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Abstract

Decision forests, including Random Forests and Gradient Boosting Trees, have recently
demonstrated state-of-the-art performance in a variety of machine learning settings. Deci-
sion forests are typically ensembles of axis-aligned decision trees; that is, trees that split
only along feature dimensions. In contrast, many recent extensions to decision forests are
based on axis-oblique splits. Unfortunately, these extensions forfeit one or more of the favor-
able properties of decision forests based on axis-aligned splits, such as robustness to many
noise dimensions, interpretability, or computational efficiency. We introduce yet another
decision forest, called “Sparse Projection Oblique Randomer Forests” (SPORF). SPORF uses
very sparse random projections, i.e., linear combinations of a small subset of features.
SPORF significantly improves accuracy over existing state-of-the-art algorithms on a stan-
dard benchmark suite for classification with > 100 problems of varying dimension, sample
size, and number of classes. To illustrate how SPORF addresses the limitations of both
axis-aligned and existing oblique decision forest methods, we conduct extensive simulated
experiments. SPORF typically yields improved performance over existing decision forests,
while mitigating computational efficiency and scalability and maintaining interpretability.
Very sparse random projections can be incorporated into gradient boosted trees to obtain
potentially similar gains.

Keywords: Ensemble Learning, Random Forests, Decision Trees, Random Projections,
Classification, Regression, Feature Extraction, Sparse Learning

1. Introduction

Over the last two decades, ensemble methods have risen to prominence as the state-of-the-
art for general-purpose machine learning tasks. One of the most popular and consistently
strong ensemble methods is Random Forests (RF), which uses decision trees as the base
learners (Fernández-Delgado et al., 2014; Caruana et al., 2008; Caruana and Niculescu-
Mizil, 2006). More recently, another tree ensemble method known as gradient boosted
decision trees (GBTs) has seen a spike in popularity, largely due to the release of a fast and
scalable cross-platform implementation, XGBoost (Chen and Guestrin, 2016). GBTs have
been a key component of many Kaggle competition-winning solutions, and was part of the
Netflix Prize winning solution (Chen and Guestrin, 2016).

RF and XGBoost are ensembles of “axis-aligned” decision trees. With such decision
trees, the feature space is recursively split along directions parallel to the coordinate axes.
Thus, when classes seem inseparable along any single dimension, axis-aligned splits require
very deep trees with complicated step-like decision boundaries, leading to increased vari-
ance and over-fitting. To address this, Breiman also proposed and characterized Forest-RC
(F-RC), which splits on linear combinations of coordinates rather than individual coordi-
nates (Breiman, 2001). These so-called “oblique” ensembles include the axis-aligned en-
sembles as a special case, and therefore have an increased expressive capacity, conferring
potentially better learning properties. Perhaps because of this appeal, numerous other
oblique decision forest methods have been proposed, including the Random Rotation Ran-
dom Forest (RR-RF) (Blaser and Fryzlewicz, 2016), and the Canonical Correlation Forest
(CCF) (Rainforth and Wood, 2015). Unfortunately, these methods forfeit many of the de-
sirable properties that axis-aligned trees possesses, such as computational efficiency, ease
of tuning, insensitivity to a large proportion of irrelevant (noise) inputs, and interpretabil-
ity. Furthermore, while these methods perform much better than axis-aligned ensembles on
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some problems, they perform much worse than axis-aligned ensembles on some problems
for which axis-aligned splits would in fact be highly informative. Therefore, there is a need
for a method that combines the expressive capacity of oblique ensembles with the benefits
of axis-aligned ensembles.

We propose Sparse Projection Oblique Randomer Forests (SPORF) for learning an en-
semble of oblique, interpretable, and computationally efficient decision trees. At each node
of each tree, SPORF searches for splits over a sample of very sparse random projections (Li
et al., 2006), rather than axis-aligned splits. Very sparse random projections preserve many
of the desirable properties of axis-aligned decision trees, while mitigating their issues.

In section 3.1, we delineate a set of desirable properties of a decision forest algorithm,
and describe how current axis-aligned and oblique decision forest algorithms each fail to
possess at least one of these properties. This motivates a flavor of sparse random projections
for randomly sampling candidate split directions. In Section 4, we show on simulated data
settings how our method possesses all of these desirable properties, while other methods do
not. In Section 5 we find that, in practice, our method tends to be more accurate than RF
and existing methods on many real data sets. Last, in Section 6 we demonstrate how are
method is computationally expedient and scalable.

Our statistically- and computationally-efficient parallelized implementations are avail-
able from https://neurodata.io/sporf/ in both R and Python. Our R package is avail-
able on the Comprehensive R Archive Network (CRAN) (https://cran.r-project.org/
web/packages/rerf/), and our Python package is available from PyPi (https://pypi.
org/project/rerf/2.0.5/), and is sklearn API compliant.

2. Background & Related Work

First we review the original Random Forest algorithm. Next we review extensions of it
that have been proposed. Then we briefly review random projections, which we use in our
method and which have been used in other extensions of Random Forests. Last, we review
gradient boosted trees, which we empirically compare to our method.

2.1. Random Forests

The original RF procedure popularized by Leo Breiman is one of the most commonly em-
ployed classification learning algorithms (Breiman, 2001). We note that RF can be used for
various other supervised and unsupervised machine learning tasks, but do not consider those
tasks here. Let X ∈ Rp be a random real-valued feature vector and Y ∈ Y = {c1, ..., cK}
be a random variable denoting a class label associated with X. RF proceeds by building T
decision trees via a series of recursive binary splits of the training data. The nodes in a tree
are split into two daughter nodes by maximizing some notion of information gain, which
typically reflects the reduction in class impurity of the resulting daughter nodes. A common
measure of information gain in decision trees is the decrease in Gini impurity, I(S), for a set
of observations S. The Gini impurity for classification is defined as I(S) =

∑K
k=1 fk(1−fk),

where fk = 1
|S|

∑
i∈S I[yi = ck]. More concretely, let θ = (j, τ), where j is an index selecting

a dimension and τ is a splitting threshold. Furthermore, let SLθ = {i : x
(j)
i ≤ τ,∀i ∈ S} and

SRθ = {i : x
(j)
i > τ,∀i ∈ S} be the subsets of S to the left and right of the splitting thresh-
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old, respectively. Here, x
(j)
i denotes the value of the jth feature for the ith observation.

Let nS , nL, and nR denote the number of points in the parent, left, and right child nodes,
repsectively. A split is made on a ”best” θ∗ = (j∗, τ∗) via the following optimization:

θ∗ = argmax
θ

nSI(S)− nLI(SLθ )− nRI(SRθ ).

This optimization is performed by exhaustive search for the best split threshold τ∗ over a
random subset of the features. Specifically, a random subset of the p features is sampled.
For each feature in this subset, the observations are sorted from least to greatest, and
the split objective function is evaluated at each midway point between adjacent pairs of
observations.

Nodes are recursively split until a stopping criteria is reached. Commonly, the recursion
stops when either a maximum tree depth is reached, a minimum number of observations in
a node is reached, or a node is completely pure with respect to class label. The result of the
tree induction algorithm is a set of split nodes and leaf nodes. The leaf nodes are disjoint
hyperrectangular partitions of the feature space X , and each one is associated with a local
prediction function. Let lm be the mth leaf node of an arbitrary classification tree, and let
S(lm) = {i : xi ∈ lm∀i ∈ [n]} be the subset of the training data contained in lm. The local
leaf prediction is

h(lm) = argmax
ck∈Y

∑
i∈S(lm)

I[yi = ck]

A tree makes a prediction for a new observation x by passing the observation down the tree
according to the split functions associated with each split node until a terminal leaf node is
reached. Letting m(x) be the index of the leaf node that x falls into, the tree prediction is
h(lm(x)). Let ŷ(t) be the prediction made by the tth tree. Then the prediction of the RF is
the plurality vote of the predictions made by each tree:

ŷ = argmax
ck∈Y

T∑
t=1

I[ŷ(t) = ck]

Breiman (2001) proved that the misclassification rate of a tree ensemble is bounded above
by a function inversely proportional to the strength and diversity of its trees. RF decorrelates
(diversifies) the trees via two mechanisms: (1) constructing each tree on a random bootstrap
sample of the original training data, and (2) restricting the optimization of the splitting
dimension j over a random subset of the total p dimensions. The combination of these two
randomizing effects typically leads to generalization performance that is much better than
that of any individual tree (Breiman, 2001).

2.2. Oblique Extensions to Random Forest

Various tactics have been employed to further promote the strength and diversity of trees.
One feature of RF that limits both strength and diversity is that splits must be along the
coordinate axes of the feature space. Therefore, one main focus for improving RF is to
somehow relax this restriction. The resulting forests are sometimes referred to as “oblique”
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decision forests, since the splits can be along directions oblique to the coordinate axes. This
type of tree was originally developed for computer graphics applications, and is also known
as binary space partitioning (BSP) trees. Statistical consistency of BSP trees has been
proven for a simplified data-agnostic BSP tree procedure (Devroye et al., 1996). Various
approaches have been proposed for constructing oblique forests. Breiman (2001) proposed
the Forest-RC (F-RC) algorithm, which constructs d univariate projections, each projection
a linear combination of L randomly chosen dimensions. The weights of each projection are
independently sampled uniformly over the interval [−1, 1]. Strangely, Breiman’s F-RC never
garnered the popularity that RF has acquired; both Breiman (2001) and Tomita et al. (2017)
found that F-RC tends to empirically outperform RF on a wide variety of data sets. Heath
et al. (1993) sample a randomly oriented hyperplane at each split node, then iteratively
perturb the orientation of the hyperplane to achieve a good split. Rodriguez et al. (2006)
attempted to find discriminative split directions via PCA. Menze et al. (2011) perform
supervised learning of linear discriminative models at each node. Blaser and Fryzlewicz
(2016) proposed the random rotation Random Forest (RR-RF) method, which uniformly
randomly rotates the data prior to inducing each tree. Trees are then learned via the
typical axis-aligned procedure on the rotated data. Rainforth and Wood (2015)’s Canonical
Correlation Forests (CCF) employ canonical correlation analysis at each split node in order
to directly compute split directions that maximally correlate with the class labels. Lee et al.
(2015)’s Random Projection Forests (RPFs) generates a discriminative image filter bank
for head-pose estimation at each split node and compresses the responses using random
projections. The key thing to note is that all of these aforementioned oblique methods use
some flavor of random projections, which we briefly introduce next.

2.3. Random Projections

Given a data matrix X ∈ Rn×p, one can construct a random projection matrix A ∈ Rp×d
and multiply it by X to obtain

X̃ = XA ∈ Rn×d, d� min(n, p).

If the random matrix entries aij are i.i.d. with zero mean and constant variance, then the

much smaller matrix X̃ preserves all pairwise distances of X with small distortion and high
probability1.

Due to theoretical guarantees, random projections are commonly employed as a dimen-
sionality reduction tool in machine learning applications (Bingham and Mannila, 2001; Fern
and Brodley, 2003; Fradkin and Madigan, 2003; Achlioptas, 2003; Hegde et al., 2008). Dif-
ferent probability distributions over the entries lead to different average errors and error tail
bounds. Li et al. (2006) demonstrates that very sparse random projections, in which
a large fraction of entries in A are zero, can maintain high accuracy and significantly speed
up the matrix multiplication by a factor of

√
p or more. Specifically, a very sparse ran-

dom projection matrix is constructed by sampling entries aij with the following probability
distribution:

1In classification, preservation of pairwise interpoint distances is not necessarily important. Rather, use-
ful projections or manifolds in classification are those that minimize within-class distances while maximizing
between-class distances. We introduce the topic here because of its relevance and use in many decision tree
algorithms, as is discussed in Section 3.1.
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aij =


+1 with prob. 1

2s

0 with prob. 1− 1
s , typically s� 3

−1 with prob. 1
2s

Dasgupta and Freund (2008) proposed Random Projection Trees, in which they sampled
dense random projections in an unsupervised fashion to approximate low dimensional man-
ifolds, and later for vector quantization (Dasgupta and Freund, 2009) and nearest neighbor
search (Dasgupta and Sinha, 2013). Our work is inspired by this work, but in a supervised
setting.

2.4. Gradient Boosted Trees

Gradient boosted trees (GBTs) are another tree ensemble method commonly used for re-
gression and classification tasks. Unlike RF, GBTs are learned in an iterative stage-wise
manner by directly minimizing a cost function via gradient descent (Breiman, 1998; Fried-
man, 2001). Despite the obvious differences in the learning procedures between GBT and
RF, they tend to perform comparably. A study by Wyner et al. (2017) argues that RF and
GBT are both successful for the same reason—namely both are weighted ensembles of
interpolating classifiers that learn local decision rules.

GBTs have recently seen a marked surge in popularity, and were used as components
in many recent Kaggle competitions. This is in part due to their tendency to be accurate
over a wide range of settings. Their popularity and success can also be attributed to the
recent release of XGBoost (Chen and Guestrin, 2016) and LightGBM (Ke et al., 2017), both
extremely fast and scalable open-source software implementations. Due to the success of
GBTs in many data science applications, we compare the XGBoost implementation to our
methods.

3. Methods

Here we introduce Sparse Projection Oblique Randomer Forests, and discuss how it ad-
dresses limitations of existing decision tree ensemble methods. We then describe general
details regarding empirical evaluation, including the other methods we compare our method
to, as well as how these methods are trained and tuned.

3.1. Sparse Projection Oblique Randomer Forests

Extensions of RF are often focused on changing the procedure for finding suitable splits,
such as employing a supervised linear procedure or searching over a set of randomly oriented
hyperplanes. Such extensions, along with RF, simply differ from each other by defining
different random projection distributions from which candidate split directions are sampled.
Thus, they are different special cases of a general random projection forest.

Specifically, let X ∈ Rn×p be the observed feature matrix of n samples at a split node,
each p-dimensional. Randomly sample a matrix A ∈ Rp×d from distribution fA, possibly
in a data-dependent or supervised fashion. This matrix is used to randomly project the
feature matrix, yielding X̃ = XA ∈ Rn×d, where d is the dimensionality of the projected
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space. The search for the best split is then performed over the dimensions in the projected
space. As an example, in RF, A is a random matrix in which each of the d columns has only
one nonzero entry, and every column is required to be unique. Searching for the best split
over each dimension in this projected subspace amounts to searching over a random subset
of the original features.

While the best specification of a probability distribution over random projections (if
one exists) is data set-dependent, it is unreasonable and/or undesirable to try more than
a handful of different cases. Therefore, for general purpose classification we advocate for a
default projection distribution based on the following desiderata:

• Random Search for Splits. The use of guided (supervised) linear search procedures
for computing split directions, such as linear discriminant analysis (LDA), canonical
correlation analysis (CCA), or logistic regression (LR), can result in failure to learn good
split directions on certain classification problems (for example, the XOR problem). On
the other hand, searching over a random set of split directions can identify good splits
in many of such cases. Furthermore, supervised procedures run the risk of being overly
greedy and reducing tree diversity, causing the model to overfit noise (we demonstrate
this in high-dimensional settings in Section 5.3). This is why in RF it is typically better
to evaluate a random subset of features to split on, rather than exhaustively evaluate all
features. Lastly, supervised procedures become costly if performed at every split node.

• Flexible Sparsity. RFs search for splits over fully sparse, or axis-aligned, projections.
Thus, it may perform poorly when no single feature is informative. On the other hand,
methods that search for splits within a fully dense randomly projected space, such as
RR-RFs, perform poorly in high-dimensional settings for which the signal is contained in
a small subset of the features. This is because the large space renders the probability
of sampling discriminative random projections very small (we refer the reader to pages
49-50 of Vershynin, 2019, for relevant theory of random projections). However, inducing
an appropriate amount of sparsity in the random projections increases the probability of
sampling discriminative projections in such cases. Tomita et al. (2017) demonstrated that
F-RC, which allows control over the sparsity of random projections, empirically performed
much better than both RF and RR-RF

• Ease of Tuning. RFs tend to work fairly well out-of-the-box, due to their relative
insensitivity to hyperparameter settings (Probst et al., 2019). Unfortunately, existing
oblique forests introduce additional hyperparameters to which they are sensitive to.

• Data Insight. Often times the goal is not simply to produce accurate predictions, but
to gain insight into a process or phenomenon being studied. While RF models can have
complicated decision rules, Gini importance (Breiman and Cutler, 2002) has been pro-
posed as a computationally efficient way to assess the relative contribution (importance)
of each feature to the learned model. As is explained in Section 4.5, existing oblique
forests do not lend themselves well to computation of Gini importance.

• Expediency and Scalability. Existing oblique forest algorithms typically involve ex-
pensive computations to identify and select splits, rendering them less space and time
efficient than RF, and/or lack parallelized implementations.
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With these considerations in mind, we propose a new decision tree ensemble method
called Sparse Projection Oblique Randomer Forests (SPORF). The name of our method stems
from the fact that it searches for splits over sparse random projections (Li et al., 2006),
which in some sense can be viewed as being more random than RF’s feature subsampling
procedure. Specifically, rather than sampling d non-zero elements of A and enforcing that
each column gets a single non-zero number (without replacement), as RF does, we relax these
constraints and sample dλpde non-zero numbers from {−1,+1} with equal probabilities,
where λ ∈ (0, 1] is the density (fraction of nonzeros) of A and d·e is the ceiling function
rounding up to the nearest integer.2 These nonzeros are then distributed uniformly at
random in A. See Algorithms 1 and 2 for details on how to grow a SPORF decision tree.

SPORF addresses all of the desiderata listed above. The use of sparse random projections
with control over the sparsity via λ addresses the first two. Additionally, λ is the only new
hyperparameter to tune relative to RF. Breiman’s F-RC has an analogous hyperparameter
L, which fixes the number of variables in every linear combination. However, we show later
that SPORF is less sensitive to the choice in λ than F-RC is to the choice in L. By keeping
the random projections sparse with only two discrete weightings of ±1, Gini importance of
projections can be computed in a straightforward fashion. Last, sparse random projections
are cheap to compute, which allows us to maintain computational expediency and scalability
similar to that of RF.

3.2. Training and Hyperparameter Tuning

Unless stated otherwise, model training and tuning for all algorithms except for XGBoost and
CCF is performed in the following way. Each algorithm trains 500 trees, which was empir-
ically determined to be sufficient for convergence of out-of-bag error for all methods. The
split objective is to maximize the reduction in Gini impurity. In all methods, classification
trees are fully grown unpruned (i.e. nodes are split until pure). While fully grown trees
often cause a single tree to overfit, averaging over many uncorrelated trees tends to allevi-
ate overfitting. A recent study suggests that RF is fairly insensitive to its hyperparameters
relative to other machine learning algorithms. Furthermore, the study finds that RF is much
less sensitive to tree depth than the number of candidate split directions sampled at each
split node (Probst et al., 2019).

Two hyperparameters are tuned via minimization of out-of-bag error. The first hyper-
parameter tuned is d, the number of candidate split directions evaluated at each split node.
Each algorithm is trained for d = p1/4, p1/2, p3/4, and p. Additionally, SPORF and F-RC are
trained for d = p2. For RF, d is restricted to be no greater than p by definition. The second
hyperparameter tuned is λ, the average sparsity of univariate projections sampled at each
split node. The values optimized over for SPORF and F-RC are {1/p, . . . , 5/p}. Note, for
RF λ is fixed to 1/p by definition, since the univariate projections are constrained to be
along one of the coordinate axes of the data.

For CCF, the number of trees is 500, trees are fully grown, and the split objective is
to maximize the reduction in class entropy (this is the default objective found to perform
best by the authors). The only hyperparameter tuned is the number of features subsampled
prior to performing CCA. We optimize this hyperparameter over the set {p1/4, p1/2, p3/4, p}.

2While λ can range from zero to one, we only try values from 1/p up to 5/p in our experiments.
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CCF uses a different observation subsampling procedure called projection boostrapping in-
stead of the standard bootstrap procedure. Briefly, in projection bootstrapping, all trees
are trained on the full set of training observations. Bootstrapping is instead performed at
the node level when computing the canonical correlation projections at each node. Once the
projections are computed, the projection and corresponding split threshold that maximizes
the reduction in Gini impurity is found using all of the node observations (not just the
bootstrapped node observations). Since there are no out-of-bag samples for each tree, we
base the selection of the best value on minimization of a five-fold cross-validation error rate
instead.

Five hyperparameters of XGBoost are tuned via grid search using the R caret package
(see Appendix B for details).

4. Simulated Data Empirical Performance

In this section we demonstrate, using synthetic classification problems, that SPORF addresses
the statistical issues listed above. In a sense, SPORF bridges the gap between RF and existing
oblique methods.

4.1. SPORF and Other Oblique Forests are “More Consistent” Than RF

Typically, a proposed oblique forest method is motivated through purely empirical examples.
Moreover, the geometric intuition behind the proposed method is rarely clearly provided.
Here we take a step towards a more theoretical perspective on the advantage of oblique
splits in tree ensembles.

In classification, a learning procedure is consistent if the resultant classifier converges to
the Bayes optimal classifier as the number of training samples tends to infinity. Although we
do not yet have a proof of the consistency of SPORF or other oblique forests, we do propose
that they are ”more” consistent than Breiman’s original RF. Biau et al. (2008) proposed a
binary classification problem for which Breiman’s RF is inconsistent. The joint distribution
of (X,Y ) is as follows: X ∈ R2 has a uniform distribution on [0, 1]× [0, 1] ∪ [1, 2]× [1, 2] ∪
[2, 3]× [2, 3]. The class label Y is a deterministic function of X, that is f(X) ∈ {0, 1}. The
[0, 1]× [0, 1] square is divided into countably infinite vertical stripes, and [2, 3]× [2, 3] square
is similarly divided into countably infinite horizontal stripes. In both squares, the stripes
with f(X) = 0 and f(X) = 1 alternate. The [1, 2] × [1, 2] square is a 2 × 2 checker board.
Figure 1A shows a schematic illustration (because we cannot show countably infinite rows
or columns). On this problem, Biau et al. (2008) show that RF cannot achieve an error lower
than 1/6. This is because RF will always choose to split either in the lower left square or
top right square and never in the center square. On the other hand, Figure 1B shows that
SPORF, RR-RF, and CCF approach perfect classification; although also greedy, they will choose
with some probability oblique splits of the middle square to enable lower error. Therefore,
SPORF and other oblique methods are empirically more consistent on at least some settings
on which RF is neither empirically or theoretically consistent.

To our knowledge, this is the first result comparing the consistency of RF to an oblique
forest method. More generally, this result suggests that relaxing the constraint of axis-
alignment of splits may allow oblique forests to be consistent on a wider set of classification
problems.
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Figure 1: Classification performance on the consistency (p = 2) problem as a function of
the number of training samples. The consistency problem is designed such that
RF has a theoretical lower bound of error of 1/6. (A): The joint distribution of
(X,Y ). X is uniformly distributed in the three unit squares. The lower left and
upper right squares have countably infinite stripes (a finite number of stripes are
shown), and the center square is a 2× 2 checkerboard. The white areas represent
f(X) = 0 and gray areas represent f(X) = 1. (B): Error rate as a function
of n. The dashed line represents the lower bound of error for RF, which is 1/6.
SPORF and other oblique methods achieve an error rate dramatically lower than
the lower bound for RF.

4.2. Simulated data sets

In the next few sections, we perform a variety of experiments on three carefully constructed
simulated classification problems, refered to as Sparse Parity, Orthant, and Trunk.
These constructions were chosen to highlight various properties of different algorithms and
gain insight into their behavior.

Sparse Parity is a multivariate generalization of the noisy XOR problem. It is a p-
dimensional two-class problem in which the class label Y is 0 if the number of dimensions
having positive values amongst the first p∗ < p dimensions is even and Y = 1 otherwise.
Thus, only the first p∗ dimensions carry information about the class label, and no subset of
dimensions contains any information. Specifically, let X = (X1, . . . , Xp) be a p-dimensional

feature vector, where each X1, . . . , Xp
iid∼ U(−1, 1). Furthermore, let Q =

∑p∗

j=1 I(Xj > 0),
where p∗ < p and I(·) is the indicator function. A sample’s class label Y is equal to the parity
of Q. That is, Y = odd(Q), where odd returns 1 if its argument is odd, and 0 otherwise. The
Bayes optimal decision boundary for this problem is a union of hyperplanes aligned along
the first p∗ dimensions. For the experiments presented in the following sections, p∗ = 3 and
p = 20. Figure 2A,B show cross-sections of the first two dimensions taken at two different
locations along the third dimension. This setting is designed to be relatively easy for F-RC,
but relatively difficult for RF.

Orthant is a multi-class problem in which the class label is determined by the orthant
in which a data point resides. An orthant in Rp is a generalization of a quadrant in R2. In
other words, each orthant is a subset of Rp defined by constraining each of the p coordinates
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to be positive or negative. For instance, in R2, there are four such subsets: X = (X1, X2)
can either be in 1) R+ × R+, 2) R− × R+, 3) R− × R−, or 4) R+ × R− . Note that the
number of orthants in p dimensions is 2p. A key characteristic of this problem is that the
individual dimensions are strongly and equally informative. Specifically for our experiments,

we sample each X1, . . . , Xp
iid∼ U(−1, 1). Associate a unique integer index from 1 to 2p with

each orthant, and let O(X) be the index of the orthant in which X resides. The class label
is Y = O(X). Thus, there are 2p classes. The Bayes optimal decision boundary in this
setting is a union of hyperplanes aligned along each of the p dimensions. We set p = 6
in the following experiments. Figure 2D,E show cross-sections of the first two dimensions
taken at two different locations along the third dimension. This setting is designed to be
relatively easy for RF because all optimal splits are axis-aligned.

Trunk is a balanced, two-class problem in which each class is distributed as a p-
dimensional multivariate Gaussian with identity covariance matrices (Trunk, 1979). Every
dimension is informative, but each subsequent dimension is less informative than the pre-
vious. The class 1 mean is µ1 = (1, 1√

2
, 1√

3
, ..., 1√

p), and µ0 = −µ1. The Bayes optimal

decision boundary is the hyperplane (µ1 − µ0)
TX = 0. We set p = 10 in the following

experiments.

4.3. SPORF Combines the Best of Existing Axis-Aligned and Axis-Oblique
Methods

We compare error rates of RF, SPORF, F-RC, and CCF on the sparse parity and orthant
problems. Training and tuning are performed as described in Section 3.2. Error rates are
estimated by taking a random sample of size n, training the classifiers, and computing the
fraction misclassified in a test set of 10,000 samples. This is repeated ten times for each
value of n. The reported error rate is the mean over the ten repeated experiments.

SPORF performs as well as or better than the other algorithms on both the sparse par-
ity (Figure 2C) and orthant problems (Figure 2F). RF performs relatively poorly on the
sparse parity problem. Although the optimal decision boundary is a union of axis-aligned
hyperplanes, each dimension is completely uninformative on its own. Since axis-aligned
partitions are chosen one at a time in a greedy fashion, the trees in RF struggle to learn the
correct partitioning. On the other hand, oblique splits are informative, which substantially
improves the generalizability of SPORF and F-RC. While F-RC performs well on the sparse
parity problem, it performs much worse than RF and SPORF on the orthant problem. On the
orthant problem, in which RF is is designed to do exceptionally well, SPORF performs just as
well. CCF performs poorly on both problems, which may be because CCA is not optimal for
the particular data distributions. For instance, in the sparse parity problem, the projection
found by CCA at the first node is approximately the difference in class-conditional means,
which is zero. Furthermore, CCF only evaluates d = min(l, C − 1) projections at each split
node, where l is the number of dimensions subsampled and C is the number of classes. On
the other hand, SPORF evaluates d random projections, and d could be as large as 3p (each
of the p elements can be either 0 or ±1. Overall, SPORF is the only method of the four that
performs relatively well on all of the simulated data settings.
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Figure 2: Classification performance on the sparse parity (ps = 20) and orthant (po = 6)
problems for various numbers of training samples. In both cases, we sample

X1, . . . , Xp
iid∼ U(−1, 1). F-RC has been known to perform much better than

RF on the sparse parity problem (Tomita et al., 2017). The orthant problem is
designed for RF to perform well because the optimal splits are axis-aligned. (A):
A cross-section of the first two dimensions of sparse parity when X3 ∈ (−1, 0).
Only the first three dimensions are informative w.r.t. class label. (B): The same
as (A), except that the cross-section is taken over X3 ∈ (0, 1). (C): Error rate
plotted against the number of training samples for sparse parity. Error rate is the
average over ten repeated experiments. Error bars indicate the standard error of
the mean. (D-F): Same as (A-C) except for the orthant problem. SPORF is the
only method of the four that performs well across all simulated data settings.

4.4. SPORF is Robust to Hyperparameter Selection

One key difference between the random projection distribution of SPORF and F-RC is that
F-RC requires that a hyperparameter be specified to fix the sparsity of the sampled univari-
ate projections (individual linear combinations). Breiman denoted this hyperparameter L.
SPORF on the other hand, requires that sparsity be specified on the entire random matrix
A, and hence, only an average sparsity on the univariate projections (details are in Section
3.1). In other words, SPORF induces a probability distribution with positive variance on the
sparsity of univariate projections, whereas in F-RC that distribution is a point mass. If the
Bayes optimal decision boundary is locally sparse, mis-specification of the hyperparameter
controlling the sparsity of A may be more detrimental to F-RC than SPORF. Therefore, we
examine the sensitivity of classification performance of SPORF and F-RC to the sparsity hy-
perparameter λ on the simulated data sets described previously. For SPORF, λ is defined as
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Figure 3: Dependence of error rate on the hyperparameter λ, which controls the average
density (1 - sparsity) of projections for two different simulation settings. (A):
Error rate as a function of λ on sparse parity (n = 5000, p = 20). (B): The same
as (A) except on orthant (n = 400, p = 6). In both cases, SPORF is less sensitive
to different values of λ than is F-RC.

in Section 3.1. For F-RC, we note that λ = L/p; in other words, the density of a univariate
projection is the number of features to combine divided by the total number of features.
For each of λ ∈ {2p , . . . ,

5
p}, the best performance for each algorithm is selected with respect

to the hyperparameter based on minimum out-of-bag error. Error rate on the test set is
computed for each of the four hyperparameter values for the two algorithms. Figure 3 shows
the dependence of error rates of SPORF and F-RC on λ for the Sparse Parity (n = 5,000) and
Orthant (n = 400) settings. The n = 5,000 setting for Sparse Parity was chosen because
both F-RC and SPORF perform well above chance (see Figure 2C). The n = 400 setting for
Orthant was chosen for the same reason and also because it displays the largest difference
in classification performance in Figure 2F. In both settings, SPORF is more robust to the
choice of sparsity level than F-RC.

4.5. SPORF Learns Important Features

For many data science applications, understanding which features are important is just as
critical as finding an algorithm with excellent predictive performance. One of the reasons
RF is so popular is that it can learn good predictive models that simultaneously lend them-
selves to extracting suitable feature importance measures. One such measure is the mean
decrease in Gini impurity (hereafter called Gini importance) (Devroye et al., 1996). This
measure of importance is popular because of its computational efficiency: it can be com-
puted during training with minimal additional computation. For a particular feature, it is
defined as the sum of the reduction in Gini impurity over all splits of all trees made on that
feature. With this measure, features that tend to yield splits with relatively pure nodes
will have large importance scores. When using RF, features with low marginal information
about the class label, but high pairwise or other higher-order joint distributional informa-
tion, will likely receive relatively low importance scores. Since splits in SPORF are linear
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combinations of the original features, such features have a better chance of being identified.
For SPORF, we compute Gini importance for each unique univariate projection (i.e. single
linear combination). Of note, two projections that differ only by a sign project into the
same subspace. However, in the experiment that follows we do not check whether any two
projections used in the grown forest differ only by a sign.

Another measure of feature importance which we do not consider here is the permutation
importance. Permutation importance of a particular feature is computed by shuffling the
values along that feature and subsequently assessing how much the error rate increases
using the shuffled feature to predict (relative to intact). This measure is considerably slower
to compute than is Gini importance in high-dimensional settings because predictions are
made for each permuted feature. Furthermore, it is unclear how to appropriately compute
permutation importance for linear combinations of features.

SPORF is advantageous over methods such as F-RC ,RR-RF and CCF because those meth-
ods do not lend themselves to computation of Gini importance. The reason for this is that a
particular univariate projection must be sampled and chosen many times over many trees in
order to compute a stable estimate of its Gini importance. Since the aforementioned algo-
rithms randomly sample continuous coefficients, it is extremely improbable that the same
exact univariate projections will be sampled more than once across trees. On the other
hand, the projections sampled in SPORF are sparse and only contain coefficients of ±1, mak-
ing it much more likely to sample any given univariate projection repeatedly. Furthermore,
RR-RF and CCF split on dense univariate projections, which are less interpretable.

Gini importance was computed for each feature for both RF and SPORF on the Trunk
problem with n = 1, 000. Figure 4A,B depict the features that define each of the top ten
split node projections for SPORF and RF, respectively. Projections are sorted from highest
to lowest Gini importance. The top ten projections in SPORF are all linear combinations of
dimensions, whereas in RF the projections can only be along single dimensions. The linear
combinations in SPORF tend to include the first few dimensions, which contain most of the
“true” signal. The best possible projection that SPORF could sample is the vector of all
ones. However, since λ = 1/2 for this experiment, the probability of sampling such a dense
projection is almost negligible. Figure 4C shows the normalized Gini importance of the
top ten projections for each algorithm. The top ten most important features according to
SPORF are all more important (in terms of Gini) than any of the RF features, except the
very first one. Figure 4D shows the Bayes error rate of the top ten projections for each
algorithm. Again, the top ten features according to SPORF are more informative than any
of those according to RF. In other words, SPORF learns features that are more important
than any of the observed features, and those features are interpretable, as they are sparse
linear combinations of the observed features. The ability of SPORF to learn new identifiable
features distinguishes it from RF, which cannot learn new features.

5. Real Data Empirical Performance

In this section we assess performance of SPORF on a large suite of data sets from the UCI
machine learning repository. Based on a grid sweep over hyperparamter settings on these
data sets, we identify a default hyperparameter setting which performs best on average. We
then add various numbers of noise dimensions to these data sets and show that SPORF is
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Figure 4: The ten projections with the highest Gini importance found by RF and SPORF on
the Trunk problem with p = 10, n = 1000. (A): Visual representation of the top
10 projections identified by SPORF. The x-axis indicates the projection, sorted
from highest Gini importance to lowest. The y-axis indicates the index of the ten
canonical (observed) dimensions. The colors in the heat map indicate the linear
coefficients of each canonical dimension that define each of the projections. (B):
The same as (A), except for RF. (C): Comparison of the Gini importances of the
10 best projections found by each algorithm. (D): Comparison of the Bayes error
rate of the 10 best projections found by each algorithm. The top 10 projections
used in SPORF all have substantially lower Bayes error than those used in RF,
indicating that SPORF learns interpretable informative features.

robust to a large number of noise dimensions while other oblique tree ensemble methods
are not.
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5.1. SPORF Exhibits Best Overall Classification Performance on a Large Suite
of Benchmark Data Sets

SPORF compares favorably to RF, XGBoost, RR-RF, and CCF on a suite of 105 benchmark
data sets from the UCI machine learning repository (Figure 5). This benchmark suite is a
subset of the same problem sets previously used to conclude that RF outperformed >100
other algorithms (Fernández-Delgado et al., 2014) (16 were excluded for various reasons
such as lack of availability; see Appendix C for preprocessing details).

Figure 5A shows pairwise comparisons of RF with SPORF (red), XGBoost (yellow), RR-RF (pur-
ple), and CCF (green) on the UCI data sets. Specifically, let κ(·) denote Cohen’s kappa
(fractional decrease in error rate over the chance error rate) for a particular classifica-
tion algorithm. Here, error rates are estimated for each algorithm for each data set via
five-fold cross-validation. Error rates for each data set are reported in Appendix D. Let
∆(A) = κ(RF) − κ(A) be the difference between κ for some algorithm A—either SPORF,
XGBoost, RR-RF, or CCF—with κ(RF). Each beeswarm plot in 5(A) represents the distri-
bution of ∆(A), denoted ”Effect Size,” over data sets. Comparisons are shown for the 65
numeric data sets (top), the 40 data sets having at least one categorical feature (middle),
and all 105 data sets (bottom). A positive value on the x-axis indicates that RF performed
better than the algorithm it is being compared to on a particular data set, while a negative
value indicates it performed worse. Values on the y-axis greater than 10% were squashed
to 10% and values less than -10% were squashed to -10% in order to improve visualization.
Mean values are indicated by a black ”x.” As indicated by the downward skewing distri-
bution, SPORF tends to outperform RF over all data sets, due in particular to its relative
performance on the numeric data sets. RR-RF and CCF also tend to perform similar to or
better than RF on the numeric data sets, but unlike SPORF they perform worse than RF on
the categorical data sets; the oblique methods are likely sensitive to the one-hot encoding
of categorical features. κ values for individual data sets and algorithms can be found in
Table 1.

Additionally, we examined how frequently each algorithm ranked in terms of κ across
the data sets. A rank of one indicates first place (best) on a particular data set and a rank
of five indicates last place (worst). Histograms (in fraction of data sets) of the relative ranks
are shown in Figure 5B. Overall, SPORF tends to outperform the other algorithms. This is
despite the fact that XGBoost is tuned significantly more than SPORF in these comparisons
(see Section 3.2 for details). Surprisingly, we find that RR-RF, one of the most recent methods
to be proposed, has a strong tendency to perform the worst. One-sided Wilcoxon signed-
rank tests were performed to determine whether SPORF performed significantly better than
each of the other algorithms. Specifically, the null hypothesis was that the median κ value
of SPORF is greater than that of each algorithm being compared to. P-values are shown for
each algorithm compared with SPORF to the right of each histogram in Figure 5B. Over all
data sets, we found that p-values were < 0.005 for every algorithm comparison with SPORF.

5.2. Identifying Default Hyperparameter Settings

While the hyperparameters λ and d of SPORF were tuned in this comparison, default hy-
perparameters can be of great value to researchers who use SPORF out of the box. This
is especially true for those not familiar with the details of a particular algorithm or those
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Figure 5: Pairwise comparisons of RF with SPORF, XGBoost, RR-RF, and CCF on the numeric
data sets (top), categorical data sets (middle), and all data sets (numeric and
categorical combined; bottom) from the UCI Machine Learning Repository (105
data sets total). (A): Beeswarm plots showing the distributions of classification
performance relative to RF for various decision forest algorithms. Classification
performance is measured by effect size, which is defined as κ(RF) − κ(A), where
κ is Cohen’s kappa and A is one of the algorithms compared to RF. Each point
corresponds to a particular data set. Mean effect sizes are indicated by a black
”x.” A negative value on the y-axis indicates RF performed worse than a particular
algorithm. (B): Histograms of the relative ranks of the different algorithms, where
a rank of 1 indicates best relative classification performance and 5 indicates worst.
Color indicates frequency, as fraction of data sets. P-values correspond to testing
that RF, XGBoost, RR-RF, and CCF performed worse than SPORF, using one-sided
Wilcoxon signed-rank tests. Overall, SPORF tends to perform better than the
other algorithms.
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Figure 6: Median rank of SPORF’s (d, λ) hyperparameter pairs on the UCI classification
data sets (lower is better). Although (p2, 4/p) is the best performance-wise, we
select (p, 3/p) as the default because of a good balance between accuracy and
training time.

having limited time and computational budget. Therefore, we sought suitable default values
for λ and d based on classification performance on the UCI data sets. For each data set,
for each fold the hyperparameter settings are ranked based on κ computed on the held out
set. A rank of n indicates nth place (i.e. first place indicates largest κ). Ties in the ranking
procedure are handled by assigning all ties the same averaged rank. For example, consider
the set of real numbers {a1, a2, a3} such that a1 > a2 = a3. Then a1 would be assigned a
rank of three and a2 and a3 would both be assigned a rank of (1 + 2)/2 = 1.5. The rank of
each hyperparameter pair was averaged over the five folds. Finally, for each hyperparameter
pair, the median rank is computed over the data sets. The median rank for each hyperpa-
rameter setting is depicted in Figure 6. The results here suggest that d = p2 and λ = 4/p is
the best default setting for SPORF with respect to classification performance. However, we
choose the setting d = p and λ = 3/p as the default values in our implementation because
it requires substantially less training time for moderate to large p at the expense of only a
slightly greater tendency to perform worse on the UCI data sets.

5.3. SPORF is Robust to Many Noise Dimensions

Next, we investigated the effect of adding a varying number of noise dimensions to the UCI
benchmark data sets. For each of the 105 UCI data sets used in the previous experiment,
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Figure 7: Comparison of classification performance on the UCI benchmark data sets with
a varying number of Gaussian noise dimensions added. The x-axis represents
the number of noise dimensions added. The y-axis represents the average of
Cohen’s kappa value over all data sets (±SEM). SPORF is always tied for the best
performance. CCF and RR-RF are more sensitive to additional noise dimensions.

Dnoise standard Gaussian dimensions were appended to the input matrix, for Dnoise ∈
{10, 100, 1000}. Algorithm comparisons were then performed in the same way as before.

Figure 7 shows the overall classification performance of SPORF, RF, XGBoost, and CCF for
each value of Dnoise. Each of the points plotted represents the mean Cohen’s kappa (± SEM)
over all data sets. For all values of Dnoise, SPORF ties for best classification performance.
Notably, CCF performs about as well as SPORF when there is little additional noise, but
degrades substantially when many noise dimensions are added. This suggests that using
supervised linear procedures to compute splits may lead to poor generalization, likely be-
cause the learned features have overfit to the noise dimensions. RR-RF degrades even more
rapidly than does CCF with increasing numbers of noise dimensions. This can be explained
by the fact that features derived from random rotations, which are dense linear projections,
have very low probability of being informative in the presence of many noise dimensions.

6. Computational Efficiency and Scalability of SPORF

Computational efficiency and scalability are often as important as accuracy in the choice of
machine learning algorithms, especially for big data. In this section we demonstrate that
SPORF, with an appropriate choice of hyperparameter settings, scales similarly to RF with
respect to sample size and number of features. Furthermore, we show that our open source
implementation is computationally competitive with leading implementations of decision
tree ensemble algorithms.
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6.1. Theoretical Time Complexity

The time complexity of an algorithm characterizes how the theoretical processing time for
a given input relies on both the hyper-parameters of the algorithm and the characteristics
of the input. Let T be the number of trees, n the number of training samples, p the
number of features in the training data, and d the number of features sampled at each split
node. The average case time complexity of constructing an RF is O(Tdn log2 n) (Louppe,
2014). The dn log n accounts for the sorting of d features at each node. The additional
log n accounts for both the reduction in node size at lower levels of the tree and the average
number of nodes produced. RF’s near linear complexity shows that a good implementation
will scale nicely with large input sizes, making it a suitable algorithm to process big data.
SPORF’s average case time complexity is similar to RF’s, the only difference being that there
is an additional term representing a sparse matrix multiplication that is required in each
node. This makes SPORF’s complexity O(Tdn log2 n + Tdnpλ)), where λ is the fraction of
nonzeros in the p× d random projection matrix. We generally let λ be close to 1/p, giving
a complexity of O(Tdn log2 n), which is the same as for RF. Of note, in RF d is constrained
to be no greater than p, the dimensionality of the data. SPORF, on the other hand, does not
have this restriction on d. Therefore, if d is selected to be greater than p, SPORF may take
longer to train. However, d > p often results in improved classification performance.

6.2. Theoretical Space Complexity

The space complexity of an algorithm describes how the theoretical maximum memory
usage during runtime scales with the number of inputs and hyperparameters. Let c be
the number of classes and T , p, and n be defined as in Section 6.1. Building a single tree
requires the data matrix to be kept in memory, which is O(np). During an attempt to split
a node, two c-length arrays store the counts of each class to the left and to the right of the
candidate split point. These arrays are used to evaluate the decrease in Gini impurity or
entropy. Additionally, a series of random sparse projection vectors are sequentially assessed.
Each vector has less than p nonzeros. Therefore this term is dominated by the np term.
Assuming trees are fully grown, meaning each leaf node contains a single data point, the
tree has 2n nodes in total. This term gets dominated by the np term as well. Therefore,
the space complexity to build a SPORF is O(T (np+ c)). This is the same as that of RF.

6.3. Theoretical Storage Complexity

Storage complexity is the disk space required to store a forest, given the inputs and hy-
perparameters. Assume that trees are fully grown. For each leaf node, only the class label
of the training data point contained within the node is stored, which is O(1). For each
split node, the split dimension index and threshold are stored, which are also both O(1).
Therefore, the storage complexity of a RF is O(Tn).

For a SPORF, the only aspect that differs is that a (sparse) vector is stored at each split
node rather than a single split dimension index. Let z denote the average number of nonzero
entries in a vector projection stored at each split node. Storage of this vector at each split
node requires O(z) memory. Therefore, the storage complexity of a SPORF is O(Tnz). z is
a random variable whose prior is governed by λ, which is typically set to 1/p. The posterior
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mean of z is determined also by the data; empirically it is close to z = 1. Therefore, in
practice, the storage complexity of SPORF is close to that of RF.

6.4. Empirical Computational Efficiency and Scalability

Below we assess computational performance of SPORF. We do so by first comparing it to
RF and F-RC. In order to fairly compare, all methods use our own R implementation. Then
we compare our R implementation to other highly optimized implementations of decision
tree ensembles.

6.4.1. Implementation Details

We use our own R implementation for evaluations of RF, SPORF, F-RC, and RR-RF (Browne
et al., 2018). It was more difficult to modify one of the existing popular tree learning
implementations due to the particular way in which they operate on the input data. In
all of the popular axis-aligned tree learning implementations, each feature in the input
data matrix is sorted just once prior to inducing a tree, and the tree induction procedure
operates directly on this presorted data. Since trees in a SPORF include splitting on new
features consisting of linear combinations of the original features, pre-sorting the data is
not an option. Therefore our implementation is written from scratch in mostly native R.
The code has been extensively profiled and optimized for speed and memory performance.
Profiling revealed the primary performance bottleneck to be the portion of code responsible
for finding the best split. In order to improve speed, this portion of code was implemented in
C++ and integrated into R using the Rcpp package (Eddelbuettel, 2018). Further speedup
is achieved through multicore parallelization of tree construction and byte-compilation via
the R compiler package.

XGBoost is evaluated using the R implementation available on CRAN (Chen, 2018).
CCF is evaluated using the authors’ openly available MATLAB implementation (Rainforth
and Wood, 2015).

6.4.2. Comparison of Algorithms Using the Same Implementation

Figure 8A shows the training times of RF, F-RC, and SPORF on the sparse parity problem.
The reported training times correspond to the best hyperparameter settings for each algo-
rithm. Experiments are run using an Intel Xeon E5-2650 v3 processors clocked at 2.30GHz
with 10 physical cores, 20 threads, and 250 GB DDR4-2133 RAM. The operating system
is Ubuntu 16.04. F-RC is the slowest, RF is the fastest, and SPORF is in between. While not
shown, we note that a similar trend holds for the orthant problem. Figure 8B shows that
when the hyperparameter d of SPORF and F-RC is the same as that for RF, training times
are comparable. However, training time continues to increase as d exceeds p for SPORF and
F-RC, which largely accounts for the trend seen in Figure 8A. Figure 8C indicates that this
additional training time comes with the benefit of substantially improved accuracy. Re-
stricting d to be no greater than p for SPORF in this setting would still perform noticeably
better than RF at no additional cost in training time. Therefore, SPORF does not trade off
accuracy for time. Rather, for a fixed computational budget, it achieves better accuracy,
and if allowed to use more computation, further improves accuracy.
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Figure 8: Comparison of training times of RF, SPORF, and F-RC on the 20-dimensional sparse
parity setting. (A): Dependency of training time using the best set of hyperpa-
rameters (y-axis) on the number of training samples (x-axis) for the sparse parity
problem. (B): Dependency of training time (y-axis) on the number of projections
sampled at each split node (x-axis) for the sparse parity problem with n = 5000.
(C): Dependency of error rate (y-axis) on the number of projections sampled at
each split node (x-axis) for the sparse parity problem with n = 5000. SPORF and
F-RC can sample many more than p projections, unlike RF. As seen in panels (B)
and (C), increasing d above p meaningfully improves classification performance at
the expense of larger training times. However, comparing error rates and train-
ing times at d = 20, SPORF can classify substantially better than RF even with no
additional cost in training time.

6.4.3. Comparison of Training and Prediction Times for Different
Implementations

We developed and maintain an open multi-core R implementation of SPORF , which is hosted
on CRAN (Browne et al., 2018). We compare both speed of training and strong scaling
of our implementation to those of the R Ranger (Wright, 2018) and XGBoost (Chen, 2018)
packages, which are currently two of the fastest, parallelized decision tree ensemble software
packages available. Strong scaling is the time needed to train a forest with one core divided
by the time needed to train a forest with multiple cores. Ranger offers a fast multicore
version of RF that has been extensively optimized for runtime performance. XGBoost offers a
fast multicore version of gradient boosted trees, and computational performance is optimized
for shallow trees. Both Ranger and XGBoost are C++ implementations with R wrappers,
whereas our SPORF implementation is almost entirely native R. Hyperparameters are chosen
for each implementation so as to make the comparisons fair. For all implementations, trees
are grown to full depth, 100 trees are constructed, and d =

√
p features sampled at each

node. For SPORF, λ = 1/p. Experiments are run using four Intel Xeon E7-4860 v2 processors
clocked at 2.60GHz, each processor having 12 physical cores and 24 threads. The amount of
available memory is 1 TB DDR3-1600. The operating system is Ubuntu 16.04. Comparisons
use three openly available large data sets:
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MNIST The MNIST data set (Lecun et al.) has 60,000 training observations and 784
(28x28) features. For a small number of cores, SPORF is faster than XGBoost but slower
than Ranger (Figure 9A). However, when 48 cores are used, SPORF is as fast as Ranger and
still faster than XGBoost.

Higgs The Higgs data set (https://www.kaggle.com/c/higgs-boson) has 250,000
training observations and 31 features. SPORF is as fast as ranger and faster than XGBoost when
using 48 cores (Figure 9B).

p53 The p53 data set (https://archive.ics.uci.edu/ml/datasets/p53+Mutants)
has 31,159 training observations and 5,409 features. Figure 9C shows a similar trend as
for MNIST. For this data set, utilizing additional resources with SPORF does not provide
as much benefit due to the classification task being too easy (all algorithms achieve perfect
classification accuracy)—the trees are shallow, causing the overhead cost of multithreading
to outweigh the speed increase as a result of parallelism.

Strong scaling is the relative increase in speed of using multiple cores over that of using
a single core. In the ideal case, the use of N cores would produce a factor N speedup.
SPORF has the best strong scaling on MNIST (Figure 9D) and Higgs (Figure 9E), while it
has strong scaling in between that of Ranger and XGBooston the p53 data set (Figure 9F).
This is due to the simplicity of the p53 data set, as discussed above.

Prediction times can be just as, or even more important than training times in cer-
tain applications. For example, electron microscopy-based connectomics can acquire multi-
petabyte data sets that require classification of each voxel (Motta et al., 2019). Moreover,
recent automatic hyperparameter tuning suites incorporate runtime in their evaluations,
which leverage out-of-sample prediction accuracy (Falkner et al., 2018). Thus, accelerating
prediction times can improve the effectiveness of hyperparameter sweeps.

Figure 10 compares the prediction times of the various implementations on the same
three data sets. In addition to our standard SPORF prediction implementation, we also com-
pare a ”Forest Packing” prediction implementation (Browne et al., 2019). Briefly, Forest
Packing is a procedure performed after a forest has been grown that reduces prediction
latency by reorganizing and compacting the forest data structure. The number of test
points used for the Higgs, MNIST, and p53 data sets is 50,000, 10,000, and 6,000, respec-
tively. Predictions were made sequentially without batching using a single core. SPORF is
significantly faster than Ranger on the Higgs and MNIST data sets, and only marginally
slower on the p53 data set. XGBoost is much faster than both SPORF and Ranger, which is
due to the fact that the XGBoost algorithm constructs much shallower trees than the other
methods. Most notably, the Forest Packing procedure, which ”packs” the trees learned by
SPORF, makes predictions roughly ten times faster than XGBoost and over 100 times faster
than the standard SPORF on all three data sets.

7. Conclusion

In this work we showed that existing oblique splitting extensions to RF forfeit some of the
nice properties of RF, while achieving improved performance in certain settings. We there-
fore introdced SPORF which was designed to preserve the desirable properties of both RF and
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Figure 9: (A-C): The per-tree training time for three large real world data sets. Training
was performed using matching parameters where possible, and default parameters
otherwise. SPORF’s performance—even though it is written mostly in native R,
as compared to the other optimized C++ codes—is comparable to the highly
optimized XGBoost and Ranger and even outperforms XGBoost on two of the
data sets. (D-F): Strong scaling is the time needed to train a forest with one
core divided by the time needed to train a forest with multiple cores. This is a
measurement of a system’s ability to efficiently use additional resources. SPORF is
able to scale well over the entire range of tested cores, whereas XGBoost has
sharp drops in scalability during which it is unable to use additional threads
due to characteristics of the given data sets. The p53 data set, despite having
a large number of dimensions, is easily classifiable, which leads to short trees.
The p53 strong scaling plot shows that when trees are short, the overhead of
multithreading prevents SPORF from efficiently using the additional resources.

oblique forest methods, rendering it statistically robust, computationally efficient, scalable,
and interpretable. This work only focused on classification; we also have a preliminary
implementation for regression, which seems to perform similarly to RF on a suite of regres-
sion benchmark data sets. Future work will investigate the behavior and performance of
SPORF on univariate and multivariate regression tasks.
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Figure 10: Comparison of test set prediction times. Forest Packing results show a 10x speed
up in real time prediction scenarios. Test set sizes: Higgs, 50,000 observations;
MNIST, 10,000 observations; p53, 6,000 observations. Predictions were made
sequentially without batching.

One limitation of using sparse random projections to generate the candidate oblique
splits is that it will never find informative splits in cases for which the signal is contained in
a dense linear combination of features or nonlinear combinations of features. In such cases,
supervised computation of split directions may be more suitable. Perhaps a decision forest
method that evaluates both sparse random projections and dense supervised projections at
each split node could further improve performance in such settings.

On a more theoretical note, we demonstrated that SPORF achieves almost perfect classi-
fication accuracy on a problem for which Biau et al. (2008) proved that RF cannot achieve
better than an error rate of 1/6. This raises a question as to whether it is possible to
construct a problem in which RF is consistent and SPORF is not. Or could it be the case that
SPORF is always consistent when RF is? The consistency theorems by Scornet et al. (2015)
for RF in the case of additive regression models should be extendable to SPORF with some
minor modifications—their proofs rely on clever adaptations of classical consistency results
for data-independent partitioning classifiers, which are agnostic to whether the splits are
axis-aligned or not. Another factor that dictates the lower bound of error rate, as Breiman
(2001) proved, is the relative balance between the strength and correlation of trees. Our
investigation of strength and correlation on the Sparse Parity, Orthant, and Trunk sim-
ulations is offered in Appendix E. The results suggest that SPORF can outperform other
algorithms because of stronger trees and/or less correlated trees. Therefore, SPORF perhaps
offers more flexible control over the balance between tree strength and correlation, thereby
allowing it to adapt better to different problems.

Our implementation of SPORF is as computationally efficient and scalable or more so than
existing tree ensemble implementations. Additionally, our implementation can realize many
previously proposed tree ensemble methods by allowing the user to define how random pro-
jections are generated. Open source code is available at https://neurodata.io/sporf/,
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Algorithm 1 Learning a SPORF classification tree.

Input: (1) Dn = (X,y) ∈ Rn×p × Yn: training data (2) Θ: set of split eligibility criteria
Output: A SPORF decision tree T

1: function T = growtree(X,y,Θ)
2: c = 1 . c is the current node index
3: M = 1 . M is the number of nodes currently existing
4: S(c) = bootstrap({1, ..., n}) . S(c) is the indices of the observations at node c
5: while c < M + 1 do . visit each of the existing nodes
6: (X′,y′) = (xi, yi)i∈S(c) . data at the current node

7: for k = 1, . . . ,K do n
(c)
k =

∑
i∈S(c) I[yi = k] end for . class counts

8: if Θ satisfied then . do we split this node?
9: A = [a1 · · ·ad] ∼ fA . sample random p× d matrix as defined in 3.1

10: X̃ = X′A = (x̃i)i∈S(c) . random projection into new feature space

11: (j∗, t∗) = findbestsplit(X̃,y′) . Algorithm 2
12: S(M+1) = {i : x̃i · aj∗ ≤ t∗ ∀i ∈ S(c)} . assign to left child node
13: S(M+2) = {i : x̃i · aj∗ > t∗ ∀i ∈ S(c)} . assign to right child node
14: a∗(c) = aj∗ . store best projection for current node
15: τ∗(c) = t∗ . store best split threshold for current node
16: κ(c) = {M + 1,M + 2} . node indices of children of current node
17: M = M + 2 . update the number of nodes that exist
18: else
19: (a∗(c), τ∗(c), κ∗(c)) = NULL
20: end if
21: c = c+ 1 . move to next node
22: end while
23: return (S(1), {a∗(c), τ∗(c), κ(c), {n(c)k }k∈Y}

m−1
c=1 )

24: end function

including both the R package discussed here, and a C++ version with both R and Python
bindings that we are actively developing.

Acknowledgments

This work is graciously supported by the Defense Advanced Research Projects Agency
(DARPA) SIMPLEX program through SPAWAR contract N66001-15-C-4041, DARPA GRAPHS
N66001-14-1-4028, and DARPA Lifelong Learning Machines program through contract
FA8650-18-2-7834.

Appendix A. Algorithms

26



Sparse Projection Oblique Randomer Forests

Algorithm 2 Finding the best node split. This function is called by growtree (Alg 1) at
every split node. For each of the p dimensions in X ∈ Rn×p, a binary split is assessed at
each location between adjacent observations. The dimension j∗ and split value τ∗ in j∗

that best split the data are selected. The notion of “best” means maximizing some choice
in scoring function. In classification, the scoring function is typically the reduction in Gini
impurity or entropy. The increment function called within this function updates the counts
in the left and right partitions as the split is incrementally moved to the right.

Input: (1) (X,y) ∈ Rn×p × Yn, where Y = {1, . . . ,K}
Output: (1) dimension j∗, (2) split value τ∗

1: function (j∗, τ∗) = findbestsplit(X,y)
2: for j = 1, . . . , p do

3: Let x(j) = (x
(j)
1 , . . . , x

(j)
n )T be the jth column of X.

4: {mj
i}i∈[n] = sort(x(j)) . mj

i is the index of the ith smallest value in x(j)

5: t = 0 . initialize split to the left of all observations
6: n′ = 0 . number of observations left of the current split
7: n′′ = n . number of observations right of the current split
8: for k = 1, . . . ,K do
9: nk =

∑n
i=1 I[yi = k] . total number of observations in class k

10: n′k = 0 . number of observations in class k left of the current split
11: n′′k = nk . number of observations in class k right of the current split
12: end for
13: for t = 1, . . . , n− 1 do . assess split location, moving right one at a time
14: ({(n′k, n′′k)}, n′, n′′, ymj

t
) = increment({(n′k, n′′k)}, n′, n′′, ymj

t
)

15: Q(j,t) = score({(n′k, n′′k)}, n′, n′′) . measure of split quality
16: end for
17: end for
18: (j∗, t∗) = argmax

j,t
Q(j,t)

19: for i = 0, 1 do ci = mj∗

t∗+i end for

20: τ∗ = 1
2(x

(j∗)
c0 + x

(j∗)
c1 ) . compute the actual split location from the index j∗

21: return (j∗, τ∗)
22: end function
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Appendix B. Hyperparameter Tuning

Hyperparameters in XGBoost are tuned via grid search using the R caret package. The values
tried for each hyperparameter are based on suggestions by Owen Zhang (https://www.
slideshare.net/OwenZhang2/tips-for-data-science-competitions), a research data
scientist who has had many successes in data science competitions using XGBoost:

• nrounds: 100, 1000

• subsample: 0.5, 0.75, 1

• eta: 0.001, 0.01

• colsample bytree: 0.4, 0.6, 0.8, 1

• min child weight: 1

• max depth: 4, 6, 8, 10, 100000

• gamma: 0

Selection of the hyperparameter values is based on minimization of a five-fold cross-
validation error rate.

Appendix C. Real Benchmark Data Sets

We use 105 benchmark data sets from the UCI machine learning repository for classification.
These data sets are most of the data sets used in Fernández-Delgado et al. (2014); some
were removed due to licensing or unavailability issues. We noticed certain anomalies in
Fernández-Delgado et al. (2014)’s pre-processed data, so we pre-processed the raw data
again as follows.

1. Remove of nonsensical features. Some features, such as unique sample identifiers,
or features that were the same value for every sample, were removed.

2. Impute missing values. The R randomForest package was used to impute missing
values. This method was chosen because it is nonparametric and is one of the few imputation
methods that can natively impute missing categorical entries.

3. One-hot-encode categorical features. Most classifiers cannot handle categorical
data natively. Given a categorical feature with possible values {c1, . . . , cm}, we expand to m
binary features. If a data point has categorical value ck,∀k ∈ 1, . . . ,m then the kth binary
feature is assigned a value of one and zero otherwise.

4. Integer encoding of ordinal features. Categorical features having order to them,
such as ”cold”, ”luke-warm”, and ”hot”, were numerically encoded to respect this ordering
with integers starting from 1.

5. Standardization of the format. Lastly, all data sets were stored as CSV files,
with rows representing observations and columns representing features. The class labels
were placed as the last column.

6. Five-fold parition. Each data set was randomly divided into five partitions for five-
fold cross-validation. Partitions preserved the relative class frequencies by stratification.
Each partition included a different 20% of the data for testing.
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Appendix D. Data Tables
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5-fold CV Cohen’s κ
Dataset n pnum pcat C SPORF RF XGBoost RR-RF CCF

abalone 4177 7 1 28 11.2± 0.8 11± 0.8 11.8± 0.4 9.1± 0.5 10.4± 0.7
acute inflammation task 1 120 6 0 2 100± 0 100± 0 95± 2 100± 0 100± 0
acute inflammation task 2 120 6 0 2 100± 0 100± 0 87± 9 100± 0 100± 0

adult 32561 7 7 2 82.38± 0.29 82.42± 0.28 83.45± 0.28 78.16± 0.39 80.2± 0.23
annealing 798 27 5 5 98± 1 98± 1 97± 1 91± 2 97± 1

arrhythmia 452 279 0 13 72± 2 74± 2 72± 2 61± 2 66± 1
audiology std 200 68 1 24 75± 4 73± 5 73± 5 65± 4 78± 5
balance scale 625 4 0 3 94± 1 77± 3 83± 1 82± 1 90± 1

balloons 16 4 0 2 40± 20 50± 20 10± 30 60± 10 40± 20
bank 4521 11 5 2 91.7± 0.1 91.9± 0.1 91.9± 0.1 91.3± 0.4 91.6± 0.3

blood 748 4 0 2 71± 1 72± 1 72± 1 71± 1 70± 1
breast cancer 286 7 2 2 61± 2 60± 3 58± 1 54± 4 57± 3

breast cancer-wisconsin 699 9 0 2 96± 2 96± 2 95± 2 96± 2 96± 2
breast cancer-wisconsin-diag 569 30 0 2 96± 1 94± 1 94± 1 96± 1 97± 1
breast cancer-wisconsin-prog 198 33 0 2 73± 2 69± 3 72± 2 72± 2 72± 3

car 1728 6 0 4 96.5± 0.2 93.1± 0.8 96.5± 0.4 81.5± 1.4 96.9± 0.6
cardiotocography task 1 2126 21 0 10 83.5± 0.5 82.5± 0.6 84.4± 0.5 74.7± 0.8 81.3± 1.1
cardiotocography task 2 2126 21 0 3 93.9± 0.5 93.6± 0.6 94.5± 0.4 90.1± 0.8 92.2± 0.5

chess krvk 28056 0 6 18 84.01± 0.18 77.99± 0.18 86.76± 0.35 59.17± 0.13 82.62± 0.22
chess krvkp 3196 35 1 2 99.1± 0.2 98.8± 0.2 98.8± 0.3 95.7± 0.6 98.8± 0.1

congressional voting 435 16 0 2 94± 2 94± 2 96± 1 94± 1 95± 2
conn bench-sonar-mines-rocks 208 60 0 2 72± 4 72± 6 77± 7 70± 3 75± 5

conn bench-vowel-deterding 528 11 0 11 97± 0 96± 1 90± 2 97± 0 98± 1
contrac 1473 8 1 3 29.3± 2.8 26.5± 1.9 31.6± 1.7 24.9± 1.4 28± 1.5

credit approval 690 10 5 2 77± 1 78± 1 77± 1 74± 2 75± 2
dermatology 366 34 0 6 98± 1 98± 1 97± 1 96± 0 96± 1

ecoli 336 7 0 8 83± 1 81± 2 81± 1 83± 1 81± 1
flags 194 22 6 8 57± 3 58± 3 57± 4 46± 5 54± 2
glass 214 9 0 6 64± 5 67± 6 65± 5 56± 7 66± 7
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haberman survival 306 3 0 2 63± 3 61± 3 63± 2 57± 3 54± 4
hayes roth 132 0 4 3 68± 7 68± 7 64± 8 66± 7 69± 7

heart cleveland 303 10 3 5 47± 2 48± 2 47± 1 51± 1 45± 2
heart hungarian 294 10 3 2 89± 3 87± 2 87± 3 81± 3 85± 4

heart switzerland 123 10 3 5 −5± 6 1± 4 −5± 6 2± 10 6± 10
heart va 200 10 3 5 13± 4 13± 6 15± 5 17± 5 15± 3
hepatitis 155 19 0 2 44± 7 42± 15 37± 7 38± 7 54± 10

hill valley 606 100 0 2 100± 0 12± 2 22± 4 88± 2 100± 0
hill valley-noise 606 100 0 2 90± 3 3± 6 6± 3 65± 2 89± 2

horse colic 300 17 4 2 76± 3 74± 4 80± 1 77± 3 77± 3
ilpd indian-liver 583 10 0 2 60± 2 59± 2 60± 1 62± 3 63± 1

image segmentation 210 19 0 7 93± 3 92± 3 91± 2 87± 3 93± 3
ionosphere 351 34 0 2 85± 2 82± 2 81± 1 88± 1 86± 2

iris 150 4 0 3 91± 2 94± 3 92± 2 94± 2 96± 2
led display 1000 7 0 10 68.2± 1.3 68.6± 1.6 69.5± 1.2 67.9± 1.4 67.6± 1.3

lenses 24 4 0 3 50± 20 40± 20 60± 20 30± 10 40± 20
letter 20000 16 0 26 96.85± 0.13 96.37± 0.11 96.32± 0.05 95.24± 0.22 97.67± 0.18
libras 360 90 0 15 85± 2 80± 2 76± 2 84± 2 90± 2

low res-spect 531 100 1 48 59± 3 51± 2 48± 3 48± 1 62± 1
lung cancer 32 13 43 3 30± 10 40± 10 30± 20 20± 10 0± 10

magic 19020 10 0 2 82.65± 0.3 81.48± 0.39 82.35± 0.24 79.55± 0.22 81.92± 0.37
mammographic 961 3 2 2 69± 2 69± 1 69± 1 57± 1 61± 2

molec biol-promoter 106 0 57 4 40± 2 36± 5 32± 2 15± 4 19± 7
molec biol-splice 3190 0 60 3 93± 0.7 93.2± 0.7 94.2± 0.5 68.9± 0.6 92.8± 0.9

monks 1 124 2 4 2 98± 2 98± 2 82± 3 70± 5 81± 5
monks 2 169 2 4 2 37± 5 37± 5 45± 6 30± 3 61± 4
monks 3 122 2 4 2 86± 4 86± 4 81± 3 87± 5 81± 4

mushroom 8124 7 15 2 100± 0 100± 0 99.8± 0.1 99.9± 0 100± 0
musk 1 476 166 0 2 80± 2 79± 4 80± 3 79± 2 83± 2
musk 2 6598 166 0 2 97.4± 0.3 97.3± 0.4 98.2± 0.2 95.1± 0.5 97.7± 0.4
nursery 12960 6 2 5 99.97± 0.02 99.71± 0.05 99.91± 0.05 96.2± 0.08 99.92± 0.04
optical 3823 64 0 10 98.1± 0.2 97.9± 0.3 97.8± 0.3 97.7± 0.2 98.6± 0.1
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ozone 2534 72 0 2 94± 0.3 94.1± 0.3 94.4± 0.3 93.9± 0.1 94.3± 0.2
page blocks 5473 10 0 5 97.3± 0.2 97.2± 0.1 97.3± 0.2 96.9± 0.1 97.3± 0.2
parkinsons 195 22 0 2 69± 8 75± 3 67± 9 67± 10 75± 5

pendigits 7494 16 0 10 99.5± 0.1 99.1± 0.1 99.1± 0.1 99.3± 0.1 99.6± 0.1
pima 768 8 0 2 66± 4 64± 4 63± 5 65± 2 64± 3

pittsburgh bridges-MATERIAL 106 4 3 3 55± 5 55± 5 51± 5 12± 5 38± 10
pittsburgh bridges-REL-L 103 4 3 3 58± 6 58± 7 59± 7 52± 3 62± 4
pittsburgh bridges-SPAN 92 4 3 3 40± 10 40± 10 40± 10 40± 10 40± 10

pittsburgh bridges-T-OR-D 102 4 3 2 7± 7 7± 12 33± 11 7± 7 27± 12
pittsburgh bridges-TYPE 106 4 3 7 39± 4 37± 4 27± 8 11± 7 24± 5

planning 182 12 0 2 60± 2 60± 4 48± 5 62± 2 59± 4
post operative 90 8 0 3 60± 0 50± 10 60± 0 50± 0 50± 10

ringnorm 7400 20 0 2 96.1± 0.2 92.1± 0.5 96.3± 0.4 95.9± 0.1 95.6± 0.3
seeds 210 7 0 3 91± 3 90± 4 89± 4 88± 4 90± 3

semeion 1593 256 0 10 93.4± 0.4 93.7± 0.7 93.7± 0.5 91± 0.9 94.2± 0.4
soybean 307 22 13 19 90± 1 90± 2 90± 2 90± 1 92± 2

spambase 4601 57 0 2 92.9± 0.7 92.2± 0.6 92.6± 0.5 90.4± 0.5 93.3± 0.7
spect 80 22 0 2 30± 10 40± 10 40± 10 40± 20 30± 10

spectf 80 44 0 2 60± 10 50± 10 40± 10 60± 10 50± 10
statlog australian-credit 690 10 4 2 77± 2 78± 2 76± 3 72± 1 74± 1

statlog german-credit 1000 14 6 2 66.4± 1.5 65± 1.7 63.6± 2.9 61.6± 1.7 64.3± 1.6
statlog heart 270 10 3 2 68± 1 70± 2 71± 4 69± 3 67± 2
statlog image 2310 19 0 7 98± 0.5 97.7± 0.4 98.3± 0.4 96.5± 0.5 98.2± 0.4

statlog landsat 4435 36 0 6 88.5± 0.5 88.3± 0.6 89.2± 0.5 87.8± 0.4 88.9± 0.6
statlog shuttle 43500 9 0 7 99.98± 0.01 99.97± 0.01 99.97± 0.01 99.87± 0.01 99.97± 0.01
statlog vehicle 846 18 0 4 74± 1 68± 2 69± 1 69± 2 77± 0

steel plates 1941 27 0 7 68.1± 1 69.4± 0.6 71.1± 0.9 64.4± 1.7 66.4± 1.5
synthetic control 600 60 0 6 98± 1 99± 1 98± 1 98± 1 99± 0

teaching 151 3 2 3 39± 6 36± 4 30± 3 39± 8 38± 8
thyroid 3772 21 0 3 96.8± 1 97.2± 1.4 96.5± 1.6 38.4± 1.8 93.7± 1.9

tic tac-toe 958 0 9 2 96± 1 97± 1 97± 1 55± 3 95± 1
titanic 2201 2 1 2 69.1± 0.5 69.1± 0.5 68.5± 0.4 68.5± 0.4 68.5± 0.4
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twonorm 7400 20 0 2 95.5± 0.3 94.8± 0.2 94.9± 0.3 95.7± 0.3 95.7± 0.3
vertebral column task 1 310 6 0 2 78± 2 75± 2 72± 1 78± 2 75± 1
vertebral column task 2 310 6 0 3 68± 5 66± 5 66± 4 63± 4 67± 1

wall following 5456 24 0 4 99.3± 0.2 99.3± 0.2 99.6± 0.1 83.4± 0.9 96.3± 0.3
waveform 5000 21 0 3 79.5± 0.6 77.9± 0.7 79.2± 0.4 79.5± 0.4 79± 0.5

waveform noise 5000 40 0 3 79.9± 0.5 78.9± 0.5 79.2± 0.7 79± 0.4 80.3± 0.6
wine 178 13 0 3 95± 3 94± 4 97± 2 96± 2 97± 2

wine quality-red 1599 11 0 6 47.3± 3 46.2± 3.4 45.2± 2.9 47.1± 2.6 46.6± 2.7
wine quality-white 4898 11 0 7 43.8± 2.2 42.8± 1.6 42± 1.2 43.4± 2.2 43.7± 1.9

yeast 1484 8 0 10 47.7± 1.9 48± 2.5 47.2± 2.4 46.5± 1.9 46.3± 2.4
zoo 101 16 0 7 93± 4 94± 3 93± 2 94± 3 94± 3

Table 1: Five-fold cross-validation Cohen’s kappa values
(mean±SEM) on the UCI datasets, along with summary
statistics for each dataset. n is the number of examples,
pnum is the number of numeric features, pcat is the number
of categorical features, and C is the number of classes. Best
performing algorithm for each data set is highlighted in bold
text.
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Appendix E. Strength and Correlation of Trees

One of the most important and well-known results in ensemble learning theory for classi-
fication states that the generalization error of an ensemble learning procedure is bounded
above by the quantity ρ̄(1− s2)/s2, where ρ̄ is a particular measure of the correlation of the
base learners and s is a particular measure of the strength of the base learners (Breiman,
2001). In both SPORF and F-RC, the set of possible splits that can be sampled is far larger
in size than that for RF, which may lead to more diverse trees. Moreover, the ability to
sample a more diverse set of splits may increase the likelihood of finding good splits and
therefore boost the strength of the trees. To investigate the strength and correlation of
trees using different projection distributions, we evaluate RF, F-RC, and SPORF on the three
simulation settings described above. Scatter plots of tree strength vs tree correlation are
shown in Figure 11 for sparse parity (n = 1000), orthant (n = 400), Trunk (n = 10), and
Trunk (n = 100). In all four settings, SPORF classifies as well as or better than RF and F-RC.

On the sparse parity setting, SPORF and F-RC produce significantly stronger trees than
does RF, at the expense of an increase in correlation among the trees (Figure 11A). Both
SPORF and F-RC are much more accurate than RF in this setting, so any performance degra-
dation due to the increase in correlation relative to RF is outweighed by the increased
strength. SPORF produces slightly less correlated trees than does F-RC, which may explain
why SPORF has a slightly lower error rate than does F-RC on this setting.

On the orthant setting, F-RC produces trees of roughly the same strength as those in RF,
but significantly more correlated (Figure 11B). This may explain why F-RC has substantially
worse prediction accuracy than does RF. SPORF also produces trees more correlated than
those in RF, but to a lesser extent than F-RC. Furthermore, the trees in SPORF are stronger
than those in RF. Observing that SPORF has roughly the same error rate as RF does, it seems
that any contribution of greater tree strength in SPORF is canceled by a contribution of
greater tree correlation.

On the Trunk setting with p = 10 and n = 10, SPORF and F-RC produces trees that
are comparable in strength to those in RF but less correlated (Figure 11C). However, when
increasing n to 100, the trees in SPORF and F-RC become both stronger and more correlated.
In both cases, SPORF and F-RC have better classification performance than RF.

These results suggest a possibly general phenomenon. Namely, for smaller training set
sizes, tree correlation may be a more important factor than tree strength because there is
not enough data to induce strong trees, and thus, the only way to improve performance
is through increasing the diversity of trees. Likewise, when the training set is sufficiently
large, tree correlation matters less because there is enough data to induce strong trees. Since
SPORF has the ability to produce both stronger and more diverse trees than RF, it is adaptive
to both regimes In all four settings, SPORF never produces more correlated trees than does
F-RC, and sometimes produces less correlated trees. A possible explanation for this is
that the splits made by SPORF are linear combinations of a random number of dimensions,
whereas in F-RC the splits are linear combinations of a fixed number of dimensions. Thus,
in some sense, there is more randomness in SPORF than in F-RC.
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Figure 11: Comparison of tree strength and correlation of SPORF, RF, and F-RC on four of
the simulated data sets. (A): sparse parity with p = 10, n = 1000, (B): orthant
with p = 6, n = 400, (C): Trunk with p = 10, n = 10, and (D): Trunk with p =
10, n = 100. For a particular algorithm, there are ten dots, each corresponding
to one of ten trials. Note in all settings, SPORF beats RF and/or F-RC. However,
the mechanism by which it does varies across the different settings. In sparse
parity SPORF wins because the trees are substantially stronger, even though
the correlation increases. In Trunk for small sample size, it is purely because
of less correlated trees. However, when sample size increases 10-fold, it wins
purely because of stronger trees. This suggests that SPORF can effectively trade-
off strength for correlation on the basis of sample complexity to empirically
outperform RF and F-RC.

Appendix F. Understanding the Bias and Variance of SPORF

The crux of supervised learning tasks is to optimize the trade-off between bias and vari-
ance. As a first step in understanding how the choice of projection distribution effects the
balance between bias and variance, we estimate bias, variance, and error rate of the various
algorithms on the sparse parity problem. Universally agreed upon definitions of bias and
variance for 0-1 loss do not exist, and several such definitions have been proposed for each.
Here we adopt the framework for defining bias and variance for 0-1 loss proposed by James
(2003). Under this framework, bias and variance for 0-1 loss have similar interpretations
to those for mean squared error. That is, bias is a measure of the distance between the
expected output of a classifier and the true output, and variance is a measure of the average
deviation of a classifier output around its expected output. Unfortunately, these defini-
tions (along with the term for Bayes error) do not provide an additive decomposition for
the expected 0-1 loss. Therefore, James (2003) provides two additional statistics that do
provide an additive decomposition. In this decomposition, the so-called ”systematic effect”
measures the contribution of bias to the error rate, while the ”variance effect” measures the
contribution of variance to the error rate. For completeness, we restate these definitions
below.

Let h̄(X) = argmax
k

PDn(h(X|Dn) = k) be the most common prediction (mode) with

respect to the distribution of Dn. This is referred to as the ”systematic” prediction by James
(2003). Furthermore, let P ∗(X) = PY |X(Y = h∗(X)|X) and P̄ (X) = PDn(h(X|Dn) =
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Figure 12: (A-D): Bias, variance, variance effect, and error rate, respectively, on the sparse
parity problem as a function of the number of training samples. Error rate
is the sum of systematic effect and variance effect, which roughly measure the
contributions of bias and variance to the error rate, respectively. In this example,
bias and systematic effect are identical because the Bayes error is zero (refer to
James, 2003). For smaller training sets, SPORF wins primarily through lower
bias/systematic effect, while for larger training sets it wins primarily through
lower variance effect.

h̄(X)). The bias, variance, systematic effect (SE), and variance effect (VE) are defined as

Bias = PX(h̄(X) = h∗(X)),

V ar = 1− EX [P̄ (X)],

SE = EX [P ∗(X)− PY |X(Y = h̄(X)|X)],

V E = EX [PY |X(Y = h̄(X)|X)

−
∑
k

PY |X(Y = k|X)PDn(h(X|Dn) = k)].

Figure 12 compares estimates of bias, variance, variance effect, and error rate for SPORF, RF,
and F-RC as a function of number of training samples. Since the Bayes error is zero in these
settings, systematic effect is the same as bias. The four metrics are estimated from 100
repeated experiments for each value of n. In Figure 12A, SPORF has lower bias than both
RF and F-RC for all training set sizes. All algorithms converge to approximately zero bias
after about 3000 samples. Figure 12B shows that RF has substantially more variance than
do SPORF and F-RC, and SPORF has slightly less variance than F-RC at 3,000 samples. The
trend in Figure 12C is similar to that in Figure 12B, which is not too surprising since VE
measures the contribution of the variance to the error rate. Interestingly, although RF has
noticeably more variance at 500 samples than do SPORF and F-RC, it has slightly lower
VE. It is also surprising that the VE of RF increases from 500 to 1000 training samples.
It could be that this is the result of the tradeoff of the substantial reduction in bias. In
Figure 12D, the error rate is shown for reference, which is the sum of bias and VE. Overall,
these results suggest that SPORF wins on the sparse parity problem with a small sample size
primarily through lower bias/SE, while with a larger sample size it wins mainly via lower
variance/VE. A similar trend holds for the orthant problem (not shown).
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