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Abstract 

A probabilistic spectrum Gaussian noise (PSGN) model is proposed to predict the nonlinear noise for random bandwidth traffic 

in long-haul elastic optical networks. The model reduces the noise estimate 9.1% on average compared to the standard Gaussian 

noise model applied to the maximum bandwidth.

1 Introduction 

Elastic optical networks (EONs) have been proposed as an 

efficient solution to accommodate traffic demands for future 

communication needs [1]. Signals transmitted in long-haul 

fiber-optic networks suffer from interference and noise that 

impair the quality of transmission. Estimating these physical 

layer impairments (PLIs) is important in network planning of 

EONs and for allocating network resources. The Gaussian 

noise (GN) model was recently proposed to produce an 

accurate PLI estimate. The GN model is state dependent 

(taking the network state into account), instead of the often-

employed worst-case PLI estimate provided by the 

transmission reach model. In this paper, we propose an 

alternative PLI model based on the GN model to account for 

randomly time-varying bandwidth traffic.  

 

The GN model estimates the self-interference caused by the 

channel of interest and the cross-channel interference caused 

by signals transmitted on other channels on the same fiber link 

[2-5]. However, the GN model assumes that demands have a 

fixed bandwidth; when the given demands have time-varying 

bandwidth (random bandwidth), the GN model is not 

applicable. In state-of-the art techniques, time-varying 

demands are configured according to the maximum bandwidth 

envisioned, referred to as standard provisioning. For standard 

provisioning, noise is calculated based on the GN model using 

the largest foreseen bandwidth, which we refer to as the 

maximum bandwidth GN model. Unlike the TR model, this 

model is still network state dependent, but lacks awareness of 

the stochastic bandwidth. Standard provisioning using the 

maximum bandwidth GN PLI estimate leads to resource over-

provisioning since the actual demands are time-varying with a 

predictable probability distribution. Our algorithm, named the 

probabilistic spectrum GN (PSGN) model, provides an 

accurate nonlinear noise estimate so that the quality of 

transmission can be guaranteed in the network planning 

process. 

 

Researchers have recently proposed a statistical network 

assignment process (SNAP) algorithm based on Monte Carlo 

simulations to estimate the PLIs of random bandwidth 

demands [6,7]. Random data-rate demands are used in 

simulations to obtain expected network states and then 

calculate the average noise by utilizing the GN model over 

many trials. However, the SNAP algorithm is time consuming 

and computationally intense. For network planning with strict 

time constraints or with complicated resource allocation 

schemes, the SNAP algorithm is not able to provide the desired 

results. 

 

The proposed PSGN model can be used to compute the 

expected noise as well as its variance, which can be used to 

generate a conservative estimate of the PLIs. It also  provides 

simple closed-form expressions of the expected value and 

variance of the self-channel interference (SCI) and the 

expected value of cross-channel interference (XCI) when the 

probability density function (PDF) of the bandwidth of traffic 

demands is given and the spectrum assignment consists of 

defining a center frequency for each signal. The PSGN can be 

applied to any resource allocation schemes and requires hardly 

any computational resources. We show that the PSGN results 

in a 9.1% lower estimate of the nonlinear interference than the 

maximum bandwidth GN with an outage probability of less 

than 1.4%. 

2. Traffic Model with Random Bandwidth 

Demands 

For each demand 𝑞 sharing the same link with the channel of 

interest, the bandwidth probability density function (PDF) and 

cumulative density function (CDF) corresponding to demand 

𝑞 are assumed given and denoted as 𝑓𝛥
(𝑞)

(𝛿),  and 𝑃𝛥
(𝑞)

(𝛿), 
respectively, where 𝛥 is the random variable describing the 

bandwidth of demand 𝑞  with realization 𝛿 ∈ [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥] . 

The probability that a frequency 𝑓 is occupied by demand 𝑞 is 

denoted as 𝑆(𝑞)(𝑓). Let 𝐼(𝑞)(𝑓) ∈ {0,1 } indicate the presence 

of traffic demand 𝑞  at frequency  𝑓; then 𝑃𝑟[𝐼(𝑞)(𝑓) = 1] =

𝑆(𝑞)(𝑓). The frequency occupancy probability for a random 

bandwidth demand is related to its CDF and the spectrum 

assignment scheme for each realization. Assuming that each 

realization 𝛿 for demand 𝑞 is centered at frequency 𝑓𝑞,  

𝑆(𝑞)(𝑓) = 1 − 𝑃𝛥
(𝑞)

(2|𝑓 − 𝑓𝑞|).    (1) 
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Fig. 1 Occupancy probability of (a) uniformly distributed and 

(b) normal distributed traffic bandwidth  

 
We consider two representative traffic models as examples: 

uniform and truncated normal distributed random bandwidth 

traffic. A uniform distribution is often used when one does not 

have information about the traffic other than the minimum and 

maximum bandwidth. For bandwidth uniformly distributed 

over [60, 140] GHz and centered at 𝑓𝑞 = 200 GHz,  

𝑆(𝑞)(𝑓)  calculated using (1) is shown in Fig. 1 (a). When the 

traffic bandwidth is known to have a given mean and variance, 

it is often better to model the bandwidth as having a truncated 

normal distribution. For our results, we truncate the lower end 

of the distribution at three sigma or 30 GHz, whichever is 

larger. 𝑆(𝑞)(𝑓)  for normal distributed traffic with the same 

mean and variance as the aforementioned uniform distribution 

is shown in Fig. 1 (b). 

 

 
 

 

 

 

 

3. Probabilistic Spectrum Gaussian Noise Model 

The PSGN calculates the expected value of the noise 

experienced by a random-bandwidth signal of interest caused 

by itself and other signals on the same link that also have a 

random bandwidth, given the traffic model. In this section, we 

derive the analytical expressions for the expected noise. 

 

By using the GN model approximation in [3, eq. (16)], the PLI 

power spectral density (PSD) 𝐺𝑁  per span per polarization 

becomes 

𝐺𝑁 = 𝐺𝐴𝑆𝐸 + 𝐺𝑁𝐿𝐼 , (2) 

𝐺𝑁𝐿𝐼 = 𝐺𝑆𝐶𝐼  + ∑ 𝐺𝑋𝐶𝐼,𝑞

𝑞

,   (3) 

where, 𝐺𝐴𝑆𝐸 , 𝐺𝑁𝐿𝐼 and 𝐺𝑆𝐶𝐼 represent the PSD of the amplified 

spontaneous emission (ASE), nonlinear interference (NLI) and 

self-channel interference (SCI), respectively, and 𝐺𝑋𝐶𝐼,𝑞 

represents the PSD of the cross channel interference (XCI) 

contributed by channel 𝑞. For a signal of interest centered at 

frequency 0,   

𝐺𝑆𝐶𝐼 = 𝜇𝐺3 ln(𝜌𝛥2),    (4) 

𝐺𝑋𝐶𝐼,𝑞 = 𝜇𝐺𝐺𝑞
2 ln (

𝑓𝑞 + 𝛥𝑞/2

𝑓𝑞 − 𝛥𝑞/2
).   (5) 

𝜌 =
𝜋2|𝛽2|

𝛼
, 𝜇 =

3𝛾2

2𝜋𝛼|𝛽2|
, 𝛼  is the fiber loss parameter, 𝛾 

represents the fiber nonlinearity parameter, and 𝛽2 represents 

the group velocity dispersion parameter. 𝛥 and 𝐺 represent the  

bandwidth and signal power spectral density for the channel of 

interest, the random variable 𝛥𝑞represents the bandwidth of 

channel q, and 𝐺𝑞  is the PSD of channel q. We assume that 

𝐺 = 𝐺𝑞 [4]. The ASE noise only depends on the transmission 

length, and thus we focus on estimating the nonlinear 

interference (SCI and XCI) for random bandwidth demands.  
 

The SCI for the channel of interest depends primarily on its 

own bandwidth. The expected SCI noise becomes  

𝐸[𝐺𝑆𝐶𝐼] = 𝜇𝐺3 𝐸[ln(𝜌𝛥2 )]    (6) 

= 𝜇𝐺3 ∫ ln(𝜌𝛿2) 𝑓𝛥
(𝑞)

(𝛿) 𝑑𝛿,
∞

−∞

   (7) 

and its variance can be given as 

𝑉𝑎𝑟[𝐺𝑆𝐶𝐼] = 𝜇2𝐺6 ∫ ln2(𝜌𝛿2)𝑓𝛥
(𝑞)

(𝛿) 𝑑𝛿
∞

−∞

− 𝐸2[𝐺𝑆𝐶𝐼] .  (8) 

These integrals can be solved exactly for a uniformly 

distributed bandwidth demand, but in general must be 

computed numerically. 

 

The XCI for the channel of interest depends on the center 

frequency difference between itself and the interfering channel, 

and its bandwidth, which in this paper is a random variable 

with a given distribution. Using (5), we can write the XCI 

assuming 𝛥𝑞  is a random bandwidth with realization 𝛿 ∈
[𝛿𝑚𝑖𝑛 , 𝛿𝑚𝑎𝑥]. Without violating the assumptions given in [3, 

eq. (16)], the XCI contributed by demand q with bandwidth 𝛥𝑞  

equals the sum over frequency differentials 𝑑𝑓 where ∑𝑑𝑓 =
𝛥𝑞:  

𝐸[𝐺𝑋𝐶𝐼,𝑞] = 𝜇𝐺3 𝐸 [ ∑ ln (
𝑓𝑞 + 𝑖𝑑𝑓 + 𝑑𝑓/2

𝑓𝑞 + 𝑖𝑑𝑓 − 𝑑𝑓/2
)

𝛥𝑞/2𝑑𝑓

𝑖=−𝛥𝑞/2𝑑𝑓

].    (9) 

Using the indicator function 𝐼(𝑞)(𝑓), we write the expected 

noise due to signal q as 

𝐸[𝐺𝑋𝐶𝐼,𝑞] 

= 𝜇𝐺3 𝐸 [ ∑ 𝐼(𝑞)(𝑓𝑞 + 𝑖𝑑𝑓)  ln

∞

𝑖=−∞

(
𝑓𝑞 + 𝑖𝑑𝑓 + 𝑑𝑓/2

𝑓𝑞 + 𝑖𝑑𝑓 − 𝑑𝑓/2
)] 

   =  𝜇𝐺3 ∑ 𝑆(𝑞)(𝑓𝑞 + 𝑖𝑑𝑓) ln (
𝑓𝑞 + 𝑖𝑑𝑓 + 𝑑𝑓/2

𝑓𝑞 + 𝑖𝑑𝑓 − 𝑑𝑓/2
) ,

∞

𝑖=−∞

  (10) 

because 𝐼(𝑞)(𝑓𝑞 + 𝑖𝑑𝑓) is the only random quantity in (10). 

We can thus conclude that the expected XCI can be written as 

a Riemann sum of the product of each noise component’s 

strength times its presence probability over the entire spectrum.   

When 𝑑𝑓 → 0, the discrete sum becomes an integral. Using 

the fact that when 𝑑𝑥 → 0 ,   ln
𝑥+𝑑𝑥/2

𝑥−𝑑𝑥/2
=

1

𝑥
𝑑𝑥 , (10) can be 

further simplified as 

𝐸[𝐺𝑋𝐶𝐼,𝑞] = 𝜇𝐺3 ∫
1

𝑓
 𝑆(𝑞)(𝑓)  𝑑𝑓.

∞

−∞

(11) 

According to the nature of the nonlinearity, the SCI noise is 

stronger than the XCI noise. Furthermore, since the XCI is 

typically made up of many channels, its variance is expected 

to be low compared to that of the SCI (usually more than 10 

times lower), as we have empirically observed through 

simulation. We hence assume the variance of the XCI noise 

can be neglected.   

 

The PSGN model uses the variance and expected value of SCI 

noise and the expected value of the XCI noise to provide a 

conservative estimate of the NLI noise. The PSGN PSD can 

be written as 
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Fig. 2 PSGN estimated SCI of (a) uniformly distributed and (b) 

normal distributed random bandwidth demand. 

 

Fig. 3 Outage probability for uniformly distributed bandwidth 

demands with various [𝛿𝑚𝑖𝑛 , 𝛿𝑚𝑎𝑥 ]. It shows the probability 

that the NLI from the Monte Carlo simulation exceeds the NLI 

estimated by the PSGN for r  = 2. 

 

Fig. 4 Percent of NLI over-estimated by the maximum 

bandwidth  GN compared to the PSGN (r  = 2) for uniformly 

distributed bandwidth.  

  𝐺𝑃𝑆𝐺𝑁 = 𝐸[𝐺𝑆𝐶𝐼] + 𝑟√ 𝑉𝑎𝑟[𝐺𝑆𝐶𝐼] + ∑ 𝐸[𝐺𝑋𝐶𝐼,𝑞],
𝑞

  (12) 

where r is a variable defining how conservative the estimate 

is. When r = 0, the PSGN estimates the expected value of the 

nonlinear interference.  

 

4 Numerical Results and Validation  

In this section, we show numerical results for the two traffic 

models considered in this work, the uniform and (truncated) 

normal bandwidth models. We then validate the proposed 

PSGN model using Monte Carlo simulations.  

 

 

 

 

 

 

 

In Fig. 2 (a) we show the SCI noise for a uniformly distributed 

random bandwidth demand for typical values of the minimum 

and maximum bandwidth. The PSGN estimated SCI is from 

0.7 to 4.3 times 𝜇𝐺3 . In Fig. 2 (b), we show the SCI for a 

normally distributed bandwidth demand as a function of the 

mean and variance of the bandwidth. The PSGN estimated SCI 

is from 1.3 to 3.8 times 𝜇𝐺3.  

We then validate the proposed PSGN model by using Monte 

Carlo simulations. Demands are randomly generated 

according to their distributions for 1,000,000 Monte Carlo 

trials. The normalized error of the PSGN with 𝑟 = 0 is found 

to be in the order of 10−3 compared to the mean value NLI of 

the randomly simulated demands. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 shows through simulation that the PSGN model 

provides a conservative estimate of the PLIs using the traffic 

models described in Section 2. The channel of interest is 

centered at 0 GHz. Ten demands share the link with the 

channel of interest, with 10 GHz guard-bands between them. 

1,000,000 Monte Carlo trials are conducted to test the outage 

probability of the PSGN, i.e., the probability that the simulated 

NLI exceeds the PSGN model. The results show that for the 

PSGN with r = 2, the average outage probability is 1.4% for 

the cases tested.  

 

 

 

 

 

 

 

 

 

Fig. 4 shows the ability of the PSGN to lower the expected NLI 

compared with the maximum bandwidth GN for the same 

distributions as in Fig. 3. The amount that the maximum 

bandwidth GN over-estimates the NLI compared with the 

PSGN is measured by 
max(𝐺𝑁𝐿𝐼)−𝐺𝑃𝑆𝐺𝑁

𝐺𝑃𝑆𝐺𝑁
,  where max(𝐺𝑁𝐿𝐼) 

represents the NLI estimated by the maximum bandwidth GN. 

The maximum bandwidth estimates the worst case NLI noise 

and has zero outage probability. However, it results in an 

average of 9.1% and as high as 14% over-estimated NLI 

compared to the PSGN, depending on the distribution's 

parameters, wasting network resources most of the time.  

5 Conclusion and Acknowledgements 

The proposed PSGN model calculates the expected nonlinear 

noise for random bandwidth traffic based on the GN model 

given the probability distribution of the bandwidth. We derive 

closed-form expressions for the noise mean and variance.  It 

provides a more accurate performance estimate than using the 

maximum bandwidth GN model typically used in standard 

provisioning. Most importantly, the proposed PSGN algorithm 

yields a simple mathematic expression that is time-efficient to 

compute. The PSGN algorithm can accommodate both offline 

and online resource allocation algorithms.  

On average, the PSGN model experiences a 1.4% noise outage 

while gaining 9.1% in lower NLI estimates compared to the 

maximum bandwidth GN model. 

This work was supported in part by NSF grant CNS-1718130. 
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