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Abstract— In this paper, we introduce the concept of regular
switched systems and we present some consequences of this
property on the estimation entropy’s calculation. For systems
of such a class, one can derive a formula for the estimation
entropy in terms of the system’s Lyapunov exponents. We also
present some sufficient conditions on the system that guarantee
regularity. Some of those conditions include the cases of periodic
switching, simultaneously triangularizable systems, and a large
class of randomly switched systems that contains Markov Jump
Linear Systems (MJLS) as a special case. For that last part,
we use tools from ergodic theory to draw conclusions that hold
almost surely.

I. INTRODUCTION

In recent years a lot of attention has been placed on the
problem of estimation of systems subject to limited data-rate
[8], [6]. Most of the attention those systems have received
is due to the ever growing number of examples of systems
that possess limited information flow between sensors and
actuators.

A question that arises naturally is related to the minimum
data rate necessary to accomplish a desired task, such as
control or estimation. Normally, these questions have some
type of entropy notion as an answer [9]. Trying to solve
the case of estimation with minimum data-rate, the concept
of estimation entropy was introduced in [6]. The goal in
that paper was determining the minimum average data-rate
necessary to estimate the state with an error that decreases
exponentialy fast, with a prescribed exponential rate α ≥
0. Nonetheless, it is not easy to calculate the value of the
estimation entropy, with the notable exception of linear time
invariant systems.

A class of systems for which the entropy concepts have
recently attracted attention is that of switched systems [3].
Further, some recent works present inequalities for the topo-
logical entropy of linear switched systems [14] and the esti-
mation entropy of nonlinear switched systems [11]. However,
almost all results known are bounds that are sometimes very
loose. In the present paper, we derive a formula for the
estimation entropy of linear switched systems under mild
restrictions on the switching.

First, we present a class of linear switched systems that
are called regular systems. We show that for this class
of systems, under some other technical assumptions, it is
possible to write down a formula for the estimation entropy
in terms of the system’s Lyapunov exponents. This work
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can be seen as a specialization of the work [14] where
general linear switched systems were studied, although most
of the results presented there were bounds for the topological
entropy, with no closed expressions for most of the matricial
cases. Also, this present work extends the class of systems
for which we know how to calculate the estimation entropy,
which was restricted essentially to the linear time invariant
case.

In Section II we present the preliminary results and the
definition of regular linear time varying system in terms of
the Lyapunov exponents of a system. Afterwards, in Section
III we prove the formula for the estimation entropy for the
class of discrete linear time varying (LTV) systems. In the
sequel, in Section IV we present sufficient conditions for
regularity, most of those conditions are related to important
classes of systems such as periodicaly switched linear sys-
tems and randomly switched linear systems, which includes
Markov Jump Linear Systems. Finally, Section V concludes
the paper and presents future research directions. As a further
remark, the proofs of the results in this paper can be found
in the technical report [10].

Notations: We denote by ||·|| a norm in a finite dimensional
vector space, unless specified otherwise it can be taken
to be any norm. Let R = (−∞,∞), Z≥0 = {0, 1, · · · }
the nonegative integers, N = {1, 2, · · · } the set of natural
numbers. For any set E, we denote by #E its cardinality.
For subsets of Rd we denote vol(E) the volume of the
set (its Lebesgue measure). We also denote by dim(V ) the
dimension of a linear vector space V . Also, for any x > 0,
log x is the logarithm with base e.

Given a matrix sequence (An)n∈N, we denote the product
A(n) = An · · ·A2A2. We denote by Gl(d,R) the general
linear group of d by d matrices over the real field, and
M(d,R) the set of all matrices over the reals. We denote
det(A) and Tr(A) the determinant and the trace of the
matrix A, respectively. Further, Id ∈ Gl(d,R) is the identity
matrix. Additionally, denote by PB

(
{vi}ki=1

)
the paral-

lelepiped defined by {αiBvi : αi ∈ [0, 1]}, where {vi}ki=1 ⊂
Rd is a set of vectors and B ∈ M(d,R). Furthermore,
vol
(
PB
(
{vi}ki=1

))
is the volume of the parallelepiped

given by
√

det ((BV )∗(BV )), where V is the matrix with
columns vi.

II. PRELIMINARIES AND DEFINITIONS

In this section we present some definitions and preliminary
results needed for the discussion that follows. First we recall
the definition of the estimation entropy [6] for a dynamic
system given by the following equation:
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ẋ = f(x), x(0) ∈ K, (1)

where K is the set of initial conditions that is compact and
Ko 6= ∅. We denote by ξ(x, t) the solution to the initial value
problem for the initial condition x(0) = x and time t ∈ R.

Definition 2.1: Let α ≥ 0 and T ≥ 0 be the time
horizon. For every ε > 0, we call a finite set of functions
X̂ = {x̂1(·), · · · , x̂N (·)}, from [0, T ] to Rd, a (T, ε, α,K)-
approximating set if for every x ∈ K initial condition, there
exists x̂i ∈ X̂ such that ||ξ(x, t) − x̂i(t)|| < εe−αt, ∀t ∈
[0, T ].

Let sest(T, ε, α,K) be the minimum cardinality of a
(T, ε, α,K)- approximating set. We define the estimation
entropy as

hest(α,K) = lim
ε→0

lim sup
T→∞

1

T
log sest(T, ε, α,K)

Another useful definition is that of (T, ε, α,K) −
spanning set

Definition 2.2: Let α ≥ 0 and T ≥ 0 be the time
horizon. For every ε > 0, we call a finite set of points
S = {x1, · · · , xN} ⊂ K a (T, ε, α,K)- spanning set if for
every x ∈ K initial state, there exists xi ∈ S such that
||ξ(x, t)− ξ(xi, t)|| < εe−αt, ∀t ∈ [0, T ].

Let s∗est(T, ε, α,K) be the minimum cardinality of a
(T, ε, α,K)- spanning set. We define the quantity

h∗est(α,K) = lim
ε→0

lim sup
T→∞

1

T
log s∗est(T, ε, α,K)

It was proved in [6] that hest(α,K) = h∗est(α,K). In this
paper, we deal with the following equation

ẋ(t) = Aσ(t)x(t), x(0) ∈ K, (2)

where σ : R≥0 → Σ, where #Σ < ∞, is the switching
function [3]. One should note that, after periodic sampling1,
equation (2) becomes a discrete LTV system. Therefore,
equation (2) can be rewritten as

xk+1 = Akxk, x(0) ∈ K, (3)

where Ak = Φ(kT, 0), with T > 0 being the sampling
period, and Φ(t, 0) being the fundamental matrix [2] of
system (2). It is important to notice that Ak ∈ Gl(d,R),
∀k ∈ N. In what follows, we will forget about the dynamics
and work directly with the sequence of invertible matrices
(Ak)k∈N.

Some remarks are in order. Since we deal only with LTV
systems, we can drop the entropy’s dependency on the set of
initial conditions and write hest(α,K) = hest(α), as long
as K is compact with a nonempty interior, as pointed out in
[14].

The following definitions were adapted from [5], [1], [12]
and are reproduced here for the reader’s convenience.

Definition 2.3: A Lyapunov index of a sequence of ma-
trices (An)n∈N is a function λ : Rd → R ∪ {−∞} with the
following properties:

1This is also true if the sampling is aperiodic, however, we will keep it
periodic in here for simplicity

• λ(αv) = λ(v), for every α 6= 0
• λ(v + w) = max {λ(v), λ(w)}
• λ(0) = −∞
Definition 2.4: A Lyapunov exponent for a sequence of

matrices (An)n∈N is the following Lyapunov index

λ(v) = lim sup
n→∞

1

n
log
(∣∣∣∣∣∣A(n)v

∣∣∣∣∣∣)
Definition 2.4 of Lyapunov exponent for sequences of

matrices is compatible with the usual definition of Lyapunov
exponents for linear dynamic systems [5], in the sense that
the asymptotic exponential growth rate of the solution 3, i.e.
lim supn→∞

1
n log(||xn||), with initial condition x0 is given

by λ(x0). Therefore, the Lyapunov exponents give an upper
bound on the growth rate of the solutions of (3), and they
will be used to obtain an expression for the entropy.

Also, note that, as a consequence of the two first itens
in definition 2.3, a Lyapunov exponent of a sequence of
matrices in Gl(d,R) can attain at most d distinct real values2.
We convention that the q ≤ d distinct real values attained
by the Lyapunov exponents will be denoted by χi, i =
1, · · · q, with the ordering χ1 < · · · < χq .

In order to give a justification for the previous definitions
we present the following example.

Example 1: Let B1 =

[
ρ 0
0 ρ−1

]
and B2 =

[
ρ−1 0
0 ρ

]
.

Consider the sequence An = B1 whenever n is divisible by
4, and An = B2 otherwise. Also let {e1, e2} be the canonical
basis for R2. Then it follows trivially that λ(e1) = − 1

2 log ρ
and λ(e2) = 1

2 log ρ
A further consequence of definition 2.3 is that the Lya-

punov exponents are constant over one dimensional sub-
spaces except at the origin. Definition 2.3 gives us more as
can be seen in the following definition.

Definition 2.5: A filtration on Rd is a family of vector
subspaces V = (Ei)

q
i=0, with q ≤ d, such that {0} = E0 (

E1 ( · · · ( Eq = Rd.
Further, we call V = {vi}di=1 a normal basis of the

filtration V if it is a basis for Rd, and for every j ≥ 1,
the subset of V given by {vi}

dim(Ej)
i=1 is a basis for Ej .

A filtration Vλ associated with the sequence of invertible
matrices (An)n∈N such that Ei =

{
v ∈ Rd : χi ≥ λ(v)

}
,

where λ is a Lyapunov index for the sequence, and χi are
the Lyapunov exponente values of the sequence previously
defined, is called an Oseledets filtration. Also, the subspaces
Ei ∈ Vλ are called Oseledets subspaces. In addition, the
dimension of Ei is called the multiplicity of the Lyapunov
exponent value χi. Finally, define Λ = {λj}dj=1 as an
ordered list with repetition where for every j = 1, · · · , d,
there exists some i ∈ {1, · · · , q} such that λj = χi, and
for every i = 1, · · · , q, χi appears dim(Ei) times in Λ. The
order in Λ is arbitrary among those for which λ1 ≤ · · · ≤ λd.
We call the elements λi ∈ Λ the Lyapunov exponents with
multiplicity of (An)n∈N.

Another instrumental definition is that of tempered se-
quence

2Note that, by convention [5], if we pick v = 0, λ(v) = −∞
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Definition 2.6: A sequence (An)n∈N is called tempered if

lim
n→∞

1

n
log ||An|| = 0

The idea of this definition is that, in this way, the growth
rate of the sequence (||An||)n∈N is subexponential. Under
the temperedness hypothesis, it can be shown that the growth
rate of any solution of equation (3) is exponential. Therefore,
the Lyapunov exponents cannot be ∞ [4]. Moreover, if
(||An||)n∈N is bounded, then the sequence of matrices is
automatically tempered.

The central definition necessary for our discussion, how-
ever, is that of (Lyapunov) reularity. It imposes a direct
relation between the growth rate of the volume of ξ(K, t)
as t increases, and the Lyapunov exponents.

Definition 2.7: A sequence (An)n∈N is called regular if

lim
n→∞

1

n
log (|det(An)|) =

d∑
i=1

λi

We call a discrete LTV system regular, if the sequence
(An)n∈N associated with it is regular. To illustrate the gist
of this definition, we will resort to the following example of
an irregular sequence.

Example 2: Let B1 and B2 be as in Example 1. Consider
the sequence An = B1 if n ∈

{
2i, · · · , 2i+1

}
, for i odd,

and An = B2 otherwise. Note that det
(
A(n)

)
= 1, for

all possible sequences (An)n∈N. Denote by {e1, e2} the
canonical basis. It follows that the λ(e1) > 0 and λ(e2) > 0,
therefore the sequence cannot be regular.

One should notice that in the previous example the limit
superiors in the definition of Lyapunov exponents are not
limits, i.e., they are different from the limit inferiors. That is
actually the source of irregularity. As we will see in theorem
2.1, if the sequence is regular then those limits must exist.

The following theorem was extracted from [5] and synthe-
sises equivalent characterizations for regularity for the class
of tempered sequences.

Theorem 2.1: Given a sequence (An)n∈N of invertible and
tempered matrices, let {v1, · · · , vd} be any normal basis
associated with the Lyapunov exponents of the sequence, and
let I ⊂ {1, · · · , d} be any set of indices. Then, the following
conditions are equivalent
• limn→∞

1
n log

(
det
(
A(n)

))
=
∑d
i=1 λi;

• limn→∞
1
n log (vol (PA(n)(vi : i ∈ I)) =

∑
i∈I λi.

It is important to notice the special case of the second item
of theorem 2.1 when I is a singleton, then we get that the
limit superior in definition 2.4 can be replaced by the limit.
Also notice that the example 1 is actually regular by the first
item.

We will also need the following theorem 3.2.1 from [5]
Theorem 2.2: Let (An)n∈N be a sequence of matrices in

Gl(d,R). Given an ordered normal basis {v1, · · · , vd} with
respect to the Lyapunov exponent λ, there exists a sequence
of orthogonal matrices (Un)n∈N such that:
• Cm = U∗m+1AmUm is upper triangular for each m ∈ N;
• the columns of U1 are the vectors v1, · · · , vd;
• the sequence (Un)n∈N can be chosen such that the

canonical basis e1, · · · , en is normal with respect to the

Lyapunov exponents λ̃ of (Cn)n∈N and λ̃(e1) ≤ · · · ≤
λ̃(en)

Note that orthogonal changes of coordinate do not change
the values of the Lyapunov exponents, neither the regularity
of a sequence, i.e., if (An)n∈N is regular so is (Cn)n∈N
[5]. Also, this upper triangular reduction does not affect
temperedness.

III. ESTIMATION ENTROPY AND LYAPUNOV EXPONENTS

In this section, we consider the problem of finding a closed
expression for the estimation entropy of discrete regular
LTV systems. The following lemma is instrumental for what
follows in this section.

Lemma 3.1: Consider a regular matrix sequence
(An)n∈N ⊂ Gl(d,R), then the sequence (Bn)n∈N,
defined by Bn = Ane

−α is also regular. Moreover, any
normal basis {v1, · · · , vd} for the Oseledets filtration of
(An)n∈N is also a normal basis for the Oseledets filtration of
(Bn)n∈N, and the Lyapunov exponents λA associated with
the sequence (An)n∈N, are such that λB(v) = λA(v) + α,
where λB are the Lyapunov exponents for the sequence
(Bn)n∈N.

Its proof is evident and will be omitted. Next, we prove
that the estimation entropy of regular LTV systems can
be written as a function of the Lyapunov exponents with
multiplicity.

Theorem 3.1: The estimation entropy of a regular discrete
LTV system (3) is equal to

∑d
i=1 max {0, λi + α}. If the sys-

tem is not regular, the estimation entropy is upper bounded
by this quantity.

Proof: We start by proving the lower bound. Consider
(An)n∈N, a regular sequence of matrices that came from the
system (3). Define Bn = Ane

α, it is true that (Bn)n∈N
is regular as well by Lemma 3.1. Also, by Lemma 3.1,
any normal basis {v1, · · · , vd} with respect to the Lyapunov
exponents λA of (An)n∈N is also a normal basis with respect
to the Lyapunov exponents λB of (Bn)n∈N. Moreover,
λB(v) = λA(v) + α, for every v ∈ Rd. As a remark, we
denote by λi the distinct values of λA with multiplicity.

Hence, by the third item in Theorem 2.1, we know
that for any ordered normal basis {v1, · · · , vd}, and
any set of indices I ⊂ {1, · · · , d}, we have that
limn→∞

1
n log vol (PB(n) {vi : i ∈ I}) =

∑
i∈I λB(vi).

This implies that ∀δ > 0, ∃N ∈ N, such that ∀n ≥ N

vol (PB(n) {vi : i ∈ I}) ≥ e
∑
i∈I(λB(vi)−δ)n (4)

Let I be the set of indices such that λB(vi) > 0. Also, let
C = {x1, · · · , xN} be an (n, ε, α, Uα)- spanning set, where
Uα = span {vi, i ∈ I} ∩K. Denote by ku = #I.

Notice that, ∃c1 > 0 and ∃c2 > 0 such that
Pc2Id {vi : i ∈ I} ⊂ Uα ⊂ Pc1Id {vi : i ∈ I}, i.e., there
are parallelepipeds, of the same dimension, that contain
and are contained by the set Uα. Now, define c(K,n) =

vol(B(n)(Uα))
vol(PB(n){vi:i∈I})

. Notice that limn→∞
1
n log c(K,n) = 0,

which follows trivially from the inclusions above.
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We also know that, s∗est(n, ε, α, Uα) ≥
vol(B(n)(Uα))

vol(B(B(n)(xi,n),ε))
= vol(B(n)(Uα))

(2ε)ku
.

It is straight forward to see that s∗est(n, ε, α,K) ≥
s∗est(n, ε, α, Uα), by the fact that any (n, ε, α,K)-spanning
set is also a (n, ε, α, Uα)-spanning set. By (4), we arrive at
s∗est(n, ε, α, Uα) ≥ c(K,n)

(2ε)ku
e
∑
i∈I(λB(vi)−δ)n.

Taking the logarithm, dividind by n, and taking
lim sup we get that hest(α) is lower bounded by
lim supn→∞

1
n log (c(K,n)) +

∑
i∈I (λB(vi)− δ) −

1
n log(2ε)ku , which is equal to

∑
i∈I (λB(vi)− δ). Since

δ was arbitrary, and we picked an arbitrary normal basis
hest(α) ≥

∑
i∈I λB(vi) =

∑d
i=1 max {0, λi + α}

Now, we proceed to prove the upper bound on the estima-
tion entropy. Note that we do not use the regularity property
for this part of the proof.

Let {vi : i = 1, · · · , d} be an ordered normal basis of
the Oseledets’ filtration of (An)n∈N. Note that, the basis
{vi : i = 1, · · · , d} can be chosen to be orthonormal by
changing coordinates without loss of generality, so we will
consider this for the rest of the proof. Take the parallelepiped
U =

{∑d
i=1 αivi : αi ∈

[
0, diam(K)

||vi||

]}
and note that K ⊂

U . Let Ii be the orthogonal projection of U on span {vi},
i.e., the side of the parallelepiped.

For fixed ε > 0, fixed δ > 0 and fixed m ∈ N, divide each
Ii in the following way: if λ(vi) ≥ −α, divide it into subinte-
vals of length εe−(λ(vi)+α+δ)m

d , otherwise divide it into subin-
tervals of length ε

d . Denote k = min {j ∈ N : λj ≥ −α}.
Now, define βi(x) = 〈x,vi〉

||vi|| , and ai = minx∈U βi(x). We

can now build the following grid ji =
⌈
βi(x)−ai

ci

⌉
, where

ci = εe−(λ(vi)+α+δ)m

d for i = k, · · · , d, and ci = ε
d for i =

1, · · · , k − 1. In addition, let j = (j1, · · · , jd) be an index
function. Also, define xji as the x ∈ Ii such that βi(x)−aici

=
ji
2 . Finally, xj̃ =

∑
xj̃i , where j̃ = (j̃i, · · · , j̃d).

Note that by construction, ∃j ∈ Nd such that ||x−xj || ≤ ε
d

for i ∈ {1, · · · , k − 1} , and ||x− xj || ≤ εe−(λ(vi)+α+δ)n

d for
i ∈ {k, · · · , d}. Finally, denote C = {x1, · · · , xJ} the set of
all possible xj foredefined.

From the definition of limit superior, ∀δ > 0,
∃N ∈ N such that ∀n ≥ N we have that∣∣supm≥n

{
1
m log

(∣∣A(m)vi
∣∣)}− λ(vi)

∣∣ ≤ δ. Then, we get
1
n log

(∣∣A(n)vi
∣∣) − λ(vi) ≤ supm≥n

{
1
m log

(∣∣A(m)vi
∣∣)} −

λ(vi) ≤ δ. Finally, it implies that
∣∣A(n)vi

∣∣ ≤ e(λ(vi)+δ)n, for
all n ≥ N .

Therefore, for m ≥ n ≥ N , and for δ ∈ (0, λ(vk−1)−α),
it follows that:

∣∣∣A(n)x−A(n)xj

∣∣∣ =

∣∣∣∣∣
d∑
i=1

A(n)γi,jvi

∣∣∣∣∣
≤

d∑
i=k

e(λ(vi)+δ)n
εe−(λ(vi)+α+δ)m

d
+

k−1∑
i=1

ε

d
e−(α)n = εe−αn

for some j, where γi,j is the orthogonal projection of x−xj
over vi.

Now, note that the collection G of functions gj(n) =
A(n)xj satisfy the property that

∣∣A(n)x− gj(n)
∣∣ < εe−αn

for n ∈ {N + 1, · · · ,m}. Consider a family F(N) of func-
tions fk : {0, · · · , N} → Rd, such that

∣∣∣∣A(t)x− fk(t)
∣∣∣∣ <

εe−αt, for t ∈ {0, · · · , N}. Notice that, there always exist
such a finite family for a finite N . Construct the functions
x̂p(t) = gi(t) for t ∈ {0, · · · , N} and x̂p(t) = fk(t) for
t ∈ {N + 1, · · · ,m}, for every pair (i, k) possible. Define
an index function p : N2 → N, that maps (i, k) 7→ p.
Hence, the set of functions X̂ = {x̂p} constructed before is
a (m, ε, α,K)-approximating set. It follows trivially that its
cardinality is the product of the cardinality of F(N) and the
cardinality of G. For simplicity we will denote F = F(N).

lim
m→∞

1

m
log sest(m, ε, α,K)

≤ lim
m→∞

1

m
log

(
#F

d∏
i=k

(
|Ii|de(λi+α+δ)m

ε

) k−1∏
i=1

|Ii|d
ε

)

≤ lim
m→∞

1

m
log

(
#F

d∏
i=k

(|Ii|)
(
d

ε

)d)
+

d∑
i=k

(λi + α+ δ)

=
d∑
i=k

(λi + α+ δ)

For every fixed δ, F(N) is kept fixed, therefore the first
term in the last inequality goes to 0. Also, from the fact that
δ > 0 can be chosen arbitrarily close to 0, it follows that
hest(α) ≤

∑d
i=1 max {0, λi + α}

Therefore, we obtain a formula hest(α) =∑d
i=1 max {0, λi + α} for the estimation entropy. It

should be remarked that this expression is closely related
to Pesin’s formula, since they are essentially the same
when α = 0. However, the conditions under which Pesin’s
formula holds are very different then those required here
[7]. Also, there is no direct use of measure theoretical
concepts in the present derivation.

IV. SUFFICIENT CONDITIONS FOR REGULARITY

In this section we advocate in favor of regular systems,
providing several classes of systems that are inherently reg-
ular. We start claiming that continuous-time regular systems
give rise to discrete-time regular systems under sampling,
then present the case of systems with periodic switching.
Next, we present the very interesting case o simultaneously
triangularizable systems, and give sufficient conditions on
the average activation time for each one of the modes.
We conclude with a class of systems that preserve a given
probability measure such as Markov Jump Linear Systems
(MJLS).

A. Sampled Regular Systems

Consider the continuous-time linear system described by
equation

ẋ(t) = A(t)x(t). (5)

One can define regularity for system (5) as in the discrete
case, using the following definition of Lyapunov exponents
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λ(v) = lim supt→∞
1
t log ||ΦA(t, 0)v||, where ΦA(t, 0) is

the fundamental solution of system (5). Then system (5) is
regular if limt→∞

1
t log |det(ΦA(t, 0))| =

∑d
i=1 λi.

The following proposition shows that the discrete-time
system that originates from sampling a regular continuous-
time system is regular.

Proposition 4.1: Given a continuous-time LTV system as
in equation (5). Define xn = x(Tpn) and An = Φ(nTp, (n−
1)Tp) for n ∈ N, where Φ(t, 0) is the fundamental matrix of
(5), and Tp is the sampling time. Then, sequence (An)n∈N
is regular.

One more consideration must be made regarding tem-
peredness. We define temperedness for continuous-time sys-
tems in an analogous way as for discrete-time systems
as limt→∞

1
t log ||A(t)|| = 0. From this definition, it is

immediate that a sampled linear tempered system is also
tempered.

B. Periodic case

In this subsection we will deal with continuous-time
systems and obtain the result for discrete-time systems as
a consequence by using the previous result on sampled
systems. Given a LTV system ẋ = A(t)x, such that A(t) =
A(t + T ) for some T > 0 and for all t ∈ R, one can
write the fundamental matrix of it as [2] Φ(t, 0) = R(t)etF ,
where, R(t) is a periodic matrix with period T , and eTF

is the monodromy matrix. In this case the real part of
the eigenvalues of F are the Lyapunov exponents of the
system, also known as Floquet exponents. Now, noticing
that Φ(0, 0) = Id one gets that R(T ) = Id. Therefore
Φ(kT, 0) = ekTF .

One can now take any, possibly complex valued, eigenvec-
tor vi associated with the i-th eigenvalue λ̃i, with real part
λi, of F and get λ(vi) = lim sup 1

k log (||Φ(kT, 0)vi||) = λi,
which shows that the real part of the eigenvalues of F are
the Lyapunov exponents.

From the fact that R(t) is periodic, one concludes that
Φ(t, 0) is bounded, which implies that it is a tempered
system. Moreover, from Proposition IV-A we conclude that
any sampling of the fundamental matrix, even if the sampled
system is not periodic itself, renders the sampled system reg-
ular. The discrete-time case is a subcase of the continuous-
time one.

C. Upper triangularizable matrices

The case of simultaneously triangularizable matrices
(An)n∈N has been studied in [14], where upper and lower
bounds for the topological entropy were given. We show
here that, for a finite set of modes, under the hypothesis
of regularity the bounds given in [14] are not tight in
general. Moreover, we present a closed form expression for
the estimation entropy of these systems. In what follows, we
consider that the sequence of matrices is already in triangular
form, since a linear change of coordinates does not affect the
result.

Theorem 4.1: Consider a sequence of triangular matrices
(An)n∈N, such that An = Bj , for some Bj ∈ B, j =

1, · · · ,m, where B = {B1, · · · , Bm} ⊂ Gl(R, d) is a set
of upper triangular matrices of cardinality m. Also cosider
τi(n) =

∑n
j=0 IAj=Bi be the activation time. Then, a

sufficient condition for regularity is that the average acti-
vation time τi(n)

n of each mode i converges to some value
limn→∞

τi(n)
n = ρi.

In that case, the estimation entropy is given by

hest(α) =
d∑
i=1

max

0,
m∑
j=1

ρj log (Bj)ii + α

 (6)

It is important to remark that if Bj is the exponential of
an upper triangular matrix Cj , then log (Bj)ii = (Cj). It
follows that by using the fact that the sum of the maximum
is less than or equal to the maximum of the sums and
taking α = 0, we recover on the left hand side the lower
bound for the topological entropy of linear switched systems
max

{
0,
∑m
j=1 ρj (Tr(Cj))

}
presented in theorem 4 of [14].

Therefore, under the mild assumption of regularity, we
improve the result previously reported in the literature.

D. Oseledets theorem
One may ask how common of a property regularity is. In

this section we show that regularity is a generic property. The
sense in which regularity is general is a measure theoretic
one to be made precise later. Before discussing this result
we need some definitions.

Definition 4.1 (Linear Cocycle [12]): Let (M,B, µ) be a
probability space, f : M → M be a measure-preserving
map. Let A : M → Gl(R, d). The linear cocycle defined by
A over f is the transformation F : M × Rd → M × Rd
with F (x, v) = (f(x), A(x)v). It follows that Fn(x, v) =
(fn(x), A(x)v) for every n ≥ 1. Moreover, if f is invertible,
then so is F , with inverse F−1(x, v) = (f−1(x), A−1(x)).

To clarify the discussion it is useful to bear in mind
the two following examples. In what follows, let Y =
{B1, · · · , Bm} be the ordered set of modes, let Y = 2Y

be a σ-algebra. Further, let f : M → M be the shift
map, i.e., (αk)k∈N 7→ (αk+1)k∈N and consider A : M →
Gl(R, d), with (αk)k∈N 7→ α0. Finally, let F : M × Rd →
M × Rd be the linear cocycle defined by A over f . Note
that Fn((αk)k∈N, v) = ((αk+n)k∈N, αn−1 · · ·α0v). We will
define M , B and µ in the examples.

Example 3 (Bernoulli Shifts [12]): For this example, let
M = Y N and B be the product σ-algebra. Next, we need to
introduce a measure on M . To do that, we put a probability
measure p : Y → [0, 1] on Y and consider the product mea-
sure defined by µ({(αk)k∈N : αi ∈ Ei, · · · , αj ∈ Ej}) =
p(Ei) · · · p(Ej) for every i ≤ j and any sets Ei, · · · , Ej ⊂
Y . Note that µ is invariant under the shift map. Note that
this is the probability measure induced by a sequence of i.i.d.
trials of a Bernoulli process.

Example 4 (Markov Shifts [13]): Let P = (pi,j) ∈
M(m,R) be the transition matrix of an irreducible and
aperiodic discrete-time discrete-state Markov chain, that rep-
resents the switching of the modes Bi ∈ Y . Assume that
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p(Bi), for Bi ∈ Y is the unique stationary measure of this
chain. Also, let M ⊂ Y N be the set with all the sequences
of matrices that are valid with respect to the Markov chain.

Now, we need to introduce a measure
on M . Consider the measure defined as
µ({(αk)k∈N : αi ∈ Ei, · · · , αj ∈ Ej}) =
pπ(αj−1),π(αj) · · · pπ(αi),π(αi+1)p(αi), for every i ≤ j
and any Y-measurable sets Ei ⊂ Y , where π : Y → #Y
returns the index of the corresponding mode3. Note that µ is
invariant under the shift map. Also, since P is irreducible,
f is ergodic, see for instance theorem 1.13 from [13].

Consider a discrete-time linear switched system with
distinct modes Bi ∈ B, i ∈ {1, · · · ,m}. Then, the
switching function σ : N → 1, · · · ,m gives rise to a
bijective correspondence between σ(N) ⊂ {1, · · · ,m}N and
(An)n∈N ⊂ BN through the equality An = Bσ(n). We call
σ(N) a switching and we denote by Σ ⊂ {1, · · · ,m}N the
set of valid switches, e.g. for the Markov example Σ ={

(xn)n∈N ∈ {1, · · · ,m}N : pπ(xj+1),π(xj) > 0, ∀j ∈ N
}

,
where xk is the index of the active mode at time k.Also,
because of the bijection, we say that the measure µ in M
is a measure in Σ.

Now, we can present the Oseledets’ theorem.
Theorem 4.2 (Oseledets [12], [5]): Let (M,B, µ) be a

probability space, f : M → M be an invertible measure-
preserving map. Let A : M → Gl(R, d) be such that
log+ ||A|| ∈ L1(µ) and log+ ||(A)−1|| ∈ L1(µ). Also
consider the linear cocycle defined by A over f .

Then, for µ-almost every x ∈ M , there is k = k(x),
numbers λk(x) > · · · > λ1(x) and a filtration {0} = E1

x (
· · · ( Ekx = Rd such that, ∀i = 1, · · · , k:
• k(f(x)) = k(x) and λi(f(x)) = λi(x) and
A(x)(Eix) = Eif(x);

• limn→∞
1
n log ||A(n)(x)v|| = λi(x), for all v ∈ Ei+1

x \
Eix, with E1

x = {0},
if f is ergodic, the multiplicities of the Lyapunov exponents
k(x) is constant and, consequentely, the dimension of the
subspaces Eix, also λi(x) = λi is constant a.e.. We denote by
C the measurable set with µ(C) = 1 on which this theorem
is true and call it the set of regular realizations.

Oseledets’ theorem ensures that for any shift invariant
measure µ we have a full measure set Cµ in Σ, such that
all its switches are regular. So the set of all regular switches
contains the union ∪µCµ such that µ is shift invariant. In
this sense, the set of all regular switchings is generic.

One important case is the aforementioned periodic
switching case. Using Oseledets’ theorem, we can red-
erive the result from Subsection IV-B by taking µ =
1
T

∑T−1
i=0 δfi((An)n∈N), where δx is the so-called Dirac mea-

sure at x [13]. It is clear that µ is shift invariant and
ergodic. Moreover, the log+(||A||±) ∈ L1(µ) condition is
satisfied if the sequence (An)n∈N is bounded, so it trivially
holds. Therefore, every periodic switching is regular. Another
important case is that of Markov Jump Linear Systems,

3The index of an element of Bi ∈ Y is i.

which are modeled, in our framework, as in Example 4.
Therefore, ergodic MJLS have realizations that are, with
probability one, regular.

V. CONCLUSION AND FUTURE WORKS

In this paper we presented a closed expression for the
estimation entropy for a class of linear switched systems,
expanding and improving results already reported in the
literature. We showed that the class of tempered regular
systems contains several examples of practical interest such
as periodic switched systems, simultaneuously triangulariz-
able systems, and randomly switched systems, in particular
Markov Jump Linear Systems.

As future works we propose to present a quantization
method that achieves the estimation entropy for the class
of tempered systems regardless of the fact that the system
is regular or not. Also, it remains an open question if there
is a general closed expression for irregular systems, future
works should address that problem. The authors also belive
that the study of almost periodic nonlinear oscillators can
be better understood though linearization over the periodic
trajectory and using the framework of linear time varying
systems presented here. Finally, the study of control of linear
switched systems with minimum average data-rate has yet to
be properly considered.

REFERENCES

[1] L. Arnold, Random Dynamical Systems, Springer Berlin Heidelberg,
1998

[2] R.W. Brockett, Finite Dimensional Linear Systems, Society for Indus-
trial and Applied Mathematics, (SIAM), Classics in Applied Mathe-
matics, 2015

[3] D. Liberzon, Switching in Systems and Control, Birkhäuser Boston,
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[7] R. Mañé, A proof of Pesin’s formula, Cambridge University Press
(CUP), Ergodic Theory and Dynamical Systems, vol. 1, pp 95-102,
1981.

[8] A.S. Matveev and A.V. Savkin, Estimation and Control over Commu-
nication Networks, Birkhauser, 2007.

[9] G.N. Nair and R.J. Evans and I.M.Y. Mareels and W. Moran, Topolog-
ical Feedback Entropy and Nonlinear Stabilization, IEEE Transactions
on Automatic Control, vol. 49, n 9, pp 1585-1597, 2004.

[10] G.S. Vicinansa and D. Liberzon, Estimation Entropy for Regular
Linear Switched Systems, University of Illinois at Urbana-
Champaign, 2019, Technical Report [online], Available at:
http://liberzon.csl.illinois.edu/publications.html.

[11] H. Sibai and S. Mitra, Optimal Data Rate for State Estimation
of Switched Nonlinear Systems, ACM Press , Proceedings of the
20th International Conference on Hybrid Systems: Computation and
Control, pp 71-80, 2017.

[12] M. Viana, Lectures on Lyapunov Exponents, Cambridge University
Press, Cambridge Studies in Advanced Mathematics, 2014.

[13] P. Walters, An Introduction to Ergodic Theory, Springer New York,
2000.

[14] G. Yang and A. J. Schmidt and D. Liberzon, On Topological Entropy
of Switched Linear Systems with Diagonal, Triangular, and General
Matrices, IEEE, IEEE Conference on Decision and Control (CDC),
2018

5759


