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Abstract

Detecting overfitting in generative models is
an important challenge in machine learning.
In this work, we formalize a form of overfitting
that we call data-copying – where the gener-
ative model memorizes and outputs training
samples or small variations thereof. We pro-
vide a three sample test for detecting data-
copying that uses the training set, a separate
sample from the target distribution, and a
generated sample from the model, and study
the performance of our test on several canon-
ical models and datasets.

1 Introduction

Overfitting is a basic stumbling block of any learning
process. While it has been studied in great detail in
the context of supervised learning, it has received much
less attention in the unsupervised setting, despite being
just as much of a problem.

To start with a simple example, consider a classical
kernel density estimator (KDE), which given data
x1, . . . , xn ∈ Rd, constructs a distribution over Rd by
placing a Gaussian of width σ > 0 at each of these
points, yielding the density

q(x) =
1

(2π)d/2σdn

n∑
i=1

exp

(
−‖x− xi‖

2

2σ2

)
. (1)

The only parameter is the scalar σ. Setting it too small
makes q(x) too concentrated around the given points: a
clear case of overfitting (see Appendix Figure 6). This
cannot be avoided by choosing the σ that maximizes
the log likelihood on the training data, since in the
limit σ → 0, this likelihood goes to ∞. One solution
here is to instead maximize log-likelihood on a held-out
validation set.
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If even the one-parameter kernel density estimator is
capable of overfitting, the situation is truly treacherous
for the enormously complex generative models that
have emerged over the past decade or so. Variational
Auto Encoders (VAEs) (Kingma and Welling, 2013)
and Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014) for example can easily involve millions
of parameters. A major challenge in evaluating over-
fitting in these models is that most do not offer exact,
tractable likelihoods. VAEs can only tractably provide
a likelihood lower bound, while GANs have no accom-
panying density estimate at all. Thus any method that
can assess these generative models must be based only
on samples produced by them.

A body of prior work has provided tests for evaluating
generative models based on samples drawn from them
(Salimans et al., 2016; Sajjadi et al., 2018; Wu et al.,
2017; Heusel et al., 2017); however, the vast majority
of these tests focus on ‘mode dropping’ and ‘mode col-
lapse’: the tendency for a generative model to either
merge or delete high-density modes of the true distri-
bution. A generative model that simply reproduces the
training set or minor variations thereof will pass most
of these tests.

In contrast, in this work we formalize and investigate a
particular type of overfitting that we call ‘data-copying’:
the propensity of a generative model to recreate minute
variations of a subset of training examples it has seen,
rather than represent the true diversity of the data
distribution. An example is shown in Figure 1b; in
the top region of the instance space, the generative
model data-copies, or creates samples that are very
close to the training samples; meanwhile, in the bot-
tom region, it underfits. To detect this, we introduce
a data-copying hypothesis test that relies on three in-
dependent samples: the original training sample used
to produce the generative model; a separate (held-out)
test sample from the underlying distribution; and a
synthetic sample drawn from the generator.

Our key insight is that an overfit generative model
would produce samples that are too close to the train-
ing samples – closer on average than an independently
drawn test sample from the same distribution. Thus,
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(a) Illustration of over-/under-representation
Training sample: ×, Generated sample: •

(b) Illustration of data-copying/underfitting
Training sample: ×, Generated sample: •

(c) VAE copying/underfitting on MNIST
top: ZU = −8.54, bottom: ZU = +3.30

Figure 1: Comparison of data-copying with over/under representation. Each image depicts a single instance space partitioned into two
regions. Illustration (a) depicts an over-represented region (top) and under-represented region (bottom). This is the kind of overfitting
evaluated by methods like FID score and Precision and Recall. Illustration (b) depicts a data-copied region (top) and underfit region
(bottom). This is the type of overfitting focused on in this work. Figure (c) shows VAE-generated and training samples from a data-copied
(top) and underfit (bottom) region of the MNIST instance space. In each 10-image strip, the bottom row provides random generated samples
from the region and the top row shows their training nearest neighbors. Samples in the bottom region are on average further to their
training nearest neighbor than held-out test samples in the region, and samples in the top region are closer, and thus ‘copying’ (computed
in embedded space, see Experiments section).

if a suitable distance function is available, then we
can test for data-copying by testing whether the dis-
tances to the closest point in the training sample are
on average smaller for the generated sample than for
the test sample. A further complication is that mod-
ern generative models tend to behave differently in
different regions of space; a configuration as in Fig-
ure 1b for example could cause a global test to fail.
To address this, we use ideas from the design of non-
parametric methods by dividing the instance space into
cells, conducting our test separately in each cell, and
then combining the results to get a sense of the average
degree of data-copying.

1.1 Related work

There has been a large body of prior work on the
evaluation of generative models (Salimans et al., 2016;
Lopez-Paz and Oquab, 2016; Richardson and Weiss,
2018; Sajjadi et al., 2018; Xu et al., 2018; Wu et al.,
2017) . However, most are geared to detect some
form of mode-collapse or mode-dropping: the tendency
to either merge or delete high-density regions of the
training data. Consequently, they fail to detect even
the simplest case of extreme data-copying – where a
generative model memorizes and exactly reproduces
a bootstrap sample from the training set. We discuss
below a few of these tests that use ideas similar to ours.

To-date there is a wealth of techniques for evaluating
whether a model mode-drops or -collapses. Tests like
the popular Inception Score (IS), Frechét Inception
Distance (FID) (Heusel et al., 2017), Precision and Re-
call test (Sajjadi et al., 2018), and extensions thereof
(Kynkäänniemi et al., 2019; Che et al., 2016) all work by
embedding samples using the features of a discrimina-

tive network like ‘InceptionV3’ and somehow checking
whether the training and generated distributions are
similar in aggregate. The hypothesis-testing binning
method proposed by Richardson and Weiss (2018) also
compares aggregate population data, without embed-
ding samples. The parametric Kernel MMD method
proposed by Sutherland et al. (2016) uses a carefully
selected kernel to estimate the distribution of both the
generated and training samples and reports the maxi-
mum mean discrepancy between the two. Such tests
will reward a generative model that only produces slight
variations of the training set, since a ‘good’ aggregate
distribution is defined by the training sample.

Lopez-Paz and Oquab (2016) propose the Two-Sample
Nearest Neighbor, a two-sample non-parametric test.
Their method groups a training and generated sample
of equal cardinality together, with training points la-
beled ‘1’ and generated points labeled ‘0’, and then
reports the Leave-One-Out (LOO) Nearest-Neighbor
(NN) accuracy of predicting ‘1’s and ‘0’s. We report
two values as discussed by Xu et al. (2018): the LOO
accuracy of the training points, and the LOO accuracy
of the generated points. An ideal generative model
should produce an accuracy of 0.5 for each sample.
Unlike this method, our test not only detects exact
data-copying, which is unlikely, but estimates whether
a given model generates samples closer to the training
set than it should, as determined by a held-out test
set.

The concept of data-copying has been explored by Xu
et al. (2018) (where it is called ‘memorization’) for a
variety of generative models and several of the above
two-sample evaluation tests. Their results indicate that
only the two-sample NN test is able to capture instances
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of extreme data-copying. Similarly, Bounliphone et al.
(2016) explores three-sample testing, but for comparing
the performance of different models, not for detect-
ing overfitting. Other works contemporary with this
take parametric approaches to finding data copying
via neural network divergences (Gulrajani et al., 2020)
and via learning reverse mappings for latent code mod-
els (Webster et al., 2019). The present work departs
from those by offering a probabilistically motivated
non-parametric test that is entirely model agnostic.

2 A Hypothesis Test for Data Copying

Let X denote an instance space in which data points
lie, and P an unknown underlying distribution on this
space. A training set T is drawn from P and is used
to select a generative model Q. We then wish to assess
whether Q is the result of overfitting: that is, whether
Q is too close to the training data. To help ascertain
this, we are able to draw two additional samples: a
fresh sample of n points from P called Pn; a sample of
m points from Q; called this Qm.

As illustrated in Figures 1a, 1b, generative model
overfitting can occur locally in some subspace C ⊆ X .
To characterize this for any distribution D on X , let
D|C denote its restriction to the region C, that is,

D|C(A) =
D(A ∩ C)
D(C)

for any A ⊆ X .

2.1 Types of Overfitting

We now formalize the distinction between data-copying
and over-representation, starting with a probabilistic
interpretation of data-copying.

Intuitively, overfitting refers to situations where Q is
“too close” to the training set T ; that is, closer to T than
the target distribution P happens to be. To make this
quantitative, we begin by choosing a distance function
d : X → R from points in X to the training set, for
instance, d(x) = mint∈T ‖x − t‖2, if X is a subset of
Euclidean space.

Naturally, we desire that Q’s expected distance to
the training set is the same as that of P ’s, namely
EX∼P [d(X)] = EY∼Q[d(Y )]. We may rewrite this as
follows: given any distribution D over X , define L(D)
to be the one-dimensional distribution of d(X) for X ∼
D. We consider overfitting to have occurred if random
draws from L(P ) are systematically larger than from
L(Q). The above equalized expected distance condition
can be redrafted as

EY∼Q[d(Y )]− EX∼P [d(X)] = EA∼L(P )

B∼L(Q)

[B −A] = 0

(2)

However, we are less interested in how large the dif-
ference is, and more so how often B is larger than A.
Let

∆T (P,Q) = Pr
(
B > A

∣∣ B ∼ L(Q), A ∼ L(P )
)

where 0 ≤ ∆T (P,Q) ≤ 1 represents how ‘far’ Q is from
training sample T as compared to true distribution P .
A more interpretable yet equally meaningful condition
is

∆T (P,Q) = EA∼L(P )

B∼L(Q)

[1B>A] ≈ 1

2

which guarantees Equation 2 if densities L(P ) and L(Q)
have the same shape, but are possibly mean-shifted.

If ∆T (P,Q) << 1
2 , Q is data-copying training set T ,

since samples from Q are systematically closer to T
than are samples from P . However, even if ∆T (P,Q) ≥
1
2 , Q may still be data-copying T . As exhibited in
Figures 1b and 1c, a model Q may data-copy in one
region and underfit in others. In this case, Q may be
further from T than is P globally, but much closer to
T locally. As such, we consider Q to be data-copying
if it is overfit in any subspace C ⊆ X :
Definition 2.1. A generative model Q is data-copying
training set T if, in some region C ⊆ X , it is systemat-
ically closer to T by distance metric d : X → R than
are samples from P . Specifically, if

∆T (P |C , Q|C) <
1

2

This type of overfitting is orthogonal to the type of
overfitting addressed by many previous works (Heusel
et al., 2017; Sajjadi et al., 2018), which we call ‘over-
representation’. Here, Q overemphasizes some region
of the instance space C ⊆ X , often a region of high
density in the training set T .
Definition 2.2. A generative model Q is over-
representing P in some region C ⊆ X , if the probability
of drawing Y ∼ Q is much greater than it is of drawing
X ∼ P . Specifically, if

Q(C)− P (C)� 0

In this work we focus on data-copying, and provide a
novel test to detect it.

2.2 A Global Data-Copying Test

We introduce our data-copying test in the global setting,
when C = X . Here, we have a null hypothesis H0

suggesting that Q may equal P :

H0 : ∆T (P,Q) =
1

2
(3)
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There are well-established non-parametric tests for this
hypothesis, such as the Mann-Whitney U test (Mann
and Whitney, 1947). Let Ai ∼ L(Pn), Bj ∼ L(Qm)
be samples of L(P ), L(Q) given by Pn, Qm and their
distances d(X) to training set T . The U statistic es-
timates the probability in Equation 3 by measuring
the number of all mn pairwise comparisons in which
Bj > Ai. An efficient and simple method to gather
and interpret this test is as follows:

1. Sort the n + m values L(Pn) ∪ L(Qm) such that
each instance li ∈ L(Pn), lj ∈ L(Qm) has rank
R(li), R(lj), starting from rank 1, and ending with
rank n + m. L(Pn), L(Qm) have no tied ranks
with probability 1 assuming their distributions are
continuous.

2. Calculate the rank-sum for L(Qm) denoted RQm ,
and its U score denoted UQm :

RQm =
∑

lj∈L(Qm)

R(lj), UQm = RQm −
m(m+ 1)

2

Consequently, UQm =
∑
ij 1Bj>Ai .

3. Under H0, UQm is approximately normally dis-
tributed with > 20 samples in both L(Qm) and
L(Pn), allowing for the following z-scored statistic:

ZU
(
L(Pn), L(Qm);T

)
=
UQm − µU

σU
,

µU =
mn

2
, σU =

√
mn(m+ n+ 1)

12

ZU provides us a data-copying statistic with normalized
expectation and variance under H0. ZU � 0 implies
data-copying, ZU � 0 implies underfitting. ZU < −5
implies that if H0 holds, ZU is as likely as sampling a
value < −5 from a standard normal. See Appendix 6.1
for consistency results.

This hypothesis test is a standard we can and should
hold all generative models to. It is completely model
agnostic and uses no estimate of likelihood. It only re-
quires a meaningful distance metric, which is becoming
common practice in the evaluation of mode-collapse
and -dropping (Heusel et al., 2017; Sajjadi et al., 2018).

Additionally, the equal expectation condition of Equa-
tion 2 alone is almost sufficient to indicate a maximum
likelihood Gaussian KDE model, like that in Equa-
tion 1, where the posterior probability that a random
draw x ∼ qσ(x) comes from the Gaussian component
centered at training point t is

Qσ(t|x) =
exp(−‖x− t‖2/(2σ2))∑

t′∈T exp(−‖x− t′‖2/(2σ2))

Lemma 1. For the kernel density estimator (1), the
maximum-likehood choice of σ, namely the maximizer
of EX∼P [log qσ(X)], satisfies

EX∼P
[∑
t∈T

Qσ(t|X)‖X − t‖2
]

=

EY∼Qσ
[∑
t∈T

Qσ(t|Y )‖Y − t‖2
]

See Appendix 6.2 for proof. Unless σ is large, we
know that for any given x ∈ X ,

∑
t∈T Qσ(t|x)‖x −

t‖2 ≈ d(x) = mint∈T ‖x − t‖2. So, enforcing
that EX∼P [d(X)] = EY∼Q[d(Y )], and more loosely
that EA∼L(P )

B∼L(Q)

[1B>A] = 1
2 provides an excellent non-

parametric approach to selecting a Gaussian KDE, and
ought to be enforced for any Q attempting to emulate
P .

2.3 Handling Local Heterogeneity

As described in Section 2.1, the above global test can
be fooled by generators Q which are very close to the
training data in some regions of the instance space
(overfitting) but very far from the training data in
others (poor modeling).

To handle heterogeneity in practice, we introduce local
versions of our earlier tests. Let Π denote any partition
of the instance space X , which can be constructed in
any manner. In our experiments, for instance, we run
the k-means algorithm on T , so that |Π| = k. As the
number of training and test samples grows, we may
increase k and thus the instance-space resolution of our
test. Letting Lπ(D) = L(D|π) be the distribution of
distances-to-training-set within cell π ∈ Π, we probe
each cell of the partition individually.

Data Copying To offer a summary statistic for data
copying, we collect the z-scored Mann-Whitney U
statistic, ZU , described in Section 2.2 in each cell π.
Let Pn(π) = |{x : x ∈ Pn, x ∈ π}|/n denote the frac-
tion of Pn points lying in cell π, and similarly for
Qm(π). The ZU test for cell π and training set T will
then be denoted as ZU

(
Lπ(Pn), Lπ(Qm);T

)
, where

Lπ(Pn) = {d(x) : x ∈ Pn, x ∈ π} and similarly for
Lπ(Qm). See Figure 1c for examples of these in-cell
scores. For stability, we only measure data-copying
for those cells significantly represented by Q, as deter-
mined by a threshold τ . Let Πτ be the set of all cells
in the partition Π for which Qm(π) ≥ τ . Then, our
summary statistic for data copying averages across all
cells represented by Q:
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CT (Pn, Qm) :=

∑
π∈Πτ

Pn(π)ZU
(
Lπ(Pn), Lπ(Qm);T

)∑
π∈Πτ

Pn(π)

Representation The above test will not catch a
model that heavily over- or under-represents cells. For
completeness, we make use of a simple representation
test that is essentially used by Richardson and Weiss
(2018), now with an independent test set instead of the
training set.

With n,m ≥ 20 in cell π, we may treat Qm(π), Pn(π)
as Gaussian random variables. We then check the null
hypothesis H0 : 0 = P (π)−Q(π). Assuming this null
hypothesis, a simple z-test is:

Zπ =
Qm(π)− Pn(π)√
p̂
(
1− p̂

)(
1
n + 1

m

)
where p̂ = nPn(π)+mQm(π)

n+m . We then report two val-
ues for a significance level s = 0.05: the number of
significantly different cells (‘bins’) with Zπ > s (NDB
over-representing), and the number with Zπ < −s
(NDB under-representing).

Together, these summary statistics — CT , NDB-over,
NDB-under — establish a tension that encourages Q to
broadly represent P without directly copying training
set T .

3 Experiments

Having clarified what we mean by data-copying in the-
ory, we turn our attention to observing data copying by
generative models in practice. We leave representation
test results for the appendix, since this behavior has
been well studied in previous works. Specifically, we
aim to answer the two following questions:

1. Are the existing tests that measure generative
model overfitting able to capture data-copying?

2. When popular generative models range from over-
to underfit, does our test indicate data-copying,
and if so, to what degree?

Methods In all of the following experiments, we se-
lect a training dataset T with test split Pn, and a
generative model Q producing sample Qm. We per-
form k-means on T to determine partition Π, with the
objective having a reasonable population of both T and
Pn in each π ∈ Π. We set threshold τ , such that we
are guaranteed to have at least 20 samples in each cell
in order to validate the gaussian assumption of Zπ, ZU .

We then select some parameter of Q that can tune the
degree of over- or underfitting on training set T . For
instance, the Gaussian KDE σ parameter will directly
control the degree of data-copying by our definition,
allowing us to sweep σ from low (complex, over-fit
model) to high (simple, underfit model). For VAEs, we
have no such parameter, and instead vary the model
complexity from high (many units per layer) to low (few
units per layer). We then probe for the degree of data-
copying at each level of declining model complexity
using the baseline and proposed methods, and record
test responses. To observe the variance of each test,
we record the average and 1-standard deviation of the
test response across several trials of generating Qm.

We embed all image samples into some latent space
with meaningful L2 distance to make d(x) significant.
While this is standard practice in evaluating generative
models (Salimans et al., 2016; Sajjadi et al., 2018), these
embeddings themselves might be overfit. To address
this, we perform our experiments in three domains with
three different kinds of embeddings (none, custom, and
Inception Network Pool3 features).

3.1 Detecting data-copying

First, we investigate which of the existing generative
model tests can detect explicit data-copying.

Baselines and Dataset Here, we probe the four
of the methods described in our Related Work sec-
tion, to see how they react to data-copying: two-
sample NN (Lopez-Paz and Oquab, 2016), FID (Heusel
et al., 2017), Binning-Based Evaluation (Richardson
and Weiss, 2018), and Precision & Recall (Sajjadi
et al., 2018), which are described in detail in Appendix
6.3.2. We run this test on the two-dimensional ‘moons’
dataset, as it affords us limitless training and test sam-
ples and requires no feature embedding (see Appendix
6.3.1 for an example). Note that, without an embed-
ding, FID is simply the Frechét distance between two
MLE normal distributions fit to T and Qm. We use the
same size generated and training sample for all meth-
ods, when m < |T | (especially for large datasets and
computationally burdensome samplers) we are forced
to use an m-size training subsample T̃ for running the
two-sample NN test due to its constraint that m = |T |.

We compare against the canonical test of measuring
the generalization gap (difference between training and
test set likelihoods under the model) in Appendix 7. It
is not a primary baseline since it cannot be used when
the model likelihood is intractable.

We make Q a Gaussian KDE since it allows us to force
explicit data-copying by setting σ very low. As σ → 0,
Q becomes a bootstrap sampler of the original training
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(a) (b) (c) (d)

Figure 2: Response of four baseline test methods to data-copying of a Gaussian KDE on ‘moons’ dataset. Only the two-sample NN test
(c) is able to detect data-copying KDE models as σ moves below σMLE (depicted as a red dot). The gray trace is proportional to the KDE’s
log-likelihood measured on a held-out validation set.

set. If a given test method can detect the level of
data-copying by Q on T , it will provide a different
response to a heavily over-fit KDE Q (σ � σMLE), a
well-fit KDE Q (σ ≈ σMLE), and an underfit KDE Q
(σ � σMLE).

Figure 2 depicts how each baseline method responds
to KDE Qmodels of varying degrees of data-copying, as
Q ranges from data-copying (σ = 0.001) up to heavily
underfit (σ = 10). The Frechét and Binning methods
report effectively the same value for all σ ≤ σMLE,
indicating inability to detect data-copying. Similarly,
the PR curves for different σ values are high variance
and show no meaningful order with respect to σ.

The two-sample NN test does show a mild change
in response as σ decreases below σMLE. This makes
sense; as points in Qm become closer to points in T ,
the two-sample NN accuracy should steadily drop to
zero. The reason it does not drop to zero is due to
the m subsampled training points, T̃ ⊂ T , needed to
perform this test. As such, each training point t ∈ T
being copied by generated point q ∈ Qm is unlikely to
be present in T̃ during the test. This phenomenon is
especially pronounced in some of the following settings.

The reason most of these tests fail to detect data-
copying is because most existing methods focus on an-
other type of overfitting: mode-collapse and -dropping,
wherein entire modes of P are either forgotten or aver-
aged together. However, if a model begins to data-copy,
it is definitively overfitting without mode-collapsing.

Next, we will demonstrate our method on a variety of
datasets, models, and embeddings. We will compare
our method to the two-sample NN method in each
setting, as it is the only baseline that responds to
explicit data-copying.

3.2 Measuring degree of data-copying

We now aim to answer the second question raised at
the beginning of this section: does CT (Pn, Qm) detect
and quantify data-copying? We focus on two types of
generative model: Gaussian KDEs, and neural models.

3.2.1 KDE-based tests

While KDEs do not provide a reliable likelihood in
high dimension (Theis et al., 2016), they do provide an
informative first benchmark of the CT statistic. KDEs
allow us to directly force data-copying, and confirm
the theoretical connection between the MLE KDE and
CT ≈ 0 described in Lemma 1.

KDEs: ‘moons’ dataset Here, we repeat the ex-
periment performed in Section 3.1, now including the
CT statistic for comparison. Refer to Appendix 6.3.1
for experimental details, and examples of the dataset.

Figures 3a and 3b give a side-by-side depiction of CT
and the two-sample NN test accuracies across a range of
KDE σ values. Think of CT values as z-score standard
deviations. We see that the CT statistic in Figure 3a
precisely identifies the MLE model when CT ≈ 0, and
responds sharply to σ values above and below σMLE.
The baseline in Figure 3b similarly identifies the MLE
Q model when training accuracy ≈ 0.5, but is higher
variance and less sensitive to changes in σ, especially for
over-fit σ � σMLE. We will see in the next experiment,
that this test breaks down for more complex datasets
when m� |T |.

KDEs: MNIST Handwritten Digits We now ex-
tend the KDE test performed on the moons dataset
to the significantly more complex MNIST handwritten
digit dataset (LeCun and Cortes, 2010).

While it would be convenient to directly apply the
KDE σ-sweeping tests discussed in the previous section,
there are two primary barriers. The first is that KDE
model relies on L2 norms being perceptually meaning-
ful, which is well understood not to be true in pixel
space. The second problem is that of dimensionality:
the 784-dimensional space of digits is far too high for
a KDE to be even remotely efficient at interpolating
the space.

To handle these issues, we first embed each image,
x ∈ X , to a perceptually meaningful 64-dimensional
latent code, z ∈ Z. We achieve this by training a
convolutional autoencoder with a VGGnet perceptual
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(a) (b) (c) (d)

Figure 3: CT (Pn, Qm) vs. NN baseline and generalization gap on moons and MNIST digits datasets. (a,b) compare the two tests on the
moons dataset. (c,d) compare the two tests on MNIST. In both data settings, the CT statistic is far more sensitive to the data-copying
regime σ � σMLE than the NN baseline. It is more sensitive to underfitting σ � σMLE than the generalization gap test. The red dot
denotes σMLE, and the gray trace is proportional to the KDE’s log-likelihood measured on a held-out validation set.

loss produced by Zhang et al. (2018) (see Appendix
6.3.3 for more detail). Surely, even in the lower 64-
dimensional space, the KDE will suffer some from the
curse of dimensionality. We are not promoting this
method as a powerful generative model, but rather
as an instructive tool for probing a test’s response to
data-copying in the image domain.

Figure 3c shows how CT (Pn, Qm) reacts decisively
to over- and underfitting. It falsely determines the
MLE σ value as slightly over-fit. However, the region
of where CT transitions from over- to underfit (say
−13 ≤ CT ≤ 13) is relatively tight and includes the
MLE σ.

Meanwhile, Figure 3d shows how — with the gener-
ated sample smaller than the training sample, m� |T |
— the two-sample NN baseline provides no meaningful es-
timate of data-copying. In fact, the most data-copying
models with low σ achieve the best scores closest to 0.5.
Again, we are forced to use the m-subsampled T̃ ⊂ T ,
and most instances of data copying are completely
missed. CT has no such restriction.

These results are promising, and demonstrate the reli-
ability of this hypothesis testing approach to probing
for data-copying across different data domains. In the
next section, we explore how these tests perform on
more sophisticated, non-KDE models.

3.3 Neural Model Tests

Gaussian KDE’s may have nice theoretical properties,
but are relatively ineffective in high-dimensional set-
tings, precluding domains like images. As such, we
also demonstrate our experiments on more practical
neural models trained on higher dimensional image
datasets (MNIST and ImageNet), with the goal of ob-
serving whether the CT statistic indicates data-copying
as these models range from over- to underfit.

MNIST VAE Here, we employ our data-copying
test, CT (Pn, Qm), on a range of VAEs of varying
complexity trained on the MNIST handwritten digit
dataset. Experimental and theoretical findings have

suggested that VAE samplers — under certain assump-
tions — simply produce convex combinations of train-
ing set samples (Bozkurt et al., 2018). In generating
an out-of-distribution sample, an overly complex VAE
effectively reproduces nearest-neighbor training sam-
ples. Our findings appear to corroborate this. We vary
model complexity by increasing the width (neurons
per layer) in a three-layer VAE (see Appendix 6.3.3 for
details). As an embedding, we pass all samples through
the the convolutional autoencoder of Section 3.2.1, and
collect statistics in this 64-dimensional space.

Figures 4a and 4b compare the CT statistic to the NN
accuracy baseline . CT behaves as it did in the previous
sections: more complex models over-fit, forcing CT � 0,
and less complex models underfit forcing it � 0. We
note that the range of CT values is far less dramatic,
which is to be expected since the KDEs were forced
to explicitly data-copy. As likelihood is not available
for VAEs, we compute each model’s ELBO on a 10,000
sample held out validation set, and plot it in gray. We
observe that the ELBO spikes for models with CT near
0.

The NN baseline in Figure 4b is less interpretable,
and fails to capture the overfitting trend as CT does.
While all three test accuracies still follow the upward-
sloping trend of Figure 3b, they do not indicate where
the highest validation set ELBO is. Furthermore, the
NN accuracy statistics are shifted upward when com-
pared to the results of the previous section: all NN
accuracies are above 0.5 for all latent dimensions. This
is problematic. A test statistic’s absolute score ought
to bear significance between very different data and
model domains like KDEs and VAEs.

ImageNet GAN Finally, we scale our experiments
up to a more practical image domain. We gather our
test statistics on a state of the art conditional GAN,
‘BigGan’ (Brock et al., 2018), trained on the Imagenet
12 dataset (Russakovsky et al., 2015). Conditioning
on an input code, this GAN will generate one of 1000
different Imagenet classes. We run our experiments
separately on three classes: ‘coffee’, ‘soap bubble’, and
‘schooner’. All generated, test, and training images are
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(a) (b) (c) (d)

Figure 4: Neural model data-copying: figures (a) and (c) demonstrate the CT statistic identifying data-copying in an MNIST VAE and
ImageNet GAN as they range from heavily over-fit to underfit. (b) and (d) demonstrate the relative insensitivity of the NN baseline to this
overfitting. (Note, the markers for (d) apply to the traces of (e))

(a) Data-copied cells; top: ZU = −1.46, bottom: ZU = −1.00 (b) Underfit cells; top: ZU = +1.40, bottom: ZU = +0.71

Figure 5: Data-copied and underfit cells of ImageNet12 ‘coffee’ and ‘soap bubble’ instance spaces (trunc. threshold = 2). In each 14-figure
strip, the top row provides a random series of training samples from the cell, and the bottom row provides a random series of generated
samples from the cell. (a) Data-copied cells. (a), top: Random training and generated samples from a ZU = −1.46 cell of the coffee instance
space. (a), bottom: Random training and generated samples from a ZU = −1.00 cell of the bubble instance space. (b) Underfit cells. (b),
top: Random training and generated samples from a ZU = +1.40 cell of the coffee instance space. (b), bottom: Random training and
generated samples from a ZU = +0.71 cell of the bubble instance space.

embedded to a 64-dimensional space by first gathering
the 2048-dimensional features of an InceptionV3 net-
work ‘Pool3’ layer, and then projecting them onto the
64 principal components of the training embeddings.
Appendix 6.3.4 has more details.

Being limited to one pre-trained model, we increase
model variance (‘truncation threshold’) instead of de-
creasing model complexity. As proposed by BigGan’s
authors, all standard normal input samples outside of
this truncation threshold are resampled. The authors
suggest that lower truncation thresholds, by only pro-
ducing samples at the mode of the input, output higher
quality samples at the cost of variety, as determined
by Inception Score (IS). Similarly, the FID score finds
suitable variety until truncation approaches zero.

As depicted in Figure 4c, the CT statistic remains
well below zero until the truncation threshold is nearly
maximized, indicating that Q produces samples closer
to the training set than real samples tend to be. While
FID finds that in aggregate the distributions are roughly
similar, a closer look suggests that Q allocates too much
probability mass near the training samples.

Meanwhile, the two-sample NN baseline in Figure 4d
hardly reacts to changes in truncation, even though the
generated and training sets are the same size, m = |T |.
Across all truncation values, the training sample NN

accuracy remains around 0.5, not quite implying over-
or underfitting.

A useful feature of the CT statistic is that one can
examine the ZU scores it is composed of to see which
of the cells π ∈ Πτ are or are not copying. Figure
5 shows the samples of over- and underfit cells π ∈ Π
for two of the three classes. For both ‘coffee’ and
‘bubble’ classes, the underfit cells are more diverse than
the data-copied cells. While it might seem reasonable
that these generated samples are further from nearest
neighbors in more diverse clusters, keep in mind that
the ZU > 0 statistic indicates that they are further
from training neighbors than test set samples are. For
instance, the people depicted in underfit ‘bubbles’ cell
are highly distorted.

4 Conclusion

In this work, we have formalized data-copying : an
under-explored failure mode of generative model overfit-
ting. We have provided preliminary tests for measuring
data-copying and experiments indicating its presence in
a broad class of generative models. In future work, we
plan to establish more theoretical properties of data-
copying, convergence guarantees of these tests, and
experiments with different model parameters.
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