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ABSTRACT1
There is a growing interest in applying computational tools to the automatic discovery of social2
and economic behavior. For example, with decisions involving resource allocation related to pub-3
lic infrastructure, the ability to predict failures can allow for more efficient policy responses. In4
this paper, we use social data from a popular electric vehicle (EV) driver app to characterize the5
emerging EV charging station infrastructure. We introduce a typology of EV charging experiences6
collected from user reviews and deploy text classification algorithms, including convolutional neu-7
ral networks (CNN), to automatically learn about potential failures. We use machine learning8
techniques as a pre-processing tool for econometric analyses on the quality of service delivery.9
After classifying the reviews into 9 main user topics and 34 subtopics, we find that the dominant10
issues in EV charging relate to station functionality and availability, which drive negative consumer11
experience. Contrary to the public discourse about EVs, range anxiety was not of large concern to12
existing EV drivers. Based on our findings, we move towards automated identification of failures13
in public charging infrastructure that can significantly reduce research evaluation costs through14
relatively simple computational solutions.15

16
Keywords: electric vehicles, consumer behavior, convolutional neural networks, natural language17
processing, mobile data18
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INTRODUCTION1
The transportation sector has become a dominant source of CO2 emissions in the United States2
(1). In the last few years, there has been a growing attention on vehicle electrification as a strategy3
to reduce mobile source emissions with positive spillovers in air quality benefits (2). For example,4
in order to accelerate electric vehicle (EV) purchases, a majority of U.S. states are offering some5
type of financial incentive to complement federal tax credits, including rebates, tax exemptions and6
other incentives (3–5). An important complementarity to EV adoption is the availability of public7
charging infrastructure. It is now estimated that global investment in EV charging infrastructure8
from public and private sources will reach $80 billion USD by 2025 (6). In the US, this investment9
growth also marks an expected transition in policy support to a focus on charging infrastructure.10

However, currently there is no easy way to evaluate the needs of drivers or assess perfor-11
mance. This is because the infrastructure upgrades needed to be able to monitor electric consump-12
tion and use in individual charging stations are at early stages of development or not available.13
Further, the large-scale data required to evaluate system performance cannot easily be aggregated14
across charging networks. Given the rise in real-time streaming data in transportation and mo-15
bility apps, much of the useful intelligence about charging infrastructure performance lies highly16
unstructured. Consumer reviews, for example, can be collected instantly from thousands of users,17
and manually processing or analyzing this unstructured data to collect useful information has not18
been possible. We argue that real-time, streaming data will be increasingly important for research19
evaluation of sustainable infrastructure. For example, since the release of a popular charging sta-20
tion locator app, there have been over 1.5 million user reviews of charging stations lying dormant as21
text (7). Given this volume of data, even at an expert processing rate of 120 reviews per hour, it will22
be prohibitively costly for humans to classify this unstructured text data for research evaluation.23

We have shown in prior research that consumer sentiment can be automatically processed24
with high accuracy through computational aid (8). From this analysis, the evidence suggests that25
there is a significant amount of negative consumer sentiment related to the charging experience.26
While we demonstrated state-of-the-art performance from neural network-based models in this27
domain, learning about the sources of negative consumer experience, which is needed to conduct28
policy analysis, remains a challenging task due to the complexity of natural language processing29
(NLP). In this paper, we therefore introduce a computational solution to analyze the content of real-30
time text data as tailored to the domain of EVs and consumer behavior. Because it is known that31
consumer reviews may be subject to self-selection and other observational biases, we use machine32
learning as a pre-processing tool to conduct econometric analyses for statistical adjustment. We use33
this approach to automatically learn about large-scale barriers to EV infrastructure use nationally.34

Contrary to the public discourse, we find that range anxiety is not a major concern among35
existing EV drivers. Instead, our results suggest that the major issues facing EV drivers relate to36
station functionality and availability—an insight that we make possible through large-scale data37
integration.38

MACHINE LEARNING AND TEXT CLASSIFICATION39
With the increasing popularity of social data from digital platforms, user-generated short texts have40
become an important data source for NLP. In the transportation domain regarding EV adoption,41
there are as yet few research studies that translate the unstructured data from user generated texts42
into actionable intelligence. One exception is a recent paper by Kuhl et al. (2019) in which43
the authors manually coded Twitter data and found that contrary to what has been the focus in the44
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literature, charging infrastructure was the most discussed topic (9). There is no definitive study that1
does large-scale analysis of EV behavior for policy analysis. Further, the implementation of recent2
advances, such as deep neural networks (DNNs), which have revolutionized the field of natural3
language processing (10) have not been implemented for transportation policy. There are two4
prevailing types of DNNs. The first are convolutional neural networks (CNNs). CNNs extract the5
most meaningful information from text data by decomposing the hierarchical structure of sentences6
or phrases (11). The other prevailing DNN architecture is that of recurrent neural networks (RNNs)7
(12). RNNs have the added benefit of flexibility in analyzing a sequence of text. For instance, a8
recent study by Ma et al., (2019) collected Chinese consumers’ online comments about electric9
vehicles and processed the data with a variant of an RNN architecture, known as the long short-10
term memory (LSTM) in order to review EV purchase preferences such as retail prices, and EV11
makes and models (13). However, the authors do not report their classifier performance measures12
in their text mining analysis (e.g., accuracy and F1 score), so it is not possible to meaningfully13
access the relative merits of DNNs in this domain.14

Choosing between CNN or RNN architectures for any type of data is currently an ongo-15
ing debate in the literature (10). In our prior work, we initially demonstrated that a CNN model16
produced state-of-the-art accuracy with good balance measures for sentiment classification tasks,17
which weakly dominated an RNN model (14). From the consumer analysis of charging station18
sentiment, we were also able to demonstrate that there were differences in station-level sentiment19
when looking at the geographical regions (e.g. urban, rural, etc.) even after controlling for ob-20
servable station characteristics. However, sentiment analysis, although informative about quality21
perceptions, does not give us a window into the specific mechanisms or sources of the negative22
sentiment. As such, in this contribution, we are interested in applying innovations in NLP to intro-23
duce a typology of charging behavior and to provide insights on the use of computational tools for24
the automatic detection and discovery of barriers to infrastructure management.25

DATA AND METHODS26
We have a nationally representative sample of unstructured consumer reviews at 12,720 US charg-27
ing station locations as provided by a popular EV charge station locator app. The text data consists28
of 127,257 reviews written in English from 29,532 registered and unregistered EV drivers during29
the period from 2011 to 2015. The sample represents charging stations from the entire U.S. market30
during the period of study. This includes data aggregated from 10 major EV charging networks31
in the US. In the sample, we also geocoded point of interest (POI) location information using32
Google places API for categories such as Dealerships, Government, Healthcare, Hotel/Lodging,33
Other, Park, Parking Garage/Lot, Residential, Restaurant, School/University, Shopping Center,34
Store/Retail, and Workplace. For more information, ref. (8).35

EV Charging Infrastructure Consumer Reviews36
The charging station reviews can be considered social interactions within the community of EV37
drivers. After analyzing the contents of over 8,000 reviews, two research assistants were able to38
identify the main categories discussed by users and were able to determine which issues are most39
prominent regarding the charging experiences of this community. In preliminary experiments,40
we investigated several unsupervised topic modeling techniques that did not provide theoretically41
meaningful clusters. Therefore, we took the approach of hard coding labels based on human intel-42
ligence. We introduce 9 main categories and 34 subcategories that make up a typology of charging43
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FIGURE 1: Map of Charging Stations in North America

behavior that allows for easier identification and eradication of inefficiencies of the charging pro-1
cess. The typology is provided in Table 1. Functionality refers to comments describing whether2
particular features or services are working properly at a charging station. Range Anxiety refers to3
comments regarding EV drivers’ fear of running out of fuel mid-trip and to comments concerning4
tactics to avoid running out of fuel. Availability refers to comments concerning whether charg-5
ing stations are available for use at a given station. Cost refers to comments about the amount of6
money required to park and/or charge at particular locations. User Interaction refers to comments7
in which users are directly interacting with other EV drivers in the community. Location refers8
to comments about various features or amenities specific to a charging station location. The Ser-9
vice Time category refers to comments reporting charging rates (e.g. 10 miles of range per hour10
charged) experienced in a charging session. The Dealerships category refers to comments con-11
cerning specific dealerships and user’s associated charging experiences. The Other category refers12
to comments that do not fall into the previous eight categories. From our sample of human labeled13
reviews, the Other category occurs 6.0% of the time. For the full frequency counts by label, see14
Table 2.15

Approach to Curating the Training Data16
Classification techniques employed by many scholars often assume that observational data is a17
random sample from a given distribution that is believed to be representative of the population.18
However, well-known biases in learning and evaluating classifiers can include researcher bias,19
sample selection bias, and other statistical sampling issues (15–17).20

For this reason, we actively curated a population of human annotators that were pre-21
screened to be representative of the US general population (age 18+). With the support of a22
Qualtrics panel, a sample of 1,000 participants were recruited with nationally representative demo-23
graphic characteristics such as age, income and education level, sex and ethnicity. This allowed us24
to explore techniques to mitigate, although not completely eliminate, potential individual bias by25
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TABLE 1: EV Mobile App Typology of User Reviews

Category Subcategory
Functionality General Functionality, Charger, Screen, Power Level, Connector Type,

Card Reader,Connection, Time, Error Message, Station, Mobile Application,
Customer Service

Range Anxiety Trip, Range, Location Accessibility
Availability Number of Stations Available, ICE, General Congestion
Cost Parking, Charging, Payment
User Interactions Charger Etiquette, Anticipated Time Available, User Tips
Location General Location, Directions, Staff, Amenities, Points of Interest

User Activity, Signage
Service Time Charging Rate
Dealership Dealership Charging Experience, Competing Brand Quality,

Relationship with Dealers
Other General Experiences

eliciting the wisdom of crowds and reducing the potential impact of conflicting biases.1
We deployed an online survey questionnaire from Nov 27 to Dec 11, 2018 to build a train-2

ing dataset for supervised machine classification. Each participant was given a total of 20 charging3
station reviews and was tasked with labeling the sentiment of the review (positive or negative),4
as well as selecting categories and sub-categories that applied to the review. Of the 20 charging5
station reviews labeled by each participant, 5 of them were sample of 830 reviews designed for re-6
liability checks, while the remaining 15 reviews were randomly selected from the superpopulation.7
The sample 830 reviews for the reliability checks were randomly drawn from a set that had been8
previously labeled by research assistants. The holdout samples were designed to be distributed to9
at least three of the 1,000 recruited participants on average for the purpose of calculating inter-rater10
agreement. All reviews that include potentially sensitive information such as cell phone numbers11
or email addresses were redacted. Because subcategories of many categories such as Function-12
ality had domain-specific terminology that could be unfamiliar to a general population, we also13
provided a diagram of a charging station with information along with tips to help guide the human14
classification. A view of the online survey interface is shown in Figure 2. After the labeling tasks15
were completed, we also asked participants for voluntary demographic information. No personally16
identifiable information was collected or shared (IRB protocol No. H18250).17

Inter-Rater Reliability18
Because we had multiple annotators, we used Fleiss’ Kappa (k) as a measure of agreement be-19
tween raters. Fleiss’ Kappa was selected because it offers the benefit of a single metric to assess20
agreement between n-raters (18). On average, we had an average of 3 raters per review, ranging21
from 1 to 7 in the experiment. The Fleiss’ Kappa, k is calculated as below:22

k =
P̄ � P̄e

1� P̄e
, (1)

where P̄ is the average number of agreement on all category assignments between rater pairs for23
the questions, and P̄e is the average proportion of assignment to the categories. For example,24
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FIGURE 2: Online Survey Interface

assume there are 3 raters labeling 3 questions with 3 categories each. Suppose that the 3 raters1
agree on 2 questions with distinct categories and completely disagree on 1 question, choosing non-2
overlapping categories. In this case, P̄ = 2

3 , and P̄e =
11
27 , resulting in a k score of 0.44. As k is3

bounded between -1 and 1, when k is less than 0, agreement between raters is occurring below4
what would be expected at random while a k above 0 means that agreement between raters is5
occurring above what would be expected at random (19). From the numerical example above, we6
would interpret the k as moderate agreement. For more information, see ref. (18). We provide an7
analysis of inter-rater reliability in the Results and Discussion section.8

CNN Implementation9
In this study, we expand on CNN implementation protocols introduced in ref. (14), which is part10
of a larger literature of consumer analysis using DNNs (20–22). Given that many labels can occur11
relatively infrequently leading to unbalanced class data for training and testing, a simple majority12
classifier that assigns the majority class to all test data is provided as a baseline for performance.13
The performance of the CNN classifier is also compared to other commonly used baseline classifi-14
cation models, e.g. the bag-of-N-grams based logistic regression (LR) and support vector machines15
(SVM).16

Convolutional Neural Network for Text Classification17
Here we provide a high level overview of a single layer CNN model for binary topic classification.18
Figure 3 shows a generalized CNN architecture, which is comprised of three main parts: the vector19
representation of words, the convolutional layer, and the fully connected layer that yields a binary20
category prediction as the output. First, all words in a consumer review are changed to tokens,21
each having a certain dimensional vector composed of numeric values. These values are called22
word embeddings, which represent similarity between vocabularies quantitatively; similar words23
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have similar values across their word vectors and vice versa. In this study, we used pre-trained,1
publicly available word vectors, namely the word2vec (23), which is a predictive model trained2
on 100 billion words and phrases in Google News. We also tried other open-sourced, pre-trained3
word vectors, GloVe (24), a count-based model which gave comparable results. The use of pre-4
trained word vectors in text classification task is a widely used method to improve performance in5
the absence of a large corpus of domain-specific training data (20, 25). In the convolutional layer,6
filters scan through the word vectors creating what are referred to as “feature maps” using activa-7
tion functions that are representative of the word vector of the chosen filter size. This process is8
done empirically by multiple filters, and the results are combined and extracted in a process called9
“pooling.” Extracted information by pooling process is gathered as one feature vector, and it cre-10
ates prediction through the fully connected layer. A CNN model can have various hyperparameters11
for the process of filtering, convolution, and pooling processes. For more information about details12
of the algorithm, see refs, (11, 20).13
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FIGURE 3: Architecture of the Convolutional Neural Network Model

Training and Testing Data14
We created nine binary classifiers for each of the main categories: Functionality, Range Anxiety,15
Availability, Cost, User Interactions, Location, Service Time, Dealership and Other. For the train-16
ing data, we used the 20,000 reviews labeled by the 1,000 participants. The models are validated17
by a set 5,229 true labels provided by research assistants as human experts. The counts of labels18
provided by participants are summarized in the Table 2. As the categories labeled in the training19
set are largely imbalanced, it is important to evaluate balance measures in classifier performance20
and to verify the level of learning compared with the simple majority class model. Based on the21
most common labels, the most important topics to consumers are Functionality and Availability.22
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TABLE 2: Counts of Labeled Reviews per Category in Training Data

Labeled Not Labeled Percent Labeled†(%)
Functionality 7,370 12,630 36.9
Range Anxiety 1,809 18,191 9.0
Availability 4,968 15,032 24.8
Cost 2,006 17,994 10.0
User Interactions 3,174 16,826 15.9
Location 3,046 16,954 15.2
Service Time 1,805 18,195 9.0
Dealership 1,075 18,925 5.4
Other 1,209 18,791 6.0
† Reviews can have multiple labels therefore Percent Labeled does

not sum to 100%.

Hyperparameter Optimization1
We perform basic hyperparameter tuning, beginning with suggested values introduced in previous2
studies (14, 20, 26). These include filter region sizes of [3, 4, 5]; 100 filters; use of rectified linear3
unit (ReLU) activation function; learning rate of 0.001; dropout rate of 0.3 for regularization, and4
no l2 norm constraint. We also followed guidelines provided by (26) that each dataset has its own5
optimal filter region size and numbers, therefore perfromed basic grid search to find hyperparame-6
ters that could yield higher performance in our specific dataset. For the Functionality category, we7
found that filter region sizes of [12, 12, 12], 400 number of filters, learning rate 0.0001, 0.6 dropout8
rate, 3 epochs with 128 batch size resulted in the highest performance within our search. However,9
with other categories, the performance dropped as changes occurred to our initial hyperparameters.10

Outcomes of Interest11
We are interested in evaluating the factors that predict the performance of outcomes across stations.12
Given our objective of detecting behavioral failures, we focus our analysis on Functionality and13
Availability, which are the 2 most frequently observed labels in the training data. We created an14
index that measures the probability that a label is likely to be chosen. For a given station review i,15
at location group g, in year, the Label Score is defined as follows:16

Label Scorem,i,g,year =
Count of label reviewsm,i,g,year

Total count of reviewsi,g,year
(2)

17
where m is the label of interest. A score near 0 would indicate that the specific label has a low18
incidence at that location group in that year, while a high score near 1 would indicate a high19
incidence at the location group in that year were assigned that label by the classifier.20

Econometric Estimation using Fractional Response Models21
The most commonly used implementation for models with fractional dependent variables only22
requires some specification of the correct functional form of the fractional dependent variable23
(27). In our case, the variables of interest are fractional vectors bounded between 0 and 1 with24
probability masses accumulating at the boundaries of the interval (See Figure 4). It would be25
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FIGURE 4: Histograms of Label Scores

inappropriate to use an OLS or log-odds estimator, for reasons we have described elsewhere (14).1
In the general form for the fractional response model, the interest is on the conditional expectation2
of the fractional response variable yi,t on the vector of explanatory variables xi,t such that,3

E(yi,t |xi,t) = G(xi,tq), i = 1, . . . ,N, (3)
4

where G(·) is a non-linear transform function where the cdf satsifies 0  G(·)  1, the fractional5
dependent variable is defined only on 0 yi,t  1, and q is a parameter vector of interest. Estimates6
of the effects are directly computed using the Bernoulli log-likelihood function given by (28, 29),7

LLi,t(q)⌘ yi,t log[G(xi,tq)]+(1� yi,t)log[1�G(xi,tq)]. (4)
8

Given the presence of boundary observations of 0 in the fractional dependent variables of our9
dataset, the pooled Bernoulli quasi-maximum likelihood estimator (QLME) of q can be computed10
as,11

q̂ = argmax
q

N

Â
i=1

LLi,t(q). (5)
12
13

For our analysis, the main functional specification regresses the outcomes of interest on14
a vector of dependent variables, including geographical area dummies, station characteristics, POI15
dummies, Negativity Score, and related interactions. For the geographical area dummy variables16
we utilize the Census definitions for urban centers, urban clusters, and rural areas. From the Cen-17
sus definitions, urban centers are urbanized areas with more than 50,000 people, urban clusters are18
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urbanized ares with populations between 2,500 and 50,000 people, and rural areas are any such1
areas outside of urbanized ones (30). The station characteristics include measures of the number2
of connectors at a station, the number of networks at a station, and a proprietary station quality3
rating that ranges between 1 and 5. The general functional specification is as follows:4

Label Scorem,i,g,year = ai,year +Geographical Area Dummiesg +Station Characteristicsi,g,year

+Negativity Scorei,g,year + Interaction Effectsi,g,year +POI Dummiesg (6)

RESULTS AND DISCUSSION5
Descriptive Analysis of the Training Data6
We performed a basic analysis to learn about the characteristics of the collected data. We provide7
a frequency distribution of the occurrences of all hard-coded labels in Figure 5 for main categories8
and in Figure 6 the most frequently occurring subcategories for our top category. The most selected9
main categories were Functionality and Availability, with counts of 7,370 and 4,968 respectively.10
We also learned that Range Anxiety is not a dominant theme among EV drivers’ discussions (only11
9% of the training data). We also break out the Functionality subcategories which were most dis-12
cussed. For example, many consumers report issues with the proper functioning of the charger13
itself, station features, customer service, wireless connection, power issues and list of other prob-14
lems, see Figure 6.15
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Using the holdout sample labels collected from the training data, the Fleiss’ k was mea-16
sured to be k = 0.31, which is considered “fair agreement” in prior literature (19, 31). Although17
we note that there are relatively few existing studies that experimentally curate the training data,18
or report their reliability measures, we found some recent studies that begin to report reliability19
measure from human annotators using social data from posts in online forms (32). Further details20
on the effects of inter-rater reliability on classifier performance are discussed in the next section.21
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Classification Results1
We are interested to learn whether a neural net-based model can accomplish the task of detecting2
a performance category from text with good accuracy compared to humans, while still achieving3
good balanced measures, using the F1 score as an indicator. For the analysis of classifiers we4
report model metrics for our top 3 categories which are Functionality, Cost, and Availability. Table5
3 shows the comparison of CNN versus the other baseline models.6

TABLE 3: Classification Results for Top Categories

Accuracy (%) F1 Score

CNN SVM LR Majority
Class CNN SVM LR Training Data

Class Balance
Functionality 78.1 73.3 74.5 54.7 0.72 0.66 0.66 Balanced

Cost 94.1 93.3 92.9 90.6 0.59 0.57 0.44 Highly
Imbalanced

Availability 85.2 83.2 0.85 88.7 0.50 0.37 0.46 Moderately
Imbalanced

Despite the fact that we have imbalanced training data, we see that the CNN model outper-7
formed the three baseline models for most categories, and is significantly better at detecting true8
positives and true negatives as shown by the F1 score. For example, one review states “Right not9
working. Terrible”. Our human annotators identified this review as a Functionality category. For10
the machine classification, LR and SVM failed to label Functionality, while CNN learned from11
semantic context to properly identify the label. In the opposite context of misclassification, CNN12
also performed better. For example, a consumer writes “Stephen, you can use the Greenlots app13
if you don’t have a fob.”. LR and SVM both predicted this to be Functionality label, while both14
human annotators and the CNN classifier correctly identified this text as not relating to Function-15
ality. These examples illustrate that the CNN model has strong potential to automatically learn16
about the major issues in this domain. The results we report in Table 3 represent state-of-the-art17
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classification performance known for this domain.1
One exception to the strong performance of CNN is the Availability category, where the2

accuracy of CNN was slightly lower than the simple majority class algorithm. This may be due to3
the difference in labeling rules between participants and trained annotators, where in the training4
data, Availability was labeled for 24.8% of the training reviews, while the trained annotators were5
more strict and labeled Availability for only 11.3% of the testing reviews. This suggests that in6
future work, we could provide more clear instructions to general population of annotators about the7
definitions of the labels. We also found that the Cost category had better F1 measure as compared8
ton Availability with higher imbalance in the training data.9

However this strong performance is not without limitations. It did not do well on the labels10
such as Location, Service Time, User Interactions, Dealership, Range Anxiety, and Others. Based11
on our survey questionnaire, our results suggest that many of these domain specific terms can be12
complex for the general US population. To investigate this further, we calculated the Fleiss’ k13
of 0.31, which indicates that the inter-rater reliability score can be significantly enhanced. For14
this reason, in future work, we suggest curating crowd sourced human labels for machine learning15
using crowds of experts who might be more proficient in this domain. We leave that as future16
work. Further, we have implemented one neural net-based model, but it is not the only possible17
architecture. In addition to further tuning of the model we presented in this study, we also suggest18
exploring other deep learning architectures, particularly the recurrent neural networks which could19
have the benefit of learning from sequences of text data.20

Having shown the good performance of our classier, we then use this model as a pre-21
processing tool to conduct econometric analyses in order to evaluate large-scale consumer issues22
in charging infrastructure. For more details on model performance, results are available upon23
request.24

Fractional Response Model Results25
We use the training data to classify the full population of 127,257 reviews in order to focus on26
our top two categories for the fractional response models (FRMs). Our main objectives are to27
uncover the main categories driving negative experience in the charging infrastructure in the United28
States. We evaluate geographical areas, both urban and non-urban, and how explanatory features29
are moderated by negative experience automatically classified using machine intelligence. The30
main results of the FRMs can be seen in Table 4.31

Negative Charging Experiences with Functionality More Likely in Urban Center32
In model (I) we estimate a basic specification that regresses the Functionality Score on observable33
station characteristics. We cluster our standard errors at the location group level. We find no34
evidence that geographical area is a significant predictor of functionality labels; however, in models35
(II) and (III) we investigate the sub-population of reviews with high Negativity Scores and find36
that reviews urban centers are 46.6% more likely to be about Functionality. For example, one37
user posted a review about Functionality in an urban center that state, "one of two chargers has38
fault error and doesn’t work both charge a fee:(", while the same user posted a review outside of39
an urban center that stated, "120v outlet on lamp by entrance/sign very nice hotel excellent food40
next door", which is not about Functionality. This result answers a previously open question about41
the sources of negative consumer sentiment. By contrast, urban clusters and rural areas were not42
significant predictors of Functionality labels net of all controls.43
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The models used were robust to the inclusion of the quality rating as well as to various1
clustering alternatives for standard errors. These additional results are available upon request.2

Negative Charging Experiences with Availability More Likely in Urban Cluster3
We also evaluated factors related to station availability. In model (IV), we estimate a basic spec-4
ification that regresses the Availability Score on all observable station characteristics. We do find5
evidence that urban centers have more reviews relating to Availability topics as compared to rural6
areas. Our results show that the sources of negative consumer experiences related to Availability7
are primarily in the urban clusters with reviews being 39.6% more likely. By contrast we do not8
find statistically significant results in with negative consumer sentiment in urban center or rural9
areas. This is interesting because one would expect Availability issues to be an urban phenomenon10
related to congestion. However, our large-scale analysis points to smaller urban clusters could need11
additional resources to broaden the availability of charging stations.12

TABLE 4: Fractional Response Model Results

Functionality Score Availability Score
(I) (II) (III) (IV) (V) (VI)

Geographical Area
Urban Center -0.080 -0.273** -0.280** 0.455*** 0.457*** 0.461***

(0.094) (0.132) (0.132) (0.091) (0.091) (0.091)
Urban Cluster 0.185 0.179 0.188 -0.243** -0.399*** -0.426***

(0.153) (0.147) (0.148) (0.122) (0.147) (0.149)
Station Characteristics

Number of Connectors 0.450*** 0.451*** 0.456*** -0.477*** -0.476*** -0.482***
(0.025) (0.025) (0.025) (0.037) (0.037) (0.037)

Number of Networks -0.148* -0.147* -0.162* 0.179 0.180 0.177
(0.085) (0.085) (0.088) (0.154) (0.154) (0.156)

Quality Rating -0.059*** 0.075***
(0.017) (0.017)

Negativity Score 1.744*** 1.339*** 1.246*** 0.813*** 0.798*** 0.901***
(0.054) (0.220) (0.216) (0.055) (0.056) (0.055)

Urban Center x Negativity Score 0.466** 0.474**
(0.227) (0.224)

Urban Cluster x Negativity Score 0.396** 0.433**
(0.201) (0.206)

Point of Interest Control Dummies Yes Yes Yes Yes Yes Yes
Clustered SE Yes Yes Yes Yes Yes Yes
Number of Observations 127,257 127,257 127,257 127,257 127,257 127,257
R2 0.154 0.155 0.158 0.053 0.053 0.056
Note: *p<0.1; **p<0.05; ***p<0.01

Among the observable station characteristics, it turns out the the number of connectors is a13
significant predictor of both functionality and availability topics. In the case of Availability, more14
connectors predicts less reviews with availability labels. With Functionality, more connectors15
predicts more reviews with functionality labels. This is intuitive as more connectors should help16
availability issues while also providing more chances for functional issues to occur at a charge17
station. Overall, sources of negative consumer sentiment appear to be an urban phenomenon with18
urban centers being related to negative sentiment in reviews about functionality and urban clusters19
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being related to negative sentiment in reviews about availability.1

POLICY IMPLICATIONS2
In this study, we have been able to demonstrate that advances in computational algorithms can3
be deployed at relatively low cost with promising performance measures. We also demonstrate4
that through large-scale data aggregation, it may be possible to build a framework that could cap-5
ture consumer intelligence about the functioning of the infrastructure, in near-real-time. Such6
capabilities could revolutionize how we manage, evaluate, and invest in charging infrastructure for7
electrified transportation. Based on our results, we have three main policy recommendations. First,8
a necessary criteria for building frameworks for real-time analysis is data and information sharing.9
We suggest the expansion of policies that can allow for greater real-time data sharing regionally10
and between jurisdictions. Second, given the discovery of negative consumer experiences as an11
urban phenomena, we suggest strategies for local and regional government to push greater stan-12
dards and investment to help ensure that the quality and reliability of the charging experience is13
core to policies for EV growth. Third, the discussion of range anxiety as consumer barrier appears14
to be overstated, whereas station functionality and charging availability at the point of use may be15
the more critical limitation. Real-time streaming data is already changing the nature of mobility16
decisions for consumers. With a trained model present, thousands of reviews can be processed17
and analyzed in matter of minutes, if not faster. This should yield significant cost reductions for18
infrastructure performance evaluation.19
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