Exploring Connections Between Active Learning and Model Extraction

Varun Chandrasekaran!, Kamalika Chaudhuri®, Irene GiacomelliZ, Somesh Jha!, and Songbai Yan

3

'University of Wisconsin-Madison
2Protocol Labs
3University of California San Diego

Abstract

Machine learning is being increasingly used by individu-
als, research institutions, and corporations. This has resulted
in the surge of Machine Learning-as-a-Service (MLaaS) -
cloud services that provide (a) tools and resources to learn the
model, and (b) a user-friendly query interface to access the
model. However, such MLaaS systems raise concerns such
as model extraction. In model extraction attacks, adversaries
maliciously exploit the query interface to steal the model.
More precisely, in a model extraction attack, a good approxi-
mation of a sensitive or proprietary model held by the server
is extracted (i.e. learned) by a dishonest user who interacts
with the server only via the query interface. This attack was
introduced by Tramer et al. at the 2016 USENIX Security
Symposium, where practical attacks for various models were
shown. We believe that better understanding the efficacy of
model extraction attacks is paramount to designing secure
MLaaS systems. To that end, we take the first step by (a)
formalizing model extraction and discussing possible defense
strategies, and (b) drawing parallels between model extraction
and established area of active learning. In particular, we show
that recent advancements in the active learning domain can
be used to implement powerful model extraction attacks, and
investigate possible defense strategies.

1 Introduction

Advancements in various facets of machine learning has made
it an integral part of our daily life. However, most real-world
machine learning tasks are resource intensive. To that end,
several cloud providers, such as Amazon, Google, Microsoft,
and BigML offset the storage and computational requirements
by providing Machine Learning-as-a-Service (MLaaS). A
MLaaS server offers support for both the training phase, and
a query interface for accessing the trained model. The trained
model is then queried by other users on chosen instances (refer
Fig. 1). Often, this is implemented in a pay-per-query regime
i.e. the server, or the model owner via the server, charges the
the users for the queries to the model. Pricing for popular
MLaaS APIs is given in Table 1.

Current research is focused at improving the performance
of training algorithms, while little emphasis is placed on the
related security aspects. For example, in many real-world ap-
plications, the trained models are privacy-sensitive - a model
can (a) leak sensitive information about training data [5] dur-
ing/after training, and (b) can itself have commercial value or
can be used in security applications that assume its secrecy
(e.g., spam filters, fraud detection etc. [29, 38, 53]). To keep
the models private, there has been a surge in the practice of
oracle access, or black-box access. Here, the trained model
is made available for prediction but is kept secret. MLaaS
systems use oracle access to balance the trade-off between
privacy and usability.

Models Google Amazon Microsoft

* DNNs Confidence X Confidence
Score Score

* Regression Confidence ~ Confidence Confidence
Score Score Score

* Decision trees Leaf Node X Leaf Node

* Random forests Leaf Node X Leaf Node

e Binary & n-ary Confidence Confidence Confidence

classification Score Score Score

* Batch $0.093* $0.1 $0.5

¢ Online $0.056* $0.0001 $0.0005

Table 1: Pricing, and auxiliary information shared. * Google’s pricing
model is per node per hour. Leaf node denotes the exact leaf (and not an
internal node) where the computation halts, and Xindicates the absence of
support for the associated model.

Despite providing oracle access, a broad suite of attacks
continue to target existing MLaaS systems [13]. For example,
membership inference attacks attempt to determine if a given
data-point is included in the model’s training dataset only by
interacting with the MLaaS interface (e.g. [52]). In this work,
we focus on model extraction attacks, where an adversary
makes use of the MLaaS query interface in order to steal the
proprietary model (i.e. learn the model or a good approxima-

tion of it). In an interesting paper, Tramer et al. [55], show
that many commonly used MLaaS interfaces can be exploited
using only few queries to recover a model’s secret parameters.
Even though model extraction attacks are empirically proven
to be feasible, their work consider interfaces that reveal auxil-
iary information, such as confidence values together with the
prediction output. Additionally, their work does not formal-
ize model extraction. We believe that such formalization is
paramount for designing secure MLaaS that are resilient to
aforementioned threats. In this paper, we take the first step in
this direction. The main contributions of the paper appear in
boldfaced captions.

Model Extraction ~ Active Learning. The key observation
guiding our formalization is that the process of model extrac-
tion is very similar to active learning [50], a special case of
semi-supervised machine learning. An active learner learns
an approximation of a labeling function f* through repeti-
tive interaction with an oracle, who is assumed to know f*.
These interactions typically involve the learner sending an
instance x to the oracle, and the oracle returning the label
y = f*(x) to the learner. Since the learner can choose the
instances to be labeled, the number of data-points needed to
learn the labeling function is often much lower than in the
normal supervised case. Similarly, in model extraction, the
adversary uses a strategy to query a MLaaS server with the
following goals: (a) to successfully steal (i.e. learn) the model
(i.e. labeling function) known by the server (i.e. oracle), in
such a way as to (b) minimize the number of queries made to
the MLaaS server, as each query costs the adversary.

While the overall process of active learning mirrors the

general description of model extraction, the entire spectrum
of active learning can not be used to study model extraction.
Indeed, some scenarios (eg, PAC active learning) assume that
the query instances are sampled from the actual input dis-
tribution. However, an attacker is not restricted to such a
condition and can query any instance. For this reason, we
believe that the query synthesis framework of active learning,
where the learner has the power to generate arbitrary query
instances best replicates the capabilities of the adversary in
the model extraction framework. Additionally, the query syn-
thesis scenario ensures that we make no assumptions about
the adversary’s prior knowledge.
Powerful attacks with no auxiliary information. By cast-
ing model extraction as query synthesis active learning, we
are able to draw concrete similarities between the two. Con-
sequently, we are able to use algorithms and techniques from
the active learning community to perform powerful model
extraction attacks, and investigate possible defense strategies.
In particular, we show that query synthesis active learning
algorithms can be used to perform model extraction on both
linear and non-linear classifiers with no auxiliary information.
Moreover, our evaluation shows that our attacks are better
than the classic attacks, such as by Lowd and Meek [38],
which have been widely used in the security community.

Data owner

S

Figure 1: Model extraction can be envisioned as active learning. A data
owner, with the help of a MLaaS server, trains a model f* on its data. The
proprietary model is stored by the server, which also answers to queries from
users (i.e., yi = f*(x;)). In a model extraction attack, a dishonest user tries to
exploit this interface to “steal” f* in the same way as a learner uses answer
from a machine-learning oracle in order to learn f*.

training

X1y-ee5Xg
MLaaS Server
(oracle)

@

No “free lunch” for defense. Simple defense strategies such
as changing the prediction output with constant and small
probability are not effective. However, defense strategies that
change the prediction output depending on the instances that
are being queried, such as the work of Alabdulmohsin et al.
[2], are more robust to extraction attacks implemented using
existing query synthesis active learning algorithms. However,
in Algorithm | of § 6, we show that this defense is not secure
against traditional passive learning algorithms. This suggests
that there is “no free lunch” — accuracy might have to be sac-
rificed to prevent model extraction. An in-depth investigation
of such a result will be interesting avenue for future work.

Paper structure. We begin with a brief comparison between
passive machine learning and active learning in § 2. This
allows us to introduce the notation used in this paper, and
review the state-of-the-art for active learning. § 3 focuses
on the formalization of model extraction attacks, casting it
into the query synthesis active learning framework. § 4 dis-
cusses our algorithms used to extract non-linear classifiers
(i.e. kernel SVMs, decision trees, and random forests). § 5
discusses possible defenses strategies. § 6.1 reports our ex-
perimental findings and demonstrates that query synthesis
active learning can be used to successfully perform model
extraction of linear models, and evaluates different defense
strategies. Specifically, we observe that $0.09 worth Ama-
zon queries are needed to extract most halfspaces when the
MLaasS server does not deploy any defense, and $3.65 worth
of queries are required to learn a halfspace when it uses data-
independent randomization. Furthermore, our experiments in
§ 6.2 show modifying adaptive retraining proposed by Tramer
et al. results in efficienct extraction attacks for non-linear
models; we obtain 5x-224 x improvement for kernel SVMs,
and comparable extraction efficiency for discrete models such
as decision trees with no auxiliary information. Finally, we
discuss some open issues in § 7, which provides avenue for
future work. Related work is discussed in § 8, and we end the
paper with some concluding remarks. All proofs are detailed
in the Appendix of the extended version [1].

2 Machine Learning Overview

In this section, we give a brief overview of machine learning,
and terminology we use throughout the paper. In particular,
we summarize the passive learning framework in § 2.1, and
focus on active learning algorithms in § 2.2. A review of
the state-of-the-art of active learning algorithms is needed
to explicitly link model extraction to active learning and is
presented in § 3.

2.1 Passive learning

In the standard, passive machine learning setting, the learner
has access to a large labeled dataset and uses it in its entirety
to learn a predictive model from a given class. Let X be
an instance space, and Y be a set of labels. For example, in
object recognition, X can be the space of all images, and Y
can be a set of objects that we wish to detect in these images.
We refer to a pair (x,y) € X x Y as a data-point or labeled
instance (x is the instance, y is the label). Finally, there is
a class of functions F from X to Y called the hypothesis
space that is known in advance. The learner’s goal is to find a
function f € F that is a good predictor for the label y given
the instance x, with (x,y) € X x Y. To measure how well f
predicts the labels, a loss function ¢ is used. Given a data-point
2= (x,y) € X x Y, £(f,z) measures the difference between
f(x) and the true label y. When the label domain Y is finite
(classification problem), the 0-1 loss function is frequently
used:

if f(x) =y

1, otherwise

If the label domain Y is continuous, one can use the square
loss: £(f,2) = (F(x) —3)2.

In the passive setting, the PAC (probably approximately
correct) learning [56] framework is predominantly used. Here,
we assume that there is an underlying distribution D on X x Y
that describes the data; the learner has no direct knowledge
of D but has access to a set of training data D drawn from it.
The main goal in passive PAC learning is to use the labeled
instances from D to produce a hypothesis f such that its
expected loss with respect to the probability distribution D is
low. This is often measured through the generalization error
of the hypothesis £, defined by

Errp(f) = Ecenlt(f,2)] (1

More precisely, we have the following definition.

Definition 1 (PAC passive learning [56]). An algorithm A is
a PAC passive learning algorithm for the hypothesis class ¥ if
the following holds for any D on X x Y and any €,6 € (0,1):
If A is given s4 (€,9) i.i.d. data-points generated by D, then A
outputs f € F such that Errpp(f) < minse 5 Errp(f) +€ with
probability at least 1 — 8. We refer to s4(€,d) as the sample
complexity of algorithm A.

Remark 1 (Realizability assumption). In the general case, the
labels are given together with the instances, and the factor
minsc ¢ Errp(f) depends on the hypothesis class. Machine
learning literature refers to this as agnostic learning or the
non-separable case of PAC learning. However, in some ap-
plications, the labels themselves can be described using a
labeling function f* € ¥ . In this case (known as realizable
learning), min rc ¢ Errg(f) = 0 and the distribution D can be
described by its marginal over X. A PAC passive learning al-
gorithm A in the realizable case takes s4(€, d) i.i.d. instances
generated by D and the corresponding labels generated using
f*, and outputs f € ¥ such that Errg(f) < € with probability
at least 1 — 9.

2.2 Active learning

In the passive setting, learning an accurate model (i.e. learning
f with low generalization error) requires a large number of
data-points. Thus, the labeling effort required to produce an
accurate predictive model may be prohibitive. In other words,
the sample complexity of many learning algorithms grows
rapidly as € — O (refer Example 1). This has spurred interest in
learning algorithms that can operate on a smaller set of labeled
instances, leading to the emergence of active learning (AL).
In active learning, the learning algorithm is allowed to select a
subset of unlabeled instances, query their corresponding labels
from an annotator (i.e. oracle) and then use it to construct or
update a model. How the algorithm chooses the instances
varies widely. However, the common underlying idea is that
by actively choosing the data-points used for training, the
learning algorithm can drastically reduce sample complexity.
Formally, an active learning algorithm is an interactive pro-
cess between two parties - the oracle O and the learner L. The
only interaction allowed is through queries - L chooses x € X
and sends it to O, who responds with y € Y (i.e., the oracle re-
turns the label for the chosen unlabeled instance). This value
of (x,y) is then used by L to infer some information about the
labeling procedure, and to choose the next instance to query.
Over many such interactions, £ outputs f as a predictor for
labels. We can use the generalization error (1) to evaluate the
accuracy of the output f. However, depending on the query
strategy chosen by L, other types of error can be used.
There are two distinct scenarios for active learning: PAC
active learning and Query Synthesis (QS) active learning. In
literature, QS active learning is also known as Membership
Query Learning, and we will use the two terms synonymously.

2.2.1 PAC active learning

This scenario was introduced by Dasgupta in 2005 [20] in the
realizable context and then subsequently developed in follow-
ing works (e.g., [4, 19, 26]). In this scenario, the instances
are sampled according to the marginal of D over X, and the
learner, after seeing them, decides whether to query for their
labels or not. Since the data-points seen by L come from the
actual underlying distribution D, the accuracy of the output
hypothesis f is measured using the generalization error (1),

as in the classic (i.e., passive) PAC learning.

There are two options to consider for sampling data-points.
In stream-based sampling (also called selective sampling) ,
the instances are sampled one at a time, and the learner decides
whether to query for the label or not on a per-instance basis.
Pool-based sampling assumes that all of the instances are
collected in a static pool S C X and then the learner chooses
specific instances in S and queries for their labels. Typically,
instances are chosen by L in a greedy fashion using a met-
ric to evaluate all instances in the pool. This is not possible
in stream-based sampling, where £ goes through the data
sequentially, and has to therefore make decisions to query
individually. Pool-based sampling is extensively studied since
it has applications in many real-world problems, such as text
classification, information extraction, image classification and
retrieval, etc. [39]. Stream-based sampling represents scenar-
ios where obtaining unlabeled data-points is easy and cheap,
but obtaining their labels is expensive (e.g., stream of data is
collected by a sensor, but the labeling requires an expert).

Before describing query synthesis active learning, we wish
to highlight the advantage of PAC active learning over pas-
sive PAC learning (i.e. the reduced sample complexity) for
some hypothesis class through Example 1. Recall that this
advantage comes from the fact that an active learner is al-
lowed to adaptively choose the data from which it learns,
while a passive learning algorithm learns from a static set of
data-points.

Example 1 (PAC learning for halfspaces). Let ¥ ps be the

hypothesis class of d-dimensional halfspaces' , used for binary
classification. A function in f,, € %4 gs is described by a
normal vector w € R? (i.e., ||w||> = 1) and is defined by

fuw(x) = sign((w,x)) for any x € R

where given two vectors a,b € RY, then their product is de-
fined as (a,b) = Y9, a;b;. Moreover, if x € R, then sign(x) =
1 if x > 0 and sign(x) = —1 otherwise. A classic result in
passive PAC learning states that O(g log(é) + élog(%)) data-
points are needed to learn f,, [56]. On the other hand, sev-
eral works propose active learning algorithms for ¥ zs with
sample complexity” O(dlog(1)) (under certain distributional
assumptions). For example, if the underlying distribution is
log-concave, there exists an active learning algorithm with
sample complexity O(d log(%)) [9, 10, 63]. This general re-
duction in the sample complexity for 7, ps is easy to infer
when d = 1. In this case, the data-points lie on the real line
and their labels are a sequence of —1’s followed by a sequence
of +1’s. The goal is to discover a point w where the change
from —1 to +1 happens. PAC learning theory states that this
can be achieved with O(})* points i.i.d. sampled from D. On

IHalfspace models are also called linear SVM (support vector machine).
2The O notation ignores logarithmic factors and terms dependent on .
3More generally, 0(%) points.

) = {—1 if (w,x) < —1

+1 otherwise

—1 —1 71‘ +1 +1 +1 +1 +1

‘ N]R
w

Figure 2: Halfspace classification in dimension 1.

the other hand, an active learning algorithm that uses a sim-
ple binary search can achieve the same task with O(log(%))
queries [20] (refer Figure 2).

2.2.2 Query Synthesis (QS) active learning

In this scenario, the learner can request labels for any instance
in the input space X, including points that the learner gen-
erates de novo, independent of the distribution D (e.g., L
can ask for labels for those x that have zero-probability of
being sampled according to D). Query synthesis is reason-
able for many problems, but labeling such arbitrary instances
can be difficult if the oracle is a human annotator. Thus, this
scenario better represents real-world applications where the
oracle is automated (e.g., results from synthetic experiments
[32]). Since the data-points are independent of the distribu-
tion, generalization error is not an appropriate measure of
accuracy of the hypothesis f, and other types of error are
typically used. These new error formulations depend on the
concrete hypothesis class ¥ considered. For example, if F
is the class of boolean functions from {0, 1}" to {0, 1}, then
the uniform error is used. Assume that the oracle O knows
f* € F and uses it as labeling function (realizable case), then
the uniform error of the hypothesis f is defined as

Pr [f(x) # f"(x)]

x~{0,1}"

Erru(f) =

where x is sampled uniformly at random from the instance
space {0,1}". Recent work [3, 16], for the class of halfspaces
Fa,us (refer to Example 1) use geometric error. Assume that
the true labeling function used by the oracle is f,+, then the
geometric error of the hypothesis f,, € 4 ps is defined as

Erry (fin) = [lw* —wll2

where || - ||2 is the 2-norm.

In both active learning scenarios (PAC and QS), the learner
needs to evaluate the usefulness of an unlabeled instance x,
which can either be generated de novo or sampled from the
given distribution, in order to decide whether to query the
oracle for the corresponding label. In the state of the art, we
can find many ways of formulating such query strategies.
Most of existing literature presents strategies where efficient
search through the hypothesis space is the goal (refer the sur-
vey by Settles [50]). Another point of consideration for an

active learner L is to decide when to stop. This is essential
as active learning is geared at improving accuracy while be-
ing sensitive to new data acquisition cost (i.e., reducing the
query complexity). While one school of thought relies on the
stopping criteria based on the intrinsic measure of stability
or self-confidence within the learner, another believes that
it is based on economic or other external factors (refer [50,
Section 6.7]).

Given this diversity within active learning, we enhance
the standard definition of a learning algorithm and propose
the definition of an active learning system, which is geared
towards model extraction. Our definition is informed by the
MLaaS APIs that we investigated (more details in Table 1).

Definition 2 (Active learning system). Let F be a hypothesis
class with instance space X and label space Y. An active
learning system for ¥ is given by two entities, the learner
L and the oracle O, interacting via membership queries: L
sends to O an instance x € X; O answers with a label y € Y.
We indicate via the notation Oy« the realizable case where O
uses a specific labeling function f* € F, i.e. y = f*(x). The
behavior of L is described by the following parameters:

1. Scenario: this is the rule that describes the generation of
the input for the querying process (i.e. which instances
x € X can be queried). In the PAC scenario, the instances
are sampled from the underlying distribution D. In the
query synthesis (QS) scenario, the instances are gener-
ated by the learner L;

2. Query strategy: given a specific scenario, the query strat-
egy is the algorithm that adaptively decides if the la-
bel for a given instance x; is queried for, given that
the queries x1,...,x;_; have been answered already. In
the query synthesis scenario, the query strategy also de-
scribes the procedure for instance generation.

3. Stopping criteria: this is a set of considerations used by
L to decide when it must stop querying.

Any system (L, O) described as above is an active learning
system for F if one of the following holds:

- (PAC scenario) For any D on X x Y and any €,8 €
(0,1), if L is allowed to interact with O using g (€,)
queries, then £ outputs f € F such that Errp(f) <
min e ¢ Errg(f) 4 € with probability at least 1 — 8.

- (QS scenario) Fix an error measure Err for the functions
in . For any f* € ¥, if L is allowed to interact with
Oy« using g (€,8) queries, then £ outputs f € F such
that Err(f) < € with probability at least 1 — .

We refer to g, (€,0) as the query complexity of L.

As we will show in the following section (in particular,
refer § 3.2), the query synthesis scenario is more appropriate

in casting model extraction attack as active learning when we
make no assumptions about the adversary’s prior knowledge.

Note that, other types queries have been studied in literature.
This includes the equivalence query [4]. Here the learner can
verify if a hypothesis is correct or not. We do not consider
equivalence queries in our definition because we did not see
any of the MLaaS APIs support them.

3 Model Extraction

In § 3.1, we begin by formalizing the process of model extrac-
tion. We then draw parallels between model extraction and
active learning in § 3.2.

3.1 Model Extraction Definition

We begin by describing the operational ecosystem of model
extraction attacks in the context of MLaaS systems. An entity
learns a private model f* from a public class ¥, and provides
it to the MLaaS server. The server provides a client-facing
query interface for accessing the model for prediction. For
example, in the case of logistic regression, the MLaaS server
knows a model represented by parameters ag,ai,--- ,aq. The
client issues queries of the form x = (x[1],---,x[d]) € R¢, and
the MLaa$ server responds with 0 if (1+e~*®)~1 < 0.5 and
1 otherwise, with a(x) = ap + YL, ax]i].

Model extraction is the process where an adversary exploits
this interface to learn more about the proprietary model f*.
The adversary can be interested in defrauding the descrip-
tion of the model f* itself (i.e., stealing the parameters a; as
in a reverse engineering attack), or in obtaining an approx-
imation of the model, say f € F, that he can then use for
free for the same task as the original f* was intended for. To
capture the different goals of an adversary, we say that the
attack is successful if the extracted model is “close enough”
to f* according to an error function on F that is context de-
pendent. Since many existing MLaaS providers operate in a
pay-per-query regime, we use query complexity as a measure
of efficiency of such model extraction attacks.

Formally, consider the following experiment: an adversary
A, who knows the hypothesis class ¥, has oracle access to a
proprietary model f* from ¥ . This can be thought of as A4 in-
teracting with a server S that safely stores f*. The interaction
has several rounds. In each round, 4 chooses an instance x
and sends it to S. The latter responds with f*(x). After a few
rounds, 4 outputs a function f that is the adversary’s candi-
date approximation of f*; the experiment considers f a good
approximation if its error with respect to the true function f*
held by the server is less then a fixed threshold €. The error
function Err is defined a priori and fixed for the extraction
experiment on the hypothesis class .

Experiment 1 (Extraction experiment). Given a hypothesis
class F = {f : X — Y}, fix an error function Err: ¥ — R.
Let S be a MLaaS server with the knowledge of a specific
f* € F, denoted by S(f*). Let 4 be an adversary interacting
with § with a maximum budget of g queries. The extraction

experiment Expl (S(f*), A4, q) proceeds as follows

1. A4 is given a description of F and oracle access to f*
through the query interface of S. That is, if 4 sends x € X
to S, it gets back y = f*(x). After at most ¢ queries, 4
eventually outputs f;

2. The output of the experiment is 1 if Err(f) < €. Other-
wise the output is 0.

Informally, an adversary A4 is successful if with high proba-
bility the output of the extraction experiment is 1 for a small
value of € and a fixed query budget ¢g. This means that 4
likely learns a good approximation of f* by only asking ¢
queries to the server. More precisely, we have the following
definition.

Definition 3 (Extraction attack). Let ¥ be a public hypothe-
sis class and S an MLaaS server as explained before. We say
that an adversary A4, which interacts with S, implements an
€-extraction attack of complexity g and confidence y against
the class 7 if Pr[Exp% (S(f),A4,q) = 1] > v, forany f* € F.
The probability is over the randomness of 4.

In other words, in Definition 3 the success probability of
an adversary constrained by a fixed budget for queries is
explicitly lower bounded by the quantity 7.

Before discussing the connection between model extraction
and active learning, we provide an example of a hypothesis
class that is easy to extract.

Example 2 (Equation-solving attack for linear regression).
Let ¥4 r be the hypothesis class of regression models from
R to R. A function £, in this class is described by d + 1

parameters ag,dy,...,aq from R and defined by: for any
x € R, f,(x) = ay —|—):l?d:1 a;x;. Consider the adversary Agg
that queries x',...,x?*! (d + 1 instances from R?) chosen

in such a way that the set of vectors {(1 ,x")}izlyn_’dﬂ is lin-
early independent in R?*!. 4 receives the corresponding
d+ 1 labels, yi,...,y4+1, and can therefore solve the linear
system given by the equations f,(x') = y;. Assume that f,+ is
the function known by the MLaaS$ server (i.e., y; = fu+ (x')).
It is easy to see that if we fix Err(f,) = ||a* — a||1, then
PrlExply (S(fa) Aps,d +1) = 1] = 1. That is, Ags imple-
ments 0-extraction of complexity d 4 1 and confidence 1.
While our model operates in the black-box setting, we
discuss other attack models in more detail in Remark 2

3.2 Active Learning and Extraction
From the description presented in the § 2, it is clear that model
extraction in the MLaaS system context closely resembles
active learning. The survey of active learning in § 2.2 contains
a variety of algorithms and scenarios which can be used to
implement model extraction attacks (or to study its impossi-
bility).

However, different scenarios of active learning impose dif-
ferent assumptions on the adversary’s prior knowledge. Here,

we focus on the general case of model extraction with an
adversary A4 that has no knowledge of the data distribution D.
In particular, such an adversary is not restricted to only con-
sidering instances x ~ D to query. For this reason, we believe
that query synthesis (QS) is the right active learning scenario
to investigate in order to draw a meaningful parallelism with
model extraction. Recall that the query synthesis is the only
framework where the query inputs can be generated de novo
(i.e., they do not conform to a distribution).

Observation 1: Given a hypothesis class F and an error func-
tion Err, let (L, O) be an active learning system for ¥ in the
QS scenario (Definition 2). If the query complexity of L is
qr(€,0), then there exists an adversary 4 that implements
g-extraction with complexity g, (€,d) and confidence 1 — &
against the class .

The reasoning for this observation is as follows: consider
the adversary A4 that is the learner L (i.e., 4 deploys the query
strategy procedure and the stopping criteria that describe £).
This is possible because (L, O) is in the QS scenario and £
is independent of any underlying (unknown) distribution. Let
q = q.(€,0) and observe that

Pr(Expy (S(f*), A,q) =1] =
Pr[4 outputs f and Err(f) <¢] =
Pr[L outputs £ and Err(f) <g] >1—8

Our observation states that any active learning algorithm in
the QS scenario can be used to implement a model extraction
attack. Therefore, in order to study the security of a given
hypothesis class in the MLaaS framework, we can use known
techniques and results from the active learning literature. Two
examples of this follow.

Example 3 (Decision tree extraction via QS active learning).
Let ¥, pr denote the set of boolean functions with domain
{0,1}" and range {—1,1}. The reader can think of —1 as 0
and +1 as 1. Using the range of {—1,41} is very common
in the literature on learning boolean functions. An interesting
subset of ¥, pr is given by the functions that can be repre-
sented as a boolean decision tree. A boolean decision tree
T is a labeled binary tree, where each node v of the tree is
labeled by L, C {1,--- ,n} and has two outgoing edges. Every
leaf in this tree is labeled either +1 or —1. Given an n-bit
string x = (by,---,by),b; € {0, 1} as input, the decision tree
defines the following computation: the computation starts at
the root of the tree 7. When the computation arrives at an
internal node v, we calculate the parity of } ;7 b; and go left
if the parity is 0 and go right otherwise. The value of the
leaf that the computation ends up in is the value of the func-
tion. We denote by 7, the class of boolean decision trees
with n-bit input and m nodes. Kushilevitz and Mansour [35]
present an active learning algorithm for the class %, pr that
works in the QS scenario. This algorithm utilizes the uniform
error to determine the stopping condition (refer § 2.2). The
authors claim that this algorithm has practical efficiency when

restricted to the classes n’:’BT C %n,pr for any m. In partic-
ular, if the active learner £ of [35] interacts with the oracle
Or« where T* € ¥ 5, then L learns g € , pr such that
Pr,_{0,1}2[g(x) # T*(x)] < € with probability at least 1 — 3
using a number of queries polynomial in n, m, % and log(%).
Based on Observation 1, this directly translates to the exis-
tence of an adversary that implements e-extraction with com-
plexity polynomial in n, m, é and confidence 1 — § against
the class F,"p7.

Moreover, the algorithm [35] can be extended to (a)
boolean functions of the form f : {0,1,....,k — 1}" —
{—=1,+1} that can be computed by a polynomial-size k-ary
decision tree*, and (b) regression trees (i.e., the output is a real
value from [0,M]). In the second case, the running time of
the learning algorithm is polynomial in M (refer § 6 of [35]).
Note that the attack model considered here is a stronger model
than that considered by Tramer et al. [55] because the at-
tacker/learner does not get any information about the internal
path of the decision tree (refer Remark 2).

Example 4 (Halfspace extraction via QS active learning).
Let ;s be the hypotheses class of d-dimensional half-
spaces defined in Example 1. Alabdulmohsin et al. [3]
present a spectral algorithm to learn a halfspace in the QS
scenario that, in practice, outperformed earlier active learning
strategies in the PAC scenario. They demonstrate, through
several experiments that their algorithm learns f,, € %4 s
such that ||w — w*||; < € with approximately 2d log(%)
queries, where f,,« € #4 s is the labeling function used by O.
It follows from Observation 1 that an adversary utilizing this
algorithm implements €-extraction against the class ¥ ps
with complexity O(d log(%)) and confidence 1. We validate
the practical efficacy of this attack in § 6.

Remark 2 (Extraction with auxiliary information). Observe
that we define model extraction for only those MLaaS servers
that return only the label value y for a well-formed query x
(i.e. in the oracle access setting). A weaker model considers
the case of MLaaS servers responding to a user’s query x
even when x is incomplete (i.e. with missing features), and
returning the label y along with some auxiliary information.
The work of Tramer ef al. [55] proves that model extraction
attacks in the presence of such “leaky servers” are feasible
and efficient (i.e. low query complexity) for many hypoth-
esis classes (e.g., logistic regression, multilayer perceptron,
and decision trees). In particular, they propose an equation
solving attack [55, Section 4.1] that uses the confidence val-
ues returned by the MLaaS server together with the labels
to steal the model parameters. For example, in the case of
logistic regression, the MLaaS server knows the parameters
ap,ap,...,aq and responds to a query x with the label y (y =0
if (1+e %) <0.5andy = 1 otherwise) and the value a(x)
as confidence value for y. Clearly, the knowledge of the con-

4A k-ary decision tree is a tree in which each inner node v has k outgoing
edges.

fidence values allows an adversary to implement the same
attack we describe in Example 2 for linear regression models.
In [55, §4.2], the authors describes a path-finding attack that
use the leaf/node identifier returned by the server, even for
incomplete queries, to steal a decision tree. These attacks
are very efficient (i.e., d + 1 queries are needed to steal a
d-dimensional logistic regression model). However, their effi-
ciency heavily relies on the presence of the various forms of
auxiliary information provided by the MLaaS server. While
the work in [55] performs preliminary exploration of attacks
in the black-box setting [17, 38], it does not consider more
recent and efficient algorithms in the QS scenario. Our work
explores this direction through a formalization of the model
extraction framework that enables understanding the possi-
bility of extending/improving the active learning attacks pre-
sented in [55]. Furthermore, having a better understanding of
model extraction attack and its unavoidable connection with
active learning is paramount for designing MLaaS systems
that are resilient to model extraction.

4 Non-linear Classifiers

This section focuses on model extraction for two important
non-linear classifiers: kernel SVMs and discrete models (i.e.
decision trees and random forests). For kernel SVMs our
method is a combination of the adaptive-retraining algorithm
introduced by Tramer et al. and the active selection strategy
from classic literature on active learning of kernel SVMs [12].
For discrete models our algorithm is based on the importance
weighted active learning (IWAL) as described in [11]. Note
that decision trees for general labels (i.e. non-binary case) and
random forests was not discussed in [11].

4.1 Kernel SVMs

In kernel SVMs (kSVMs), there is a kernel K : X x X — R
associated with the SVM. Some of the common kernels are
polynomials and radial-basis functions (RBFs). If the ker-
nel function K(.,.) has some special properties (required by
classic theorem of Mercer [40]), then K(.,.) can be replaced
with @(.)7®(.) for a projection/feature function ®. In the
feature space (the domain of @) the optimization problem is
as follows’:

min,, ,||w[* + C X i
suchthatfor 1 <i<n
yio(xi) = 1—=m;
mn >0

In the formulation given above, $(x) is equal to w’ ®(x) 4 b.
Recall that prediction of the kSVM is the sign of $(x), so y(x)
is the “pre sign” value of the prediction. Note that for some
kernels (e.g. RBF) @ is infinite dimensional, so one generally
uses the “kernel trick”i.e. one solves the dual of the above

Swe are using the formulation for soft-margin kSVMs

problem and obtains a kernel expansion, so that

n
y(x) = Z oK (x,x;) + b
i=1
The vectors xq, - - - ,x, are called support vectors. We assume

that hyper-parameters of the kernel (C,m) are known; one can
extract the hyper-parameters for the RBF kernel using the
extract-and-test approach as Tramer et al. Note that if ® is
finite dimensional, we can use an algorithm (including active
learning strategies) for linear classifier by simply working in
the feature space (i.e. extracting the domain of ®(-)). How-
ever, there is a subtle issue here, which was not addressed
by Tramer et al. We need to make sure that if a query y is
made in the feature space, it is “realizable” (i.e. there exists
a x such that ®(x) = y). Otherwise the learning algorithm is
not sound.

Next we describe our model-extraction algorithm for
kSVMs with kernels whose feature space is infinite dimension
(e.g. RBF or Laplace kernels). Our algorithm is a modifica-
tion of the adaptive training approach from Tramer et al. Our
discussion is specialized to kSVMs with RBFs, but our ideas
are general and are applicable in other contexts.

Extended Adaptive Training (EAT): EAT proceeds in mul-
tiple rounds. In each round we construct / labeled instances.
In the initial stage (t = 0) we draw r instances x, - - - ,x, from
the uniform distribution, query their labels, and create an ini-
tial model M. Assume that we are at round ¢, where r > 0,
and let M,_; be model at time ¢ — 1. Round ¢ works as follows:
create h labeled instances using a strategy StT(M,,l ,h) (note
that the strategy St is oracle access to the teacher, and takes
as parameters model from the previous round and number of
labeled instances to be generated). Now we train M;_; on the
instances generated by St” (M;_,h) and obtain the updated
model M;. We keep iterating using the strategy St” (-,-) un-
til the query budget is satisfied. Ideally, St” (M;_,h) should
be instances that the model M;_; is least confident about or
closest to the decision boundary.

Tramer et al. use line search as their strategy St” (M, _1,h),
which can lead to several queries (each step in the binary
search leads to a query). We generate the initial model M
as in Tramer et al. and then our strategy differs. Our strat-
egy St7 (M;_1,1) (note that we only add one labeled sample
at each iteration) works as follows: we generate k random
points xp, - - ,x¢ and then compute ¥;(x;) for each x; (recall
that y;(x;) is the “pre sign” prediction of x; on the SVM M,_.
We then pick x; with minimum | ¥;(x;) | and query for its label
and retrain the model M;_; and obtain M;. This strategy is
called active selection and has been used for active learning of
SVMs [12]. The argument for why this strategy finds the point
closest to the boundary is given in [12, §4]. There are other
strategies described in [12], but we found active selection to
perform the best.

4.2 Decision Trees and Random Forests

Next we will describe the idea of importance weighted ac-
tive learning (IWAL) [11]. Our discussion will be specialized
to decision trees and random forests, but the ideas that are
described are general.

Let H be the hypothesis class (i.e. space of decision trees or
random forests), X is the space of data, and Y is the space of la-
bels. The active learner has a pool of unlabeled data xj,xp,- - -.
Fori > 1, we denote by X;.;—; the sequence xy,--- ,x;_. After
having processed the sequence X;.;—1, a coin is flipped with
probability p; € [0,1] and if it comes up heads, the label of
x; is queried. We also define a set S; (Sop = 0) recursively as
follows: If the label for x; is not queried, then S; = S;_1; oth-
erwise S; = S;_1 U (x;,y;, p;). Essentially the set S; keeps the
information (i.e. data, label, and probability of querying) for
all the datapoints whose label was queried. Given a hypothesis
h € H, we define err(h,S,) as follows:

1 1
err(h,Sn) = = Y —lywn)
" eypresn P

Next we define the following quantities (we assume n > 1):

hy, = argmin{err(h,S,—1) : h€ H}
K, = argmin{err(h,S,—1) : h € H Nh(Xy) # hu(Xn)}
G, = err(h,,Su—1)—err(hy,Sn—1)

Recall that p, is the probability of querying for the label for
X,,, which is defined as follows:

_)1 if G, < u(n)
Pn= s(n) otherwise

Where u(n) =
tive solution to the following equation:

cologn cologn and g(n) € (0,1) is the posi-

n

< 1) [cologn (2) cologn
G, = . + .
Vs—ci+1 n—1 Vs—cr+1 n—1
Note the dependence on constants/hyperparameters cg, ¢
and c;, which are tuned for a specific problem (e.g. in their
experiments for decision trees [11, §6] the authors set co = 8
and Cl =C = 1).

Decision Trees: Let DT be any algorithm to create a decision
tree. We start with an initial tree A (this can constructed using
a small, uniformly sampled dataset whose labels are queried).
Let &, be the tree at step n — 1. The question is: how to con-
struct /2,2 Let x,, be the n'" datapoint and Y = {/;,---,/,} be
the set of labels. Let A, (x,) = [;. Let h, (/) be the modification
of tree hy, such that h, (/) produces label / # h,(x,) on data-
point x,,. Let /;, be the tree in the set {h,(l) |l € Y —{/;}}
that has minimum err(-,S,_;). Now we can compute G, and
the algorithm can proceed as described before.

Random Forests: In this case we will restrict ourselves to
binary classification, but the algorithm can readily extended to

the case of multiple labels. As before RF is the random forest
trained on a small initial dataset. Since we are in the binary
classification domain, the label set Y = {1, —1}. Assume that
we have a random forest RF = {RF([1],--- ,RF[o]} of trees
RF[i] and on a datapoint x the label of the random forest RF (x)
is the majority of the label of the trees RF[1](x), -+ ,RF [0](x).
Let RF, be the random forest at time step n — 1. The question
again is: how to construct RF,? Without loss of generality, let
us say on x, RF,(x,) = +1 (the case when the label is —1 is
symmetric) and there are r trees in RF, (denoted by RE," (x,,))
such that their labels on x, are +1. Note that » > | | because
the majority label was +1. Define j = r— [§ | + 1. Note that if
jtrees in RE,;" (x,,) will “flip” their decision to —1 on x,,, then
the decision on x;, will be flipped to —1. This is the intuition
we use to compute RF,. There are (;) choices of trees and
we pick the one with minimum error on S,,_1, and that gives
us RF,. Recall that (;) is approximately /, but we can be
approximate by randomly picking j trees out of RF,!(x,),
and choosing the random draw with the minimum error to
approximate RF.

5 Defense Strategies

Our main observation is that model extraction in the context
of MLaaS systems described at the beginning of § 3 (i.e.,
oracle access) is equivalent to QS active learning. Therefore,
any advancement in the area of QS active learning directly
translates to a new threat for MLaaS systems. In this section,
we discuss strategies that could be used to make the process
of extraction more difficult.We investigate the link between
ML in the noisy setting and model extraction. The design of
a good defense strategy is an open problem; we believe this
is an interesting direction for future work where the ML and
security communities can fruitfully collaborate.

In this section, we assume that the MLaaS server S with the
knowledge of f*, S(f*), has the freedom to modify the pre-
diction before forwarding it to the client. More precisely, we
assume that there exists a (possibly) randomized procedure D
that the server uses to compute the answer y to a query x, and
returns that instead of f*(x). We use the notation Sp(f™) to
indicate that the server S implements D to protect f*. Clearly,
the learner that interacts with Sp(f*) can still try to learn a
function f from the noisy answers from the server. However,
the added noise requires the learner to make more queries, or
could produce a less accurate model than f.

5.1 Classification case

We focus on the binary classification problem where ¥ is an
hypothesis class of functions of the form f: X — Y and Y
is binary, but our argument can be easily generalized to the
multi-class setting.

First, in the following two remarks we recall two known
results from the literature [27] that establish information the-
oretic bounds for the number of queries required to extract
the model when any defense is implemented. Let v be the

generalization error of the model f* known by the server Sp
and p be the generalization error of the model f learned by an
adversary interacting with Sp(f*). Assume that the hypoth-
esis class 4 has VC dimension equal to d. Recall that the
VC dimension of a hypothesis class ¥ is the largest number
d such that there exists a subset X C X of size d which can
be shattered by F. A set X = {xy,...,x4} C X is said to be
shattered by F if |[{(f(x1), f(x2),...,f(xa)) : f € F}| =27

Remark 3 (Passive learning). Assume that the adversary uses
a passive learning algorithm to compute f, such as the Em-
pirical Risk Minimization (ERM) algorithm, where given
a labeled training set {(X;,Y1),...(X,,Y,)}, the ERM algo-
rithm outputs f = argmin reg %Z?:l 1[f(X;) #Y;]- Then, the
adversary can learn f with excess error € (i.e., u < V+€) with
O(Vs—tsd) examples. For any algorithm, there is a distribution
such that the algorithm needs at least Q(%d) samples to
achieve an excess error of €.

Remark 4 (Active learning). Assume that the adversary uses
an active learning algorithm to compute f, such as the
disagreement-based active learning algorithm [27]. Then,
the adversary achieves excess error € with O(Z—Ede) queries
(where 0 is the disagreement coefficient [27]). For any active
learning algorithm, there is a distribution such that it takes at

=2 . .
least Q(\S%d) queries to achieve an excess error of €.

Observe that any defense strategy D used by a server S
to prevent the extraction of a model f* can be seen as a
randomized procedure that outputs j instead of f*(x) with a
given probability over the random coins of D. In the discrete
case, we represent this with the notation

Po(f7,x) = Prl¥y 7 f*(x)], 3)

where Y, is the random variable that represents the answer
of the server Sp(f*) to the query x (e.g., + Yy). When the
function f* is fixed, we can consider the supremum of the
function pp(f*,x), which represents the upper bound for the
probability that an answer from Sp(f*) is wrong:

po(f) =suppp(f*,x).
xeX
Before discussing potential defense approaches, we first
present a general negative result. The following proposition
states that that any candidate defense D that correctly responds
to a query with probability greater than or equal to % + ¢ for
some constant ¢ > 0 for all instances can be easily broken. In-
deed, an adversary that repetitively queries the same instance
x can figure out the correct label f*(x) by simply looking
at the most frequent label that is returned from Sp(f*). We
prove that with this extraction strategy, the number of queries
required increases by only a logarithmic multiplicative factor.

Proposition 1. Let F be an hypothesis class used for clas-
sification and (L, O) be an active learning system for T

in the QS scenario with query complexity ¢(€,8). For any
D, randomized procedure for returning labels, such that
there exists f* € F with pp(f*) < % there exists an ad-
versary that, interacting with Sp(f*), can implement an €-
extraction attack with confidence 1 — 28 and complexity

4= [a(e B 5

The proof of Proposition | can be found in the appendix
in [1]. Proposition | can be used to discuss the following two
different defense strategies:

1. Data-independent randomization. Let F denote a hy-
pothesis class that is subject to an extraction attack using QS
active learning. An intuitive defense for # involves adding
noise to the query output f*(x) independent of the labeling
function f* and the input query x. In other words, pp(f,x) =p
forany x € X, f € ¥, and p is a constant value in the interval
(0,1). It is easy to see that this simple strategy cannot work. It

follows from Proposition | that if p < %, then D is not secure.

On the other hand, if p > %, then the server is useless since it
outputs an incorrect label with probability at least %

Example 5 (Halfspace extraction under noise). For example,
we know that e-extraction with any level of confidence can
be implemented with complexity ¢ = O(d 1og(%)) using QS
active learning for the class %4 g i.e. for binary classification
via halfspaces (refer Example 4). It follows from the earlier
discussion that any defense that flips labels with a constant
flipping probability p does not work. This defense approach
is similar to the case of “noisy oracles” studied extensively
in the active learning literature [30, 31, 45]. For example,
from the ML literature we know that if the flipping probabil-
ity is exactly p (p < %), the AVERAGE algorithm (similar
to our Algorithm 1, defined in Section 6) e-extracts f* with

o(ﬁ log é) labels [33]. Under bounded noise where each

label is flipped with probability at most p (p < %), the AV-
ERAGE algorithm does not work anymore, but a modified
Perceptron algorithm can learn with Oﬂ(ﬁ log 1) labels
[61] in a stream-based active learning setting, and a QS active
learning algorithm proposed by Chen et al. [16] can also learn
with the same number of labels. An adversary implementing
the Chen et al. algorithm [16] is even more efficient than the
adversary A defined in the proof of Proposition | (i.e., the
total number of queries only increases by a constant multi-
plicative factor instead of Ing(€, 8)). We validate the practical
efficiency of this attack in § 6.

2. Data-dependent randomization. Based on the outcome
of the earlier discussion, we believe that a defense that aims
to protect a hypothesis class against model extraction via QS
active learning should implement data-dependent perturbation
of the returned labels. That is, we are interested in a defense D
such that the probability pp(f*,x) depends on the query input
x and the labeling function f*. For example, given a class
F that can be extracted using an active learner £ (in the QS
scenario), if we consider a defense D such that pp(f*,x) > %

for some instances, then the proof of Proposition 1 does not
work (the argument only works if there is a constant ¢ > 0
such that pp(f*,x) < % — ¢ for all x) and the effectiveness of
the adversary A is not guaranteed anymore®.

Example 6 (Halfspace extraction under noise). For the case
of binary classification via halfspaces, Alabdulmohsin et
al. [2] design a system that follows this strategy. They con-
sider the class 74 ps and design a learning rule that uses
training data to infer a distribution of models, as opposed to
learning a single model. To elaborate, the algorithm learns
the mean u and the covariance X for a multivariate Gaussian
distribution A(u,X) on %y us such that any model drawn
from A[(u,X) provides an accurate prediction. The problem
of learning such a distribution of classifiers is formulated as
a convex-optimization problem, which can be solved quite
efficiently using existing solvers. During prediction, when the
label for a instance x is queried, a new w is drawn at random
from the learned distribution Al(u,X) and the label is com-
puted as y = sign({w,x)). The authors show that this random-
ization method can mitigate the risk of reverse engineering
without incurring any notable loss in predictive accuracy. In
particular, they use PAC active learning algorithms [9, 17]
(assuming that the underlying distribution 2 is Gaussian) to
learn an approximation w from queries answered in three dif-
ferent ways: (a) with their strategy, i.e. using a new model for
each query, (b) using a fixed model to compute all labels, and
(c) using a fixed model and adding independent noise to each
label, i.e. y = sign({w,x) +n) and 1 <— [—1,+1]. They show
that the geometric error of w with respect to the true model is
higher in the former setting (i.e. in (a)) than in the others. On
15 different datasets, their strategy gives typically an order of
magnitude larger error. We empirically evaluate this defense
in the context of model extraction using QS active learning
algorithms in § 6.

Continuous case: Generalizing Proposition | to the continu-
ous case does not seem straightforward, i.e. when the target
model held by the MLaaS server is a real-valued function
f*: X — R; a detailed discussion about the continuous case
appears in the appendix in [1].

6 Implementation and Evaluation

For all experiments described below, we use an Ubuntu 16.04
server with 32 GB RAM, and an Intel i5-6600 CPU clocking
3.30GHz. We use a combination of datasets obtained from
the scikit-learn library and the UCI machine learning
repository’, as used by Tramer et al..

®Intuitively, in the binary case if pp(f*,x;) > % then the definition of y;
performed by A in step 2 (majority vote) is likely to be wrong. However,
notice that this is not always the case in the multiclass setting: For example,
consider the case when the answer to query x; is defined to be wrong with
probability > % and, when wrong, is sampled uniformly at random among
the k — 1 classes that are different to the true class f*(x), then if k is large
enough, y; defined via the majority vote is likely to be still correct.

Thttps://archive.ics.uci.edu/ml/datasets.html

https://archive.ics.uci.edu/ml/datasets.html

6.1 Linear Models

We carried out experiments to validate our claims that query
synthesis active learning can be used to successfully perform
model extraction for linear models. Our experiments are de-
signed to answer the following three questions: (1) Is active
learning practically useful in settings without any auxiliary
information, such as confidence values i.e. in an oracle access
setting?, (2) Is active learning useful in scenarios where the
oracle is able to perturb the output i.e. in a data-independent
randomization setting?, and (3) Is active learning useful in
scenarios where the oracle is able to perform more subtle
perturbations i.e. in a data-dependent randomization setting?

To answer these questions, we focused on learning the
hypothesis class of d-dimensional half spaces. To perform
model extraction, we implemented two QS algorithms [3, 16]
to learn an approximation w, and terminate execution when
||[w* —w]||2 < €. The metric we use to capture efficiency is
query complexity. To provide a monetary estimate of an at-
tack, we borrow pricing information from the online pricing
scheme of Amazon i.e. $0.0001 per query (more details are
present in Table 1). We considered alternative stopping crite-
ria, such as measuring the learned model’s stability over the
N last iterations. Such a method resulted in comparable error
and query complexity (refer the appendix in [1] for detailed
results). For our experiments, the linear SVM (henceforth
called halfspace) held by the server/oracle (i.e., the optimal
hypothesis w*) was learned using Python’s scikit-learn
library. Our experiments suggest that:

1. QS active learning algorithms are efficient for model
extraction, with low query complexity and run-time. For
the digits dataset (d = 64), the dataset with the largest
value of d which we evaluated on, the active learning al-
gorithm implemented required 900 queries to extract the
halfspace with geometric error € < 10~*. This amounts
to $0.09 worth of queries.

2. QS active learning algorithms are also efficient when
the oracle flips the labels independently with constant
probability p. This only moderately increases the query
complexity (for low values of p). For the digits dataset
of input dimensionality d = 64, and a noise threshold
p = 0.4, our algorithm required 36546 queries (or $3.65)
to extract the halfspace with geometric error € < 1074,

3. State-of-the-art QS algorithms fail to recover the model
when the oracle responds to queries using tailored model
randomization techniques (refer § 5, specifically the al-
gorithm by Alabdulmohsin et al. [2]). However, passive
learning algorithms (refer Algorithm 1) are effective in
this setting.

In each figure, we plot the price (i.e. $0.0001 per query)
for the most expensive attack we launch to serve as a baseline.
We conclude by comparing our approach with the algorithm
proposed by Lowd and Meek [38].

900] £0:99

—-— adult_income (d=14) —e-- wine (d=13)
-k'breast_cancer (d=30) -+ digits (d=64)

Number of queries
w
3
o
i
o
o
»
~N

10-* 1073 1072
Geometric Error €

Figure 3: Number of queries needed for halfspace extraction using the
version space approximation algorithm. Note that the asymptotic query
complexity for this algorithm is O(d log é) This explains the increase in
query complexity as a function of d.

Q1. Usefulness in an oracle access setting: We imple-
mented Version Space Approximation proposed by Alabdul-
mohsin ef al. [3] in approximately 50 lines of MATLAB. This
algorithm operates iteratively, based on the principles of ver-
sion space learning. A version space [42] is a hierarchical
representation of knowledge. It can also be thought of as the
subset of hypotheses consistent with the training examples.
In each iteration, the algorithm first approximates a version
space, and then synthesizes an instance that reduces this ap-
proximated version space quickly. The final query complexity
for this algorithm is O(d log é)

Figure 3 plots the number of queries needed to extract a
halfspace as a function of termination criterion i.e. geometric
error €. As discussed earlier, the query complexity is depen-
dent on the dimensionality of the halfspace to be extracted.
Across all values of dimensionality d, observe that with the ex-
ponential decrease in error €, the increase in query complexity
is linear, often by a small factor (1.3 x —1.5x). The imple-
mented query synthesis algorithm involves solving a convex
optimization problem to approximate the version space, an op-
eration that is potentially time consuming. However, based on
several runs of our experiment, we noticed that the algorithm
always converges in < 2 minutes.

While the equation solving attack proposed by Tramer et
al. [55] requires fewer queries, it also requires the actual value
of the prediction output i.e. (w*,x) as auxiliary information.
On the other hand, extraction using query synthesis does not
rely on any auxiliary information returned by the MLaaS
server to increase its efficiency i.e. the only input needed for
query synthesis-based extraction attacks is sign({w*,x)).

Q2. Resilience to data-independent noise: An intuitive de-
fense against model extraction might be to flip the sign of the
prediction output with independent probability p i.e. if the
output y € {1,—1}, then Prly # sign(w*,x)] = p < 1 (refer
§ 5). This setting (i.e., noisy oracles) is extensively studied in
the machine learning community. Trivial solutions including
repeated sampling to obtain a batch where majority voting
(determines the right label) can be employed; if the proba-
bility that the outcome of the vote is correct is represented

0.5968
6000 ‘5 —— p=0 —e- p=0.25

1596
- p=01 v p=0.4

15000

3
.9 5000 T $1282
= 12500 ;

]
4000 e
o 10000

5 3000 .., $0.3166 —— p=0 —e- p=0.25 .$0.9123
e 7500{ ~x= p=01 v p=0.4

Number of queries

[
'g 2000 5000
= 1000{ &= —.—. -
= e 2500 s

0 o

104 10~ 1072 107 1072 1072
Geometric Error € Geometric Error €
(a) Adult Income (b) Breast Cancer
$3.6546 so.5112

|, 3so00] FE " 5000
o o 8
2 30000 +£2:9652 5 4000 ... $0.3799
S 25000 egranse T
« 20000 —— p=0 - p=025 5 —— p=0 —e— p=025 -....$0.2768
° ca- p=0.1 e p=0.4 e u- p=01 - p=0.4
@ 15000 @ 2000
Qo Qo
€ 10000 £
S 510007 T T e
R e — z mm——

102
Geometric Error &

(d) Wine

Geometric Error €

(c) Digits

Figure 4: Number of queries needed for halfspace extraction using the
dimension coupling algorithm. Note that the asymptotic query complexity
for this algorithm is O(d(]og% +log %)). This explains the increase in query
complexity as a function of d.

as 1 — o, then the batch size needed for the voting procedure

isk=0(‘pli‘zilz) i.e. there is an increase in query complex-
ity by a (multiplicative) factor k, an expensive proposition.
While other solutions exist [44, 60], we implemented the di-
mension coupling (DC?) framework proposed by Chen et
al. [16] in approximately 150 lines of MATLAB. The dimen-
sion coupling framework reduces a d—dimensional learning
problem to d — 1 lower-dimensional sub-problems. It then
appropriately aggregates the results to produce a halfspace.
This approach is resilient to noise i.e. the oracle can flip the
label with constant probability (known a priori) p < %, and
the algorithm will converge with probability 1 — 8. The query
complexity for this algorithm is O(d (log é +log %))

The results of our experiment are presented in Figure 4. The
algorithm is successful in extracting the halfspace for a variety
of p values. The exact bound is C(p)(d (log L +log %), where
plog*(1/p))
log?2(1—-p) ’”
Thus, there is a multiplicative increase in the number of

queries with increase in p. This introduces a modest increase
in complexity in comparison to the noise-free setting. While
the increase in pricing is = 40 %, this results in a worst case
expenditure of = $3.6 (see Figure 4(c)). The time (and num-
ber of queries) taken for convergence is proportional to p,
ranging from 1 — 20 minutes for successful completion.

C(p) is a function of p that is approximately O(

Q3. Resilience to data-dependent noise: As alluded to in
§ 5, another defense against extraction involves learning a
family of functions very similar to w* such that they all pro-
vide accurate predictions with high probability. Proposed by
Alabdulmohsin et al. [2], data-dependent randomization en-
ables the MLaaS server to sample a random function for each
query i.e. for each instance x;, the MLaaS server obtains a
new w; ~ A (u, ©) and responds with y; = sign({w;, x;)). Thus,

0.520

—— adult_income
0.515 —4&- breast_cancer
—e:- mushroom

0.510

Probability
o o o
B w %
§ 8 8

0.490

0.485

0.480 - - - - . . -
1072 10° 102 10* 10° 108 10%

Separation Parameter C

Figure 5: averagepp(w*,x;) = % +v; x; synthesized by the dimension
coupling algorithm.

this approach can be thought of as flipping the sign of the
prediction output with probability pp(w*, x;) (see § 5).

In this algorithm, a separation parameter C determines
how close the samples from A(u,0) are; larger the value
of C, closer each sample is (refer § 4 in [2] for more details).
We measure the value of pp(w*,x;) as a function of C for
those x; values generated by the dimension coupling algo-
rithm. pp(w*,x;) is estimated by (a) obtaining wy,--- ,wy, ~
AN (u,0), for n = 1000, and using them to classify x; to obtain
y1 = sign({w1,x;)), - ,yn, and (b) obtaining the percentage
of the prediction outputs that is not equal to sign((w*,x;)).
Our hope was that if the value of maxyy, pp(w”,x;) < 1. then
an adversary similar to A defined in Proposition | could be
used to perform extraction.

Figure 5 suggests otherwise; the average value of
pp(w*,x;) ~ % £ v for some small y > 0. Since any adver-
sary will be unable to determine a priori the inputs for which
this value is greater than half, neither majority voting, nor the
vanilla dimension coupling framework will help extract the
halfspace. We believe this is the case for current state-of-the-
art algorithms as the instances they synthesize are "close" to
the optimal halfspace. To validate this claim, we measured
this distance for both the algorithms [3, 16]. We observed that
a majority of the points are very close to the halfspace in both
cases (see the appendix in [1]).

Algorithm 1 Passive Learning Algorithm that breaks [2]

1: Input: variance upper bound & > %, target error €

2 m (lz;‘)zdmax(l,déz)log%, 1 pe

Draw x1,X2,...,%, € S uniformly at random, and
query their labels yi,y2,...,¥m
v Y ik
if ||v|| > [then
Return w = ﬁ
else
Return FAIL
end if

e

R A A

Such forms of data-dependent randomization, however, are
not secure against traditional passive learning algorithms.

$25144.4656)
—+— adult_income (d=14)

—4- breast_cancer (d=30)
~$2514.4466_,.. mushrooms (d=22)
~

0] o ~ ©

log(Number of queries)
IS

0.2514
\‘so

3]
-35 -30 -25 -20 -15 -10
log(Geometric Error €)

Figure 6: log(Number of queries) needed for halfspace extrac-
tion (protected by the defense strategy proposed in [2]) using Algo-
rithm 1. Note that the asymptotic query complexity for this algorithm is
O(édmax(l ,d&?)log %). This explains the increase in query complexity
as a function of d and €. The large value of C—g dominates the query complex-
ity in this algorithm. The price is plotted for the attack on the breast cancer
dataset.

Such an algorithm takes as input an estimated upper bound &
for . The algorithm first draws 0(&% max(1,d6?)) instances
from the d—dimensional unit sphere S?~! uniformly at ran-
dom, and proceeds to have them labeled - by the oracle defined
in [2] in this case. It then computes the average v =Y /" | yiX;.
w= ”—5”, the direction of v, is the algorithm’s estimate of
the classifier w*, and the length of v is used as an indica-
tor of whether the algorithm succeeds: if this estimated up-
per bound is correct (i.e. 6 < G), then with high probability,
[[w —w*|| < &; otherwise it outputs FAIL, indicating the vari-
ance bound & is incorrect. In such situations, we can reduce &
and try again. A detailed proof of the algorithm’s guarantees
is available in the appendix in [1].

While the asymptotic bounds for Algorithm | are larger
than the active learning algorithms discussed thus far, in prac-
tice, the constant C = (157)? can be reduced by a multiplica-
tive factor to reduce the total number of queries used i.e. %
or WCOO etc. In Figure 6, we observe that extracting halfspaces
with geometric error € ~ 10~ ! requires < 10* queries. While
achieving & ~ 1073 requires ~ 107 queries, the algorithm can
be executed in parallel enabling faster run-times.

Lowd and Meek Baseline: The algorithm proposed by Lowd
and Meek [38] can also be used to extract a halfspace. How-
ever, note that this algorithm can only operate in a noise-
free setting. This is a severe limitation if a setting where the
MLaaS employs defense strategies. From Table 2, one can
observe that the number of queries required to extract the
halfspace is more than the query synthesis algorithms we
implemented. For example, consider the breast cancer dataset.
The version space algorithm is able to extract a halfspace at a
distance of € < 10~* with 400 queries (or $0.04). However,
the algorithm proposed by Lowd and Meek takes 970 queries
for extraction. Additionally, the geometric error of the ex-
tracted halfspaces are also higher than those extracted in the
query synthesis case. The query complexity of the Lowd and

Dataset Queries € Slowdown
Wine 189 0.071 1.67x
Breast Cancer 940 0.162 3.19x%
Digits 1879 0.665 2.62%

Table 2: Number of queries and geometric error observed after extracting
halfspaces using the line search procedure proposed by Lowd and Meek.
Observe that the geometric error in some cases is large. Slowdown indicates
the ratio between number of queries taken for the Lowd and Meek procedure
and those taken by the DC? algorithm [16] for € = 0.01, and p = 0.

Meek algorithm is O(dlog(-L)), where a = min;_; ... 4 ”‘K—‘:l“
(w? is the i-th coordinate of the groundtruth classifier w*).
This is worse than the O(d log(é)) query complexity of clas-
sical active learning algorithms. While this algorithm is not
tailored to minimize the geometric error, we believe that these
results further validate our claim that query synthesis active
learning is a promising direction to explore.

6.2 Non-Linear Models

In this section, we report experimental results for extraction
efficacy for non-linear models such as kernel SVMs and deci-
sion trees. Our experiments are designed to answer the follow-
ing two questions: (1) Is QS active learning practically useful
to extract non-linear models (i.e., kernel SVMs) in an oracle
access setting?, and (2) Is active learning useful to extract non-
linear models (i.e., decision trees) in scenarios where the ML
server does not reveal any auxiliary information? As before,
we use the same datasets as in Tramer et al. [55]. The con-
tinuous variables are made discrete by binning (i.e. dividing
into groups), and are then one-hot-encoded. Our experiments
suggest that:

1. Utilizing the extended adaptive training (EAT) approach
(refer § 4.1) is efficient for extracting kernel SVMs. Our
approach improves query complexity by 5x-224x.

2. Utilizing the IWAL algorithm (refer § 4.2) enables ex-
tracting a decision tree in the absence of any auxiliary
information, with a nominal increase in query complex-
ity (14 x).

Q1. Kernel SVM: As discussed in § 4.1, Tramer et al. use
adaptive retraining - a procedure to locate points close to
the decision boundary - to obtain points used to seed their
attack. Using these (labeled) points, they are able obtain the
parameters which were used to instantiate the oracle using
an extract-and-test approach (more specifically grid search).
While techniques in active learning can not be used to expedite
the grid search procedure, our experiments suggest that they
are able to select more informative points i.e. points of greater
uncertainty, with far fewer queries. With insight from the
work of Bordes et al. [12], we propose the extended adaptive
retraining approach (refer § 4.1) to obtain uncertain points.
Additionally, we measure uncertainty with respect to a model

Dataset | Adaptive Retraining | EAT
‘ Queries { Accuracy ‘ Queries { Accuracy
Mushroom 11301 98.5 1001 94.5
Breast Cancer 1101 99.3 119 96.4
Adult 10901 96.98 48 98.2
Diabetes 901 98.5 166 94.8

Table 3: Extraction of a kernel SVM model. Comparison of the query
complexity and test accuracy (in %) obtained running Tramer et al. adaptive
retraining vs. extended adaptive retraining.

Dataset | Oracle | Path Finding | IWAL
| Accuracy | Queries | Queries | Accuracy
Adult 81.2 18323 244188 80.2
Steak 52.1 5205 1334 73.1
Iris 86.8 246 361 89.4
GSShappiness 79 18907 254892 79.3

Table 4: Extraction of a decision tree model. Comparison of the query
complexity and test accuracy (in %) obtained by running path finding (Tramer
et al.) vs. IWAL algorithm. The test accuracy (in %) of the server-hosted
oracle is presented as a baseline.

that we train locally®, eliminating redundant queries to the
oracle. To compare the efficiency of our algorithm, we re-
execute the adaptive retraining procedure, and present our
results in Table 3.

It is clear that our approach is more query efficient in com-

parison to Tramer et al. (between 5x-224x), with compara-
ble test accuracy. These advantages stem from (a) using a
more informative metric of uncertainty than the distance from
the decision boundary, and (b) querying labels of only those
points which the local model is uncertain about.
Q2. Decision Trees: Tramer et al. propose a path finding
algorithm to determine the structure of the server-hosted de-
cision tree. They rely on the server’s response to incomplete
queries, and the addition of node identifiers to the generated
outputs to recreate the tree. From our analysis presented in
Table 1such flexibility is not readily available in most MLaaS
providers. As discussed earlier (refer § 4.2), we utilize the
IWAL algorithm proposed by Beygelzimer et al. [11] that
iteratively refines a learned hypothesis. It is important to note
that the IWAL algorithm is more general, and does not rely
on the information needed by the path finding algorithm. We
present the results of extraction using the IWAL algorithm
below in Table 4.

In each iteration, the algorithm learns a new hypothesis, but
the efficiency of the approach relies on the hypothesis used
preceding the first iteration. To this end, we generate inputs
uniformly at random. Note that in such a uniform query gener-
ation scenario, we rely on zero auxiliary information. We can
see that while the number of queries required to launch such
extraction attacks is greater than in the approach proposed

8such a local model is seeded with uniformly random points labeled by
the oracle

by Tramer et al., such an approach obtains comparable test
error to the oracle. While the authors rely on certain distri-
butional assumptions to prove a label complexity result, we
empirically observe success using the uniform strategy. Such
an approach is truly powerful; it makes limited assumptions
about the MLaaS provider and any prior knowledge.

7 Discussion

We begin our discussion by highlighting algorithms an adver-
sary could use if the assumptions made about the operational
ecosystem are relaxed. Then, we discuss strategies that can
potentially be used to make the process of extraction more
difficult, and shortcomings in our approach.

7.1 Varying the Adversary’s Capabilities

The operational ecosystem in this work is one where the ad-
versary is able to synthesize data-points de novo to extract
a model through oracle access. In this section, we discuss
other algorithms an adversary could use if this assumption
is relaxed. We begin by discussing other models an adver-
sary can learn in the query synthesis regime, and move on to
discussing algorithms in other approaches.

Equivalence queries. In her seminal work, Angluin [4] pro-
poses a learning algorithm, L*, to correctly learn a regular set
from any minimally adequate teacher, in polynomial time. For
this to work, however, equivalence queries are also needed
along with membership queries. Should MLaaS servers pro-
vide responses to such equivalence queries, different extrac-
tion attacks could be devised. To learn linear decision bound-
aries, Wang et al. [59] first synthesize an instance close to the
decision boundary using labeled data, and then select the real
instance closest to the synthesized one as a query. Similarly,
Awasthi et al. [7] study learning algorithms that make queries
that are close to examples generated from the data distribution.
These attacks require the adversary to have access to some
subset of the original training data. In other domains, program
synthesis using input-output example pairs (e.g.,[25, 58]) also
follows a similar principle.

If the adversary had access to a subset of the training data,
or had prior knowledge of the distribution from which this
data was drawn from, it could launch a different set of attacks
based on the algorithms discussed below.

Stream-based selective sampling. Atlas et al. [6] propose
selective sampling as a form of directed search (similar to
Mitchell [41]) that can greatly increase the ability of a connec-
tionist network (i.e. power system security analysis in their
paper) to generalize accurately. Dagan et al. [18] propose a
method for training probabilistic classifiers by choosing those
examples from a stream that are more informative. Linden-
baum et al. [36] present a lookahead algorithm for selective
sampling of examples for nearest neighbor classifiers. The
algorithm looks for the example with the highest utility, tak-
ing its effect on the resulting classifier into account. Another
important application of selective learning was for feature

selection [37], an important preprocessing step. Other appli-
cations of stream-based selective sampling include sensor
scheduling [34], learning ranking functions for information
retrieval [62], and in word sense disambiguation [24].
Pool-based sampling. Dasgupta [21] surveys active learning
in the non-separable case, with a special focus on statistical
learning theory. He claims that in this setting, AL algorithms
usually follow one of the following two strategies - (i) Ef-
ficient search in the hypothesis spaces (as in the algorithm
proposed by Chen et al. [16], or by Cohn et al. [17]), or (ii)
Exploiting clusters in the data (as in the algorithm proposed
by Dasgupta et al. [22]). The latter option can be used to
learn more complex models, such as decision trees. As the
ideal halving algorithm is difficult to implement in practice,
pool-based approximations are used instead such as uncer-
tainty sampling and the query-by-committee (QBC) algorithm
(e.g., [14, 54]). Unfortunately, such approximation methods
are only guaranteed to work well if the number of unlabeled
examples (i.e. pool size) grows exponentially fast with each
iteration. Otherwise, such heuristics become crude approxi-
mations and they can perform quite poorly.

7.2 Complex Models

PAC active learning strategies have proven effective in learn-
ing DNNs. The work of Sener et al. [49] selects the most
representative points from a sample of the training distribu-
tion to learn the DNN. Papernot et al. [46] employ substitute
model training - a procedure where a small training subset
is strategically augmented and used to train a shadow model
that resembles the model being attacked. Note that the prior
approaches rely on some additional information, such as a
subset of the training data.

Active learning for complex models is challenging. Active
learning algorithms considered in this paper operate in an
iterative manner. Let # be the entire hypothesis class. At
time time 7 > 0 let the set of possible hypothesis be H; C
H. Usually an active-learning algorithm issues a query at
time ¢ and updates the possible set of hypothesis to # .,
which is a subset of ;. Once the size of 7 is “small” the
algorithm stops. Analyzing the effect of a query on possible
set of hypothesis is very complicated in the context of complex
models, such as DNNs. We believe this is a very important
and interesting direction for future work.

7.3 Model Transferability

Most work in active learning has assumed that the correct hy-
pothesis space for the task is already known i.e. if the model
being learned is for logistic regression, or is a neural network
and so on. In such situations, observe that the labeled data be-
ing used is biased, in that it is implicitly tied to the underlying
hypothesis. Thus, it can become problematic if one wishes
to re-use the labeled data chosen to learn another, different
hypothesis space. This leads us to model transferability’, a

9 A special case of agnostic active learning [8].

less studied form of defense where the oracle responds to any
query with the prediction output from an entirely different
hypothesis class. For example, imagine if a learner tries to
learn a halfspace, but the teacher performs prediction using a
boolean decision tree. Initial work in this space includes that
of Shi et al. [51], where an adversary can steal a linear sepa-
rator by learning input-output relations using a deep neural
network. However, the performance of query synthesis active
learning in such ecosystems is unclear.

7.4 Limitations

We stress that these limitations are not a function of our spe-
cific approach, and stem from the theory of active learning.
Specifically: (1) As noted by Dasgupta [20], the label com-
plexity of PAC active learning depends heavily on the spe-
cific target hypothesis, and can range from O(log é) to Q(%)
Similar results have been obtained by others [28, 43]. This
suggests that for some hypotheses classes, the query com-
plexity of active learning algorithms is as high as that in the
passive setting. (2) Some query synthesis algorithms assume
that there is some labeled data to bootstrap the system. How-
ever, this may not always be true, and randomly generating
these labeled points may adversely impact the performance
of the algorithm. (3) For our particular implementation, the
algorithms proposed rely on the geometric error between the
optimal and learned halfspaces. Sometimes, there is no direct
correlation between this geometric error and the generaliza-
tion error used to measure the model’s goodness.

8 Related Work

Machine learning algorithms and systems are optimized for
performance. Little attention is paid to the security and pri-
vacy risks of these systems and algorithms. Our work is moti-
vated by the following attacks against machine learning.

1. Causative Attacks: These attacks are primarily geared at
poisoning the training data used for learning, such that the
classifier produced performs erroneously during test time.
These include: (a) mislabeling the training data, (b) changing
rewards in the case of reinforcement learning, or (c) modify-
ing the sampling mechanism (to add some bias) such that it
does not reflect the true underlying distribution in the case of
unsupervised learning [48]. The work of Papernot et al. [47]
modify input features resulting in misclassification by DNNs.

2. Evasion Attacks: Once the algorithm has trained success-
fully, these forms of attacks provide tailored inputs such that
the output is erroneous. These noisy inputs often preserves the
semantics of the original inputs, are human imperceptible, or
are physically realizable. The well studied area of adversarial
examples is an instantiation of such an attack. Moreover, eva-
sion attacks can also be even black-box i.e. the attacker need
not know the model. This is because an adversarial example
optimized for one model is highly likely to be effective for
other models. This concept, known as transferability, was
introduced by Carlini et al. [15].

3. Exploratory Attacks: These forms of attacks are the primary
focus of this work, and are geared at learning intrinsics about
the algorithm used for training. These intrinsics can include
learning model parameters, hyperparameters, or training data.
Typically, these forms of attacks fall in two categories - model
inversion, or model extraction. In the first class, Fredrikson et
al. [23] show that an attacker can learn sensitive information
about the dataset used to train a model, given access to side-
channel information about the dataset. In the second class, the
work of Tramér ef al. [55] provides attacks to learn parameters
of a model hosted on the cloud, through a query interface.
Termed membership inference, Shokri et al. [52] learn the
training data used for machine learning by training their own
inference models. Wang et al. [57] propose attacks to learn a
model’s hyperparameters.

9 Conclusions

In this paper, we formalize model extraction in the context of
Machine-Learning-as-a-Service (MLaaS) servers that return
only prediction values (i.e., oracle access setting), and we
study its relation with query synthesis active learning (Obser-
vation 1). Thus, we are able to implement efficient attacks to
the class of halfspace models used for binary classification
(§ 6). While our experiments focus on the class of halfspace
models, we believe that extraction via active learning can be
extended to multiclass and non-linear models such as deep
neural networks, random forests etc. We also begin exploring
possible defense approaches (§ 5). To the best of our knowl-
edge, this is the first work to formalize security in the context
of MLaaS systems. We believe this is a fundamental first step
in designing more secure MLaaS systems. Finally, we suggest
that data-dependent randomization (e.g., model randomiza-
tion as in [2]) is the most promising direction to follow in
order to design effective defenses.

10 Acknowledgements

This material is partially supported by Air Force Grant
FA9550-18-1-0166, the National Science Foundation (NSF)
Grants CCF-FMitF-1836978, SaTC-Frontiers-1804648 and
CCF-1652140 and ARO grant number W911NF-17-1-0405.
Kamalika Chaudhuri and Songbai Yan thank NSF under
1719133 and 1804829 for research support.

References

[1] https://arxiv.org/abs/1811.02054, 2019.

[2] Ibrahim M. Alabdulmohsin, Xin Gao, and Xiangliang
Zhang. Adding robustness to support vector machines
against adversarial reverse engineering. In Proceed-
ings of the 23rd ACM International Conference on Con-
ference on Information and Knowledge Management,
CIKM 2014, Shanghai, China, November 3-7, 2014,
pages 231-240, 2014.

[3] Ibrahim M Alabdulmohsin, Xin Gao, and Xiangliang

[4]

(5]

(6]

(8]

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

Zhang. Efficient active learning of halfspaces via query
synthesis. In AAAI, pages 2483-2489, 2015.

Dana Angluin. Learning regular sets from queries
and counterexamples. Information and computation,
75(2):87-106, 1987.

Giuseppe Ateniese, Luigi V. Mancini, Angelo Spog-
nardi, Antonio Villani, Domenico Vitali, and Giovanni
Felici. Hacking smart machines with smarter ones: How
to extract meaningful data from machine learning clas-
sifiers. IJSN, 10(3):137-150, 2015.

Les E Atlas, David A Cohn, and Richard E Ladner.
Training connectionist networks with queries and se-
lective sampling. In Advances in neural information
processing systems, pages 566-573, 1990.

Pranjal Awasthi, Vitaly Feldman, and Varun Kanade.
Learning using local membership queries. In Confer-
ence on Learning Theory, pages 398-431, 2013.
Maria-Florina Balcan, Alina Beygelzimer, and John
Langford. Agnostic active learning. Journal of Com-
puter and System Sciences, 75(1):78-89, 2009.
Maria-Florina Balcan, Andrei Z. Broder, and Tong
Zhang. Margin based active learning. In Learning
Theory, 20th Annual Conference on Learning Theory,
COLT 2007, San Diego, CA, USA, June 13-15, 2007,
Proceedings, pages 35-50, 2007.

Maria-Florina Balcan and Philip M. Long. Active and
passive learning of linear separators under log-concave
distributions. In COLT 2013 - The 26th Annual Confer-
ence on Learning Theory, June 12-14, 2013, Princeton
University, NJ, USA, pages 288-316, 2013.

Alina Beygelzimer, Daniel Hsu, John Langford, and
Tong Zhang. Agnostic active learning without con-
straints. In 23rd International Conference on Neural
Information Processing Systems (NIPS), 2010.

Antoine Bordes, Seyda Ertekin, Jason Weston, and Leon
Bottou. Fast kernel classifiers with online and ac-
tive learning. Journal of Machine Learning Research
(JMLR), September 2005.

Wieland Brendel, Jonas Rauber, and Matthias Bethge.
Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. arXiv
preprint arXiv:1712.04248, 2017.

Klaus Brinker. Incorporating diversity in active learning
with support vector machines. In Proceedings of the
20th International Conference on Machine Learning
(ICML-03), pages 59—66, 2003.

Nicholas Carlini and David Wagner. Towards evaluat-
ing the robustness of neural networks. In Security and
Privacy (SP), 2017 IEEE Symposium on, pages 39-57.
IEEE, 2017.

Lin Chen, Seyed Hamed Hassani, and Amin Karbasi.
Near-optimal active learning of halfspaces via query
synthesis in the noisy setting. In AAAI, pages 1798—
1804, 2017.

https://arxiv.org/abs/1811.02054

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

David Cohn, Les Atlas, and Richard Ladner. Improving
generalization with active learning. Machine learning,
15(2):201-221, 1994.

Ido Dagan and Sean P Engelson. Committee-based sam-
pling for training probabilistic classifiers. In Proceed-
ings of the Twelfth International Conference on Machine
Learning, pages 150-157. The Morgan Kaufmann series
in machine learning,(San Francisco, CA, USA), 1995.
S. Dasgupta, D. Hsu, and C. Monteleoni. A general
agnostic active learning algorithm. In NIPS, 2007.
Sanjoy Dasgupta. Coarse sample complexity bounds
for active learning. In Advances in Neural Information
Processing Systems 18 [Neural Information Processing
Systems, NIPS 2005, December 5-8, 2005, Vancouver,
British Columbia, Canada], pages 235-242, 2005.
Sanjoy Dasgupta. Two faces of active learning. Theo-
retical computer science, 412(19):1767-1781, 2011.
Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni.
A general agnostic active learning algorithm. In Ad-
vances in neural information processing systems, pages
353-360, 2008.

Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon
Lin, David Page, and Thomas Ristenpart. Privacy in
pharmacogenetics: An end-to-end case study of person-
alized warfarin dosing. In USENIX Security Symposium,
pages 17-32, 2014.

Atsushi Fujii, Takenobu Tokunaga, Kentaro Inui, and
Hozumi Tanaka. Selective sampling for example-based
word sense disambiguation. Computational Linguistics,
24(4):573-597, 1998.

Sumit Gulwani. Synthesis from examples: Interaction
models and algorithms. In Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC), 2012 14th
International Symposium on, pages 8—14. IEEE, 2012.
S. Hanneke. A bound on the label complexity of agnos-
tic active learning. In ICML, 2007.

Steve Hanneke. Theory of disagreement-based active
learning. Foundations and Trends in Machine Learning,
7(2-3):131-309, 2014.

Tibor Hegediis. Generalized teaching dimensions and
the query complexity of learning. In Proceedings of the
eighth annual conference on Computational learning
theory, pages 108-117. ACM, 1995.

Ling Huang, Anthony D. Joseph, Blaine Nelson, Ben-
jamin I. P. Rubinstein, and J. D. Tygar. Adversarial
machine learning. In Proceedings of the 4th ACM Work-
shop on Security and Artificial Intelligence, AlSec 2011,
Chicago, IL, USA, October 21, 2011, pages 43-58,2011.
Matti Kadridinen. Active learning in the non-realizable
case. In Algorithmic Learning Theory, 17th Interna-
tional Conference, ALT 2006, Barcelona, Spain, October
7-10, 2006, Proceedings, pages 63-77, 2006.

Richard M. Karp and Robert Kleinberg. Noisy binary
search and its applications. In Proceedings of the Eigh-

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

teenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2007, New Orleans, Louisiana, USA,
January 7-9, 2007, pages 881-890, 2007.

Ross D King, Jem Rowland, Stephen G Oliver, Michael
Young, Wayne Aubrey, Emma Byrne, Maria Liakata,
Magdalena Markham, Pinar Pir, Larisa N Soldatova,
et al. The automation of science. Science, 324(5923):85—
89, 2009.

Adam R. Klivans and Pravesh Kothari. Embedding hard
learning problems into gaussian space. In Approxima-
tion, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2014,
September 4-6, 2014, Barcelona, Spain, pages 793-809,
2014.

Vikram Krishnamurthy. Algorithms for optimal schedul-
ing and management of hidden markov model sensors.
IEEE Transactions on Signal Processing, 50(6):1382—
1397, 2002.

Eyal Kushilevitz and Yishay Mansour. Learning deci-
sion trees using the fourier spectrum. SIAM J. Comput.,
22(6):1331-1348, 1993.

Michael Lindenbaum, Shaul Markovitch, and Dmitry
Rusakov. Selective sampling for nearest neighbor clas-
sifiers. In AAAI/TAAI pages 366-371. Citeseer, 1999.
Huan Liu, Hiroshi Motoda, and Lei Yu. A selective
sampling approach to active feature selection. Artificial
Intelligence, 159(1-2):49-74, 2004.

Daniel Lowd and Christopher Meek. Adversarial learn-
ing. In Proceedings of the Eleventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, Chicago, Illinois, USA, August 21-24, 2005,
pages 641-647, 2005.

Andrew McCallum and Kamal Nigam. Employing EM
and pool-based active learning for text classification. In
Proceedings of the Fifteenth International Conference
on Machine Learning, Madison, Wisconsin, USA, July
24-27, 1998, pages 350-358, 1998.

Ha Quang Minh, Partha Niyogi, and Yuan Yao. Mercer’s
theorem, feature maps, and smoothing. In International
Conference on Computational Learning Theory, pages
154-168. Springer, 2006.

Tom M Mitchell. Generalization as search. Artificial
intelligence, 18(2):203-226, 1982.

Tom Michael Mitchell. Version spaces: an approach to
concept learning. Technical report, STANFORD UNIV
CALIF DEPT OF COMPUTER SCIENCE, 1978.
Mohammad Naghshvar, Tara Javidi, and Kamalika
Chaudhuri. Noisy bayesian active learning. In Com-
munication, Control, and Computing (Allerton), 2012
50th Annual Allerton Conference on, pages 1626—1633.
IEEE, 2012.

Robert Nowak. Noisy generalized binary search. In Ad-
vances in neural information processing systems, pages
1366-1374, 2009.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Robert D. Nowak. The geometry of generalized binary
search. IEEE Trans. Information Theory, 57(12):7893—
7906, 2011.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning.
In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pages 506—
519. ACM, 2017.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In
Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on, pages 372-387. IEEE, 2016.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha,
and Michael Wellman. Towards the science of secu-
rity and privacy in machine learning. arXiv preprint
arXiv:1611.03814, 2016.

Ozan Sener and Silvio Savarese. Active learning for con-
volutional neural networks: A core-set approach. 2018.
B Settles. Active learning literature survey univ.
wisconsin-madison, madison, wi, 2009. Technical re-
port, CS Tech. Rep. 1648.

Yi Shi, Yalin Sagduyu, and Alexander Grushin. How to
steal a machine learning classifier with deep learning. In
Technologies for Homeland Security (HST), 2017 IEEE
International Symposium on, pages 1-5. IEEE, 2017.
Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In Security and Privacy (SP),
2017 IEEE Symposium on, pages 3—18. IEEE, 2017.
Nedim Srndic and Pavel Laskov. Practical evasion of a
learning-based classifier: A case study. In 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, May 18-21, 2014, pages 197-211, 2014.
Simon Tong and Daphne Koller. Support vector machine
active learning with applications to text classification.
Journal of machine learning research, 2(Nov):45-66,

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

2001.

Florian Tramer, Fan Zhang, Ari Juels, Michael K. Re-
iter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, Au-
gust 10-12, 2016., pages 601-618, 2016.

Leslie G Valiant. A theory of the learnable. Communi-
cations of the ACM, 27(11):1134-1142, 1984.

Binghui Wang and Neil Zhenqiang Gong. Stealing
hyperparameters in machine learning. arXiv preprint
arXiv:1802.05351, 2018.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik.
Interactive query synthesis from input-output examples.
In Proceedings of the 2017 ACM International Confer-
ence on Management of Data, pages 1631-1634. ACM,

2017.
Liantao Wang, Xuelei Hu, Bo Yuan, and Jianfeng Lu.

Active learning via query synthesis and nearest neigh-
bour search. Neurocomputing, 147:426-434, 2015.
Songbai Yan, Kamalika Chaudhuri, and Tara Javidi. Ac-
tive learning from imperfect labelers. In Advances in
Neural Information Processing Systems, pages 2128—
2136, 2016.

Songbai Yan and Chicheng Zhang. Revisiting percep-
tron: Efficient and label-optimal learning of halfspaces.
In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Process-
ing Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, pages 1056-1066, 2017.

Hwanjo Yu. Svm selective sampling for ranking with ap-
plication to data retrieval. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 354-363. ACM, 2005.
Chicheng Zhang and Kamalika Chaudhuri. Beyond
disagreement-based agnostic active learning. In Ad-
vances in Neural Information Processing Systems, pages
442-450, 2014.

	Introduction
	Machine Learning Overview
	Passive learning
	Active learning
	PAC active learning
	Query Synthesis (QS) active learning

	Model Extraction
	Model Extraction Definition
	Active Learning and Extraction

	Non-linear Classifiers
	Kernel SVMs
	Decision Trees and Random Forests

	Defense Strategies
	Classification case

	Implementation and Evaluation
	Linear Models
	Non-Linear Models

	Discussion
	Varying the Adversary's Capabilities
	Complex Models
	Model Transferability
	Limitations

	Related Work
	Conclusions
	Acknowledgements

