Downloaded 06/30/20 to 73.189.243.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Zeros of ferromagnetic 2-spin systems

Heng Guo*

Abstract

We study zeros of the partition functions of ferromagnetic 2-
state spin systems in terms of the external field, and obtain
new zero-free regions of these systems via a refinement of
Asano’s and Ruelle’s contraction method. The strength of
our results is that they do not depend on the maximum
degree of the underlying graph. Via Barvinok’s method,
we also obtain new efficient and deterministic approximate
counting algorithms. When the edge interaction is attractive
for both spins, our algorithm outperforms all other methods
such as Markov chain Monte Carlo and correlation decay.

1 Introduction

Spin systems are widely studied in statistical physics,
probability theory, machine learning, and theoretical
computer science, sometimes under a different name
such as Markov random field. An important special
case is when there are only 2 spins, and a systematic
study of their computational complexity was initiated
by Goldberg et al. [GJP03]. In addition to their
intrinsic importance, these systems are also great test
beds for algorithmic ideas. Many interesting tools
and techniques are developed through studying them.
By now, we have almost completely settled the anti-
ferromagnetic case, whereas a definitive answer to the
ferromagnetic case still remains elusive.

Before reviewing the state-of-the-art, we define the
2-state spin system first. In a graph G = (V, E), a
configuration o : V. — {0,1} assigns one of the two
spins “0” and “1” to each vertex. The 2-spin system
is specified by the edge interaction matrix, which we

normalise to [f }/}, and the external field A for vertices

that are assigned 1. All parameters here are non-
negative. For a particular configuration o, its weight
w(o) is a product over all edge interactions and vertex
weights, that is

(11) u)(o') = ﬁmo(a),—yml((’))\nl(a)’
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where mg(o) is the number of (0,0) edges given by the
configuration o, mq (o) is the number of (1, 1) edges, and
n1(o) is the number of vertices assigned 1. The Gibbs
measure (or Gibbs distribution) of the system is one
where the probability of a configuration is proportional
to its weight. The partition function Zg, is the
normalising factor of the Gibbs distribution:

Zspin(G;ﬁvry’)‘) = Z U)(O')

o:V—{0,1}

Z /Bmo(a),yml(a))\nl(a)'
o:V—{0,1}

(1.2)

An important special case is the Ising model, where
B = ~. We note that in the statistical physics literature,
parameters are usually chosen to be the logarithms of
our parameters above. Change of variables as such do
not affect the complexity of the same system.

Many macroscopic properties of the system can be
studied through partition functions, which raises the
interest of computing them. Exact computation of Zgpin
is #P-hard for all but trivial cases [Bar82], so the main
focus is on approximating Zgpin.

The system shows drastically different behaviours
depending on whether 8y < 1 or 8y > 1 (the case
where 8y = 1 is degenerate). The antiferromagnetic
case By < 1 is now very well understood by a series of
work [Wei06, LLY13, SST14, SS14, GSV16], where an
exact threshold of computational complexity transition
is identified and the only remaining case is at the critical
point. This threshold corresponds to the uniqueness
threshold of Gibbs measures in infinite regular trees
(also known as the Bethe lattice).

On the other hand, far less is known for the
ferromagnetic case By > 1. Due to symmetry, we
will assume 8 > v throughout this paper as the other
case is similar. This assumption means that the edge
interaction favours the spin “0”. As it turns out, if
the external field also favors “0” (namely A < 1), then
the system can be reduced to the ferromagnetic Ising
model (under a holographic reduction), and efficient
algorithms can be obtained in a number of ways. The
real challenge is how far we can allow A to go beyond 1,
and a critical threshold is conjectured to exist.

Unlike antiferromagnetic systems, the tree unique-
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ness threshold is not the right answer, as the pioneering
algorithm of Jerrum and Sinclair [JS93] is efficient on
both sides of the tree uniqueness threshold for ferromag-
netic Ising models (8 = ). This algorithm is based on
the Markov chain Monte Carlo (MCMC) method. The
MCMC method has been adapted to general ferromag-
netic 2-spin systems in [GJP03], whose bound was later
slightly improved in [LLZ14] to give an efficient approx-
imation algorithm of Zg, if 0 < A < Amemce = g, for
fixed 8 > 7.

The algorithmic success in the anti-ferromagnetic
case is largely thanks to the correlation decay method
introduced by Weitz [Wei06]. It is natural to try this
method on ferromagnetic systems as well. Non-trivial
results have been obtained in [GL18], but these results
still fall short from solving the problem in general.
In [GL18], the first and the third author raised the
following conjecture.

CONJECTURE 1.1. ([GL18]) Let 8,+, A be positive pa-
rameters such that 8 > v and By > 1. If XA < A, where
d
— (B — By
Ae i= (7) and d. := N/DST
time approzimation scheme (FPTAS) exists for Zspiy,.

then a fully polynomial-

Conjecture 1.1 is confirmed in [GL18] for the case of
v < 1. However, it does not generalise to v > 1 because
certain key properties in correlation decay fail. Part
of the difficulty is that if v > 1, the edge interaction
is attractive for both spins (albeit more so for one
than the other). For any fixed external field, there
is a degree threshold beyond which the influence of
boundary conditions never diminishes. On the other
hand, one should not expect to go beyond A, too far.
Indeed, Liu et al. [LLZ14] identified another threshold
beyond which the problem is as hard as approximately
counting independent set in bipartite graphs, which is
a notorious open problem in approximate counting and
is conjectured to have no efficient algorithm [DGGJ04].
The hardness threshold of [LLZ14] is almost equal to A.
except for a small integral gap.

In this paper, we obtain new algorithmic result that
outperforms both the MCMC and the correlation decay
methods in the v > 1 regime.

THEOREM 1.1. Let 8,7, be positive parameters such
a2
that B >~ and By > 1. If X < \* where \* := (ﬁ

¥
and d* = m, then an FPTAS exists for Z sy,

in bounded degree graphs.

Theorem 1.1 is a generalisation of the algorithm for
the ferromagnetic Ising model (8 = ) by Liu, Sin-
clair, and Srivastava [LSS19b]. We note that our bound
on A is uniform and does not depend on the maxi-
mum degree of the underlying graph. The requirement

of bounded degree is only for the efficiency of our al-
gorithm. Without this assumption, our algorithm be-
comes quasi-polynomial time. This is a typical behavior
of deterministic approximate counting algorithms.

To compare \* with A\., we note that as 8y — 1, d*
is asymptotically the square root of d.. An illustration
of comparing A\yvicmc, Aec and A* is given in Figure 1.
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Figure 1: Fix § = 2 and the range of v is (1/2,2]. Left:
comparison of Ayjomc, Ae and A*. Right: comparison
of dyiemc := 1, d. and d* /2. The dashed red line marks
the conjectured threshold for v > 1.

Our algorithm is based on a recent algorithmic tech-
nique developed by Barvinok [Barl6] and extended by
Patel and Regts [PR17]. The idea is to view Zgi, as a
polynomial in A, and turn zero-free regions of this poly-
nomial in the complex plane into efficient approximation
algorithms of the corresponding parameters. The major
challenge of applying this algorithmic framework is to
obtain sharp zero-free regions along the real axis.

There are two main methods in obtaining zero-free
regions. The first one is the recursion method, where
one gradually eliminates vertices from the graph, and
shows that the zeros are always outside of the desired
region. This method has found many successes, see e.g.
some work of Sokal [Sok01, SS05]. More recently, it has
been successfully applied to solve long-standing conjec-
tures [PR19] and open problems [L.SS19a]. However,
there are also strong connections between correlation
decay and the recursion method. In some sense, both
results of [PR19] and [LSS19a] are turning correlation
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decay analysis into zero-freeness bounds using complex
dynamical systems. For ferromagnetic 2-spin systems,
because correlation decay fails if v > 1 [GL18], it would
be surprising to obtain any meaningful result using the
recursion method in this case.

In order to bypass the correlation non-decay barrier,
we employed the other method, namely the contraction
method, pioneered by Asano [Asa70] and Ruelle [Rue71,
Rue99]. In a typical application, one starts with a graph
of isolated components, and then contract vertices or
edges to form the desired graph GG. The zero-free regions
of isolated components are easy to analyse, but the
contractions will spread the zeros across the complex
plane. The main effort is to control this spread. In
all previous applications of this method that we are
aware of, either the unit circle or half planes are used
as the starting point. Our idea is to consider circles
whose center and radius are carefully chosen (depending
on the parameters), and sometimes their complements.
The main technical challenge is a detailed analysis
for contracting an arbitrary number of corresponding
regions, which involves repeated Minkowski product of
circular regions. We do so by solving a highly non-trivial
optimisation problem in complex variables (see (4.9)).
It remains to be explored whether this methodology has
other applications as well.

THEOREM 1.2. Let B, be positive parameters such
that B > ~ and By > 1, and \* defined as in
Theorem 1.1. Then for any graph with minimum degree
at least 2, Zspin, viewed as a polynomial in A, is zero-free
in a constant-sized small neighbourhood of the interval
[0, N] for any N < A*.

The minimum degree requirement in Theorem 1.2 comes
from some technical difficulty with degree 1 vertices.
They do not affect the algorithmic result, Theorem 1.1,
because we can preprocess the graph to remove the
leaves, and then deal with an instance with non-uniform
external fields. In order to do so, we in fact show
a stronger multivariate zero-free theorem, see Theo-
rem 4.1.

The main message of our paper is to show that
the failure of correlation decay is not an essential
barrier for efficient algorithms. However, because of
some inherent difficulties of the contraction method,
as explained in Section 5, our result still falls short
of confirming Conjecture 1.1. By now we have three
different point of views for approximating Zspin, namely
MCMC, correlation decay, and zeros of polynomials.
They are just different aspects of the same object, and
perhaps settling the complexity of ferromagnetic 2-spin
systems requires a more unified view.

Notation. For sets A and B over complex num-

bers, we denote their Minkowski product by A - B :=
{ab:a € A,be B}. When it is clear from the context,
we will write A% := A- A for short. For a complex num-
ber ¢, we will write ¢+ A := {ca : a € A}. In particular,
—A = {—a:a€ A}. Throughout this paper, we use A
for the closure of a set A, and A€ for the complement of
A. To avoid confusion with the index i, we use ¢ 1= v/—1
to denote the imaginary unit.

2 Barvinok’s algorithm
Recall equations (1.1) and (1.2) that

Zopin(Gi By, ) = Y frol@ym@ym@,
0:V—{0,1}

We will fix 8 and ~, and view equation (1.2) as a
polynomial in A. In that case, we write Zspin(G; ) for
short. The main effort of this paper is to show that for
a certain region of A on the complex plane, Zsyin # 0.

Our interest in the zeros of the partition function is
due to the algorithmic approach developed by Barvinok
[Barl6, Section 2|. Let the d-strip of [0,¢] be

{zeC||S9z| <dand —F <Rz <t+6}.

Suppose a polynomial P(z) = > i ¢;z" of degree n is
zero-free in a strip containing [0, ¢]. Barvinok’s method
roughly states that P(¢) can be (1 % ¢)-approximated
using co,...,cp for some k = O(e®/9 . log ), via
truncating the Taylor expansion of the logarithm of the
polynomial. In general, computing these coefficients
naively will take quasipolynomial-time. However, Patel
and Regts [PR17] have provided additional insights on
how to compute these coefficients efficiently for a large
family of graph polynomials in bounded degree graphs.
As explained in [LSS19b], the idea of Patel and Regts
[PR17] can be applied to the partition functions of
spin systems in much more generality, which includes
Zspin(G; A) that we are interested in. Thus, combining
the algorithmic paradigm of Barvinok [Barl6, Section
2] and the idea of Patel and Regts [PR17], we have the
following useful lemma.

LEMMA 2.1. Fizx B, v and an integer A > 2. Let G be
a graph of maximum degree A. If Zspin(G; X) does not
vanish in a 0-strip containing [0, '], then there is an
FPTAS for Zspin(G; A) for all X € [0, X].

In fact, as it has been observed in [PR17], the
algorithm can be extended to a multivariate version of
the partition function easily. Let A € CV be a vector
that specifies an external field for each vertex. The
multivariate partition function is given by

(2.3)

Zapin(G 8,7, A) = Y prel@ym@) TTAPe=1,
o:V—{0,1} veV
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LEMMA 2.2. Fiz 3, v and an integer A > 2. Let
G be a graph of mazimum degree A and n = |V|.
If Zgpin(G;X) does mnot wanish in a 0-polystrip
{ze€C"|Vien]|Sz| <dand —06 < Rz; < N + 6},
then there is an FPTAS for Zsi(G;A) for all
A€o, N]".

Proof. For any X € [0, \']", we consider the univariate
polynomial f(t) = Zgin(G;t - A). On the one hand,
f(1) = Zgpin(G;A) is the quantity what we want
to approximate. On the other hand, the fact that
Zpin(G; ) does not vanish in a J-polystrip containing
the poly-region [0, A']™ implies that there exists a §' >
0 (depending on § and \'), such that f(¢) does not
vanish in a ¢’-strip containing [0,1]. Hence, applying
Lemma 2.1 on f(t) yields our desired FPTAS for
Zspin(G;A)’ i

We note that for any fixed 3, v, A, and A, our FPTAS
runs in time bounded by a polynomial in n = |V| and
1/e. However, as is typical for deterministic counting
algorithms, the exponent can grow with A and other
parameters as they approach the threshold.

3 The contraction method

We use the contraction method to show zero-freeness
for a J-strip containing part of the non-negative real
line. The contraction method is an important technique
of locating the zeros of graph polynomials [Asa70,
Rue71]. Tt was first introduced by Asano [Asa70] as
an alternative way of proving the celebrated Lee-Yang
circle theorem [LY52].

The contraction method has two main ingredients.
Firstly we want to relate zeros of a univariate polyno-
mial with those of its polar form. For a polynomial

P(z) = Z?/:o a;z" of degree d’ < d, its d-th polar form

with variables z = (z1,...,24) is
~ a
P(z):= Z %zl,
IC[d] (\II)

where a; = 0 if i > d’, [d] denotes {1,2,...,d}, and for
an index set I, 27 = [[,c; z:. The polar form ﬁ’(z) is the
unique multi-linear symmetric polynomial of degree at
most d’ such that P(z,z,...,2) = P(z). When d’ < d,
we view P(z) as a degenerate case, and it has zeros at
oo with multiplicity d — d'.

Let C be a region in C. We say a polynomial P(z)
in d > 1 variables is C-stable if P(z) # 0 whenever
21,.-.,2q4 € C. We call C a circular region if it is a disk,
a half plane (a disk whose center is at infinity), or the
complement of a disk in C."

IIncluding complements of disks is slightly more general than

The Grace-Szeg6-Walsh  coincidence theorem
[Gra02, Sze22, Wal22] has the following immediate
consequence.

PROPOSITION 3.1. If C is a circular region and P(z)
is a mon-degenerate univariate polynomial of degree d,
then P(z) is C-stable if and only if its d-th polar form
P(z) is C-stable.

The next ingredient is the Asano contraction
[Asa70, Rue71]. We will use a slightly different version
than the standard one.

LEMMA 3.1. Let K be a subset of the complex plane C
which does not contain 0, and d > 1 be an integer. If
the complex polynomial

P(z):= Z C[H,Zi
|

IC[d] el
can vanish only when z; € K for some i € [d], then
Q(z) == cp + g2

can vanish only when z € Kq := (-1)"K.-K.-.-K (d
times).

Proof. If cg) = 0, since 0 ¢ K, P(0,0,...,0) = cp # 0.
Thus, Q(z) = ¢y # 0 for any z.

Otherwise c[q) # 0. Consider the univariate polyno-
mial ]S(z) = P(z,z,...,2) of degree d and let (3,...,(4
be its roots. Clearly ¢; € K for all i € [d] because of the
assumption. Thus, by Vieta’s formula,

d
II¢= (-1
=1

Cld
It implies that —% e Kqy. a

Some form of Lemma 3.1 was first discovered by
Asano [Asa70] to provide a simple and alternative
proof for the celebrated Lee-Yang circle theorem [LY52],
where one chooses K to be the unit disk or its comple-
ment. The contraction method was further extended by
Ruelle [Rue71] and applied to subgraph counting poly-
nomials [Rue99], where one chooses K to be half planes.
This choice has also found some algorithmic success re-
cently [GLLZ19]. As we will see in the next section, our
choices are much more intricate, including both disks
and their complements, and the center and radius are
carefully calculated so that the result is optimal for the
contraction method.

what is usually stated, but this definition suits our purposes
better and Proposition 3.1 still holds with this definition. See
for example [RS02, Section 3, Theorem 3.41b].
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4 Analyzing the contraction

We begin with an overview of our approach, and outline
the considerations in choosing the set K. The first step
of the contraction method is to consider the partition
function on a single edge, which is just a quadratic
polynomial:

(4.4) Zopin(G5A) = A% +2X + B.

Due to the ferromagnetic assumption Sy > 1, the
equation vx? 4 2z + 3 = 0 has two complex roots:

1+ VT By -1 V=B

45 S N Bt R -
(45) G 5 C2 5

|| = 8. Then, we observe that
5

for any closed circular region K containing ¢; and (o,
the multivariate partition function YA1 A2 + A1 + Ao + 6
can only vanish if either A\; € K or Ay € K.

To see this, we note that the polar form of equa-
tion (4.4) is the same as the multivariate partition func-
tion on a single edge. Thus the observation follows di-
rectly from Proposition 3.1. As it turns out, the only
constraint in choosing K is that it contains ¢; and (s,
and that it is a closed circular region.

Next, we apply Asano contraction in the form of
Lemma 3.1, and keep track of the location of the zeros
as we contract vertices. More specifically, we will
consider a sequence of graphs Gg,G1, -+ , Gy, with Gy
being a disjoint union of singleton edges, and G,, = G
being the graph we are interested in. By applying
Lemma 3.1 repeatedly, we will show that the following
property is maintained throughout the contraction: the
multivariate partition function Zgpin(Gi;A) can only
vanish if for some vertex j, A\; € Iy where d is the degree
of vertex j in the graph ;. Therefore, to translate this
back to the univariate partition function (in which all
the A;’s are equal), one naturally wants to choose K so
as to maximize the region (|J,;Kq)°. As it will become
clear, for the purpose of our application, it suffices to
maximize the minimum of the intercept of K4 on the
positive real line for d > 2.

In the following, we first describe our choice of the
region K, and give a bound on the minimum intercept
of IC4 on the positive real line for all d > 2. Combining
this bound with the contraction method outlined as
above, we will prove the main result of this section in
Theorem 4.1.

We will choose K to be a closed circular region
based on (the sign of) the following quantity:

In particular |(;| =

(4.6) ®:=log \/g — tan*1<\/67 — 1) By — 1.

The main case is when ® < 0, which includes the case
of v > 1. However, when = is sufficiently close to 1/,
® > 0 and we need a different solution.

4.1 & < 0 In this case we choose the circular region
to be the open disk centered at some real ¢ > 0 with
radius r > 0, denoted by D(c,r). Namely, D(c,r) =
{z € C||z—c <r}. Let C(c,r) := ID(c,r) be the
circle centered at ¢ with radius r. The region K in
Proposition 3.1 and Lemma 3.1 will be chosen as the
complement of the disk D(c,r)¢. An illustration of K
and IC; for ¢ = 2,3,4 is given in Figure 2.

ole
00

Ki=K K-K Ky=-K

Figure 2: Our region K = D(c,r)¢, Ko, K3 and K4 in
the case of § =3 and v = %. Here, the intercept of g4

on the positive real line is minimised at d = 3 for all
d>2.

As explained in the beginning of the section, we will
ensure that ¢; lies on the boundary of the disk D(c,r)
we are choosing. Namely, once ¢ is fixed, r = r(c, 3,7)
will be chosen to satisfy the following equation

By—1 1\2
(4.7) 772 ~|—(C—|—;> =72,

Eventually, we will choose ¢ to be

_ B
Blog \/:

—%

We remark that most of the argument in this subsection
does not require ® < 0, but only requires that 0 < c < r

(4.8) ¢t =
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is a positive real number. The condition ® < 0 is only
needed in the end, where we have to choose c.

For some integer d, we want to argue that g where
K = D(c,r)¢ does not contain a neighbourhood of [0, ]
for some A > 0. Consider the following program:

(4.9)

d
min H
i=1
d e
0 d?2 f d is odd;
subject to 29,- = moc am 1 ?S 0
— 7 mod 27 if d is even;
Vi e [d], r; > 0and 0 <6; <2,
Vi € [d], ‘riebei —c| >

The last constraint ensures that z; := r;e%s € D(c,r)°
and the objective is to minimise the smallest positive
real value in 4. An illustration is given in Figure 3.

The usefulness follows from the next lemma. Let
the optimal value of (4.9) be A5. Thus [0, A\}) N/ICqy = 0.
The lemma below follows from the fact that the complex
plane is a normal Hausdorff space and both K4 and [0, A]
are closed sets for any A > 0.

LeEMMA 4.1. For any d > 2 and any A < X}, there is
a 0-strip containing [0, A] that does not intersect Ky for
some small §.

It remains to solve the program (4.9). Suppose
the minimum is achieved by some z = {riebei},-e[d].
First assume that there are at least two z; in the
right half plane, say z; and z3. In other words, 6; €
[0,7/2) U (37/2,2m), for i = 1,2. We replace 61 and 0
by 61 =61 +7 mod 27 and 65 = 05 + 7 mod 27. The
effect of this substitution is

01+ 63 =0, 4065 mod 2w, 0],05¢ [n/2,31/2).

Moreover7 for i € {1,2}, if r;e!¥s € D(c,7)°, then
riei € D(c,r)¢ as well. This is because that the
center of D(c,r) is a positive real number. Therefore,
we may assume that there is at most one z; such that
0; € [0,7/2) U (37/2,27).

Next observe that if we shrink r; until z; is on
the circle C(c, ), then the optimal value only improves.
Thus we may assume that all z; are on the circle C(c, 7).
As a consequence, r; is determined by 6; for all i € [d].
Indeed, by the cosine law and equation (4.7),

2
-1 1

7" + % —2crjcos; =r? = il +lc+—-] ,
V2 gl

which implies that

B+ 2c
'7

2 . _
r; — 2cr;cosf; — =0.

Zi

Ti

L
A\

Parameters: 8 = 3, v = 4/3. In this case
® <0andc>0.
J

Parameters: 8 =4, v = 1/2. In this case
® > 0and c<0.

Figure 3: Illustrations for the programs (4.9) and (4.15).
Feasible regions are colored blue.

Since one of the solutions is negative, solving r; we have
that r; = f(6;), where

B+ 2c

(4.10) f(z):=ccosx + \/62 cos?r +

The next lemma states that we can further assume
that all z; on the left half plane to be the same.

LEMMA42 Let 0 < ¢ < 7.
z,»:melzson C(c,
)

Suppose all i € [k],
r) and 0; € [71'/2 371'/2]. Let
2 =7e? be on C(e,7) such that 6 = k ZZ 1 0. Then,

Hleri 2 ?k

Proof. We just need to show that if = € [n/2,37/2],
then g(x) := log f(z) is a convex function and Jensen’s
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inequality applies, where f(x) is defined in equa-
tion (4.10). This can be verified by a straightforward
calculation that

/(B +2¢c+ c2y)
(B + 2¢ + 2y cos? z)*/?
as x € [r/2,3m/2]. O

g"(x) = —cosw- >0,

We still need to handle the possibility that one of
z;, say z1, is on the right half plane.

LEMMA 4.3. Let 0 < ¢ < r. Letd > 2 be an integer
and k be another integer whose parity is the opposite
from that of d. Let z1 and Z be two complex numbers
on C(c,r). Suppose that z; = rie'®t where 0, €
[0,7/2)U(37/2,27) and Z = 7e'® where g e [7/2,37/2].
If 61 + (d — 1)5 = km is fized, then the minimum of
791 is attained either when 6, = w/2 or 61 = 0.
Proof. As m = —m mod 27, by taking the complex
conjugate if necessary, we may assume that 6; € [0, 7/2].
Then, as 6, increases, 6 decreases. If § € (m,3m/2],
then as 6; increases, both r; and 7 decreases and the
lemma holds. So we only need to handle the case that
0 € [r/2,7].

As 0, + (d — 1)0 = kn, h = kg%fl. Using
equation (4.10), we then can write (d — 1) log7 + log r1
as a function in 6, denoted 7(#;). The minimum of
74=1r; is attained as long as the minimum of 7(6;) is
attained. A straightforward calculation yields

-~

sin(6)
v —
\/2(: + B+ 2y cos?(8)

(4.11) 7(6)) =c

. sin(@l)
V2 + B+ c2ycos(0y) )
Note that

O<xz<l. R

If 1 + 6 > =, then sin(f) < sin(f;) and 7 is a
decreasing function in ¢;. In this case, if we increase 61,
the decrease of 0 is smaller, and thus the assumption
that 6; + 6 > 7 is maintained. We can keep increasing
61 until it hits 7/2.

Otherwise 6, —1—«9\ < m and 7 is increasing. Similar to
the case above, we can keep decreasing 6, until it hits
0. The lemma follows from the two cases above. d

is an increasing function for

x
\/2c+6+02'y(1—x2)

Now we can argue when the minimum of the
program (4.9) is achieved.

LEMMA 4.4. Let 0 < ¢ < r. For any d > 2, the

minimum of the program (4.9) is achieved when all z;’s

are equal and 0; = d%dl - for all i.

Proof. As argued above, we may assume that either all
z;’s are on the left half plane or only z; is on the right
half plane. In the former case, by Lemma 4.2, we may
assume that all z;’s in the left half plane are equal. In
the latter case, by Lemma 4.4, We can assume that
either ; = m/2 or 61 = 0:

e if §; = 7/2, then we invoke Lemma 4.2 again to
reduce to the case where all z;’s are equal;

e if 1 = 0, then by Lemma 4.2, we can assume that
all other z;’s are equal. As 7 = —m mod 27, by
taking the complex conjugate if necessary, we can
also assume that 0, € [r/2, 7] for all ¢ > 2. Then
because of the constraint on E?:Q 0;, there must
exist a positive integer £ whose parity is opposite
to that of d and that 6, = % for all 2 > 2. It
is a simple geometric fact that if 6; € [7/2, 7], r;
decreases as 6; increases as z; lies on C(c,r). On
the other hand, 6; < 7 implies that £ < d. Because
k has the opposite parity against d, to achieve the
minimum in (4.9), k = d — 1 and 0; = 7 for all
1> 2.

As d > 2, consider r179. Since #; = 0 and 0y = 7,
rm=r+cand ro =7 —c, and riry =12 — 2. We
can replace both of them by 2| = 2} = r’e?" where
" =+vr? —c?and § = 7. It is straightforward to
verify that z{ and 2} are on the circle C(c,r), and
rire = rirh. Thus we are reduced to the setting of
Lemma 4.2, and applying it makes all z;’s equal.

To summarize, in all cases, we can assume that all z;’s
are equal.

Similar to the complicated case above, we now
assume that there is an integer k such that 0; = %’T for
all i € [d], k < d, and k has the opposite parity against
d. Once again, the larger k the smaller Hie[d] r;. Thus,
the minimum is achieved when k = d—1 and 6; = % T
for all . The lemma holds. a

By Lemma 4.4 and equation (4.10),

a2 2= (1)’

= (ccos (7‘(’—%) +\/0200s2 (7r— g) + ﬂ—;26>

d
2
- <—ccosz + \/02 cos? g + 5—;0>

Still, as we want to deal with vertices of all degrees,
we need to determine when the expression in equa-
tion (4.12) attains its minimum when d varies. We

d
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will view A} as a function of d with the expression in
equation (4.12), and relax d to be a continuous vari-
able taking values in [2,00). With this in mind, let
h(d) :=log \;. We take derivatives of h(d):

_logAy emy/7sin(m/d) .
d d\/B + 2c+ cZycos?(n/d)’
T e /(B + 2¢ + )

d @3 (B + 2 + c2ycos?(n/d))*?
As d > 2, h(d) > 0 and h(d) is a convex function.
Thus, the minimum of h(d) (and therefore that of A}) is
attained at the solution to h’(d) = 0. Call the solution

d* and let A* := Aj.. To summarize the argument
above, we have the following lemma.

(4.13) K'(d)

(4.14) A"(d) = co

LEMMA 4.5. Let 0 <c<r. Foranyd > 2, \j > \*.

The only remaining task is to find out how large
A* is and this depends on the value of ¢. Recall (3
and ¢y in equation (4.5). Since both {; and (> must
be in K, our idea is to ensure that the minimum is
attained precisely at the first time when (3 and {5 could
reach the positive real line under Minkowski product
of d* times. To do so, we will choose ¢ such that
m — w/d* = arg(;. In other words, we want that

tan(w/d*) = /By — 1. Let d* := T (VEST)’ where
we take the principle branch of tan=!(-) € (=7 /2,7/2).

* d
In this case, \* = |(;|* = (g)

LEMMA 4.6. If ® < 0, then we can choose ¢ = c¢* > 0

*

in equation (4.8) so that \* = (g) , where d* =

s

tan*l(\/ﬁ'yj) :

Proof. Denote the right hand side of equation (4.13) by
p(c,d). Then

p(c,d*) = log \/g - tan_1<\/ﬁ’y - 1) . m

B+c

It is straightforward to verify that p(c*,d*) = 0.

Since h”(d) > 0, h'(d) = 0 has at most one zero in
d for any fixed c. Once we chose ¢ = ¢*, d* is the unique
zero of h'(d). The lemma follows. O

4.2 & > 0 When & > 0, the argument is almost
the same as or even simpler than that in Section 4.1.
The main issue is that following Lemma 4.6 would yield
¢ < 0 and some geometry changes. We consider instead
a disk D(c,r) with ¢ < —8 < 0. Eventually we also
choose ¢ = ¢* according to equation (4.8), although
now ¢* < —f < 0 as ® > 0. The radius r is still

chosen according to equation (4.7) such that (i, (s are
on C(c¢,r). The main change is that now we choose
region K = D(e,r). Namely, K is the closure of D(c, )
instead of its complement. An illustration of K and C;
for ¢ = 2,3,4,5 is given in Figure 4.

K =D(e,r) Ko=-K-K

K3 =K3

K4 =—-K* Ks = K>

Figure 4: Our region K = D(c,r), K2, K3, K4 and K5
in the case of § =4 and v = % Here, the intercept of
K4 on the positive real line is minimised at d = 4 for all
d>2.

Then, the program (4.9) becomes

(4.15)
d
min Hri
i=1
d e g
subject to Zei _ {0 mod 27 %f d ?s odd;
p m mod 27 if d is even;

Vi€ [d], r;, >0and 0 <0, <2,
Vi € [d], ’rieLe" —c/ <

Still denote the optima of (4.15) by A} and it is easy
to verify that Lemma 4.1 holds in this setting. An
illustration can be found in Figure 3.

As ¢ < —f, it is easy to verify that ¢ < —r using
equation (4.7), and 0 € K. So for any z;, we can shrink
it until it hits the right boundary of C(c, r). In this case,
similar to equation (4.10), r; = f(6;), where

B+ 2c¢

(4.16) fz) = ccosz — \/02 cos? x +

The sign changed because now there are two posi-
tive solutions and we should choose the smaller one.
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Moreover, notice that due to the constraints in (4.15),
6; € [7/2,3m/2] and is further constrained into a range

so that f() is real, namely
(4.17) c*ycos® 0; + 8+ 2¢ > 0.

In particular, since #; = w satisfies the constraint of
(4.15), ¢*y + B+ 2c > 0. The analogue of Lemma 4.2
also holds.

LEMMA 4.7. Let ¢ < —r < 0. Suppose all i € [k],
z; = r;e% where r; = f(0;) and equation (4.17) holds.
Let 2 = 7e? be on C(c,r) such that o = %Ele 0;.
Then, [T, ri > 7.

Proof. The proof goes through similar calculations to

that of Lemma 4.2. Let g = log f. Then for x such that
equation (4.17) holds,

. c +2c+¢?
q'(x) = cosz - Vi 7)3/2 >0,
(B4 2¢+ c?ycos? )
as B+ 2c+ c?y > 0. a0

Since in this case all z;’s are on the left half plane,
there is no need to consider z;’s on the right half plane
like Lemma 4.3. We directly go to the analogue of
Lemma 4.4.

LEMMA 4.8. Let ¢ < —r < 0. For any d > 2, the
minimum of the program (4.15) is achieved when all
z;’s are equal and 0; = % - for all i.

Proof. We first invoke Lemma 4.7 to assume that all z;’s
are equal. Therefore there exists k of opposite parity
against d such that 6; = %”. We may assume that
0; € [r/2,x] by taking conjugates if necessary. Then,
r; is a decreasing function in 6;, and the minimum of
[T, r; is achieved when k = d — 1. a

Some calculations need to be changed due to the
sign change in equation (4.16). By Lemma 4.8 and
equation (4.16),

s ecos T~ Jeeos2 Ty B2
(4.18) A} (ccosd \/c cosd+ 5

Let %(d) := log A where A} is given as the expres-

d

sion in equation (4.18). We take derivatives of iNL(d):

_ * i d
(419) W(d) = log A} ey /v sin(m/d) ;
d d\/B + 2c + 2y cos®(w/d)
e /(B +2¢+ cy) -cos &
@3 (B + 2¢ + 2y cos?(m/d))>/*

(4.20) R'(d) = —

Asd > 2 and B+ 2c+c2y > 0, h'(d) > 0 and h(d)
is still a convex function. Thus, the minimum of h(d)

is attained at the solution to #'(d) = 0. With a little
abuse of notation, call the solution d* and let A\* := \}..

LEMMA 4.9. Letc < —r < 0. For any d > 2, \j > \*.

We still need to choose ¢ so that d* = T (VET)

LEMMA 4.10. If ® > 0, then we can choose ¢ = ¢* <
a2
-8 < 0 in equation (4.8) so that \* = (g) , where

* ™

- tan*l(\/,é"yi—l) :

Proof. Denote the right hand side of equation (4.19) by
p(c,d). Then

~ 8 0w c
c,d*)=logy|—+ —- —1-
ple,d”) gw7 7 VB R

:log\/gtan_l(\/ﬁvl)o\/ﬁfy1~ﬁj_c.

It is straightforward to verify that p(c*,d*) = 0.

Since h”(d) > 0, h/(d) = 0 has at most one zero in
d for any fixed c. Once we chose ¢ = ¢*, d* is the unique
zero of h/(d). The lemma follows. a

4.3 @ = 0 In fact, the arguments in Section 4.1 and
Section 4.2 can be viewed as moving ¢ from 0 to oo,
then “wrapping around” to —oo, and eventually to
—pB. The threshold case of & = 0 requires us to take
¢ = 00, in which case K becomes the closed half plane
{z| Rz < —%} The program becomes

(4.21)

Ty

E
=}
-

K3

a |l

1

0 d?2 if d is odd;

subject to Zﬁi: { moc am 1A 1s odd;
i=1

7w mod 27 if d is even;
Viel[d], r; >0and 6; € (7/2,31/2);

Vi € [d}, —r; < l
v
Still denote the optima of (4.21) by A} and it is easy to
verify that Lemma 4.1 holds in this setting.
Once again, we can assume that all z/s are on the
boundary, namely that Rz = —%. In this case

1

4.22 P = — .
( ) " ~ cos 0;
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It is easy to check that logr; = —log(—cosf;) — cos~y
is a convex function. By the same argument as in
Lemma 4.8,

1
4.23 U S
(4.23) 47 ~dcosd(/d)
LEMMA 4.11. If ® = 0, then choosing K = {z | Rz <
d* /2
—%} ensures that for any d > 2, \j > X\ = (g) )

where d* = m
Proof. We just need to verify that log Ay = —dlog~y —
dlogcos(m/d) (with A} in equation (4.23)) takes its
minimum at d = d*. In this case,

t d
(log /\2)’ = —log~y — log cos(w/d) — %(W/);
2
log \¥)' = — " >,
(log Ad) d3 cos?(mw/d) — 0
The lemma follows from (log\%.) = 0, which can

be verified using ® = 0, cos(w/d*) = 1/+/Bv, and
tan(w/d*) = /By — 1. O

4.4 Proof of Theorem 1.1 and Theorem 1.2 In
order to avoid considering infinitely many degrees, we
observe the following.

LEMMA 4.12. Let 8 > v be the parameters. For any of
our chosen K, if z € K, then |z| > 1.

Proof. The assumption S > v implies that A* > 1.
Assume otherwise that 3z € K such that |z] < 1.
Observe that our chosen K is either centered around the
real axis, or being a half plane (in the case of ® = 0).
Therefore, there must be a real number z € K NR such
that |z| < 1. Then, either 22 or z* will be a positive real
number less or equal to 1. In other words, either s or
K5 will intersect the positive real interval (0,1]. On the
other hand, Lemmas 4.6, 4.10 and 4.11 all say that the
minimum intercept of IOy on the positive real line for all
d>21is \* > 1. This is a contradiction. |

Our method in fact shows a multivariate version of
Theorem 1.2. Recall the definition of the multivariate
partition function in equation (2.3).

THEOREM 4.1. Let 3,7 be positive parameters such
that 5 > ~ and By > 1, and \* defined as in
Theorem 1.1. There exists a 6 > 0 such that for
any N < X and any graph G = (V,E) such that
degg(v) > 2 for allv € V, Zspin(G; X) does not vanish
in a 0-polystrip containing the poly-region [0, A']™ where
n=1V].

Proof. First we claim that for any A’ < A*, we can
choose a §-strip A containing [0, \'] for X" < A* so that it
does not intersect K4 for any d > 2, and the §-polystrip
N™ is what we choose in the theorem. Lemmas 4.1, 4.5,
4.6 and 4.9 to 4.11 together imply that for any single d,
there is a d4-strip covering [0, A'] that does not intersect
Kq. If 8 > ~, by Lemma 4.12, |z| > 1 for any 2z € K.
For sufficiently large d, for any z € Kg4, |z| > A*. Thus,
we only need to take § to be the minimum one among
finitely many é4’s. If 8 = v, then K is the unit circle,
Kq = K for any d > 2, and \* = 1. In this case, clearly
the claim holds.

We consider a sequence of graphs Gg, G1,...,G, =
G. For Gy = (W, Ep), we replace each vertex v € V' by
d = deg(v) copies, denoted vy, v, ..., v4, and connect
them according to E so that Gg is a disjoint union of
isolated edges. Then

Zspin(Go; N) = [T (3° + 21+ 5).
ecE

The only zeros of Zgpi, are (1 and (2, both of which
are in the circular region K chosen according to Lem-
mas 4.6, 4.10 and 4.11. Now consider the multivariate
polynomial

Zspin(GOQZO) = H

(ui,vj)EE

(’yzul Z’Uj + Zui + Z’U]' + B) I

where 2° = {z,},ev,. The notation is justified by
the fact that Zspin(Go; 2°) is the multivariate partition
function equation (2.3) for Gy when we view {A, }oev,
as variables. By Proposition 3.1, Zgpin (Go; 2°%) does not
vanish if z, € K for all v € Vj.

Fix an arbitrary ordering of vertices in V, say

vl ... v" For 1 < i < n, we construct G; = (V;, E;)
by contracting vi, ..., vy in G;_1, where d; = degq(v;).
In other words, we replace all of v,...,v} by v’, and

connect v” to all vertices adjacent to {v}};e(q,). Clearly
G, = G. Note that for all 1 <i < n,

V; = {v' %, .. 0" U U {v{,...,véj}

i<j<n
and

degGi (Uj) = degG(Uj) = dj for 71 <4
for j >7and 1 <k < dj.

degg, (v]) =1

In particular, degg, (v) = degg, ,(v) for all v € V; N
Vi1,

Moreover, the corresponding polynomial
Zepin(Gi; 2Y), where 2t = {z,}yev;, is obtained by
the operation in Lemma 3.1 applied to {%;ﬁ}je[di}-

7
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Namely, we replace all appearances of H;l’zl 2y by

Zyi, and remove all other terms involving at least one

of z,:. Inductively, the obtained polynomial is still
J

the multivariate partition function equation (2.3) for
Gi. Thus, Zgpin(Gp; A) defined this way coincides with
Zspin(G; A) in equation (2.3).

We claim that Zg,in(Gy;2%) # 0 if for all v € Vj,
2y & Kq where d = degg. (v).

We show the claim by induction. For the base case,
notice that degg (v) = 1 for all v € Vp and K; = K.
Thus the base case follows from Proposition 3.1.

For the induction step, let & be a vector such that
for all v € Vj, x, & Kgq where d = degg, (v). Let @’ be x
restricted to Vi1 NV; = Vioy \ {vl, ..., v} } = Vi \ {v'}.
To apply Lemma 3.1, consider the polynomials

P(zyiy .o 2yi ) = Zopin(Gim13 @, 241, -+ 245 )
T k2
Q(2yi) = Zspin(Gis; &', 20).

In other words, P is the polynomial Zspin(Gi,l;zi_l)
with all variables except {zv; }jeja, fixed to &', and @Q is
the polynomial Zgpin (Gi; 2%) with all variables except 2,
fixed to «’. Since for all v € V;_1 NV}, z, € K4 where
d = degg,(v) = degg, ,(v), the induction hypothesis
implies that P does not vanish if for all j € [d;], Zi K

as degg, ,(v}) = 1. By Lemma 3.1, Q does not vanish
if z,i & Kq,. Notice that d; = degg, (v') and i & Kq,.
Thus Zgpin(Gi; ) = Q(x,:) # 0. The induction step
holds.

Our choice of N already ensures that any N NKy =
@ for all d > 2. The theorem follows from the claim for
1 =n. 0

Theorem 1.2 is a simple corollary of Theorem 4.1.
To prove Theorem 1.1, we need to take some special
care of degree 1 vertices.

Proof of Theorem 1.1. Let G = (V, E) be a graph and
v € V such that degi(v) = 1. Let A be the (not
necessarily uniform) vertex weights. Let the unique
neighbour of v in G be u. The “pruning” operation is
the following. Construct G’ = G[V '\ {v}] and X\, = A,
if w# wand N, = Ay - 322 Then Zpin(G;A) =
(B+ M)+ Zspin (G5 X).

Notice that if A\, < %, then )3\”1,121 < 1. Moreover,

A< A and A, < % [GL18, Lemma 3.2]. Thus, in
the assumed range of parameters, we can keep pruning
leaves until there is none, and all A\, after pruning still
satisfies that A, < M < A*. When there are no degree
1 vertices, we apply Lemma 2.2 and Theorem 4.1. 0O

As explained in Section 2, the running time of our

algorithm in Theorem 1.1 depends on §. However, due

191

to Lemma 4.12, we only need to consider finitely many
degrees when choosing ¢§. It implies that our é does not
depend on the maximum degree A of the underlying
graph, which is different from some previous work, such
as [LSS19al]. The overall running time of our algorithm

is O ((%)O(logA)) for any fixed parameters 3, v, and \.

5 Concluding remarks

The main limit of our approach is that the roots
(1,( to the single edge case are fixed. Any circular
region we choose in Proposition 3.1 and subsequently
in Lemma 3.1 must contain {; and (5. If the degree
d of a vertex is very close to tan~! (\/ﬂ’y — 1), then (q
will be mapped to very close to the real axis after the
contraction. Thus, our best hope is to make sure that
this is the worst case, and that is exactly what we do in
Lemmas 4.6, 4.10 and 4.11. This seems to be an inherent
difficulty to the contraction method on ferromagnetic 2-
spin systems.
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