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Abstract

Modern deep neural networks (DNNs) often require high
memory consumption and large computational loads. In or-
der to deploy DNN algorithms efficiently on edge or mo-
bile devices, a series of DNN compression algorithms have
been explored, including factorization methods. Factoriza-
tion methods approximate the weight matrix of a DNN layer
with the multiplication of two or multiple low-rank matri-
ces. However, it is hard to measure the ranks of DNN layers
during the training process. Previous works mainly induce
low-rank through implicit approximations or via costly sin-
gular value decomposition (SVD) process on every training
step. The former approach usually induces a high accuracy
loss while the latter has a low efficiency. In this work, we
propose SVD training, the first method to explicitly achieve
low-rank DNNs during training without applying SVD on
every step. SVD training first decomposes each layer into
the form of its full-rank SVD, then performs training directly
on the decomposed weights. We add orthogonality regular-
ization to the singular vectors, which ensure the valid form
of SVD and avoid gradient vanishing/exploding. Low-rank
is encouraged by applying sparsity-inducing regularizers
on the singular values of each layer. Singular value pruning
is applied at the end to explicitly reach a low-rank model.
We empirically show that SVD training can significantly re-
duce the rank of DNN layers and achieve higher reduction
on computation load under the same accuracy, comparing
to not only previous factorization methods but also state-of-
the-art filter pruning methods.

1. Introduction

The booming development in deep learning models and
applications has enabled beyond human performance in

tasks like large-scale image classification [18, 9, 12, 13],
object detection [27, 22, 8], and semantic segmentation [24,
]. Such high performance, however, comes with a high
price of large memory consumption and computation load.
For example, a ResNet-50 model needs approximately 4G
floating-point operations (FLOPs) to classify a color image
of 224 x 224 pixels. The computation load can easily ex-
pand to tens or even hundreds of GFLOPs for detection or
segmentation models using state-of-the-art DNNs as back-
bones [2]. This is a major challenge that prevents the de-
ployment of modern DNN models on resource-constrained
platforms, such as phones, smart sensors, and drones.

Model compression techniques for DNN models, in-
cluding element-wise pruning [7, 21, 38], structural prun-
ing [33, 25, 20], quantization [23, 31], and factorization [ 15,

, 36, 35], have been extensively studied. Among these
methods, quantization and element-wise pruning can ef-
fectively reduce model’s memory consumption, but require
specific hardware to realize efficient computation. Struc-
tural pruning reduces the computation load by removing
redundant filters or channels. However, the complicated
structures adopted in some modern DNNs (i.e., ResNet or
DenseNet) enforce strict constraints on the input/output di-
mensions of certain layers. This requires additional filter
grouping during the pruning and filter rearranging after the
pruning to make the pruned structure valid [32, 5]. Factor-
ization method approximates the weight matrix of a layer
with a multiplication of two or more low-rank matrices. It
by nature keeps the input/output dimension of a layer un-
changed, and therefore the resulted decomposed network
can be supported by any common DNN computation archi-
tectures, without additional grouping and post-processing.

The previous investigation show that it is feasible to ap-
proximate the weight matrices of a pretrained DNN model
with the multiplication of low-rank matrices [15, 39, 26,



, 19]. But these methods may greatly degrade the perfor-
mance, even after post-hoc finetuning. Some other methods
attempt to manipulate the “directions” of filters to implicitly
reduce the rank of weight matrices [34, 20]. However, the
difficulties in training and the implicitness of rank represen-
tation prevent these methods from reaching a high compres-
sion rate. Nuclear norm regularizer has been used to directly
reduce the rank of weight matrices [, 35]. Optimizing the
nuclear norm requires conducting singular value decompo-
sition (SVD) on every training step, which is inefficient, es-
pecially when dealing with larger models.

Our work aims to explicitly achieve a low-rank DNN net-
work during the training without applying SVD on every
step. In particular, we propose SVD training by training the
weight matrix of each layer in the form of its full-rank SVD.
The weight matrix is decomposed into the matrices of left-
singular vectors, singular values and right-singular vectors,
and the training is done on the decomposed variables. Fur-
thermore, two techniques are proposed to induce low-rank
while maintaining high performance during the SVD train-
ing: (1) Singular vector orthogonality regularization which
keeps the singular vector matrices close to unitary through-
out the training. It mitigates gradient vanishing/exploding
during the training, and provide a valid form of SVD to
guarantee the effective rank reduction. (2) Singular value
sparsification which applies sparsity-inducing regularizers
on the singular values during the training to induce low-
rank. The low-rank model is finally achieved through sin-
gular value pruning. We evaluate the individual contribution
of each technique as well as the overall performance when
putting them together via ablation studies. Results show that
the proposed method constantly beats state of the art factor-
ization and structural pruning methods on various tasks and
model structures. To the best of our knowledge, this is the
first algorithm to explicitly search for the optimal rank of
each DNN layer during the training without performing the
decomposition operation at each training step.

2. Related Works on low-rank DNNs

Approximating a weight matrix with the multiplication
of low-rank matrices is a straightforward idea for compress-
ing DNNs. Early works in this field focus on designing the
matrix and tensor decomposition scheme, especially for the
4-D tensor of convolution kernel, so that the operation of a
pretrained network layer can be closely approximated with
cascaded low-rank layers [ 15, 39, 26, 4, 19]. Tensor decom-
position technique, notably CP-decomposition, is applied
in early works to directly decompose the 4-D convolution
kernel into 4 consecutive low-rank convolutions [19]. How-
ever, such decomposition technique significantly increases
the number of layers in the achieved network, making them
harder to be finetuned towards good performance, espe-
cially when decomposing larger and deeper models [29].

Later works therefore propose to reshape the 4-D tensor
into a 2-D matrix, apply matrix decomposition technique
like SVD to decompose the matrix, and finally reshape
them back to 4-D tensors to get two consecutive layers.
Notably, Zhang et al. [39] propose channel-wise decompo-
sition, which uses SVD to decompose a convolution layer
with a kernel size w x h into two consecutive layers with
kernel sizes w x h and 1 x 1, respectively. The computation
reduction can be achieved by exploiting the channel-wise
redundancy, e.g., channels with smaller singular values in
both decomposed layers are removed. Similarly, Jaderberg
et al. [15] propose to decompose a convolution layer into
two consecutive layers with less channels in between. They
further utilize the spatial-wise redundancy to reduce the size
of convolution kernels in the decomposed layers to 1 x h and
w X 1, respectively. These methods provide a closed-form
decomposition for each layer. If the SVD is done in full
rank, these methods guarantee that the decomposed layers
perform the same operation as the original layer. However,
the weights of the pretrained model may not be low-rank by
nature, so the manually imposed low-rank after decomposi-
tion by removing small singular values inevitably leads to
high accuracy loss as the compression ratio increases [35].

Methods have been proposed to reduce the ranks of
weight matrices during training process in order to achieve
low-rank decomposition with low accuracy loss. Wen et
al. [34] induce low rank by applying an “attractive force”
regularizer to increase the correlation of different filters in
a certain layer. Ding et al. [5] achieve a similar goal by op-
timizing with “centripetal SGD,” which moves multiple fil-
ters towards a set of clustering centers. Both methods can
reduce the rank of the weight matrices without performing
actual low-rank decomposition during the training. How-
ever, the rank representations in these methods are implicit,
so the regularization effects are weak and may lead to sharp
performance decrease when seeking for a high speedup. On
the other hand, Alvarez et al. [1] and Xu et al. [35] explic-
itly estimate and reduce the rank throughout the training by
adding Nuclear Norm (defined as the sum of all singular
values) regularizer to the training objective. These method
require performing SVD to compute and optimize the Nu-
clear Norm of each layer on every optimization step. Since
the complexity of the SVD operation is O(n?) and the gra-
dient computation through SVD is not straightforward [6],
performing SVD on every step is time consuming.

To explicitly achieve a low-rank network without per-
forming costly decomposition on each training step, Tai et
al. [29] propose to directly train the network from scratch in
the low-rank decomposed form, and add batch normaliza-
tion [14] between decomposed layers to tackle the potential
gradient vanishing or exploding problem caused by the dou-
bling of layers after decomposition. However, the low-rank
decomposed training scheme used in this line of works re-



quires setting the rank of each layer before the training [29].
The manually chosen low rank may not lead to the opti-
mal compression. Also, training the low-rank model from
scratch will make the optimization harder, as lower rank im-
plies lower model capacity [35].

3. Proposed Method

Building upon previous works, we combine the ideas of
decomposed training and trained low-rank in this work. As
shown in Figure 1, the model will first be trained in a de-
composed form through the full-rank SVD training, then
undergoes singular value pruning for rank reduction, and fi-
nally be finetuned for further accuracy recovery. As we will
explain in Section 3.1, the model will be trained in the form
of the spatial-wise [ 15] or channel-wise decomposition [39]
to avoid the time consuming SVD. Unlike the training pro-
cedure proposed by [29], we will train the decomposed
model in its full-rank to preserve the model capacity. Dur-
ing the SVD training, we apply orthogonality regulariza-
tion to the singular vector matrices and sparsity-inducing
regularizers to the singular values of each layer, the details
of which will be discussed in Section 3.2 and 3.3, respec-
tively. Section 3.4 will elaborate the full objective of the
SVD training and the overall model compression pipeline.
This method is able to achieve optimal compression rate
by inducing low-rank through training without the need for
performing decomposition on every training step.

3.1. SVD training of deep neural networks

In this work, we propose to train the neural network in
its singular value decomposition form, where each layer
is decomposed into two consecutive layers with no addi-
tional operations in between. For a fully connected layer,
the weight W is a 2-D matrix with dimension W € R™*™,
Following the form of SVD, W can be directly decom-
posed into three variables U,V , s as Udiag(s)V'7T, with
dimension U € R™*" V € R™ " and s € R". Both
U and V shall be unitary matrices. In the full-rank set-
ting where » = min(m,n), W can be exactly recon-
structed as W = Udiag(s)V'T. For a neural network, this
is equivalent to decomposing a layer with weight W' into
two consecutive layers with weight W, = Udiag(+/s) and
W, = diag(1/s)V'T respectively.

For a convolution layer, the kernel K can be represented
as a 4-D tensor with dimension K € R™*¢X®w*h_ Here
n,c,w, h represent the numbers of filters, the number of
input channels, the width and the height of the filter re-
spectively. This work mainly focuses on the channel-wise
decomposition method [39] and the spatial-wise decompo-
sition method [15] to decompose the convolution layer, as
these methods have shown their effectiveness in previous
CNN decomposition research. For channel-wise decompo-
sition, K is first reshaped to a 2-D matrix K € Rnxcwh,

K is then decomposed with SVD into U € R" ", V ¢
RewhxT and s € R”, where U and V are unitary matri-
ces and r = min(n, cwh). The original convolution layer
is therefore decomposed into two consecutive layers with
kernels K; € R™*¢Xwx" reshaped from diag(y/s)V7 and
K, € R™*"x1x1 reshaped from Udiag(+/s). Spatial-wise
decomposition shares a similar process as the channel-wise
decomposition. The major difference is that K is now re-
shaped to K € R™**<" and then decomposed into U €
R™WXT YV € R"*" and s € R" with r = min(nw, ch).
The resulting decomposed layers would have kernels K; €
Rr*ex1xh and Ky € R?*™*w*1 regpectively. [39] and [15]
theoretically show that the decomposed layers can exactly
replicate the function of the original convolution layer in the
full-rank setting. Therefore training the decomposed model
at full-rank should achieve a similar accuracy as training the
original model.

During the SVD training, for each layer we use the vari-
ables from the decomposition, i.e., U, s, V, instead of the
original kernel K or weight W as the trainable variables in
the network. The forward pass will be executed by convert-
ing the U, s, V into a form of the two consecutive layers
as demonstrated above, and the back propagation and opti-
mization will be done directly with respect to the U, s,V
of each layer. In this way, we can access the singular value
s directly without performing the time-consuming SVD on
each step.

Note that U and V' need to be orthogonal to guarantee
the low rank approximation can be done by removing small
singular values, but this is not naturally induced by the de-
composed training process. Therefore we add orthogonality
regularization to U and V' to tackle this problem as dis-
cussed in Section 3.2. Rank reduction is induced by adding
sparsity-inducing regularizers to the s of each layer, which
will be discussed in Section 3.3.

3.2. Singular vectors orthogonality regularizer

In a standard SVD procedure, the resulted U and V'
should be orthogonal by construction, which provides theo-
retical guarantee for the low-rank approximation. However,
U and V in each layer are treated as free trainable vari-
ables in the decomposed training process, so the orthogo-
nality may not hold. Without the orthogonal property, it is
unsafe to prune the singular value in s even if it reaches a
small value, because the corresponding singular vectors in
U and V may have high energy and lead to a large differ-
ence to the result.

To make the form of SVD valid and enable effective rank
reduction via singular value pruning, we introduce an or-
thogonality regularization loss to U and V as:

1
Lo(U,V) = ﬁ(IIUTU—IH% +IVIV —I][3), ()

where || - || is the Frobenius norm of matrix and r is the
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Figure 1. The training, compressing and finetuning pipeline of the proposed method.

rank of U and V. Note that the ranks of U and V are the
same given their definition in the decomposed training pro-
cedure. Adding the orthogonality loss in Equation (1) to the
total loss function forces Us and V's of all the layers close
to be orthogonal matrices.

Beyond maintaining valid SVD form, the orthogonal-
ity regularization also bring additional benefit to the per-
formance of the decomposed training process. The decom-
posed training process convert one layer in the original net-
work to two consecutive layers, therefore doubles the num-
ber of layers. As aforementioned in [29], this may worsen
the problem of exploding or vanishing gradient during the
optimization, degrading the performance of the achieved
model. Since the proposed orthogonality loss can keep all
the columns of U and V to have the L? norms close to 1,
it can effectively prevent the gradient to explode or vanish
when passing through variable U and V/, therefore helping
the training process to achieve a higher accuracy. The ac-
curacy gain brought by training with the orthogonality loss
will be discussed in our ablation study in Section 4.1.

3.3. Singular values sparsity-inducing regularizer

With orthogonal singular vector matrices, reducing the
rank of the decomposed network is equivalent to making the
singular value vector s of each layer sparse. Although the
sparsity of a vector is directly represented by its L° norm, it
is hard to optimize the norm through gradient-based meth-
ods. Inspired by the recent works in DNN pruning [21, 33],
we use differentiable sparsity-inducing regularizer to make
more elements in s closer to zero, and apply post-train prun-
ing to make the singular value vector sparse.

For the choice of the sparsity-inducing regularizer, the
L' norm has been commonly applied in feature selec-
tion [30] and DNN pruning [33]. The Lt regularizer takes
the form of L'(s) = Y, |s;|, which is both almost every-
where differentiable and convex, making it friendly for opti-

mization. Moreover, applying L' regularizer on the singular
value s is equivalent to regularizing with the nuclear norm
of the original weight matrix, which is a popular approxi-
mation to the rank of a matrix [35].

However, the L! norm is proportional to the scaling of
parameters, i.e., [|[aW||1 = «||W]||1, with a non-negative
constant «. Therefore, minimizing the L' norm of s will
shrink all the singular values simultaneously. In such a situ-
ation, some singular values that are close to zero after train-
ing may still contain a large portion of the matrix’s energy.
Pruning such singular values may undermine the perfor-
mance of the neural network.

To mitigate the proportional scaling problem of the L!
regularizer, previous works in compressed sensing have
been using Hoyer regularizer to induce sparsity in solving
non-negative matrix factorization [ 1] and blind deconvolu-
tion [16], where the Hoyer regularizer shows superior per-
formance comparing to other methods. The Hoyer regular-
izer is formulated as

Liggy sl _ Sl )

which is the ratio of the L' norm and the L? norm of a vec-
tor [16]. It can be easily seen that the Hoyer regularizer is al-
most everywhere differentiable and scale-invariant. The dif-
ferentiable property implies that the Hoyer regularizer can
be easily optimized as part of the objective function. The
scale-invariant property shows that if we apply the Hoyer
regularizer to s, the total energy will be retained as the sin-
gular values getting sparser. Therefore most of the energy
will be kept within the top singular values while the rest get-
ting close to zero. This makes Hoyer regularizer attractive
in our training process. The effectiveness of the L' regu-
larizer and the LY regularizer is explored and compared in
Section 4.3.



3.4. Overall objective and training procedure

With the analysis above, we propose the overall objective
function of the decomposed training as:

L(U,s,V) =Ly(diag(\/|s) V", Udiag(+/[s]))
D D 3
20> Lo(Ui, Vi) + As > La(s1). )
=1

=1

Here L is the training loss computed on the model with
decomposed layers. L, denotes the orthogonality loss pro-
vided in Equation (1), which is calculated on the singular
vector matrices U; and V] of layer [ and added up over all
D layers. L is the sparsity-inducing regularization loss, ap-
plying to the vector of singular values s; of each layer. We
explore the use of both the L' regularizer and the L reg-
ularizer (Equation (2)) as L in this work. A\s and A, are
the decay parameters for the sparsity-inducing regulariza-
tion loss and the orthogonality loss respectively, which are
hyperparameters of the proposed training process. A, can be
chosen as a large positive number to enforce the orthogonal-
ity of singular vectors, and Ag can be modified to explore
the tradeoff between accuracy and FLOPs of the achieved
low-rank model.

As shown in Figure 1, the low-rank decomposed network
will be achieved through a three-stage process of full-rank
SVD training, singular value pruning and low-rank finetun-
ing. First we train a full-rank decomposed network using
the objective function in Equation (3). Training at full rank
enables the decomposed model to easily reach the perfor-
mance of the original model, as there is no capacity loss
during the full-rank decomposition. With the help of the
sparsity-inducing regularizer, most of the singular values
will be close to zero after the full-rank training process. In-
spired by [35]’s work, we prune the singular values using
an energy based threshold. For each layer we find a set K
with the largest number of singular values subject to:

> s geis?, “)
1
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where e € [0, 1] is a predefined energy threshold. We use
the same threshold for all the layers in our experiments.
When e is small enough, the singular values in set K and
the corresponding singular vectors can be removed safely
with negligible performance loss. The pruning step will dra-
matically reduce the rank of the decomposed layers. For a
convolution layer with kernel K € R7xexwxh if we can
reduce the rank of the decomposed layers to 7, the number
of FLOPs for the convolution will be reduced by (ntchwir

nchw
h . L
or (MEMT yhen channel-wise or spatial-wise decompo-
nchw

sition is applied, respectively. The resulted low-rank model
will then be finetuned with A, set to zero for further perfor-
mance recovery.

Table 1. Comparison of top 1 accuracy on CIFAR-10 of ResNet
models after full-rank SVD training, with or without orthogonal-
ity loss. [-Ch] means using channel-wise decomposition and [-Sp]
means using spatial-wise decomposition.

Model Ao Accuracy (%)
ResNet-56 N/A 93.14
ResNet-56-Ch 1.0 93.28
ResNet-56-Ch 0.0 91.28
ResNet-56-Sp 1.0 93.36
ResNet-56-Sp 0.0 90.70

Model Ao Accuracy (%)
ResNet-110 N/A 93.62
ResNet-110-Ch 1.0 93.58
ResNet-110-Ch 0.0 91.83
ResNet-110-Sp 1.0 93.93
ResNet-110-Sp 0.0 91.86

4. Experiment Results

In this section, we first perform ablation studies on the
effectiveness of each part of our training procedure using
ResNet models [9] on the CIFAR-10 dataset [17]. We then
apply the proposed decomposed training method on various
DNN models on the CIFAR-10 dataset and the ImageNet
ILSVRC-2012 dataset [28]. The training hyperparameters
for these models can be found in Appendix A. Different
hyperparameters are used to explore the accuracy-FLOPs
trade-off induced by the proposed method. Our results con-
stantly stay above the Pareto frontier of previous works.

4.1. Importance of the orthogonal constraints

Here we demonstrate the importance of adding the sin-
gular value orthogonality loss to the decomposed training
process. We separately train two decomposed model with
the same optimizer and hyperparameters, one with the or-
thogonality loss of A\, = 1.0 and the other with A, = 0.
No sparsity-inducing regularizer is applied to the singular
values in this set of experiments. The experiments are con-
ducted on ResNet-56 and ResNet-110 models, both trained
under channel-wise decomposition and spatial-wise decom-
position. The CIFAR-10 dataset is used for training and test-
ing. As shown in Table 1, the orthogonality loss enables the
decomposed model to achieve similar or even better accu-
racy comparing to that of the original full model. On the
contrary, training the decomposed model without the or-
thogonality loss will cause around 2% accuracy loss.

4.2. Comparison of decomposition methods

As mentioned in Section 3.1, we mainly consider the
channel-wise and the spatial-wise decomposition method



in this work. In this section, we compare the accuracy-
#FLOPs tradeoff tendency of the channel-wise decompo-
sition and the spatial-wise decomposition. The tradeoff ten-
dency of both decomposition methods are explored by train-
ing the decomposed model with Hoyer regularizer of differ-
ent strength (A, in Equation (3)) on the singular values. The
results are shown in Figure 2. For shallower networks like
ResNet-20 or ResNet-32 models, the spatial-wise decom-
position shows a large advantage comparing to the channel-
wise decomposition in the experiments, achieving signifi-
cantly higher compression rate at similar accuracy. How-
ever, with a deeper network like ResNet-56 or ResNet-110,
these two decomposition methods perform similarly. As
discussed in Section 3.1, spatial-wise decomposition can
utilize both spatial-wise redundancy and channel-wise re-
dundancy, while the channel-wise decomposition utilizes
channel-wise redundancy only. The observations in this set
of experiments indicate that as DNN models get deeper,
the channel-wise redundancy will become a dominant factor
comparing to the spatial-wise redundancy. This corresponds
to the fact that deeper layers in modern DNN typically have
significantly more channels than shallower layers, resulting
in significant channel-wise redundancy.

4.3. Comparison of sparsity-inducing regularizers

Under the same model decomposition scheme, the main
factor related to the final compression rate and the perfor-
mance of the compressed model would be the choice of
sparsity-inducing regularizers for the singular values. As
mentioned in Section 3.3, we mainly consider the use of
the L' and the Hoyer regularizer in the proposed training
scheme. In this section, we use spatial-wise decomposition
setting to compare the effect of the L' regularizer and the
Hoyer regularizer. A controlled group is also trained with no
sparsity-inducing regularizer applied during the SVD train-
ing. The accuracy-#FLOPs tradeoff is explored by chang-
ing the regularization strength and singular value pruning
threshold. All other hyperparameters are kept the same dur-
ing SVD training and fintuning process for all models. Re-
sults are shown in Figure 3. The tradeoff tendency of the
L! regularizer constantly demonstrates a larger slope than
that of the Hoyer regularizer. Under low accuracy loss, the
Hoyer regularizer achieves a higher compression rate com-
paring to that of the L' regularizer. However, if we are
aiming for extremely high compression rate while allowing
higher accuracy loss, the L' regularizer can have a better
performance. One possible reason for the difference in ten-
dency is that the L' regularizer will make all the singular
values small through the training process, while the Hoyer
regularizer will maintain the total energy of the singular
values during the training, focusing more energy in larger
singular values. Therefore more singular values can be re-
moved from the decomposed model trained with the Hoyer

regularizer without significantly hurting the performance of
the model, resulting in higher compression rate at low ac-
curacy loss. But it would be harder to keep most of the en-
ergy in a tiny amount of singular values than simply making
everything closer to zero, therefore the L' regularizer may
perform better in the case of extremely high speedup. Com-
paring to the controlled group with no sparsity-inducing
regularization, both the L' regularizer and the Hoyer regu-
larizer can achieve higher accuracy under similar compres-
sion rate, especially at high compression rate where the ac-
curacy gap between with or without sparsity-inducing reg-
ularizer is more significant. Therefore applying sparsity-
inducing regularizer on singular values is important for
reaching a high performance low-rank model, as the weight
will not naturally reach low-rank in training.

4.4. Effectiveness of the overall training procedure

To show the “full-rank SVD training, singular value
pruning and low-rank finetuning” training framework pro-
posed in Section 3.4 is essential for reaching a high perfor-
mance low-rank model, we take the model architecture of
the low-rank models achieved from the proposed training
procedure, reinitialize all the weights with random values,
and train the low-rank model from scratch. For fair compar-
ison, the reinitialized low-rank model is trained using the
same training objective and hyperparameter choices as the
low-rank finetuning step in our framework. As shown in Ta-
ble 2, with the same architecture and training process, train-
ing the low-rank model from scratch leads to around 2%
testing accuracy loss comparing to the accuracy achieved
by the proposed training procedure. This result correspond
to the fact that low-rank models are harder to train from
scratch due to their low capacity [35]. On the other hand,
the full-rank SVD training step in our proposed framework
provide sufficient capacity for the model to reach a high per-
formance. Such high performance can still be preserved af-
ter singular value pruning, as the singular values are already
sparse after the SVD training process.

4.5. Comparing with previous works

We apply the proposed SVD training framework on the
ResNet-20, ResNet-32, ResNet-56 and ResNet-110 mod-
els on the CIFAR-10 dataset as well as the ResNet-18
and ResNet-50 model on the ImageNet ILSVRC-2012
dataset to compare the accuracy-#FLOPs tradeoff with pre-
vious methods. Here we mainly compare our method with
state-of-the-art low-rank decomposition methods including
Jaderberg et al. [15], Zhang et al. [39], TRP [35] and C-
SGD [5], as well as recent filter pruning methods like
NISP [37], SFP [10] and CNN-FCF [20]. The results of dif-
ferent models are shown in Figure 4. As analyzed in Sec-
tion 4.3, the spatial-wise decomposition methods achieves
significantly higher compression rate than the channel-wise
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Figure 2. Effect of different decomposition methods. All models are achieved with Hoyer regularizer for singular value sparsity. Dash lines
show the approximated tendency of the accuracy-compression tradeoff. See Appendix B Table 3 for detailed data.
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Figure 3. Effect of applying different sparsity-inducing regularizers during SVD training. All models are achieved with Spatial-wise de-

composition. See Appendix B Table 3 for detailed data.

decomposition in shallower networks, while similar perfor-
mance can be achieved when compressing a deeper model.
Thus we compare the results of only the spatial-wise de-
composition against previous works for ResNet-20 and
ResNet-32. For other deeper networks, we report the results
for both channel-wise and spatial-wise decomposition. As
most of the previous works focus on compressing the model
with a small accuracy loss, here we use the Hoyer regular-
izer for the singular values sparsity, as it can achieve a better
compression rate than the L' norm under low accuracy loss

(see Section 4.3). We use multiple strength for the Hoyer
regularizer to explore the accuracy-#FLOPs tradeoff, in or-
der to compare against previous works with different ac-
curacy levels. As shown in Figure 4, our proposed method
can constantly achieve higher FLOPs reduction with less
accuracy loss comparing to previous methods on differ-
ent models and datasets. These comparison results prove
that the proposed SVD training and singular value pruning
scheme can effectively compress modern deep neural net-
works through low-rank decomposition.
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Table 2. Comparison of top 1 accuracy of the achieved low-rank

o ) form. And sparsity-inducing regularizers are applied to the
ResNet models on CIFAR-10 vs. training the same model architec-

ture from scratch. All low-rank models reported here are achieved

with spatial-wise decomposition and Hoyer regularizer.

singular values to explicitly induce low-rank layers.
Thorough experiments are done to analyse each pro-
posed technique. We demonstrate that the orthogonality reg-

Base Model Training method  Accuracy (%) ularization on singular vectors is crucial to the performance
ResNet-20 Our method 91.39 of the decomposed training process. For decomposition
Speed Up: 3.26x From scratch 89.43 methods, we find that the spatial-wise method performs bet-
ResNet-32 Our method 91.76 ter than channeljw.ise in shallower networks while the per-

S . formances are similar for deeper models. For the sparsity-

peed Up: 3.93x From scratch 90.55 . . . . .

inducing regularizer, we show that higher compression rate

ResNet-56 Our method 93.27 can be achieved by Hoyer regularizer comparing to that of
Speed Up: 3.75x  From scratch 91.55 the L' regularizer under low accuracy loss. Our training
ResNet-110 Our method 93.47 framework is justified as training the low-rank model from
Speed Up: 6.42x From scratch 91.03 scratch cannot reach the same accuracy achieved by our

5. Conclusion

In this work, we propose the SVD training framework,
which incorporates the full-rank decomposed training, sin-
gular value pruning and low-rank finetuning to reach low-
rank DNNs with minor accuracy loss. We decompose each
DNN layer to its full-rank SVD form before the training and
directly train with the decomposed singular vectors and sin-
gular values, so we can keep an explicit measure of layers’
ranks without performing the SVD on each step. Orthogo-
nality regularizers are applied to the singular vectors during
the training to keep the decomposed layers in a valid SVD

method. We further apply the proposed method to various
depth of ResNet models on both CIFAR-10 and ImageNet
dataset, where we find our accuracy-#FLOPs tradeoff con-
stantly stays above the Pareto frontier of previous methods,
including both factorization and structural pruning methods.
These results prove that this work provides an effective way
for learning low-rank deep neural networks.
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