Towards Semantically Guided Traceability

Yalin Liu, Jinfeng Lin, Qingkai Zeng, Meng Jiang, Jane Cleland-Huang
University Of Notre Dame
Notre Dame, IN
yliu26 @nd.edu, jlin6@nd.edu, qzeng@nd.edu, mjiang2 @nd.edu, JaneClelandHuang @nd.edu

Abstract—In many regulated domains, traceability is estab-
lished across diverse artifacts such as requirements, design, code,
test cases, and hazards — either manually or with the help of
supporting tools, and the resulting trace links are used to support
activities such as impact analysis, compliance verification, and
safety inspections. Automated tracing techniques need to leverage
the semantics of underlying artifacts in order to establish more
accurate trace links and to provide explanations of links that
have been created in either a manual or automated fashion. To
support this, we propose an automated technique which leverages
source code, project artifacts and an external domain corpus
to generate a domain-specific concept model. We then use the
generated concept model to improve traceability results and to
provide explanations of the results. Our approach overcomes
existing problems with deep-learning traceability algorithms, as
it does not require a training set of existing trace links. Finally,
as an initial proof-of-concept, we apply our semantically-guided
approach to the Dronology project, and show that it improves
over other tracing techniques that do not use a concept model.

Index Terms—Traceability, Repository Mining, Concept
Model, Semantic Analysis, Domain Specified Ontology

I. INTRODUCTION

Requirements traceability is recognised as an essential prop-
erty in many software domains, where links are established
across diverse artifacts such as bug reports, feature requests,
commit messages, design documents, code, test cases, and
release documents. Establishing and maintaining trace links
among these artifacts helps stakeholders to perform diverse
requirements engineering activities such as change impact
analysis, compliance analysis, and safety assurance [5]. De-
spite the importance of traceability, numerous studies have
observed that achieving traceability in large industrial projects
can be labor intense, arduous and error-prone [14]. To mitigate
these problems, automated traceability approaches have been
proposed based on diverse techniques such as information
retrieval, code analysis, deep learning, and topic modeling to
generate candidate trace links [8], [10], [14].

Recent solutions based on deep-learning techniques (e.g.,
[13]) are specifically designed to overcome the common
problem of term mismatches between related artifacts. These
approaches can improve trace accuracy when very large corpus
of data are available; however, they currently suffer from a
lack of explainability. A concept model is a semantic network
which connects phrases based on their semantic relationships.
Researchers have previously attempted to leverage concept
models to improve trace link generation, although most of
these techniques rely on pre-built general purpose models,
such as WordNet [20], ConceptNet [17], or BabelNet [21].

As software projects tend to include technical, domain-specific
terminologies, we need to develop and leverage domain spe-
cific concept models. In this short paper we therefore propose
an automated approach for generating domain-specific concept
models, using them to improve the accuracy of generated
trace links and also to provide explanations for both manually
and automatically generated links. The domain concept model
created in this paper includes 4 types of relationships including
synonyms, acronyms, ancestors-descendent and sibling.

Our approach starts by collecting a corpus of domain-
specific documents. We first create project-related search
queries which we use to retrieve white papers, academic
papers, and open source systems that are relevant to the
domain. We dynamically analyze the textual information and
the source code class hierarchy to create an concept model, and
then leverage this concept model to establish traceability links
. Finally, as an initial proof-of-concept study, we evaluate our
approach in the domain of Unmanned Aerial Vehicles (UAV).

The remainder of the paper is organized as follows. Section
IT describes the concept model building process. Section III
then introduces the tracing techniques that we use throughout
the remainder of the paper. These include the traditional
Vector Space Model (VSM), Phrase-based VSM (PVSM),
and finally the Generalized VSM (GVSM) which utilizes the
concept model to generate trace links. Sections IV and III
apply our approach to the UAV domain — discussing the
quality of the generated model and the application of our
approach for trace link generation and trace link explainability.
Finally, in sections VI and VII, we discuss related work, and
our conclusions which lay out the prominent future research
challenge.

II. AUTOMATED CONCEPT MODEL CONSTRUCTION

To generate a domain-specific concept model we follow the
three steps of (1) domain repository mining, (2) concept detec-
tion, and finally (3) hierarchical concept model construction.

A. Domain Repository Mining

An initial search for domain-specific document corpus is
seeded with a set of relevant search queries. When sufficient
domain expertise is available, the search queries can be created
manually; otherwise a snowballing technique can be exploited
[28] in which a small number of initial search terms are used to
retrieve an initial set of results, and then commonly occurring
domain-specific phrases are identified and utilized to seed
further search queries [13]. Domain documents include online

materials such as white-papers, product descriptions, training
materials, academic literature, and OSS project repositories.

B. Concept Detection

We use AutoPhrase [26], a tool that was developed to
automatically extract concepts from general knowledge bases
(KB) such as Wikipedia. AutoPhrase uses a concept known as
distance training and part-of-speech (POS) tag-guided phrasal
segmentation, to extract phrases and then to evaluate their
quality. It leverages phrases found in titles, keywords, and
internal hyperlinks as training examples for finding additional
phrases. The approach has been shown to produce relatively
high quality phrases that are representative of the domain
under analysis. A complete description is provided in [26].
We also leverage the Stanford Parser [9] to produce POS
(Part-of-Speech) tag annotations and to identify Universal
Dependencies (UD) [23] within each sentence. From these,
we extract noun phrases by identifying tokens which are
bounded through the compound relationship and annotated
with NN (Noun-Noun) POS tags. Unlike AutoPhrase, this
approach uses the Stanford Parser’s pre-built language model
and therefore requires no project-specific training. Whereas
AutoPhrase is well suited to extract concepts from complete
sentences found in requirements and other textual artifacts, the
Universal Dependency based approach is able to identify noun
phrases from short and grammatically incomplete sentences
such as code comments, itemized lists, and web pages.

C. Hierarchical concept model construction

Finally, we leverage HiGrowth [30] to identify synonyms,
acronyms, siblings, and ancestor-descendant (i.e., whole-part,
or is-a) relations. Each of these relations indicates a specific
type of node structure in the concept hierarchy. HiGrowth
uses textual pattern mining to extract tuples. For example,
from the sentence “... [classification] methods such as [SVM],
[Decision Trees]...” it infers that (1) “classification” is an
ancestor of “SVM” and “Decision Trees”, that (2) “SVM”
and “Decision Trees” are siblings, and (3) the context is
“methods”. It also infers the parent-child relations from the
set of synonyms, siblings, and ancestor relations, and finally
addresses conflicts and redundancies by carefully maintaining
structure when adding new relations into the hierarchy. This
approach has been demonstrated to be effective in other
domains, and we therefore investigate its effectiveness in the
Software Engineering domain. In addition to the established
technique we also leverage the internal structure of OO source
code to extract hierarchical relationships specified as super-
classes or interfaces associated with a sub- or concrete class.
Furthermore, we infer additional ancestor relationships from
declaration statements — for example a variable name used
to name an object of a class, could suggest a child relation-
ship (e.g. ILogger LOGGER and JSONMissionPlanReader-
jsonReader).

III. TRACE LINK GENERATION USING CONCEPT MODEL

There are many different information retrieval techniques
for generating trace links; however, the Vector Space Model

Algorithm 1: isRelated function

Input: #;: concept in source artifact
to: concept in target artifact
G ontology network as a directed graph
n: threshold for concept lexical similarity
7: maximal path length
Output: R: relevance of input concepts
R+ 0;
G < G only keep synonyms and child edges;
if stem(t1) == stem(ty) then
‘ R+ 1;
else
node; < fuzz_match(G.nodes, t1, 1);
nodes <— fuzz_match(G.nodes, t2, 1);
path < Dijkstra(node;, nodes);
if exist(path) AND len(path) < 7 then
end| R« I;
return R

N-JE-L RN - Y N

-
5B

(VSM) [25] is simple and also effective. Software artifact
document is preprocessed through tokenizing every sentence,
removing stop words, splitting complex terms, and stemming
the terms into their morphological roots. The VSM model
represents artifacts as a vector of term weights. These weights
are determined using a standard term frequency-inverse doc-

ument frequency (T'F — IDF’) [14] to produce a vector d =
(w1,d; Wa,d, --., Wn,q), Where w; 4 is the term weight for the -
th term in document d. The similarity between two documents,
d; and ds, is computed as follows:

(Z;ﬂ Wi, dy Wi,do)

(VZiwty, - /Tiwt,,)

The VSM-nGram model is similar to VSM, except that it
represents document as a vector of n-gram weights, where an
n-gram is a sequence of n words in the document. The use of
fixed-length n-grams provides little flexibility to take various
lengthed phrases into consideration. Mao et al.. therefore
proposed a phrase-based VSM (PVSM) that replaces n-grams
with multi-length phrases.

An intrinsic limitation of VSM and PVSM is that terms
and phrases only contribute to the similarity score if they
appear in both source and target artifacts; while seman-
tically similar concepts such as synonyms, acronyms and
ancestors-descendants are not considered. Generalized-VSM
(GVSM) [29] addresses this limitation by forming connecting
semantically-related concepts.

Using the same underlying vector representation as VSM,
GVSM performs pairwise matching between each concept
in the source and target artifacts. It uses an algorithm,
isRelated(t; a, ,t;.4,), that we introduce to determine whether
two concepts in d; and ds are semantically related or not. The
similarity formula for GVSM can be therefore represented as
follows:

S’L'Tn(d17 d2) =

()]

D0 20T Wiy Wi, - isRelated(tia, , tya,)

VET w5 0,

sim(dl, d2) = (2)

Given a concept model, isRelated() leverages paths be-
tween two concepts to evaluate their relevance. In this proof-
of-concept study, we implement isRelated() as a binary func-
tion, which returns 1 if a valid path is found and O otherwise.
The pseudo code of the isRelated() function is shown in
algorithm 1. Based on initial experimentation, we remove all
links from the network except for synonyms, acronyms, and
ancestor-descendants (line 2). We then utilize fuzzy matching
to search for all unique, non-redundant paths that connect
nodes between concepts ¢; and to and use a shortest path
algorithm to identify the best one. We consider two concepts
to be related if they are connected via a path of length less
than 7. We use fuzzy matching with the aim of normalizing
the Levenshtein Distance [16] between a concept in the artifact
and a node in the concept model, to increasing the number
of matches. This is especially important for smaller concept
networks, which is the case in most software project domains.
However, it introduces the risk of incorrect matches between
artifact concepts and ontology nodes. We therefore apply a
threshold 7, such that when n = 1, it matches concepts and
nodes with identical text, and when 1 = 0, it randomly match
concepts to nodes. We configured our system with n = 0.95.

IV. BUILDING A CONCEPT MODEL: A DOMAIN
APPLICATION

To evaluate the efficacy of our approach, we applied it to
the domain of Unmanned Aerial Vehicles (UAV). We selected
this domain due to the the availability of project artifacts [6],
the abundance of documents describing UAV systems, and
the availability of several OSS UAV projects. We address two
specific research questions about the quality and nature of the
generated concept model.

« RQ1: Which types of document are most useful for retriev-
ing concepts?
« RQ2: What types of concepts are retrieved?

A. Creating a UAV Domain Repository

We built a repository of domain-related terms using text
retrieved from websites, OSS, and academic papers.
o Websites: We seeded our search with the query terms
shown in Table I and implemented a screen scraper using
GoogleScraper [12] and other libraries. We retrieved 37,006

TABLE I: Search Terms for Constructing Domain Repository

FAA Small UAVs
Middleware

Runtime monitoring
Control Software
Drone Simulation
Drone Swarm
Dronekit Python
Messaging system
Publish Subscribe
Software Architecture

Unmanned-Aerial Vehicles
Unmanned-Aerial Systems
Pixhawk

Drone Collision Avoidance
Drone Coordination

Drone Traffic Management
Intelligent Drone systems
MavLink

Small Unmanned Aerial Systems
UAYV Ground Control Station

TABLE II: OSS Projects used in the construction of the UAV
domain ontology

Project |Description Pkg
Ardupilot |OS autopilot for multicopters, planes, rovers,..... 240
Dronecode|Flight-controller, autopilot, ground control station | 53
Dronekit |SDK and web API for drone applications 22
Libre Pilot|Multicopter control and other RC-models 505
MavLink |message-marshalling library for UAVs — 23
MavProxy |Ground control station for UAVs 16
Msn Plan. |Ground station for ArduPilot 366
OpenDrongCommand line aerial image procs. 15
Paparazzi |Hardware & Soft. for multirotors and fixed wings. |290
pPX4 Autopilot hardware for UAVs 376
QGrnd Flight control & mission planning 105
Ctrl

distinct URL links; however, we limited response time to 10
seconds, and as a result retrieved 8364 html files, from which
we extracted plain text using a java parser.

e Open-Source Repositories: We included ten OSS for UAVs
that were described in a blog [3] and listed in Table II.
We downloaded all available source code and documentation
from each of these OSS, then extracted comments and textual
descriptions. We did not use the raw source code to build the
concept model although this will be included in future work.
e Academic Papers: Based on some initial trial queries,
we used the query terms “drone | unmanned aerial | UAV”
to search for papers against the XML metadata of the DBLP
[7] repository. We retrieved 1,661 papers (dated from 1997 —
2019). Of these, 154, were excluded for one of the following
reasons: (1) the publication was not available as a pdf, (2) the
paper was not written in English, (3) the paper was a duplicate
of an already included paper. This produced 1, 507 papers.

B. UAV Concept Model

Applying the AutoPhrase and HiGrowth algorithms against
the UAV repository produced a total of 3,847 concepts, orga-
nized into 3,024 associations.

C. Source of Concepts

To answer RQ1 “Which types of document are most useful
for retrieving concepts?” we analyzed the contributing source
of each concept, and visualized this in Fig. 1. We observe
that the vast majority of terms were uniquely derived from
academic papers (61.8%), a significant number (21.0%) from
the OSS, and an unexpectedly low fraction (5.6%) from
documents retrieved from the web. An analysis of these results
showed that the terms retrieved from the web tended to be
high-level terms and phrases, and somewhat redundant across
websites. In addition we observed that many terms derived
from websites described specific applications, for example,
the term ‘forrest canopies’ was discovered from websites
describing the use of UAVs to map deforrestation.

D. Type of Concepts

To address RQ2 we examined the concepts and relationships
in the generated concept model, and summarize their occur-
rence as shown in Table. III. A total of 7,895 concepts were

Academic Papers

Web Search

>
<

Source Code

Fig. 1: Source of unique concept tokens used to build the
concept model

discovered and 10,182 relationships were identified. Of these,
4,699 represented synonyms, 2,856 acronym, 784 ancestors,
and 1,843 siblings. As shown, the majority of discovered re-
lationships represented synonyms. It is also interesting to note
that many synonymic relations that are particularly important
for traceability purposes (e.g., GCS = Ground Control Station,
UAV = Unmanned Aerial Vehicle) are not specified in general
purpose thesauri such as WordNet.

TABLE III: Concepts and Relationships in UAV Ontology

Concents Relationships
Pt Synonym Acronym Ancestor Sibling
7,895 4,699 2,856 784 1,843

V. EVALUATING CONCEPT MODELS FOR TRACEABILITY

We evaluated the utility of the generated concept model
for improving the accuracy of trace link generation and for
explaining traceablity links through addressing the following
research questions:

e RQ3: To what extent does the generated concept model
overlap with artifact concepts in the targeted project?

« RQ4: Does the use of the generated concept model improve
the accuracy of trace link generation?

e RQS5: Does the use of the generated concept model help
explain traceability links?

A. Dronology System

We utilized artifacts from a UAV system that was not
included in the construction of the domain concept model.
The Dronology system [6] manages and coordinates the flights
of semi-autonomous unmanned aerial vehicles (UAVs) for
use in emergency response scenarios, and several datasets
of artifacts including trace links are publicly available. We
experimentally evaluated the use of our concept model for
generating trace links between 151 Java Classes (SC) and
208 Design Definitions (DD). These artifacts create a search
space of 31,408 candidate links, with 893 (2.84%) true links,
provided by the Dronology developers, which served as ground
truth.

Dronology Dronology

UAV Concept Model UAV Concept Model

(a) Overlap through direct match (b) Overlap through fuzz match

Fig. 2: Concept overlap for Dronology artifacts and UAV
concept model

B. Concept Overlap

We address RQ3 by measuring the overlap of concepts
between Dronology artifacts and the generated UAV concept
model (i.e., those concepts that appear in the concept model
and in the artifacts). We apply the same phrase extraction
techniques described in Sec. II-B to the Dronology artifacts,
and report overlap results in the Venn diagram depicted in Fig.
2. Part (a) of this figure shows that using direct string matching
without any fuzzing resulted in concept overlap of only 407
concepts, representing only 5.16% of the total 7,895 concepts
in concept model. However, when we use fuzzy matching with
a threshold of n = 0.95, the match rate increased to 22.1%
percent representing 1,750 matched concepts.

C. Improvement in Tracing Accuracy

To address RQ4, we generated trace links from Source
Code to Design Definitions using VSM, PVSM, and GVSM
as described in Sec. III. In addition, we combined GVSM with
an enhanced preprocessor to create a GVSM+ model. GVSM+
includes both phrases and tokens within those phrases to for-
mulate its vocabulary, while GVSM only includes phrases. Our
rationale for taking this integrated approach is that GVSM+ is
more robust in cases where specific phrases are missing from
our concept model, and can compensate through the use of
token-level matching as performed by VSM.

We report results using the commonly adopted metrics of
F1, F2 (the harmonic mean of recall and precision), and
MAP (mean average precision) [1]. Results are reported in
Table. IV and show that GVSM outperformed both VSM
and PVSM. PVSM returned the lowest score because direct
phrase matching in VSM is less efficient than token-level
matching. GVSM outperformed VSM from the perspective of
both F measures and MAP, indicating that the use of a concept
model can effectively support trace link generation and achieve
higher link quality. By comparing GVSM+ and GVSM, we
observed that GVSM suffered from the low-concept-coverage

TABLE 1V: Evaluation of PVSM, VSM, GVSM+ and GVSM

Model F1 F2 MAP
PVSM 0.115 0.183 0.145
VSM 0.196 0.250 0.210
GVSM 0220 0.272 0.237
GVSM+ 0.253 0.311 0.286

| Dronology:\ > | ReadDispatcher.java \ 0)

/** Threat handling incoming messages from a GCS, <

* The {@link ReadDispatcher} can handle json messag| | Sanid

Ground syw I
Station 1 Control Station

a | SYN = Synonym | ‘ ANC = Ancestor | ‘ SIB = Sibling
Ground 1

'
! Link Type: Manual Score: 1.0

@

transformed into UAV Messages (extending {@/ink Ab. ®| Ground Station ID I

{ GCS

by the {@link UAVMessageFactory). =%/

} catch (SocketException sex) { @
LOGGER:.error("Socket Exception groundstation " +
dispatchQueueManager.getGroundstationid() ®
+ " disconnected - shutting down connection -- Error: " +
sex.getMessage());
dispatchQueueManager.tearDown();

\{When a SOCket eITOor o time-out occurs, all UAVs associated

)
shall be deactivated.

wnGCS

cont.set(false);

}

else if (message instanceof UAVHandshakeMessage) {

Artifact ID: DD-716 Link Type: Manual Score: 1.0

In step three, the GCS announces its current set of recognized UAVSs to the ...

LOGGER:.hwInfo(FormatUtil.formatTimestamp(message.getTimestamp(),

Artifact ID: DD-716 Link Type: VSM Score: 0.84

FormatUtiLFORMAT YEAR_FIRST MILLIS) + " - " + message.toString());

While the log level HW TRACE s active each state and monitoring ...

Fig. 3: Prototype GUI for explaining trace links.

issue; however, complementing it with token-level matching
alleviated the problem and improved tracing performance.

D. Explaining Tracing Results

In this paper, we provide a preliminary discussion of how
our approach could address RQS5. As a full user study was
out of scope of this RE@Next! paper, we illustrate the way
in which the UAV concept model and GVSM+ can be used
to explain why two artifacts are connected via a traceability
link. Fig. 3 depicts a design definition that is traced to a
source code file. The code panel on the left displays the source
code, while the artifact panel on the right hand side lists all
potentially related design definitions. A user could click on a
design definition to visualize the reason that the trace link
was established. In both the Source Code and the Design
Definition, the concepts recognized as semantically related
are underscored with a common color (e.g. socket error and
socket exception under underlined in ‘yellow’. Furthermore,
the terms are enlarged according to their idf (inverse document
frequency) weights to reflect their contribution to the similarity
score. By clicking on a concept, for example “GCS” as shown
in the figure, we first highlight “ground control station” and
“ground station” as related concepts, then display a rationale
explaining why the GCS is related to these two concepts. This
reasoning path is generated as a side product of isRelated()
function, and in this case, it leverages specific parent-child
associations derived from mining the source code.

VI. RELATED WORK

In the context of IR, a thesaurus is a form of controlled
vocabulary capturing the semantic relevance between pairs
of terms. Several researchers have explored the use of a
thesaurus for integrating semantics into software traceability.
For example, Hayes et al.. showed that combining VSM
with a manually created domain thesaurus could effectively
improve tracing performance [15]. Tsatsaronis et al.. utilized

a pre-built general-purpose thesaurus (e.g. WordNet) [27] to
reduce manual efforts. In both cases the thesaurus was used
as a dictionary providing the similarity coefficient between
synonyms, and VSM integrated these as weightings in its
similarity score computation. These approaches are limited in
two primary ways: (1) manual effort is required to construct
a domain specific thesaurus thus the thesaurus vocabulary
is greatly constrained, (2) a general-purpose thesaurus based
on WordNet lacks important terminology of many software
engineering domains. Our method addresses these issues by
automatically mining concept relationships from a domain
corpus and OSS projects.

Mahmoud et al.. then compared these thesaurus-based ap-
proaches against other Semantic-augmented traceability meth-
ods such as Dirichlet Allocation (LDA), Latent Semantic
Indexing (LSI), Explicit Semantic Analysis (ESA), and Nor-
malized Google Distance [19], and showed that the thesaurus-
based techniques outperformed other semantic augmented
methods. However, they also reported that plain VSM achieved
better MAP than thesaurus-based approaches across all three
of their datasets. This supports prior findings show that VSM
tends to outperform LDA and LSA [18]. We therefore adopted
VSM as a baseline for our proof-of-concept experiments. In
contrast to thesaurus-based approaches, our method integrates
a relationship inference mechanism to find concept relevance
through both “ancestor” and “synonym” relationships, while
our use of GVSM+ alleviates problems caused by incomplete
relationships. Since GVSM+ outperforms VSM with both
MAP and F scores, it is likely to also outperform thesaurus-
based techniques. A direct comparison between these two
types of methods will be conducted as future work.

There are several studies investigating automated concept
model construction. According to Toader ef al., concept model
construction techniques can be categorized into structural
techniques and contextual techniques [11]. The first approach
relies on lexical relevance among concepts while the latter

analyzes the syntactic dependencies between a concept and its
surrounding phrases. The HighGrowth model we use in this
study belongs to the second category as it leverages patterns
for relation discovery. Compared with structural techniques
(e.g. Anh et al. [2]), Highgrowth tends to create concept
models with higher precision and lower recall. Compared
with other contextual techniques such as Poincaré Embeddings
[22], On2Vec [4], and simple pattern matching, HighGrowth
arranges relationships into a concept network structure, and
performs a postprocessing step to reconcile inconsistencies.
This further improves model precision.

We favor a concept model with high precision of generated
relations in order to reduce the problem of errors propagated
across relationship inferencing by the isRelated() function.

VII. CONCLUSION

This study represents an application of rich semantic analy-
sis techniques to software traceability. Our approach leverages
repository mining to build a domain corpus and uses an unsu-
pervised approach for concept model construction. Although,
our best results obtained using GVSM+ fall short of our goal
of highly accurate traceability, they serve as a proof-of-concept
that current state-of-the-art solutions based on concept mod-
eling and the traceability algorithms that leverage semantic
networks can improve the accuracy of traceability links. VSM
and GVSM+ are ndive models leveraging only contextual
information during link generation, extra information could
be leveraged along with feature based ML models such as
Maxent, Random Forest, and Neural Networks to improve link
quality. For example, Rath et al. combined VSM with features
such as temporal relations, stakeholder-related information,
and link relevance information to achieve high degrees of trace
accuracy [24]. Replacing VSM with GVSM+ in their model
could potentially lead to further improvements in accuracy.

ACKNOWLEDGMENTS

This project has been funded by the US National Science
Foundation Grants (CCF-1741781, CCF-1649448, and CCF-
1513717) and Austrian Science Fund (FWF) (J3998-N319).

REFERENCES

[1] Mean average precision. In L. Liu and M. T. Ozsu, editors, Encyclopedia
of Database Systems, page 1703. Springer US, 2009.

[2] T. Anh, J.-J. Kim, and S. Ng. Taxonomy construction using syntactic
contextual evidence. pages 810-819, 01 2014.

[3] J. Baker. 8 open source drone projects, URL:
https://opensource.com/article/18/2/drone-projects.
[4] M. Chen, Y. Tian, X. Chen, Z. Xue, and C. Zaniolo. On2vec:

Embedding-based relation prediction for ontology population. In Pro-
ceedings of the 2018 SIAM International Conference on Data Mining,
pages 315-323. SIAM, 2018.

[5] J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Méder, and A. Zisman.
Software traceability: trends and future directions. In Proc. of the on
Future of Software Engineering, pages 55-69, 2014.

[6] J. Cleland-Huang, M. Vierhauser, and S. Bayley. Dronology: an
incubator for cyber-physical systems research. In International Conf. on
Software Engineering: New Ideas and Emerging Results, ICSE (NIER)
2018, Gothenburg, Sweden, 2018, pages 109-112, 2018.

[7] dblp. dblp computer science bibliography. https://dblp.org, 2019.

[8] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhancing an artefact
management system with traceability recovery features. In International
Conference on Software Maintenance (ICSM), pages 306-315, 2004.

[9] M.-C. De Marneffe and C. D. Manning. Stanford typed dependencies
manual. Technical report, Technical report, Stanford University, 2008.

[10] A. Dekhtyar, J. Huffman Hayes, S. K. Sundaram, E. A. Holbrook, and
O. Dekhtyar. Technique integration for requirements assessment. In /5th
IEEE International Requirements Engineering Conference (RE), pages
141-150, 2007.

[11] T. Gherasim, M. Harzallah, G. Berio, and P. Kuntz. Methods and Tools
for Automatic Construction of Ontologies from Textual Resources: A
Framework for Comparison and Its Application, volume 471, pages 177—
201. 01 2013.

[12] GoogleScraper. https://github.com/NikolaiT/GoogleScraper, 2019.

[13] J. Guo, M. Gibiec, and J. Cleland-Huang. Tackling the term-mismatch
problem in automated trace retrieval. Empirical Software Engineering,
22(3):1103-1142, 2017.

[14] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. Advancing candidate
link generation for requirements tracing: The study of methods. IEEE
Transactions on Software Engineering, 32(1):4, 2006.

[15] J. Huffman Hayes, A. Dekhtyar, and S. K. Sundaram. Advancing can-
didate link generation for requirements tracing: The study of methods.
IEEE Transactions on Software Engineering, 32(1):4-19, 2006.

[16] V. L. Levenshtein. Binary codes capable of correcting deletions, in-
sertions, and reversals. In Soviet physics doklady, volume 10, pages
707-710, 1966.

[17] H. Liu and P. Singh. Conceptnet—a practical commonsense reasoning
tool-kit. BT technology journal, 22(4):211-226, 2004.

[18] S. Lohar, S. Amornborvornwong, A. Zisman, and J. Cleland-Huang.
Improving trace accuracy through data-driven configuration and com-
position of tracing features. In 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), pages 378-388, 2013.

[19] A. Mahmoud and N. Niu. On the role of semantics in automated
requirements tracing. Requirements Engineering, 20(3):281-300, 2015.

[20] G. A. Miller. WORDNET: a lexical database for english. In Speech and
Natural Language: Proceedings of a Workshop Held at Harriman, New
York, USA, February 23-26, 1992. Morgan Kaufmann, 1992.

[21] R. Navigli and S. P. Ponzetto. Babelnet: Building a very large
multilingual semantic network. In Proceedings of the 48th annual
meeting of the association for computational linguistics, pages 216-225.
Association for Computational Linguistics, 2010.

[22] M. Nickel and D. Kiela. Poincaré embeddings for learning hierarchical
representations. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page 6341-6350, Red
Hook, NY, USA, 2017. Curran Associates Inc.

[23] J. Nivre, M.-C. De Marneffe, F. Ginter, et al. Universal dependencies v1:
A multilingual treebank collection. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evaluation (LREC’16),
pages 1659-1666, 2016.

[24] M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-Huang, and P. Mider.
Traceability in the wild: Automatically augmenting incomplete trace
links. ICSE ’18. Association for Computing Machinery, 2018.

[25] G. Salton, A. Wong, and C. Yang. A vector space model for automatic
indexing. Commun. ACM, 18(11):613-620, 1975.

[26] J. Shang, J. Liu, M. Jiang, X. Ren, C. R. Voss, and J. Han. Automated
phrase mining from massive text corpora. IEEE Trans. Knowl. Data
Eng., 30(10):1825-1837, 2018.

[27] G. Tsatsaronis, I. Varlamis, and M. Vazirgiannis. Text relatedness based
on a word thesaurus. Journal of Artificial Intelligence Research, 37:1—
39, 2010.

[28] K. Wnuk and T. Garrepalli. Knowledge management in software testing:
A systematic snowball literature review. e-Informatica, 2018.

[29] S. M. Wong, W. Ziarko, and P. C. Wong. Generalized vector spaces
model in information retrieval. In Proceedings of the 8th annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 18-25, 1985.

[30] Q. Zeng, M. Yu, W. Yu, J. Xiong, Y. Shi, and M. Jiang. Faceted
hierarchy: A new graph type to organize scientific concepts and a
construction method. In Proceedings of the Thirteenth Workshop on
Graph-Based Methods for Natural Language Processing (TextGraphs-
13), pages 140-150, 2019.

