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Abstract

Deep networks are well-known to be fragile to adversarial attacks. Using several
standard image datasets and established attack mechanisms, we conduct an empiri-
cal analysis of deep representations under attack, and find that the attack causes
the internal representation to shift closer to the "false" class. Motivated by this
observation, we propose to regularize the representation space under attack with
metric learning in order to produce more robust classifiers. By carefully sampling
examples for metric learning, our learned representation not only increases ro-
bustness, but also can detect previously unseen adversarial samples. Quantitative
experiments show improvement of robustness accuracy by up to 4% and detection
efficiency by up to 6% according to Area Under Curve (AUC) score over baselines.

1 Introduction

Despite their impressive accuracy and wide adoption, deep networks remain fragile to adversarial
attacks where natural images are perturbed with human-imperceptible, carefully crafted noises [24,
19,1111 [15]]. Extensive effort has been devoted to explaining and enhancing the robustness of machine
learning models against adversarial attacks [25 21} 32} 16l [17} [13} 120} [11} 24]].

To better understand adversarial attacks, we first conduct an empirical analysis of the latent represen-
tations under attack for undefended and robustly trained [[L7, [13] models. In particular, we investigate
what happens to the input representations as they undergo attack. Our results show that the attack
shifts the latent representations of adversarial samples away from their true class and closer to the
false class. The adversarial representations often spread across the false class distribution in such a
way that the natural images of the false class become indistinguishable from the adversarial images.

Motivated by this empirical observation, we propose to add an additional constraint to the model
using metric learning [[12, 22} 30] to produce more robust classifiers. We add a triplet loss term on
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the latent representations of adversarial samples to the original loss function. However, the naive
implementation of triplet loss is not effective because the pairwise distances of a natural sample
ay, its adversarial sample o}, and a randomly selected natural sample of the false class b are hugely
uneven. Specifically, given considerable data variance in the false class, b is often far from the
decision boundary where a resides, therefore b is too easy an negative sample. To address this, we
sample the negative example for each triplet with the closest example in a mini-batch of training data.
In addition, we randomly select another sample a5 in the correct class as the positive example.

Our main contributions are (1) the analysis of latent representations under attack that reveals that
the attack shifts the representation closer to the false class even with state-of-the-art robust training
and (2) a simple yet effective metric learning method, TLA, that leverages triplet loss to produce
more robust classifiers. TLA brings near both the natural and adversarial samples of the same
class while enlarging the margins between different classes (Sec. [3). It requires no change to the
model architecture and thus can improve the robustness of most of the off-the-shelf deep networks
without additional overhead during inference. Evaluation on popular datasets, model architectures,
and untargeted, state-of-the-art attacks, including projected gradient descent (PGD), shows that our
method classifies adversarial samples more accurately by 1%—4% than prior robust training methods;
and makes adversarial attack detection more effectively by up to 6% according to the AUC score.

2 Preliminary Knowledge and Related Work

This work is built upon the prior work on Adversarial Attacks and Robust Training models. We briefly
describe them below. Please refer to [[L1, (15 (17, 15} (7}, 133l [13]] for more details. We first introduce
some notations that we will follow in the rest of the paper.

Notations. For an image classification task, let M be the number of classes to predict, and NV be
the number of training examples. We formulate the deep network classifier as Fig(x) € RM as a
probability distribution, where x is the input variable and 6 denotes the network’s parameters to learn
(we simply use F'(x) most of time); L(F'(x), y) is the standard loss function.

Adversarial Attacks. In this work, we assume that an adversary is capable of launching adversarial
attacks bounded by L., norm, i.e., the adversary can perturb the input pixel by € bounded by L,
where I(x, €) is the L, ball centered at x with radius e. We also assume that the adversary is capable
of untargeted attack, i.e., the objective is to generate x’ € I(x, €) such that F'(x’) # F'(x). We call
F(x), i.e., the original class of an adversarial image as true class, while the mis-predicted class F'(x’)
is called false class. Under the generic threat model of L., and un-targeted attacks, we consider the
following white-box (1-5) and black-box attacks (6) which are commonly used in literature:

1. Fast Gradient Sign Method (FGSM) [[I1] generates adversarial examples x’ by x’ = x + ¢ -
sign(VxL(F(x),y)) with a single step.

2. Basic Iterative Method (BIM) [15] is an extension of FGSM by applying it multiple times
with small steps, where the update formula at the i-th step is: x; = clip, (x| ; + «a -
sign(Vy,  L(F(x}_1),y))), where a is the step size.

3. Projected Gradient Descent (PGD) [[177]] is a variant of the BIM method, where the starting point
Xo is in I(x, €). It can be made more powerful by randomly starting several times and calculating
the union of the mispredictions.

4. Carlini & Wagner (C&W) [3] We reformulate the C&W method to L, attack as in [17]. We
generate x’ by minimizing the loss g(z) := maxy (max; {z(x); : ¢ #t} — 2(x);, —k), where
z(x) = logit(h,,—1(2)) and x controls the confidence on adversarial examples.

5. Momentum Iterative Method (MIM) [7|] is a BIM with momentum which won the NeurIPS 2017 Ad-
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versarial Competition. MIM updates the gradient g; = momentum - g; 1 + V. L(F(x]_;),y))

with momentum and generates the attack iteratively with x; = clip, . (x}_; + o - sign(g;)).

6. Black-box Attacks (BB) [26] Black-box attack is to generate adversarial examples on one model
and transfer them to the target models. In this paper, we generate the adversarial attacks with PGD
on the substitute model and conduct black-box attack to the evaluated models.

Robust Training Methods. Researchers proposed different adversarial training methods to defend
neural networks against adversarial perturbations [24} [17]. We use the following state-of-the-art
methods as our baseline:

1. Adversarial training (AT) [17] achieves adversarial robustness by training the DNN on the
created adversarial examples, which goes through densely scrutiny and its robustness is en-



dorsed by Athalye et al [4]. The formulation is proposed as: ming p(8), where p(0) =
E(x,y)~D[maxses L(Fg(x +6),y)], where S € I(x,¢).

2. Adversarial Logit Pairing (ALP) [13]] builds on top of [17] and introduces an additional loss term
that matches the logits from a clean image x and its corresponding adversarial image x’. However,
this method has been known to have a distorted loss function and is not scalable to untargeted
attack [9, [18]].

Several other robust training methods do not focus on the L, adversarial attack or only have limited
empirical robustness, so we do not study them under our threat model. For example, stability training
regularizes the natural loss with Lgsqpitity (%, %) = [|h(x) — h(x')||2, where x’ is the result of
some natural transformation such as rotation, not adversarial attack. DeepDefense [32] considers
integrating an adversarial attack directly in the loss function without generating adversarial examples.
Model ensemble is another way to improve robustness [25} 20].

3 Qualitative Analysis of Latent Representations under Adversarial Attack

We begin our investigation by analyzing how the adversarial images are represented by different
models. Figure[I]shows the visualization of the high dimensional latent representation of sampled
CIFAR-10 images with t-SNE [28| [3]]. Here, we see the penultimate fully connected (FC) layer of
three existing models: standard undefended model (UM), model after adversarial training (AT) [L7],
model after adversarial logit pairing (ALP) [[13]], and our proposed model that we will discuss later.
Though all the adversarial images belong to the same frue class, UM separates them into different
false classes with large margins. This shows UM is highly non-robust against adversarial attacks
because with such latent representations it is very easy to craft an adversarial image that will be
mistakenly classified to a different category. With AT and ALP methods, the representations are
getting closer together, but one could still be able to discriminate. Note that, a good robust model
will bring the representations of the adversarial images closer to their original true classes so that it
will be difficult to discriminate the adversarial images from the original images. We will leverage this
observation to design our approach.
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Figure 1: t-SNE Visualization of adversarial images from the same frue class which are mistakenly
classified to different false classes. These are representations of second to last layer of 1000 adversarial
examples crafted from 1000 natural (clean) test examples from CIFAR-10 dataset, where the frue class is “deer”.
The different colors represent different false classes. The gray dots further show 500 randomly sampled natural
deer images. Notice that for (a) undefended model (UM), the adversarial attacks clearly separate the images
from the same “deer” category into different classes. (b) adversarial training (AT) and (c) adversarial logit
pairing (ALP) method still suffer from this problem at a reduced level. In contrast, our proposed ATL (see (d))
clusters together all the examples from the same frue class, which improves overall robustness.

In Figure 2] we further analyze how the representation of images of one class is attacked into the
neighborhood of another class. The green and blue dots are the natural images of trucks and birds
respectively. The red triangles are the adversarial images of truck mispredicted as birds. For UM
model (Figure[2a)), all the adversarial attacks successfully get into the center of the false class. The
AT and ALP models achieve some robustness by separating some adversarial images from natural
images, but most adversarial images are still inside the false class. A good robust model should
promote the representations of adversarial examples away from the false class, as shown in Figure [2d]
Such separation not only improves the adversarial classification accuracy but also helps to reject the
mispredicted adversarial attacks, because the mispredicted adversaries tend to lie on the edge.

Based on these two observations, we build a new approach that ensures adversarial representations
will be (i) closer to the natural image representations of their true classes, and (ii) farther from the
natural image representations of corresponding false classes.
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Figure 2: Illustration of the separation margin of adversarial examples from the natural images of the
corresponding false class. We show t-SNE visualization of the second to last layer representation of test data
from two different classes across four models. The blue and green dots are 200 randomly sampled natural images
from “bird" and “truck” classes respectively. The red triangles denote adversarial (adv) perturbed “truck” images
but mispredicted as “bird”. Notice that for (a) UM, the adversarial examples are moved to the center of the false
class which is hard to separate from the natural images of the false class. (b) AT and (c) ALP achieve some
robustness by separating adversarial and false natural images, but they are still too close to each other. Plot (d)
shows proposed TLA promotes the mispredicted adversarial examples to lie on edge and can still be separated
from natural images of the false class, which improves the robustness.

4 Approach

Inspired by the adversarial feature space analysis, we add an additional constraint to the model using
metric learning. Our motivation is that the triplet loss function will pull all the images of one class,
both natural and adversarial, closer while pushing the images of other classes far apart. Thus, an
image and its adversarial counterpart should be on the same manifold, while all the members of the
‘false’ class should be forced to be separated by a large margin.

Triplet Loss. Triplet loss is a widely used strategy for metric learning. It trains on a triplet input
{ (xff), xz(,’) , x{ ))}, where the elements in the positive pair (x((f) , x,(f)) are from the same class and
the negative pair (xt(f), ng )) are from different classes [22] [12]. xz(,i), xgi), and xg ) are referred as
positive, anchor, and negative examples of the triplet loss. The embeddings are optimized such that
examples of the same class are pushed together and the examples of different classes are pulled apart
by some margin [23]]. The standard triplet loss for clean images is as follows:

N N

D Lenip(x,x(,x D) = [D(A(x), h(x))) — D(A(xE), h(x() + al+

i

where, h(x) maps from the input x to the embedded layer, « € R™T is a hyper-parameter for
margin and D(h(x;), h(x;)) denotes the distance between x; and x; in the embedded representa-
tion space. There are many different distance measurements for constructing the triplet loss. In
this paper, we define the embedding distance between two examples as the angular distance [29]:
(i) @) y) — LICIRORICTEN]
Dih(xa ), hlopn)) = 1= o o,
space. Since the absolute norm of the embedding does not change the prediction of the classifier, use
of angular loss excludes the influence of the norm on the loss value.

, such that we encode the information in the angular

Metric Learning for Adversarial Robustness. In this case, we use triplet loss such that an image

xg) (positive) and its adversarial counterpart x\) (anchor) come closer while another image from

the false class ng ) (negative) goes far in the embedded representation space. We add triplet loss
directly to the representation of the second to last layer. Different from standard triplet loss where all
the elements in the triplet loss term are clean images [22} 33]], at least one element in the triplet loss
under our setting will be adversarially perturbed image. Note that generating adversarial examples is
more computational intensive compared with just taking the clean images. For efficiency, we only
generate one adversarial perturbed image for each triplet data, using the same method introduced
by Madry et al [17]. Specifically, we generate the adversarial image x'(*) based on V£ (F(x),%)
(standard loss without the triplet loss) with PGD method given a clean image x(*). We do not add the
triplet loss term into the loss of adversarial example generation because it causes non-convergence.
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Figure 3: Tllustration of the triplet loss for adversarial robustness (TLA). The anchor is moved from the true
class to the false class by adversarial perturbation. TLA learns to pull the anchor and positive from the true class
closer, and push the negative of false classes apatrt.

The other elements in the triplet data are clean images, where the positive is a clean image from
the anchor’s class and the negative is from a different class. We forward the triplet data in parallel
through the model and jointly optimize the cross-entropy loss and the triplet loss, which enables
the model to capture the invariant representation with semantic meaning. The total loss function is
formulated as follgws:

Loy = Z Lee(F&D),yD) + X Lirip (A=), h(x), (X)) + X2 Loorm 0
Loorm = R |2 + [h(x)]2 + [|2(x)]]

where )\ is a positive coefficient trading off the two losses, x;(i) is an adversarially perturbed image

based on x(¥), \, is the weight for the feature norm decay term, which prevents the L, norm of the
feature from getting too large.

Notice that the adversarial perturbed images can either be anchor or positive example. We choose the
adversarial example as the anchor according to the experimental result (refer to the TLA-SA in Sec
[3). Intuitively, the adversarial image is picked as anchor because it tends to be closer to the decision
boundary between the "true" class and the "false" class. As an anchor, it is able to be considered in
both the positive pair and the negative pair which gives more useful gradient for the optimization. An
illustration of the modified triplet loss for adversarial robustness is shown in Figure [3]

Negative Sample Selection. In addition to the anchor selection, the selection of the negative example
is crucial for the training process, because most of the negative examples are easy examples which
already satisfied the margin constraint of pairwise distance and thus contribute little to a useful
gradient [22}|8]. In this paper, we select negative samples which is the nearest to the anchor based on
the representation angular distance we predefined from a false class. As a result, our model is able to
learn to enlarge the boundary between the adversarial perturbed samples and their closest negative
samples from the other classes.

Unfortunately, finding the closest negative samples from the entire training set is computationally
intensive. Besides, using very hard negative examples have been found to significantly decrease
the network’s convergence speed [22]. Instead, we use a semi-hard negative example, where we
select the closest sample in a mini-batch. We demonstrate the advantage of this sampling strategy by
comparing it with the random sampling (TLA-RN). The results are shown in Sec[5] A similar strategy
of sampling negative sample with adversarial generation process mentioned in DAML [8] could also
be applied here, which uses adversarial generator to exploit more unseen hard negative examples.

Implementation Details. We study the embedding of the second to last layer of the neural network
for classification task, because it will be followed by a linear classifier, which is beneficial because
small fluctuation to this layer only brings monotonous adjustment to the output controlled by some
Lipschitz constant. We don’t use the same logit layer as ALP [13] but the hidden layer ahead of it.
Compared with the logit layer, the penultimate layer tends to have more information because it usually
has much higher dimensions. The details of the algorithm are introduced in the supplementary.

5 Experiments

Experimental Setting. We validate our method on different model architectures across three popular
datasets: MNIST [16], CIFAR-10 [14] and Tiny-ImageNet [[1]]. We train our models from scratch
and compare the performance of the models with the following baselines: Undefended Model
(UM) refers to standard training without adversarial samples, Adversarial Training (AT) refers to
min-max optimization method proposed in [17]], ALP refers to the adversarial logit pairing method
which is currently the state-of-the-art [13]. We use TLA to denote the triplet loss adversarial training



Table 1: Classification accuracy under various Lo, bounded untargeted attacks on MNIST (Lo, =0.3), CIFAR-
10 (Lo =8/255), and Tiny-ImageNet (Lo, =8/255). TLA improves the adversarial accuracy by 1.86%, 4.12% ,
and 1.05% respectively. The best results of each column are in bold and underline shows the empirical lower
bound for each method (the lowest accuracy of each row if any).

MNIST
Attacks | Clean FGSM  BIM C&W PGD PGD 20pGD MIM BB
(Steps) - (1) (40) (40) (40) (100) (100) (200) (100)
UM 99.20% 34.48% 0% 0% 0% 0% 0% 0% 81.81%
2 AT 99.24%  9731% 95.95% 96.66% 96.58% 94.82% 93.87% 9547% 96.67%
£ ALP 9891% 97.34% 96.00% 96.50% 96.62%  95.06% 94.93% 95.41%  96.95%
§ TLA-RN | 99.50% 98.12% 97.17% 97.17% 97.64% 97.07% 96.73% 96.84% 97.69%
TLA-SA | 99.44% 98.14% 97.08% 97.45% 97.50% 96.78% 95.64% 96.45%  97.65%
TLA 99.52% 98.17% 97.32% 97.25% 91.72% 96.96% 96.79% 96.64% 97.73%
CIFAR-10
Attacks Clean FGSM BIM C&W PGD PGD 20pGD MIM BB
(Steps) - (1 @) (30) () (20) (20) (40) @)
UM 95.01% 13.35% 0% 0% 0% 0% 0% 0% 7.60%
» AT 87.14% 55.63% 4829% 46.97% 49.19% 45.72% 4521% 45.16% 62.83%
E ALP 89.79%  60.29% 50.62% 47.59% 51.89% 48.50% 4598% 4597% 67.27%
§ TLA-RN | 81.02% 55.41% 51.44% 49.66% 52.50% 49.94% 45.55% 49.63%  65.96%
TLA-SA | 86.19% 58.80% 52.19% 49.64% 53.53% 49.70% 49.15% 49.29% 61.67%
TLA 86.21% 58.88% 52.60% 50.69% 53.87% 51.59% 50.03% 50.09% 70.63%
Tiny ImageNet
Attacks Clean FGSM BIM C&W PGD PGD 20pGD MIM BB
(Steps) - (1) (10) (10) (20) (20) (20) (40) (10)
UM 53.85% 8.07%  0.69%  0.04%  0.84% 0.39% 0% 0% 27.08%
- AT 34.60% 19.34% 13.66% 11.42% 13.79% 13.46% 13.33% 13.57% 19.62%
E ALP 4320% 19.85% 11.24% 9.70% 11.37% 10.87% 10.59% 10.75%  22.08%
ﬁ TLA-RN | 3588% 19.93% 14.08% 11.42% 14.23% 13.89% 13.65% 11.29% 20.27%
TLA-SA | 3491% 19.42% 13.57% 11.34% 13.75% 13.33% 13.19% 13.22% 19.90%
TLA 36.79% 2095% 14.89% 1247% 15.05% 14.65% 14.43% 14.74% 21.09%

mentioned in Section [d] To further evaluate our design choice, we study two variants of TLA:
Random Negative (TLA-RN), which refers to our proposed triplet loss training method with a
randomly sampled negative example, and Switch Anchor (TLA-SA), which sets the anchor to be
natural example and the positive to be adversarial example (i.e., switching the anchor and the positive
of our proposed method).

We conduct all of our experiments using TensorFlow v1.13 [2]. We adopt the untargeted adversarial
attacks during all of our training process, and evaluate the models with both white and black-box
untargeted attacks instead of the targeted attacks following the suggestions in [10] (a defense which is
only robust to targeted adversarial attacks is weaker than one which is robust to untargeted adversarial
attacks). The PGD and 20PGD in our table refer to the PGD attacks with random start of 1 and
20 times, respectively. For ALP, we set A = 0.5 as mentioned in the original paper. All the other
implementation details are discussed in the supplementary material.

5.1 Effect of TLA on Robust Accuracy

MNIST consists of a training set of 55,000 images (excluding the 5000 images for validation as in
[[L7]) and a testing set of 10,000 images. We use a variant of LeNet CNN architecture which has a
larger model capacity. The details of network architectures and hyper-parameters are summarized
in the supplementary material. We adopt the L., = 0.3 bounded attack during the training and
evaluation. We generate adversarial examples using PGD with 0.01 step size for 40 steps during
the training. In addition, we conduct different types of L., = 0.3 bounded attacks to achieve good
evaluations. The adversarial classification accuracy of different models under various adversarial
attacks are shown in Table [ As shown, we improve the empirical state-of-the-art adversarial
accuracy by up to 1.86% on 20PGD attacks (100 steps PGD attacks with 20 times of random restart),
along with 0.28% improvement on clean set.

CIFAR-10 consists of 32x32x3 color images in 10 classes, with 50k images for training and 10k
images for testing. We follow the same wide residual network architecture and the same hyper-
parameters settings as AT [17]. As shown in Table[I] our method achieves up to 4.12% adversarial



accuracy improvement over the baseline methods under the strongest 20PGD attacks (20 steps PGD
attack with 20 times of restart). Note that our method results in a minor decrease of standard accuracy
but such loss of generic accuracy is observed in all the existing robust training models [27]. The
comparison with TLA-RN illustrates the effectiveness of the negative sampling strategy. According
to the result of the TLA-SA, our selection of the adversarial example as the anchor also achieves
better performance than the method which chooses the clean image as the anchor.

Tiny Imagenet is a tiny version of ImageNet consisting of color images with size 64 x 64 x 3 belonging
to 200 classes. Each class has 500 training images and 50 validation images. We adopt L., = 8/255
for both training and validation. During training, we use 7 step PGD attack with step size 2/255
to generate the adversarial samples. As shown in Table [T} our proposed model achieves higher
adversarial accuracy under white box adversarial attacks by up to 1.10% on 20PGD (20 steps of
PGD with 20 random restarts) attacks along with a minor decrease of standard accuracy.

5.2 Effect of TLA on Adversarial vs. Natural Image Separation

As shown in Figure 23] in the ‘Undefended Mode’, the representations of adversarial images are
shifted toward the false class. A good robust training model should separate them apart. To
quantitatively evaluate how well TLA can separate the adversarial examples from the natural images
of the corresponding ‘false’ classes, we define the following metric.

Let {ci} denote the embedded representations of all the natural images from class cj, where
t=1,...,|ck|, and |ck| is the total number of images in class c;. Then, the average pairwise within-

class distance of these embedded images is: 00/ = (2 Soler =t Zlfz’“l“ D(c},c]). Let
{c;f} further denote embedded representations of all the adversarial examples that are misclassified
to class ¢, where ¢ = 1,.. ., |c}|, and |c}| is the total number of such examples. Note that, class ¢,
is the ‘false’ class to those adversarial images. Then, the distance between an adversarial images ¢}’

and a natural image cﬂk is: D(c},", ci), and the average pair-wise distance between adversary image

adv

: fee yadv 1 A [ek] riJ : — _Ck
and natural images is: 0/} = CAIEN >oi21 221 D(¢)’, ;). We then define the ratio re, = it
as a metric to evaluate how close the adversarial images are w.r.t. the natural images of the ‘false’

class while compared with the average pairwise within-class distance of all the natural images of

that class. Finally, for all classes we compute the average ratio as r = ﬁ f:[:l (re, ). Note that, any

good robust method should increase the value of r, indicating %% ig far from o™ ie., they are
better separated than the natural cluster, as shown in Figure 2d|

Table 2: Average Ratio (r) of mean distance between adversary points and natural points over the mean
intra-class distance. The results illustrate that TLA increases the relative distance of adversarial images w.r.t. the
natural images of the respective false classes. The best results of each column are in bold.

Dataset MNIST CIFAR-10 Tiny-ImageNet
Perturbation Level | Loo = 0.03 Loo = 0.3 | Loo = 555 Loo = 25 | Loo = 5o Loo = 2
@ UM 1.485 1.194 0.8082 0.9208 0.9236 0.9293
E AT [17] 1.288 1.308 1.053 1.007 0.9774 0.9504
51 ALP [13] 1.398 1.394 1.038 1.210 0.9840 0.9360
= TLA 1.810 1.847 1.093 1.390 0.9979 0.9995

For every dataset, we estimate the ratios under two perturbation levels for all the models. The results
are shown in Table @ As we can see, the adversarial attacks tend to shift their latent representation
toward the false class. Note that for CIFAR-10 and Tiny-ImageNet, the adversarial examples are even
closer (r < 1) to the false class’s manifold than the corresponding natural images to itself. In all the
settings, r values of TLA are highest as compared to the other training methods. This indicates TLA
is most effective to pull apart the misclassified adversary examples from their false class under both
small and large perturbations attacks.

We also define a similar metric to show TLA tends to pull closer the adversary images to their true
class, as shown in Figure[Id] Please refer to the supplementary material for more details.

We further conduct the nearest neighbor analysis on the latent representations across all the models.
The results illustrate the advantage of our learned representations in nearest neighbor retrieval (See
Figure d)—while querying with an adversarial image TLA performs better in retrieving true class
members than others. Table 3] shows that the latent representations of TLA achieves higher accuracy
using K-Nearest Neighbors classifier than its competitors.



Table 3: Accuracy of K-Nearest Neighbors classifier with K = 50 illustrating TLA has better similarity
measures in embedding space even with adversarial samples. The best results of each column are in bold.

Dataset MNIST CIFAR-10 Tiny-ImageNet
Type Adv Natural Adv Natural Adv Natural
2 AT 93.01% 98.68% 47.46% 87.06% 14.18% 30.27%
g ALP 95.20% 98.43% 48.85% 89.63% 14.56% 38.14%
= TLA 96.98 % 99.47 % 51.74% 86.29% 15.90% 35.88%
Query (Clean)  Nearest Neighbors Retrieved Query (Adv) Nearest Neighbors Retrieved

AT

(Baseline)

= o= = ==

el 4 — E = 8 |
a - = |

(Ours) g %

Figure 4: Visualization of nearest neighbor images while querying about a “plane” on AT and TLA trained
models separately. For a natural query image, both methods retrieve correct images (left column). However,
given a maliciously perturbed query image (right column), the AT retrieved false “truck" images indicate the
perturbation moves the representation of the “plane” into the neighbors of “truck," while TLA still retrieves
images from the true "plane" class.

5.3 Effect of TLA on Adversarial Image Detection
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Figure 5: The ROC curve and AUC scores of applying GMM on trained model (with perturbation level
e = 0.03/1(40 steps) for MNIST, ¢ = 8/255(7 steps) for CIFAR-10, and ¢ = 8/255(7 steps) for Tiny-
ImageNet) for misclassified example detection on 10000 natural test images and 10000 adversary test images
(with perturbation level ¢ = 0.3/1(100 steps) for MNIST, and € = 25/255(20 steps) for CIFAR-10, and
e = 25/255(30 steps) for Tiny-ImageNet). The numerical results for AUC score are shown in the legend, which
shows TLA (our method) achieves higher detection efficiency for adversarial examples compared with other
baseline methods.

Efficiently detecting the adversarial inputs is another dimension to improve model’s robustness, which
is orthogonal to enhancing the model’s overall prediction accuracy. Given TLA can better separate
the adversarial examples from the natural examples of the false class, we should be able to detect
the mis-classified adversarial examples more efficiently by filtering out the outliers. To evaluate
how efficiently TLA can detect mis-classified images in a test setting, we conduct the following
experiments.

Following the adversarial detection method proposed in [34], we train a Gaussian Mixture Model
for 10 classes where the density function of each class is modeled by one Gaussian distribution. For
each test image, we assign a confidence score of a class based on the Gaussian distribution density of
the class at that image, as shown in [31]]. We assign such confidence score for all the 10 classes for
each test image. Then, we pick the class with the largest confidence value as the potential class of the
image. Then, we rank all the test images based on the confidence value of their respective assigned
class. We further reject those with lower confidence scores below a certain threshold indicating
they are potential misclassified examples. Note that, such a method can be used as an additional
confidence metric to detect adversarial examples in a real-world setting.



As shown in Figure 3] the results of the ROC-curves and AUC score demonstrate that our learned
representations are superior in adversarial detection task and induce better confidence estimation.
The detection results here are consistent with the visual results shown in Figure 2}

6 Conclusion

In this work, we take the first step to analyze the property of high dimensional latent representation
of adversarial examples and find that the attack causes the embedding move closer to the false
class such that the adversarial and natural images are almost indistinguishable. Inspired by this
observation, we propose a simple but effective metric learning based approach for adversarial
robustness. We empirically validate our approach using three popular datasets across various deep
network architectures. Our results show that along with increasing robust accuracy, our latent
representation is also important in detecting adversarial examples.
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