection, AP
usually performs better than RP in preserving angles. With-
out the angle-preserving optimization, AP reduces to RP.

4.2. Statistical Insights
We can also draw some theoretical intuitions from spher-

ical uniform testing [50] in statistics. Spherical uniform
testing is a nonparametric statistical hypothesis test that
checks whether a set of observed data is generated from a
uniform distribution on a hypersphere or not. Random pro-
jection is in fact an important tool [50] in statistics to test the
uniformity on hyperspheres, while our goal is to promote
the same type of hyperspherical uniformity (i.e., diversity).
Specifically, we have N random samples w1, · · · ,wN of
Sd-valued random variables, and the random projection p
which is another random variable independent of wi, ∀i and
uniformly distributed on Sd. The projected points of wi, ∀i
is yi=p>wi, ∀i. The distribution of yi, ∀i uniquely deter-
mines the distribution of w1, as is specified by Theorem 3.

Theorem 3 (Unique Distribution Determination of Random
Projection). Let w be a Sd-valued random variable and p
be a random variable that is uniformly distributed on Sd
and independent of w. With probability one, the distribu-
tion of w is uniquely determined by the distribution of the
projection of w on p. More specifically, if w1 and w2 are
Sd-valued random variables, independent of p and we have



a positive probability for the event that p takes a value p0

such that the two distributions satisfy p>0 w1 ∼ p>0 w2, then
w1 and w2 are identically distributed.

Theorem 3 shows that the distributional information
is well preserved after random projection, providing the
CoMHE framework a statistical intuition and foundation.
We emphasize that the randomness here is in fact very cru-
cial. For a fixed projection p0, Theorem 3 does not hold in
general. As a result, random projection for CoMHE is well
motivated from the statistical perspective.

4.3. Insights from Random Matrix Theory
Random projection may also impose some implicit reg-

ularization to learning the neuron weights. [51] proves that
random projection serves as a regularizer for the Fisher lin-
ear discrimination classifier. From metric learning perspec-
tive, the inner product between neurons w>1 w2 will become
w>1 P

>Pw2 where P>P defines a specific form of (low-
rank) similarity [52, 39]. [53] proves that random projection
satisfying the JLL w.h.p also satisfies the restricted isome-
try property (RIP) w.h.p under sparsity assumptions. In this
case, the neuron weights can be well recovered [54, 55].
These results imply that randomly projected neurons in
CoMHE may implicitly regularize the network.

5. Discussions and Extensions
Bilateral projection for CoMHE. If we view the neu-

rons in one layer as a matrix W ={w1, · · · ,wn}∈Rm×n
where m is the dimension of neurons and n is the num-
ber of neurons, then the projection considered throughout
the paper is to left-multiply a projection matrix P1∈Rr×m
to W . In fact, we can further reduce the number of neu-
rons by right-multiplying an additional projection matrix
P2∈Rn×r to W . Specifically, we denote that Y1=P1W
and Y2=WP2. Then we can apply the MHE regulariza-
tion separately to column vectors of Y1 and Y2. The fi-
nal neurons are still W . More interestingly, we can also
approximate W with a low-rank factorization [56]: W̃ =
Y2(P1Y2)

−1Y1∈Rm×n. It inspires us to directly use two
set of parameters Y1 and Y2 to represent the equivalent neu-
rons W̃ and apply the MHE regularization separately to
their column vectors. Different from the former case, we
use W̃ as the final neurons. More details are in Appendix F.

Constructing random projection matrices. In random
projection, we typically construct random matrices with
each element drawn i.i.d. from a normal distribution. How-
ever, there are many more choices for constructing a random
matrices that can provably preserve distance information.
For example, we have subsampled randomized Hadamard
transform [57] and count sketch-based projections [58].

Comparison to existing works. One of the widely
used regularizations is the orthonormal regularization [32,
59] that minimizes ‖W>W −I‖F where W denotes the

weights of a group of neurons with each column being one
neuron and I is an identity matrix. [9, 29] are also built
upon orthogonality. In contrast, both MHE and CoMHE
do not encourage orthogonality among neurons and instead
promote hyperspherical uniformity and diversity.

Randomness improves generalization. Both RP and
AP introduce randomness to CoMHE, and the empirical re-
sults show that such randomness can greatly benefit the net-
work generalization. It is well-known that stochastic gradi-
ent is one of the key ingredients that help neural networks
generalize well to unseen samples. Interestingly, random-
ness in CoMHE also leads to a stochastic gradient. [17]
also theoretically shows that randomness helps generaliza-
tion, partially justifying the effectiveness of CoMHE.

6. Experiments and Results
6.1. Image Recognition

We perform image recognition to show the improvement
of regularizing CNNs with CoMHE. Our goal is to show the
superiority of CoMHE rather than achieving state-of-the-art
accuracies on particular tasks. For all the experiments on
CIFAR-10 and CIFAR-100 in the paper, we use the same
data augmentation as [1, 34]. For ImageNet-2012, we use
the same data augmentation in [32]. We train all the net-
works using SGD with momentum 0.9. All the networks
use BN [4] and ReLU if not otherwise specified. By de-
fault, all CoMHE variants are built upon half-space MHE.
Experimental details are given in each subsection and Ap-
pendix A. More experiments are given in Appendix I,H,J.

6.1.1 Ablation Study and Exploratory Experiments

Method Error (%)

Baseline 28.03
Orthogonal 27.01

SRIP [9] 25.80
MHE [12] 26.75

HS-MHE [12] 25.96

G-CoMHE 25.08
Adv-CoMHE 25.09
RP-CoMHE 24.39

RP-CoMHE (max) 24.77
AP-CoMHE (alter.) 24.95
AP-CoMHE (unroll) 24.33

Table 1: CoMHE variants on C-100.

Variants of CoMHE. We
compare different variants of
CoMHE with the same plain
CNN-9 (Appendix A). Specif-
ically, we evaluate the base-
line CNN without any regular-
ization, half-space MHE (HS-
MHE) which is the best MHE
variant from [12], random pro-
jection CoMHE (RP-CoMHE),
RP-CoMHE (max) that uses
max instead of average for loss aggregation, angle-
preserving projection CoMHE (AP-CoMHE), adversarial
projection CoMHE (Adv-CoMHE) and group CoMHE (G-
CoMHE) on CIFAR-100. For RP, we set the projection di-
mension to 30 (i.e., k=29) and the number of projection
to 5 (i.e., C=5). For AP, the number of projection is 1
and the projection dimension is set to 30. For AP, we eval-
uate both alternating optimization and unrolled optimiza-
tion. In alternating optimization, we update the projection
matrix every 10 steps of network update. In unrolled op-
timization, we only unroll one-step gradient in the opti-



mization. For G-CoMHE, we construct a group with ev-
ery 8 consecutive channels. All these design choices are
obtained using cross-validation. We will also study how
these hyperparameters affect the performance in the follow-
ing experiments. The results in Table 1 show that all of
our proposed CoMHE variants can outperform the original
half-space MHE by a large margin. The unrolled optimiza-
tion in AP-CoMHE shows the significant advantage over
alternating one and achieves the best accuracy. Both Adv-
CoMHE and G-CoMHE achieve decent performance gain
over HS-MHE, but not as good as RP-CoMHE and AP-
CoMHE. Therefore, we will mostly focus on RP-CoMHE
and AP-CoMHE in the remaining experiments.

Projection Dimension 10 20 30 40 80

RP-CoMHE 25.48 25.32 24.60 24.75 25.46
AP-CoMHE (alter.) 25.21 24.60 24.95 24.97 24.99

AP-CoMHE (unroll.) 25.32 24.59 24.33 24.93 25.12

Table 2: Error (%) on CIFAR-100 under different dimension of projection.

Dimension of projection. We evaluate how the dimen-
sion of projection (i.e., k) affects the performance. We
use the plain CNN-9 as the backbone network and test
on CIFAR-100. We fix the number of projections in RP-
CoMHE to 20. Because AP-CoMHE does not need to
use multiple projections to reduce variance, we only use
one projection in AP-CoMHE. Results are given in Ta-
ble 2. In general, RP-CoMHE and AP-CoMHE with differ-
ent projection dimensions can consistently and significantly
outperform the half-space MHE, validating the effective-
ness and superiority of the proposed CoMHE framework.
Specifically, we find that both RP-CoMHE and AP-CoMHE
usually achieve the best accuracy when the projection di-
mension is 20 or 30. Since the unrolled optimization in AP-
CoMHE is consistently better than the alternating optimiza-
tion, we stick to the unrolled optimization for AP-CoMHE
in the remaining experiments if not otherwise specified.

# Proj. RP-CoMHE AP-CoMHE

1 25.11 24.33
5 24.39 24.34
10 25.11 24.36
20 24.60 24.38
30 24.82 24.52
80 24.92 24.56

Table 3: Error (%) on CIFAR-100 un-
der different numbers of projections.

Number of projections.
We evaluate RP-CoMHE un-
der different numbers of pro-
jections. We use the plain
CNN-9 as the baseline and test
on CIFAR-100. Results in Ta-
ble 3 show that the perfor-
mance of RP-CoMHE is gen-
erally not very sensitive to the number of projections. Sur-
prisingly, we find that it is not necessarily better to use more
projections for variance reduction. Our experiment show
that using 5 projections can achieve the best accuracy. It
may be because large variance can help the solution escape
bad local minima in the optimization. Note that, we gener-
ally do not use multiple projections in AP-CoMHE, because
AP-CoMHE optimizes the projection and variance reduc-
tion is unnecessary. Our results do not show performance
gain by using multiple projections in AP-CoMHE.

Width t = 1 t = 2 t = 4 t = 8 t = 16 t = 20

Baseline 47.72 38.64 28.13 24.95 24.44 23.77
MHE [12] 36.84 30.05 26.75 24.05 23.14 22.36

HS-MHE [12] 35.16 29.33 25.96 23.38 21.83 21.22

RP-CoMHE 34.73 28.92 24.39 22.44 20.81 20.62
AP-CoMHE 34.89 29.01 24.33 22.6 20.72 20.50

Table 4: Error (%) on CIFAR-100 with different network width.

Network width. We evaluate RP-CoMHE and AP-
CoMHE with different network width on CIFAR-100. We
use the plain CNN-9 as our backbone network architecture,
and set its filter number in Conv1.x, Conv2.x and Conv3.x
(see Appendix A) to 16× t, 32× t and 64× t, respectively.
Specifically, we test the cases where t = 1, 2, 4, 8, 16. Tak-
ing t = 2 as an example, then the filter numbers in Conv1.x,
Conv2.x and Conv3.x are 32, 64 and 128, respectively. For
RP, we set the projection dimension to 30 and the number
of projection to 5. For AP, the number of projection is 1 and
the projection dimension is set to 30. The results are shown
in Table 4. Note that, we use the unrolled optimization in
AP-CoMHE. From Table 4, one can observe that the perfor-
mance gains of both RP-CoMHE and AP-CoMHE are very
consistent and significant. With wider network, CoMHE
also achieves better accuracy. Compared to the strong re-
sults of half-space MHE, CoMHE still obtains more than
1% accuracy boost under different network width.

Depth CNN-6 CNN-9 CNN-15

Baseline 32.08 28.13 N/C
MHE [12] 28.16 26.75 26.90

HS-MHE [12] 27.56 25.96 25.84

RP-CoMHE 26.73 24.39 24.21
AP-CoMHE 26.55 24.33 24.55

Table 5: Error on CIFAR-100 with different
network depth. N/C denotes Not Converged.

Network depth. We
evaluate RP-CoMHE
and AP-CoMHE with
different network depth
on CIFAR-100. We use
three plain CNNs with
6, 9 and 15 convolution
layers, respectively. For all the networks, we set the filter
number in Conv1.x, Conv2.x and Conv3.x to 64, 128 and
256, respectively. Detailed network architectures are given
in Appendix A. For RP, we set the projection dimension to
30 and the number of projection to 5. For AP, the number
of projection is 1 and the projection dimension is set to
30. Table 5 shows that both RP-CoMHE and AP-CoMHE
can outperform half-space MHE by a considerable margin
while regularizing a plain CNN with different depth.

x104

Figure 2: Hyperspherical energy during
training. All networks are initialized with the
same random weights, so the hyperspherical
energy is the same before the training starts.

Effectiveness of opti-
mization. To verify that
our CoMHE can better
minimize the hyperspher-
ical energy, we compute
the hyperspherical energy
E2 (Eq. 1) for baseline
CNN and CNN regular-
ized by orthogonal regu-
larization, HS-MHE, RP-
CoMHE and AP-CoMHE
during training. Note that, we compute the original hyper-
spherical energy rather than the energy after projection. All



the networks use exactly the same initialization (the initial
hyperspherical energy is the same). The results are averaged
over five independent runs. We show the hyperspherical en-
ergy after the 20000-th iteration, because at the beginning
of the training, hyperspherical energy fluctuates dramati-
cally and is unstable. Interested readers can refer to Ap-
pendix G for the complete energy dynamics. From Fig. 2,
one can observe that both RP-CoMHE and AP-CoMHE can
better minimize the hyperspherical energy. RP-CoMHE can
achieve the lowest energy with smallest standard deviation.
From the absolute scale, the optimization gain is also very
significant. In the high-dimensional space, the variance of
hyperspherical energy is usually small (already close to the
smallest energy value) and is already difficult to minimize.

Method C-10 C-100

ResNet-110 [1] 6.61 25.16
ResNet-1001 [60] 4.92 22.71

Baseline 5.19 22.87
Orthogonal [29] 5.02 22.36

SRIP [9] 4.75 22.08
MHE [12] 4.72 22.19

HS-MHE [12] 4.66 22.04
RP-CoMHE 4.59 21.82
AP-CoMHE 4.57 21.63

Table 6: Error (%) using ResNets.

ResNet with CoMHE. All
the above experiments are per-
formed using VGG-like plain
CNNs, so we use the more
powerful ResNet [1] to show
that CoMHE is architecture-
agnostic. We use the same ex-
perimental setting in [60] for
fair comparison. We use a
standard ResNet-32 as our baseline and the network ar-
chitecture is specified in Appendix A. From the results
in Table 6, one can observe that both RP-CoMHE and
AP-CoMHE can consistently outperform half-space MHE,
showing that CoMHE can boost the performance across
different network architectures. More interestingly, the
ResNet-32 regularized by CoMHE achieves impressive ac-
curacy and is able to outperform the 1001-layer ResNet by
a large margin. Additionally, we note that from Table 4, we
can regularize a plain VGG-like 9-layer CNN with CoMHE
and achieve 20.81% error rate, which is nearly 2% improve-
ment over the 1001-layer ResNet.

6.1.2 Large-scale Recognition on ImageNet-2012
Method Res-18 Res-34 Res-50

baseline 32.95 30.04 25.30
Orthogonal [29] 32.65 29.74 25.19
Orthnormal [32] 32.61 29.75 25.21

SRIP [9] 32.53 29.55 24.91
MHE [12] 32.50 29.60 25.02

HS-MHE [12] 32.45 29.50 24.98

RP-CoMHE 31.90 29.38 24.51
AP-CoMHE 31.80 29.32 24.53

Table 7: Top-1 center crop error on ImageNet.

We evaluate CoMHE
for image recognition
on ImageNet-2012 [61].
We perform the exper-
iment using ResNet-18,
ResNet-34 and ResNet-
50, and then report the
top-1 validation error
(center crop) in Table 7.
Our results show consistent and significant performance
gain of CoMHE in all ResNet variants. Compared to the
baselines, CoMHE can reduce the top-1 error for more than
1%. Since the computational overhead of CoMHE is almost
neglectable, the performance gain is obtained without many
efforts. Most importantly, as a plug-in regularization,
CoMHE is shown to be architecture-agnostic and produces
considerable accuracy gain in most circumstances.

Baseline CoMHE
Figure 3: Visualized first-layer filters.

Besides the accuracy im-
provement, we also visualize
in Fig. 3 the 64 filters in
the first-layer learned by
the baseline ResNet and
the CoMHE-regularized
ResNet. The filters look quite different after we regularize
the network using CoMHE. Each filter learned by baseline
focuses on a particular local pattern (e.g., edge, color and
shape) and each one has a clear local semantic meaning. In
contrast, filters learned by CoMHE focuses more on edges,
textures and global patterns which do not necessarily have
a clear local semantic meaning. However, from a represen-
tation basis perspective, having such global patterns may
be beneficial to the recognition accuracy. We also observe
that filters learned by CoMHE pay less attention to color.

6.2. Point Cloud Recognition
Method PN PN (T) PN++

Original 87.1 89.20 90.07
MHE [12] 87.31 89.33 90.25

HS-MHE [12] 87.44 89.41 90.31
RP-CoMHE 87.82 89.69 90.52
AP-CoMHE 87.85 89.70 90.56

Table 8: Accuracy (%) on ModelNet-40.

We evaluate CoMHE
on point cloud recogni-
tion. Our goal is to vali-
date the effectiveness of
CoMHE on a totally dif-
ferent network architec-
ture with a different form of input data structure, rather
than achieving state-of-the-art performance on point cloud
recognition. To this end, we conduct experiments on widely
used neural networks that handles point clouds: Point-
Net [62] (PN) and PointNet++ [63] (PN++). We com-
bine half-space MHE, RP-CoMHE and AP-CoMHE into
PN (without T-Net), PN (with T-Net) and PN++. More
experimental details are given in Appendix A. We test the
performance on ModelNet-40 [64]. Specifically, since PN
can be viewed as 1×1 convolutions before the max pool-
ing layer, we can apply all these MHE variants similarly to
CNN. After the max pooling layer, there is a standard fully
connected network where we can still apply the MHE vari-
ants. We compare the performance of regularizing PN and
PN++ with half-space MHE, RP-CoMHE or AP-CoMHE.
Table 8 shows that all MHE variants consistently improve
PN and PN++, while RP-CoMHE and AP-CoMHE again
perform the best among all. We demonstrate that CoMHE
is generally useful for different types of input data (not limit
to images) and different types of neural networks. CoMHE
is also useful in graph neural networks (Appendix J).

7. Concluding Remarks
Since naively minimizing hyperspherical energy yields

suboptimal solutions, we propose a novel framework which
projects the neurons to suitable spaces and minimizes the
energy there. Experiments validate CoMHE’s superiority.
Acknowledgements. The research is partially supported by NSF BigData
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Appendix

A. Experimental Details

Layer CNN-6 CNN-9 CNN-15

Conv1.x [3×3, 64]×2 [3×3, 64]×3 [3×3, 64]×5
Pool1 2×2 Max Pooling, Stride 2

Conv2.x [3×3, 128]×2 [3×3, 128]×3 [3×3, 128]×5
Pool2 2×2 Max Pooling, Stride 2

Conv3.x [3×3, 256]×2 [3×3, 256]×3 [3×3, 256]×5
Pool3 2×2 Max Pooling, Stride 2

Fully Connected 256 256 256

Table 9: Our plain CNN architectures with different convolutional layers. Conv1.x, Conv2.x and Conv3.x denote convolution units that may contain multiple
convolution layers. E.g., [3×3, 64]×3 denotes 3 cascaded convolution layers with 64 filters of size 3×3.

Layer ResNet-32 for CIFAR-10/100 ResNet-18 for ImageNet-2012 ResNet-34 for ImageNet-2012

Conv0.x N/A [7×7, 64], Stride 2
3×3, Max Pooling, Stride 2

[7×7, 64], Stride 2
3×3, Max Pooling, Stride 2

Conv1.x

[3×3, 64]×1[
3× 3, 64

3× 3, 64

]
× 5

[
3× 3, 64

3× 3, 64

]
× 2

[
3× 3, 64

3× 3, 64

]
× 3

Conv2.x

[
3× 3, 128

3× 3, 128

]
× 5

[
3× 3, 128

3× 3, 128

]
× 2

[
3× 3, 128

3× 3, 128

]
× 4

Conv3.x

[
3× 3, 256

3× 3, 256

]
× 5

[
3× 3, 256

3× 3, 256

]
× 2

[
3× 3, 256

3× 3, 256

]
× 6

Conv4.x N/A

[
3× 3, 512

3× 3, 512

]
× 2

[
3× 3, 512

3× 3, 512

]
× 3

Average Pooling

Table 10: Our ResNet architectures with different convolutional layers. Conv0.x, Conv1.x, Conv2.x, Conv3.x and Conv4.x denote convolution units that
may contain multiple convolutional layers, and residual units are shown in double-column brackets. Conv1.x, Conv2.x and Conv3.x usually operate on
different size feature maps. These networks are essentially the same as [1], but some may have a different number of filters in each layer. The downsampling
is performed by convolutions with a stride of 2. E.g., [3×3, 64]×4 denotes 4 cascaded convolution layers with 64 filters of size 3×3, S2 denotes stride 2.

Image recognition settings. The network architectures used in the paper are elaborated in Table 9 and Table 10. For
CIFAR-10 and CIFAR-100, we use batch size 128. We start with learning rate 0.1, divide it when the performance is
saturated. For ImageNet-2012, we use batch size 64 and start with learning rate 0.1. The learning rate is divided by 10 when
the performance is saturated, and the training is terminated at 500k iterations. For ResNet-50 on ImageNet-2012, we use
exactly the same architecture as [1]. Note that, for all the compared methods, we always use the best possible hyperparameters
to make sure that the comparison is fair. The baseline has exactly the same architecture and training settings as the one that
CoMHE uses. For both half-space MHE and all the variants of CoMHE in hidden layers, we set the weighting hyperparameter
as 1 in all experiments. [12] already shows that MHE type of losses are not senstitive to the weighting hyperparameter.
We use 1e−5 for the orthonormal and orthogonal regularizations (the hyperparameter is obtained via cross-validation). If
not otherwise specified, standard `2 weight decay (1e−4) is applied to all the neural network including baselines and the
networks that use MHE regularization. Note that, all the neuron weights in the neural networks used in the paper are not
normalized (unless otherwise specified), but both MHE and CoMHE will normalize the neuron weights while computing the
regularization loss. For all experiments, we use s = 2 in both MHE and CoMHE. As a result, CoMHE does not need to
modify any component of the original neural networks, and it can simply be viewed as an extra regularization loss that can
boost the performance. All the network architectures are implemented by ourselves, so there might be performance difference
between our implementation and the original paper due to some different network and optimization hyperparameters. For
example, due to the limitation of computation resources, our batch size for ImageNet-2012 is 64 batch size, which might has
some performance loss. However, the network and training settings for the baseline and all the compared regularizations are
the same, which ensures the fairness of our experiments. In ImageNet classification, we emphasize that our purpose is to
compare the gain brought by different regularizations rather than achieving the state-of-the-art performance. We implement
the data augmentation in the ImageNet experiment, following AlexNet [65] and SphereNet [32], so the accuracy may be
lower than using the more complicated data augmentation used in original ResNet [1].

Point cloud recognition settings. For all the PointNet and PointNet++ experiments, we exactly follow the same setting



in the original papers [62, 63] and their official repositories . Specifically, we combine CoMHE regularization to neurons in
all the 1×1 convolution layers before the max pooling layer and the multi-layer perceptron classifier after the max pooling
layer. All the regularization is added without changing any components in PointNet. For PointNet experiments, we use
point number 1024, batch size 32 and Adam optimizer started with learning rate 0.001, the learning rate will decay by 0.7
every 200k iterations, and the training is terminated at 250 epochs. For PointNet++ experiments, since the MRG (multi-
resolution grouping) model is not provided in the official repository, we use the SSG (single scale grouping) model as
baseline. Specifically, we use point number 1024, batch size 16 and Adam optimizer started with learning rate 0.001, the
learning rate will decay by 0.7 every 200k iterations, and the training is terminated at 251 epochs. For all experiments, we
use s = 1 in both MHE and CoMHE.

We evaluate on PointNet with T-Net and without T-Net in order to demonstrate that CoMHE is not sensitive to architecture
modifications. We follow all the default hyperparameters used in the official released code, and the only difference is that we
further combine an additional regularization loss for the neurons in each layer. One can observe that CoMHE consistently
performs better than half-space MHE [12].

Besides PointNet, we combine CoMHE to PointNet++ [63] and further show the improvement of generalization introduced
by CoMHE is agnostic to the architecture. We evaluate PointNet++ with and without CoMHE on ModelNet-40. Note that, we
exactly follow the released code in the official repository where PointNet++ uses the single scale grouping model. Because
the original paper [63] uses the multi-resolution grouping model, the baseline performance reported in our paper is not as
good as the accuracy reported in the original paper. However, our purpose is to validate the effectiveness of CoMHE, so
we only focus on the performance gain. One can observe that CoMHE achieves about 0.5% accuracy gain, while half-space
MHE [12] only has about 0.2% accuracy gain.

https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet2

https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet2


B. Experimental Details and Full Results of Different Hyperspherical Minimization Strategies
B.1. General experimental details

Layer CNN-3 CNN-9

Conv1.x [3×3, 32]×1 [3×3, 32]×3
Pool1 2×2 Max Pooling, Stride 2

Conv2.x [3×3, 64]×1 [3×3, 64]×3
Pool2 2×2 Max Pooling, Stride 2

Conv3.x [3×3, 64]×1 [3×3, 64]×3
Pool3 2×2 Max Pooling, Stride 2

Fully Connected 64 64

Table 11: Our small plain CNN architectures with different convolutional layers for the illustrative experiment in Fig. 1. Conv1.x, Conv2.x and Conv3.x
denote convolution units that may contain multiple convolution layers. E.g., [3×3, 64]×3 denotes 3 cascaded convolution layers with 64 filters of size 3×3.

The training details are the same as the CIFAR-100 experiment described in Appendix A, except that we use different
network structure here. All the optimizations of CNNs use the Stochastic gradient descent with momentum 0.9. The number
of iteration and learning rate decay exactly follows the CIFAR-100 experiment in Section 6.1.1. The results in Fig. 1 are
obtained with the CNN-9 described in Table 11. In order to show that the conclusion obtained using CNN-9 is architecture-
agnostic, we also conduct the same experiment on CNN-3. The width of CNN-3 and CNN-9 is smaller than the architectures
we used in Section 6.1.1, because the orthogonal training consumes more GPU memory when the size of convolution kernels
gets larger. Since the width of CNNs is still the same for all the compared regularizations, it will not affect the validity of
our conclusions. For standard, MHE and CoMHE training, the weight decay will be used by default. For rotation training,
the weight decay is no longer needed since it does not need to learn the weights for neurons. Note that, all networks (with
different regularization) are initialized with the same weights and therefore have the same hyperspherical energy at the
beginning.

B.2. Details of different training strategies

Standard Training. In standard training, we use the conventional end-to-end training for all the neurons in the CNN via
back-propagation. The standard training is the same as the way that baselines are trained in Section 6.

Convolution or fully connected layer 
Untrainable weights: {w1,w2,...,wn}

Equivalent layer weights
{Rw1,Rw2,...,Rwn}

Gram-Schmidt Process
R  G-S(R)

Transformation 
Trainable matrix: R

One layer in R/R training

Forward pass

Backward gradient

Figure 4: Illustration of one layer in rotation/reflection training.

Rotation Training. We introduce an interesting baseline here for better comparison to our CoMHE. The core of rotation
training [66] is to learn an orthogonal matrix for the neurons in the same layer with the weights of these neurons being fixed.
Such an orthogonal matrix is learned individually in every layer except the classifier layer (i.e., the final layer that outputs the
class logic). The classifier layer is still learned from scratch via back-propagation. Rotation training is a special case of the
orthogonal over-parameterized training in [66]. Specifically, we denoteN neurons in the i-th (convolution or fully-connected)
layer as {w(i)

1 ,w
(i)
2 , · · · ,w(i)

N } ∈ Rd. After randomly initializing these neuron weights with the method in [67], we will fix
{w(i)

1 ,w
(i)
2 , · · · ,w(i)

N } and make them untrainable during the entire training procedure. We will learn an orthogonal matrix
R(i) ∈ Rd×d for the neurons in the i-th layer such that the equivalent neurons become {R(i)w

(i)
1 ,R(i)w

(i)
2 , · · · ,R(i)w

(i)
N }.

The angle between the j-th neuron and k-th neuron is preserved after the rotation/reflection, because we have

cos(θ(Rwj ,Rwk)) =
(Rwj)

>Rwk

‖Rwj‖ · ‖Rwk‖
=

w>
j wk

‖wj‖ · ‖wk‖
= cos(θ(wj ,wk)). (11)

Therefore, rotation training only learns the orthogonal matrices {R(1),R(2), · · · ,R(L)} for neurons of all the convolution
and fully-connected layers except the classifier layer. This training strategy will always keep the hyperspherical energy the
same during the training process.



For the implementation of rotation training, we use the Gram-Schmidt process to orthonormalizing all the learnable
matrices R(i), ∀i before multiplying them to the neuron weights. Since the Gram-Schmidt process is differentiable, we can
directly insert it to process the learnable matrices R(i), ∀i in the forward pass. We show an overview of forward and backward
pass in one layer of rotation training in Fig. 4 to demonstrate the procedure how we orthonormalize the matrices R(i), ∀i and
apply them to the fixed neuron weights.

MHE Training. MHE training is to train the neurons with both data fitting loss and MHE regularization loss from scratch,
following the same procedure in [12].

CoMHE Training Similar to MHE training, CoMHE training is to train the neurons with both data fitting loss and CoMHE
regularization loss (including RP-CoMHE and AP-CoMHE) from scratch. Details are given in the main paper.

B.3. Experimental results

Experiments on CIFAR-100 with CNN-9 (BatchNorm) (also shown in Fig. 1). We first conduct experiments on CIFAR-
100 with CNN-9 as the backbone architecture. For all the compared methods, we use batch normalization. Note that, the
experimental results here are the extended results of Fig. 1. We compute the hyperspherical energy of N neurons using the
following definition of half-space hyperspherical energy (s = 1) [12] (the same as the regularization loss):

E =
1

2N(2N − 1)

2N∑
i=1

2N∑
j=1,j 6=i

1

‖ŵi − ŵj‖
(12)

where ŵN+i = −ŵi, 0 ≤ i ≤ N . This is the hyperspherical energy of neurons in one layer. The total hyperspherical energy
needs to sum up the energy from all the layers. We show the hyperspherical energy and the accuracy v.s. iteration in Fig. 5.

The results in Fig. 5 shows that rotation training can largely improve the accuracy compared to the baseline, indicating that
the hyperspherical energy can characterize the generalization and lower hyperspherical energy leads to better generalization.
The rotation training is able to perform similarly to HS-MHE, showing the advantage of low hyperspherical energy. It also
shows that the performance of the original MHE (i.e., HS-MHE) can be achieved by a simple rotation/reflection training
strategy.

Experiments on CIFAR-100 with CNN-3 (BatchNorm). To show that the same behavior will also happen in different
network structure, we conduct experiments on CIFAR-100 with a 3-layer CNN as shown in Table 11. Batch normalization
is also used. The results in Fig. 6 confirm that rotation training performs better than the baseline and MHE but still worse
than our proposed CoMHE. The results verify that hyperspherical energy is an important generaliability indicator for trained
networks.

Experiments on CIFAR-100 with CNN-9 (no BatchNorm). To show that batch normalization does not affect our con-
clusion, we also conduct experiments on CIFAR-100 without using batch normalization. We use the CNN-9 architecture as
shown in Table 11. The results in Fig. 7 show that our conclusion holds even without batch normalization. Hyperspherical
energy plays an important role in the network generalization. In general, lower hyperspherical energy leads to better general-
ization, even though such low hyperspherical energy (in rotation training) is achieved by zero-mean Gaussian initialization.

Experiments on CIFAR-10 with CNN-9 (BatchNorm). To show that the same empirical behavior is consistent in
different dataset, we further conduct experiments on CIFAR-10. We use CNN-9 with batch normalization as our backbone
architecture. The results in Fig. 8 show that rotation training still performs much better than the baseline and slightly worse
than CoMHE. Most interestingly, rotation training can even perform better than the original MHE.

B.4. Conclusion and Discussion

We have extensively tested the hyperspherical energy and accuracy of standard, rotation/reflection, MHE, and CoMHE
training under multiple circumstances. The empirical evidences consistently show that hyperspherical energy is of great im-
portance and is able to indicate the potential generalizability of a trained network. Even if we use randomly initialized neurons
with low hyperspherical energy, we can still have impressive performance (better than MHE) if proper rotations/reflections
of these neurons are learned. Note that rotation/reflection will not change the hyperspherical energy. Therefore, how to
effectively minimize the hyperspherical energy is of great significance and is also the central focus of CoMHE.
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Figure 5: Results on CIFAR-100 with CNN-9 (BatchNorm). Left: hyperspherical energy v.s. iteration during the entire training. Middle: hyperspherical
energy v.s. iteration after the 20000-th iterations (with standard deviation). Right: Testing Error on CIFAR-100 (with standard deviation).
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Figure 6: Results on CIFAR-100 with CNN-3 (BatchNorm). Left: hyperspherical energy v.s. iteration during the entire training. Middle: hyperspherical
energy v.s. iteration after the 20000-th iterations (with standard deviation). Right: Testing Error on CIFAR-100 (with standard deviation).
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Figure 7: Results on CIFAR-100 with CNN-9 (no BatchNorm is applied). Left: hyperspherical energy v.s. iteration during the entire training. Middle:
hyperspherical energy v.s. iteration after the 20000-th iterations (with standard deviation). Right: Testing Error on CIFAR-100 (with standard deviation).
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Figure 8: Results on CIFAR-10 with CNN-9 (BatchNorm). Left: hyperspherical energy v.s. iteration during the entire training. Middle: hyperspherical
energy v.s. iteration after the 20000-th iterations (with standard deviation). Right: Testing Error on CIFAR-10 (with standard deviation).



C. Two Random Vectors Are Approximately Orthogonal in High Dimensions
We have two random uniform vectors X

‖X‖ and Y
‖Y ‖ where X and Y are normal distributions. Then the inner product

of these two independent unit vectors is 〈X,Y 〉
‖X‖‖Y ‖ . When n → +∞, according to the law of large numbers, we have that

X√
n
→ 1 almost surely. By the central limit theorem, 〈X,Y 〉√

n
converges in distribution to a standard one-dimensional normal

distribution. Therefore, we have in distribution that
√
n · 〈U ,V 〉 → z (13)

where U = X
‖X‖ , V = Y

‖Y ‖ and z follows a normal distribution. Then for every ε > 0, we have that

P (|〈U ,V 〉|)→ 0 (14)

which implies that the probability that U and V are nearly orthogonal approaches to 1 when n → +∞. Similarly, we can
also conclude that k independent uniform unit vectors on the hypersphere are nearly orthogonal with very high probability
when the dimension becomes higher.

D. Johnson-Lindenstrauss Lemma
Lemma 2 (Johnson-Lindenstrauss Lemma [47, 48]). Let w1, w2 ∈ Rd be vectors, and P ∈ Rk×d, k < d be a random
projection matrix with entries i.i.d. drawn from a 0-mean σ-subgaussian distribution. With Pw1,Pw2 ∈ Rk being the
projected vectors of w1,w2, then, ∀ε ∈ (0, 1),

(1− ε) ‖w1 −w2‖2 kσ2 < ‖Pw1 − Pw2‖2 < (1 + ε) ‖w1 −w2‖2 kσ2 (15)

holds with probability at least 1− 2 exp(−kε
2

8 ).

E. Proofs
In the section, we aim to provide the complete proof for self-containedness.

E.1. Lemma 1

We take the expectation of the inner product between projected vectors:

E(〈Pw1,Pw2〉) =
1

n
E
( n∑
l=1

( d∑
j=1

rlj{w1}j
d∑
i=1

rli{w2}i
))

=
1

n

n∑
l=1

( d∑
j=1

E(r2lj){w1}j{w2}j +
d∑
j=1

E(rlj){w1}j ·
d∑

i6=j:i=1

E(rli){w2}i
)

= 〈w1,w2〉

(16)

where {w1}i is the i-th element of the vector w1, and {w2}i is the i-th element of the vector w2. From the equation, we see
that the lemma is proved.

E.2. Theorem 1

Before proving the the main theorem, we first show a lemma from [48].

Lemma 3 (Dot Product under Random Projection). Let w1,w2 ∈ Rd, P ∈ Rk×d, k < d be a random projection matrix
having i.i.d. 0-mean subgaussian entries with parameter σ2, and Pw1,Pw2 be the images of w1,w2 under projection P .
Then, ∀ε ∈ (0, 1):

w>1 w2kσ
2 − εkσ2 ‖w1‖ ‖w2‖ < (Pw1)

>Pw2 < w>1 w2kσ
2 + εkσ2 ‖w1‖ ‖w2‖ (17)

holds with probability 1− 2 exp(−kσ
2

8 ).



From Lemma 2, we have that

(1− ε) ‖w1‖2 kσ2 < ‖Pw1‖2 < (1 + ε) ‖w1‖2 kσ2

(1− ε) ‖w2‖2 kσ2 < ‖Pw2‖2 < (1 + ε) ‖w2‖2 kσ2
(18)

which holds with probability
(
1− 2 exp(−kε

2

8 )
)2

.
Then we combine Eq. 18 to Lemma 3 and obtain that

cos(θ(w1,w2))− ε
1 + ε

< cos(θ(Pw1,Pw2)) <
cos(θ(w1,w2)) + ε

1− ε
(19)

which holds with probability
(
1 − 2 exp(−kε

2

8 )
)2

. θ(Pw1,Pw2) denotes the angle between Pw1 and Pw2, and θ(w1,w2)

denotes the angle between w1 and w2.

E.3. Theorem 2

Before proving our main theorem, we first show a lemma [49] below:

Lemma 4. For any w ∈ Rd, any random Gaussian matrix P ∈ Rk×d where Pij = 1√
n
rij and rij , ∀i, j are i.i.d. random

variables from N (0, 1), and ε ∈ (0, 1)

Pr
(
(1− ε) ≤ ‖Pw‖2

‖w‖2
≤ (1 + ε)

)
≥ 1− 2 exp

(
− n

2
(
ε2

2
− ε3

3
)
)

(20)

Proof of Lemma 4. From Lemma 1, we have that E(‖Pw‖2) = ‖w‖2. Due to 2-stability of the Gaussian distribution, we
have that

∑d
j=1 rljwj = ‖w‖ zl where zl ∼ N (0, 1). As a result, we have that

‖Pw‖2 =
1

n
w2

n∑
l=1

z2l (21)

where
∑n
l=1 z

2
l is chi-square distributed with n-degree freedom. Then we apply the standard tail bound of the chi-square

distribution and obtain

Pr
(
‖Pw‖2 ≤ (1− ε)

∥∥w2
∥∥) ≤ exp

(
n

2

(
1− (1− ε) + ln(1− ε)

))
≤ exp(−n

4
ε2)

(22)

where the inequality ln(1− ε) ≤ −ε− ε2

2 is applied. Similarly, one can have

Pr
(
‖Pw‖2 ≤ (1 + ε)

∥∥w2
∥∥) ≤ exp

(
n

2

(
1− (1 + ε) + ln(1 + ε)

))
≤ exp(−n

2
(
ε2

2
− ε3

3
))

(23)

where the inequality ln(1 + ε) ≤ ε− ε2

2 + ε3

3 is used.

From the lemma above, we apply the union bound and have that

(1− ε) ≤ ‖Pw1‖2

‖w1‖2
≤ (1 + ε)

(1− ε) ≤ ‖Pw2‖2

‖w2‖2
≤ (1 + ε)

(24)

which holds with probability at least 1− 4 exp(−n2 (
ε2

2 −
ε3

3 )). Using Eq. 24, we can have that



∥∥∥∥ Pw1

‖Pw1‖
− Pw2

‖Pw2‖

∥∥∥∥2 ≤ ∥∥∥∥ Pw1√
1− ε ‖w1‖

− Pw2√
1− ε ‖w2‖

∥∥∥∥2 (25)

From Eq. 24 and the condition that w>1 w2 > 0, we further have that∥∥∥∥Pw1

‖w1‖
− Pw2

‖w2‖

∥∥∥∥2 ≤ ∥∥√1 + ε−
√
1− ε

∥∥2
≤
∥∥∥∥√1 + ε

(
Pw1

‖Pw1‖
− Pw2

‖Pw2‖

)∥∥∥∥2 + ∥∥√1 + ε−
√
1− ε

∥∥2 (26)

Then we apply Lemma 4 to the vector ( w1

‖w1‖ −
w2

‖w2‖ ) and see that

(1− ε)
∥∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥∥2 ≤ ∥∥∥∥Pw1

‖w1‖
− Pw2

‖w2‖

∥∥∥∥2 ≤ (1 + ε)

∥∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥∥2 (27)

which holds with probability 1− 2 exp
(
− n

2 (
ε2

2 −
ε3

3 )
)
. Then we have that

〈w1,w2〉
‖w1‖ ‖w2‖

= 1− 1

2

∥∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥∥2 ,
〈Pw1,Pw2〉
‖Pw1‖ ‖Pw2‖

= 1− 1

2

∥∥∥∥ Pw1

‖Pw1‖
− Pw2

‖Pw2‖

∥∥∥∥2 .
(28)

From Eq. 25, Eq. 26 and Eq. 27, we can learn that
∥∥∥ Pw1

‖Pw1‖ −
Pw2

‖Pw2‖

∥∥∥2 is bounded below and above. Further combining
Eq. 28, we have that

1 + ε

1− ε
cos(θ(w1,w2))−

2ε

1− ε
< cos(θ(Pw1,Pw2)) <

1− ε
1 + ε

cos(θ(w1,w2)) +
1 + 2ε

1 + ε
−
√

(1− ε2)
1 + ε

(29)

where θ(Pw1,Pw2) denotes the angle between Pw1 and Pw2, and θ(w1,w2) denotes the angle between w1 and w2.

E.4. Theorem 3

We first introduce a lemma before proving the theorem.

Lemma 5. [Direct Result from [68]] Let H be a separable Hilbert space, and let µ be a non-degenerate Gaussian measure
onH. Let P,Q be Borel probability measures onH. Assume that:

• The abosolute moments mn :=
∫
‖x‖n dP (x) are finite and satisfy

∑
n≥1m

−1
n
n =∞;

• The set ε(P,Q) := {x ∈ H : P〈x〉 = Q〈x〉}, where 〈x〉 denotes the one-dimensional subspace spanned by x, is of
positive µ-measure.

Then we have P = Q.

If we consider w ∈ Rd as a bounded variable, and without loss of generality, we assume that p = z/ ‖z‖ where z is a
Gaussian distribution, and then the condition on the moments of w in Lemma 5 holds. Then with the following lemma, we
can easily have the desired result.



F. Bilateral Projection for CoMHE
In this section, we consider bilateral projection for CoMHE (BP-CoMHE) as an extension to the main paper. If we view

the neurons in one layer as a matrix W ={w1, · · · ,wn}∈Rm×n where m is the dimension of neurons and n is the number
of neurons, then the projection mainly considered throughout the paper is to left-multiply a projection matrix P1∈Rr×m to
W . In fact, we can further reduce the number of neurons by right-multiplying an additional projection matrix P2∈Rn×r to
W . Specifically, we denote that

Y1 = P1W ∈ Rr×n, Y2 = WP2 ∈ Rm×r (30)

BP-CoMHE. The first variant of BP-CoMHE is to apply the MHE regularization separately to column vectors of Y1 and Y2,
and the learning objective is given by

min
W

Es(ŷ
(1)
i |

n
i=1) +Es(ŷ
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where we denote that
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(32)

in which we have that ŷ(1)
i ∈ Rr×1 and ŷ

(1)
i ∈ Rm×1 are two column vectors of Ŷ1 and Ŷ2, respectively. The final neurons

obtained for the neural network are still W . For generating the projection matrices P1,P2, we simply use random projection
and re-initialize the random matrices every certain number of iterations.
Low-Rank BP-CoMHE. More interestingly, we can also approximate W with a low-rank factorization [56] given as follows:

W̃ = Y2(P1Y2)
−1Y1 ∈ Rm×n (33)

which inspires us to directly use two set of parameters Y1 and Y2 to represent the equivalent neurons W̃ and apply the MHE
regularization separately to their column vectors (similar to the previous BP-CoMHE). Essentially, we learn the matrices
Y1,Y2 directly via back-propagation. The projection matrix P1 is initialized as a random matrix and stays constant during
the training. Different from the former case, we will not use W as the final neurons in the neural network. Instead, we will
use W̃ as the final neurons. The number of learnable parameters in total is mr + nr, which is significantly lower than the
original BP-CoMHE parameterization (i.e., mn) if we choose r to be much smaller than both m and n.



G. More Discussion on the Effectiveness of CoMHE
G.1. Full results of Figure 2 in the main paper
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Figure 9: Hyperspherical energy during the entire training. Note that, all networks are initialized with the same weights and therefore have the same
hyperspherical energy at the beginning. Note that, “Orthogonal Reg.” denotes the orthogonal regularization (use orthogonal constraint to regularize the
neurons), which is dramatically different from the rotation/reflection training that is mentioned above and learns orthogonal matrices for neurons.

Fig. 9 shows the entire training dynamics (from initialization to the end of training) of the hyperspherical energy of
baseline CNN and CNN regularized by orthogonal regularization, HS-MHE, AP-CoMHE and RP-CoMHE. All the networks
use exactly the same initialized weights to ensure the hyperspherical energy is the same at the beginning. One can observe
that the hyperspherical energy is actually very low for the initialized weights. This is because the initialized weights follows
Gaussian distribution and the hyperspherical energy is computed with normalized weights. The normalized weights (sampled
from Gaussian distribution) follows the uniform distribution on the hypersphere (see Theorem 1 in [66]), which can obtain the
lowest hyperspherical distribution in expectation. However, when the weights of the neural network start to fit the data and
minimize the data approximation loss, the neuron weights no longer follow the hyperspherical uniform distribution. Therefore
the hyperspherical energy will quickly get large. This is when MHE and CoMHE are useful. From Fig. 9, one can see that
without any regularization on hyperspherical energy, the hyperspherical energy of the baseline network gets extremely large
at the beginning and then slowly decreases as the training continues. However, the final hyperspherical energy of the baseline
network is still way higher than the CNNs regularized by MHE and CoMHE. Notice that, the orthogonality-regularized CNN
also obtain high hyperspherical energy at the end (similar to the baseline network). In contrast to MHE, we can observe that
CoMHE can effectively minimize the hyperspherical energy and RP-CoMHE achieves significantly lower hyperspherical
energy in the end, which well verifies the superiority of the proposed CoMHE.



G.2. Hyperspherical energy dynamics in individual layers

To demonstrate the hyperspherical energy dynamics in individual layers, we show the hyperspherical energy v.s. iteration
in every layer of CNN-9 (as specified in Table 9) in Fig. 10. Since the last fully-connected layer (i.e., classifier layer) is
learned from scratch (no rotation training is applied), we do not plot its hyperspherical energy. From the results in Fig. 10, we
can observe that CoMHE can more effectively minimize the hyperspherical energy in every layer, and RP-CoMHE performs
the best in terms of the hyperspherical energy minimization.
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Figure 10: Hyperspherical energy of every layer (Conv1.1, Conv1.2, Conv1.3, Conv2.1, Conv2.2, Conv2.3, Conv3.1, Conv3.2, Conv3.3, fc1) after the
20000-th iteration. Note that, all networks are initialized with the same weights and therefore have the same hyperspherical energy at the beginning.



H. Additional Exploratory Experiments
Frequency of re-initialization in RP-CoMHE. In RP-CoMHE, we need to re-initialize the random projections every

certain number of iterations to avoid trivial solutions caused by bad initialization. Here, we test how the frequency of re-
initialization will affect the accuracy on CIFAR-100, with the projection dimension being 30 and the number of projection
being 20. The iteration number being∞ in Table 12 represents that the random projection is fixed throughout the training
once it is initialized. The results shows the performance is not very sensitive to the frequency of re-initialization, but we
cannot fix the random projection during training as it may cause trivial solutions and hurt the performance.

# Iterations 1 200 1000 ∞
RP-CoMHE 24.6 24.84 24.62 26.09

Table 12: Error of different # iterations for re-initialization.

Naively learning projection basis from training data. We study the case where we enable the back-propagation gradient
to flow back to the projection basis. That is to say, the model learns the projection basis naively using training data. We find
that naively learning the projection basis yields much worse performance (26.5%), compared to RP-CoMHE (24.6%). It
is even worse than our baseline half-space MHE (25.96%). The results show that naively learning projection basis from
training data leads to inferior performance. Allowing the projection basis to be updated according to the training data could
undermine the strength of CoMHE regularization imposed on the neurons.

Shared projection basis. We take RP-CoMHE as an example to empirically verify the advantages of shared projection
basis across different layers. We set the projection dimension to 20 and the number of projections to 30. The plain CNN-
9 is used as baseline. Specifically for shared projection basis, we share the random projection basis in Conv1.x, Conv2.x
and Conv3.x separately. The shared projection yields 24.6% error rate. For independent projection basis, we use separated
projection basis for different layers and only obtain 26.05% error rate. The results show that using shared random projection
basis for neurons of the same dimensionality improves the network generalization while saving parameters. Note that, all the
other experiments use shared projection basis by default.



I. Training Runtime Comparison
We also provide runtime comparison for all the proposed CoMHE. We use the plain CNN-9 for all the methods in this

experiment. For RP, we set the projection dimension to 30 and the number of projection to 5. For AP, the number of
projection is 1 and the projection dimension is set to 30. This hyperparameter setting for CoMHE can achieve the best testing
accuracy on CIFAR-100. The results in Table 13 are computed using the total runtime of runing 100 iterations. We can see
that the runtime of RP-CoMHE, AP-CoMHE and Adv-CoMHE is comparable to HS-MHE and the baseline. Without any
code optimization, RP-CoMHE is 36% slower than the baseline and 18% slower than the HS-MHE, and AP-CoMHE is 34%
slower than the baseline and 17% slower than the HS-MHE. Note that, although CoMHE is relatively slower in terms of
training runtime, CoMHE will not affect the testing runtime of a trained model. That is to say, CoMHE-regularized CNN
has the same inference speed with its baseline CNN counterpart. In fact, as long as the training time of CoMHE-regularized
CNNs is not geometrically larger than the standard CNN, such computational cost is neglectable in practice and practitioners
usually care more about the inference time rather than the training time (CoMHE will not affect the inference time).

Method Runtime (s)

Baseline 5.61
HS-MHE 6.46

RP-CoMHE 7.62
AP-CoMHE 7.48
Adv-CoMHE 6.37

Group CoMHE 11.12

Table 13: Training Runtime (s / 100 iterations) comparison on CIFAR-100.



J. Experiments on Graph Convolutional Networks
We also use CoMHE to improve graph convolutonal networks (GCN) [69] for node classification in a graph. We use

the official code from [69], so the experimental setting and hyperparameter setup are exactly the same as [69]. The only
difference is that we apply an additional MHE or CoMHE to the weight matrix. Specifically, the graph convolution network
uses the following forward model:

Z = Softmax
(
Â · ReLU(Â ·X ·W0) ·W1

)
(34)

where Â = D̃
1
2 ÃD̃

1
2 . We note that A is the adjacency matrix of the graph, Ã = A + I (I is an identity matrix), and

D̃ =
∑
j Ãij . X ∈ Rn×d is the feature matrix of n nodes in the graph (feature dimension is d). W1 is the weights of the

classifiers. W0 is the weight matrix of size d × h where h is the dimension of the hidden space. We view every column
of W0 as a neuron, and therefore, there will be h neurons in total. We simply apply MHE or CoMHE to regularize these h
neurons. The experimental results are given in Table 14. We can see from the results that the CoMHE-regularized GCN can
consistently outperform the MHE-regularized GCN and the GCN baseline. We use exactly the same code as in the official
repository, and the only difference is the regularization on W0. We emphasize that CoMHE will not change the inference
speed of GCN, so this 1%− 2% performance gain is more like a “free lunch”.

Method Citeseer Cora Pubmed

GCN Baseline 70.3 81.3 79.0
HS-MHE [12] 71.5 82.0 79.0
RP-CoMHE 72.1 82.7 79.5
AP-CoMHE 72.0 82.6 79.5

Table 14: Classification accuracy (%) of GCN with different hyperspherical energy regularization.

The code is available at https://github.com/tkipf/gcn.

https://github.com/tkipf/gcn

