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ABSTRACT
Scientific applications often depend on data produced from compu-

tational models. Model-generated data can be prohibitively large.

Current mechanisms for sharing and distributing reproducible ap-

plications, such as containers, assume all model data is saved and

included with a program to support its successful re-execution.

However, including model data increases the sizes of containers.

This increases the cost and time required for deployment and fur-

ther reuse. We present a framework namedMiDas (”Minimizing

Datasets”) for specializing I/O libraries which, given an application,

automates the process of identifying and including only a subset of

the data accessed by the program. To do this,MiDas combines static

and dynamic analysis techniques to map high level user inputs to

low level file offsets. We show several orders of magnitude reduc-

tion in data size via specialization of I/O libraries associated with

model-based data-intensive applications, such as those operating

on meteorological and geophysical data.
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1 INTRODUCTION
Reproducible application workflows reduce the time for validation.

This increases the trust in their results. However, reproducing data-

intensive application workflows continues to be a challenge in the

domain sciences [14]. We consider data-intensive applications that

can be entirely reproduced when provided along with their code,

data, and environment specification. We focus particularly on appli-

cations that access a large amount of structured data, using custom

I/O-optimized libraries. Such program are common in the scientific

domain, where data is stored in formats such as NetCDF4 [15],

HDF5 [9], or UniProt [3]. Most of these formats are self-descriptive

– that is, the data and metadata are stored in the same file. Being

self-descriptive, they require specific I/O libraries for reading and

writing these formats to be included with the application.

Partial evaluation [5] offers a strategy for automating the process

of pruning the codebase. It is an optimization technique that uses

knowledge of static inputs to generate a specialized version of a

program that only accepts the remaining dynamic inputs. Figure

1 shows a piece of code in which the height of a building (Line 4)

is computed by calling the compute_opposite() function which

multiplies building distance by the tangent of the viewing angle.

Since Line 10 involves a call to the tan() function, the entire math

library libm must be included to compute the function. Partial

evaluation determines the static viewing_angle value and creates a
specialized version of the compute_opposite() function, as shown
in Figure 1. Note that the tan() call is also replaced with 1 (on Line

7 in Figure 1), which is the result of evaluating it with argument

pi/4. Since a call to tan() is no longer necessary, the math library

can be eliminated from the specialized version of the program.

2 MIDAS: I/O CALL SPECIALIZATION
The LLVM [11] toolchain supports static compilation and analysis

of code. Its C/C++/Objective-C source frontend, clang, can produce
bitcode, an interpretable intermediate representation. The included

backends can compile this to native binaries for a range of hard-

ware architectures. LLVM provides a code optimizer, opt, that runs
specified transformations or analyses. Optimizations are specified

in terms of passes. Opt operates on and modifies bitcode. We use

LLVM-based instrumentation to (i) analyse the application and

identify the accessed file regions, and (ii) modify the application

to include the accessed data chunks. We also use Wholly!’s [6]
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1 #include <math.h>
2 float compute_building_height(float building_distance){
3 float viewing_angle = pi/4;
4 float building_height =
5 compute_opposite(building_distance,
6 viewing_angle);
7 return building_height;
8 }
9 float compute_opposite(float adjacent, float angle){
10 float opposite = adjacent * tan(angle);
11 return opposite;
12 }

(a) Original code

1 float compute_building_height(float building_distance){
2 float building_height =
3 compute_opposite_specialized(building_distance);
4 return building_height;
5 }
6 float compute_opposite_specialized(float adjacent){
7 float opposite = adjacent * 1;
8 return opposite;
9 }

(b) Specialized code

Figure 1: Apriori knowledge of inputs allows the evaluation
of some control flow choices and variable assignments prior
to runtime, potentially resulting in dead code that can be
eliminated.

gllvm [7], a tool to build LLVM bitcode files using the unmodified

build scripts of C or C++ source programs.

Figure 2: MiDas: Automates the identification and inclusion
of data chunks required by an application

2.1 Motivating Example
Figure 3a shows an example application that reads data from a

file. Depending on the high-level user input, bytes, the offsets of
the file test.txt as well as the corresponding data chunks accessed
vary. Our goal is to automate the process of identifying and including
the required data chunks along with this application. To do this, we

design an I/O specialization framework,MiDas, shown in Figure 2.

2.2 Code Instrumentation
The source code is first compiled into LLVM bitcode bc using LLVM
compiler clang. This is provided as input to our LLVM transforma-

tion pass. The pass instruments I/O calls, such as open, read, and

1 void file_read(int bytes){
2 int fd, sz;
3 char *c = (char *) calloc(bytes, sizeof(char));
4 fd = open("test.txt", O_RDWR);
5 lseek(fd,100,SEEK_SET);
6 sz = read(fd, c, bytes);
7 }

(a) Application source code

1 1, test.txt, 100, 150
2 1, test.txt, 100, 190
3 1, test.txt, 100, 230
4 1, test.txt, 100, 450

(b) Traces from four executions of the instrumented example applica-
tion with high-level user-provided specialization input, bytes - 50, 90,
130, 350, respectively.

1 %94 = load i32, i32* %9, align 4
2 %95 = sext i32 %94 to i64
3 %96 = call i64 @read(i32 %92, i8* %93, i64 %95)
4 %97 = trunc i64 %96 to i32
5 store i32 %97, i32* %13, align 4
6 %98 = load i32, i32* %12, align 4

(c) LLVM assembly code segment corresponding to original bitcode:
read call highlighted in red is the I/O call to be specialized.

1 %94 = load i32, i32* %9, align 4
2 %95 = sext i32 %94 to i64
3 %96 = bitcast [17 x i8]* @fileData to i8*
4 call void @llvm.memcpy.p0i8.p0i8.i64(i8* %93, i8* %96
5 i64 %95, i32 1, i1 false)
6 %97 = alloca i64
7 store i64 %95, i64* %97
8 %loadRetVal = load i64, i64* %97
9 %98 = trunc i64 %loadRetVal to i32
10 store i32 %98, i32* %13, align 4
11 %99 = load i32, i32* %12, align 4

(d) LLVM assembly code segment corresponding to I/O-Specialized bit-
code: Lines 3 to 8 highlighted in red are inserted to replace the read call
during specialization.

Figure 3: Example application reading a file

lseek, that handle file-related operations to record the file offsets

and spans accessed during execution. Specifically, we add a custom

wrapper function following each I/O call. The input arguments of

the I/O call are passed to the wrapper. Using these arguments, the

wrapper functions construct and maintain a global data structure

that associates a file descriptor or file pointer with a filename. This

data structure also keeps track of the file offsets after each I/O call.

Apart from the aforementioned input arguments, the LLVM pass

also generates a unique identifier per I/O call site and incorporates

it in the wrapper functions. The identifier is used to distinguish

between multiple I/O call sites. During execution, these wrapper

functions print out all the information required for specialization

- I/O call site identifier, filename and file offsets. Instrumentation

of the example application in Figure 3a results in the insertion of



three wrapper functions after the I/O calls open on line 4, lseek on

line 5, and read on line 6.

2.3 Code execution with Specialization Inputs
The bitcode bc” generated by the above pass is then compiled

into native code using clang and executed along with high-level

user inputs (i.e, specialization inputs). Executing this instrumented

native code produces execution traces as output by the I/O call

wrapper functions.

Figure 3b shows traces from four different executions of the

instrumented example application with high-level user input or

specialization input, bytes, having values 50, 90, 130, 350 respec-

tively. Each line of the execution trace contains the I/O call site

identifier, filename and start, end file offsets and correspond to the

read I/O call on line 6 in Figure 3a.

2.4 Data Chunk Extraction
Execution traces from above are provided as input to our LLVM

analysis pass. Based on the file offset information from the execution

traces, this pass reads the corresponding data chunks from the files.

It creates a data structure consisting of these data chunks along

with the associated I/O call information (i.e, I/O call site identifier,

filename and file offsets). This data structure is passed as input to

the next LLVM pass that performs specialization.

In case of the example application, the minimum and maximum

file read offsets are 100 and 450. Hence the data chunk correspond-

ing to this range is extracted.

2.5 Specialization
Bitcode bc and the data structure containing the file data chunks

from above are passed to our LLVM transformation pass. This pass

replaces the I/O calls corresponding to file read operations such as

read, fread, pread, etc with the extracted data chunks and generates

the specialized bitcode bc”’. In particular, this replacement involves

the following operations:

(1) The extracted file data is stored in a global variable.

(2) A memcpy instruction is inserted to copy the required data

from the global variable to the buffer argument of the file

read I/O call.

(3) All variables related to the I/O call being replaced are up-

dated to ensure correct operation of the modified bitcode.

For instance, the return values of the I/O calls are updated

with the number of bytes copied into the buffer argument.

(4) The I/O call instruction is removed.

LLVM assembly code segment corresponding to the original

bitcode bc for the example application is shown in Figure 3c. I/O

call to be specialized here is the read call highlighted in red. Figure

3d shows the LLVM assembly code segment corresponding to the

specialized bitcode bc”’. fileData is a global variable here containing
the extracted data chunk. Lines 3 to 8 highlighted in red are inserted

to replace the read call during specialization.

3 EVALUATION
We tested our I/O specialization framework,MiDas, on below men-

tioned Python applications that access scientific data inNetCDF4 [15]

format. These applications make use of NetCDF4-python module to

work on the data. This module is a Python interface to the NetCDF C

library. HDF5 is a high performance data software C library utilized

by NetCDF for fast I/O processing and storage.

3.1 Identifying I/O calls for Specialization
To understand the behavior of NetCDF and HDF5 libraries with

respect to file sizes, we first investigated on python applications

accessing NetCDF4 data files of sizes - 384 bytes, 1012 bytes, 30
MB, 700 MB, 1.4 GB, 9 GB and 12.8 GB.

In case of small files of sizes 384 bytes and 1012 bytes, high-level

user inputs map to fread calls in NetCDF library. In particular, one

fread call reads the metadata of size 8 bytes and another fread call

reads the entire file - 384 bytes and 1012 bytes respectively.

In case of large files of sizes 30 MB to 12.8 GB, high-level user

inputs map to fread call in the NetCDF library and pread calls in

HDF5 library. Specifically, the fread call in NetCDF library reads

the metadata (size 8 bytes) and pread calls in HDF5 library read

subsets of file data in chunks as required.

From our experiments, we observe that fread calls in NetCDF

library only access metadata of size 8 bytes apart from reading

the entire file in case of small files. Hence, there is not much ben-

efit in specializing this I/O call. On the other hand, pread calls in

HDF5 library access subsets of files in case of larger files. Therefore,

specializing this I/O call in HDF5 library is beneficial.

We build NetCDF C library and HDF5 C library from source

to generate the LLVM bitcodes using gllvm [7]. We then modify

the bitcode generated from libhdf5.so (i.e, the shared object cor-

responding to HDF5 library) by replacing the pread I/O call itself

with data chunks required by the python application (as described

in §2). Next, we compile the modified bitcode to generate a new

shared object (.so) and replace the original library with this new

one. Hence, whenever the python application invokes NetCDF C

library through the NetCDF4-python module interface, NetCDF

C library would in turn invoke the specialized version of HDF5

library.

3.2 File Access Pattern
Portion of File Accessed. In case of large data files, we identify

what portion of these are accessed. For this experiment, we gener-

ated larger files of sizes upto 12.8 GB from the 30 MB NetCDF data

file by rewriting the data for multiple timesteps. These NetCDF

data files consist of four attributes: temperature, salinity, sea water

velocities in 2 directions. These are defined as time series over the

dimensions time (expressed in days), latitude and longitude (ex-

pressed in half and full degree increments respectively) and depth

(expressed in meters). We consider a python application that only

accesses data corresponding to the temperature attribute and not

salinity, sea water velocities. When the python application accesses

all the data corresponding to temperature attribute, this maps to a

pread call in HDF5 library reading only 22% of the data file. Table

1 shows the portion of file accessed for various file sizes. Thus, the

remaining 78% of data corresponding to other attributes is irrele-

vant to the application. Further, pread calls read data in the range

of tens of KB with respect to the 30 MB data file when the python

application accesses only a subset of the data corresponding to



Table 1: Portion of File accessed corresponding to ’tempera-
ture’ attribute: A python application that accesses this data
results in utilizing only 22% of the entire file.

Total Size 30 MB 700 MB 1.4 GB 9 GB 12.8 GB

Accessed Size 6.6 MB 154 MB 0.3 GB 1.98 GB 2.82 GB

Figure 4: Location of 6.6 MB of data accessed corresponding
to ’temperature’ attribute in 30 MB NetCDF file: The x-axis
depicts the start file offset and the y axis depicts the number
of bytes read during each pread I/O call.

temperature attribute by applying conditions on attributes: time,

depth, latitude and longitude.

Location of Accessed Data. Next, we identify the exact offset

locations of the accessed data chunks in the data files. For this

experiment, we consider the 6.6 MB of data accessed corresponding

to the ’temperature’ attribute in the 30 MB NetCDF file. Figure 4

shows the file access pattern. The x-axis depicts the start file offset

and the y axis depicts the number of bytes read during each pread
I/O call. This shows that most of the data accessed in the file lies in

the offset range of 15 MB to 20 MB.

These results illustrate the fact that applications often tend to

access only a subset of large NetCDF data files.

4 DISCUSSION
After specializing the HDF5 library, the python application runs

correctly only when the high level user inputs map to a subset of

the included data chunks. The challenge here lies in identifying

the optimal file offsets based on values extracted from execution

traces. Currently, MiDas completely relies on high level user inputs

provided during the specialization phase. For instance, consider

an application that accesses different subsets of the temperature

attribute based on user inputs. Providing user inputs such that the

entire temperature attribute is accessed during the specialization

phase would ensure that all required data chunks are included with

the specialized library.

We plan to further improve the identification of optimal file

offsets by integrating invariant generation tools like Daikon[4] into

our framework. An invariant is a property that holds at a certain

point in a program considering all possible executions. For instance,

𝑦 = 2 ∗ 𝑥 + 3, 5 ≤ 𝑥 ≤ 10 are some examples of such invariants.

Daikon generates likely invariants from execution traces of an

application. This could be used to identify an optimal range of file

offsets from the execution traces.

Currently our work focuses on read I/O call and includes data

chunks corresponding to this call with the application. However,

specializing only the read calls would be unsound if the program

writes to a specific file region and later reads from it. So, we plan to

extend MiDas to specialize write I/O call and track the correspond-

ing data chunks to update related read I/O calls accordingly.

5 RELATEDWORK
Containers, driven by the popularity of Docker [1], have recently

emerged as a lightweight alternative to hypervisor-based virtual-

ization. Container-based deployment however is inefficient due to

large size of images and redundant downloading of data within each

layer [18]. Slacker [8] provides a more efficient container system

based on de-duplication of file blocks. Block-level de-duplication

techniques do not eliminate data redundancies within structured

arrays. In this work, we have focused on reducing the size of con-

tainers encapsulating data-intensive scientific applications using

I/O specialization.

Partial evaluation historically focused on functional program-

ming languages since the absence of side-effects simplified the

analysis [10]. However, operating systems kernels, performance-

oriented user space libraries, and many system utilities are typi-

cally written in C/C++. C-Mix/II [12] and Tempo [2] were two early

efforts that established the feasibility of specializing such code.

OCCAM [13], LLPE [17], and Trimmer [16] have demonstrated

that it can be applied to modern C/C++ applications by automati-

cally building [6] them into LLVM bitcode. LLIO [17] investigated

elimination of accesses to the filesystem to improve runtime perfor-

mance. However, it did so by lifting entire files, an approach that

is untenable for large data sets. Our strategy is similar to that of

Trimmer with the difference being we focus on the input data of

applications rather than their configuration files.

6 CONCLUSION
In this work we have highlighted the need for I/O specialization to

efficiently reproduce data-intensive applications. Our work moti-

vates novel support for optimizing sparse access to large files. Our

I/O call specialization framework, MiDas identifies and includes

only the relevant chunks of data along with the application in the

container. This reduces the size of container and yet preserves its

functionality when repeated in different environments. Our experi-

ments show that MiDas is able to precisely identify the amount of

effective data utilized.
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