Practical Persistence Reasoning in Visual SLAM

Zakieh Hashemifar® and Karthik Dantu®

Abstract—Many existing SLAM approaches rely on the as-
sumption of static environments for accurate performance.
However, several robot applications require them to traverse
repeatedly in semi-static or dynamic environments. There has
been some recent research interest in designing persistence filters
to reason about persistence in such scenarios. Our goal in this
work is to incorporate such persistence reasoning in visual
SLAM. To this end, we incorporate persistence filters [1] into
ORB-SLAM, a well-known visual SLAM algorithm. We observe
that the simple integration of their proposal results in inefficient
persistence reasoning. Through a series of modifications, we
improve this persistence filtering. Using two locally collected
datasets, we demonstrate the utility of such persistence filtering as
well as our customizations in ORB-SLAM. Overall, incorporating
persistence filtering could result in a significant reduction in map
size (about 30% in the best case) and a corresponding reduction
in run-time while retaining similar accuracy to methods that use

much larger maps. |y rponUCTION

Advances in hardware, software and sensing have resulted
in the development of robots capable of executing service
applications such as floor cleaning [2], telecommuting [3], and
item delivery in public spaces [4]. Many such applications
involve repeated traversals in the same urban environment.
Simultaneous Localization and Mapping (SLAM) is an ex-
tensively researched topic used for robot navigation in such
environments. However most existing approaches either rely
on the assumption of a static environment or handle particular
type of dynamic objects, leading to a poor and inaccurate
performance in dynamic settings.

There are two types of dynamics possible within a scene -
(1) Dynamic: Dynamics in a short timescale that occur during
a single robot traversal such as moving cars and people, (ii)
Semi-Static: Dynamics across longer timescales that can only
be detected across multiple visits to the same location such
as chairs that have been moved. The main difference between
these categories is the possibility of direct observation. The
first category could get filtered by the SLAM front-end while
the second one requires reasoning over multiple visits to
update the map.

Our goal is to improve visual SLAM operation in semi-static
environments. [1] is a recent work that models persistence in
such environments. This approach neither ignores infrequent
moving objects nor requires any training. Unfortunately, there
is no practical implementation of their persistence filter in
visual SLAM algorithms.

Our goal is to attain efficient persistence filtering in visual
SLAM. To this end, we modify ORB-SLAM?2 [5], a repre-
sentative visual SLAM algorithm, to incorporate persistence.
The estimated persistence probabilities are used to evaluate
the continued availability of individual features. Each ver-
ified re-observation or missed detection is used to update
the persistence filters. Through this implementation as well

as its evaluation, we make the following contributions: (i)
We modify ORB-SLAM to incorporate a persistence filter.
Using empirical observations, we make several modifications
to adapt the persistence filter to visual SLAM, (ii) Using
two datasets collected across six separate traversals each, we
quantify benefits of such persistence in a realistic setting, (iii)
We also validate our implementation on a publicly available
dataset [6], (vi) We have open-sourced our customization of
ORB-SLAM [7].
II. RELATED WORK

Some approaches try to achieve robustness in dynamic
environments by separating dynamic segments from static
background. [8] constructs two distinct maps for static and
dynamic segments and does localization on the static map. [9]
proposes an approach to detect moving objects either by multi-
view geometry or deep learning and only uses the features
from static part of the map. [10], [11] assign a Hidden Markov
Model to each cell of a grid map for occupancy and state
transition probability estimation. [12] assume the observed
dynamics is caused by hidden processes which are periodic
and identified by the Fourier Transform. These approaches
are designed for either modeling or removing more frequent
dynamics while we are focused on semi-static environments.

Some approaches evaluate the persistence of features in
order to retain the long term features in the map. [13] defines
the concept of short term and long term memories. The
features are transferred from STM to LTM after multiple re-
observations and used for global localization. [1] and [14] as-
sign a persistence filter to each feature in order to calculate the
persistence probability at any time step using recursive Bayes
estimation and based on survival analysis. The features with a
low persistence probability are discarded from map. However,
these works concentrate on the design of the persistence filter,
and do experiments using simulated data or assuming perfect
knowledge of data associations. In [6], authors propose a static
weighting method for edge points in order to estimate their
probability of belonging to static objects.

Furthermore, scoring features and landmarks based on dif-
ferent criteria is another technique for dynamic environment
settings. [15] evaluates the utility of features employing the
salience, probability of re-observation, and relevance for lo-
calization. [16] uses a scoring function based on number
of observations or covariance of landmark position and a
sampling method for sparsification of the map. [17] analyzes
different parameters based on observability and distribution of
landmarks for calculating relevance score. In [18], scoring is
done based on the times that a landmark has been observed.
Unlike our approach, they require an offline map maintenance
and summarization phase.

Td MapPoints

Track Observations

hitial Pose Estimation
Track New KeyFrame
ORB | from lastframe or (|| .coymap || Decision

v
Map Injtializati

PLACE
RECOGNITION

|

MapPoints
o KeyFrame
Insertion

Recent

0}
i

? dVIN VOO0

Recognition
Database
Update

Covisibility

E’lll'
Graph ulling

tence
Filters
Creation

New Poin!
Creation|

1

Spanning
Tree

Local BA

Track Observations

|| KeyFrames
Culling

__Loop Detection

LopaCamasion
Track Observations
Optil
" Loop Compute
EZS,;‘,‘,""' Fusion sim3

LOOP CLOSING

Candidates
Detection |]

Fig. 1: ORB-SLAM [5] with changes for persistence (red).

Learning unique and practical features is another way of
dealing with environmental changes. [19] employ a CNN
classifier based on image patches and depth map for selecting
map features that are persistent over time. In [20], they learn
regressors for detecting reliable keypoints which are resis-
tant to weather and lightening conditions. These approaches
employ different criteria for selection of the best landmarks
in dynamic settings. They put the localization and mapping
output to use for utility estimation of landmarks. However, as
far as we can tell, none of them employ the estimated scores
to optimize the localization and mapping in any way other
than map sparsification.

ITI. PERSISTENCE IN VISUAL SLAM
A. Background on ORB-SLAM and Persistence

1) ORB-SLAM: ORB-SLAM [5] is a state-of-the-art graph-
based visual SLAM algorithm where nodes correspond to
RGB-D frames and edges correspond to 3D visual transforma-
tions. ORB-SLAM labels frames as keyframes if it has a low
number of common map points with the previous keyframes.
The algorithm runs as three separate modules - Tracking, Local
Mapping and Loop Closing. Tracking module provides the first
estimation of camera’s position using available map points
in the current frame. Local Mapping and Loop Closing use
keyframes to refine localization and to detect loop closures.
Also, there is a Keyframe Culling function within Local Map-
ping which removes keyframes with too few unique observable
map points. Figure 1 shows the block diagram of ORB-SLAM
along with our changes for incorporating persistence in red.

2) Persistence Filter: [1] proposes an on-line approach
to estimate the persistence probability of features within the
map and models their temporal evolution of environment. They
employ survival analysis and provide a probabilistic generative
model for persistence estimation which admits to a recursive
Bayesian behavior. Their closed form solution for evaluating
the posterior persistence of each individual feature at each time
step is as follows:

P(CLn|T > (T > 1)
p(<1:N)

where X, represents the current availability state of the
feature, (1.y C {0, 1}N are its corresponding noisy obser-

p(Xe = 1[Cin) = (D

vations (true/false) over time and 7 is the survival time. This
work presents a couple of survival time priors based on the
knowledge of the feature’s activity pattern. Upon having no
such information, general purpose priors are introduced which
encode maximum entropy through exponential distribution.

pr(0)= [om0
" 2)
pr(t;) = Af(At)
f(x)=e™*
where Pp is the probability density function for a prior

distribution over the survival time 7. Interested readers are
referred to [1] for more details.

B. ORB-SLAM for Semi-Static Environments

1) Persistence in ORB-SLAM: We provide a practical im-
plementation of ORB-SLAM for long term operation in semi-
static environments. For this, we use a persistence filter
to evaluate the persistence of map points and remove the
ones that are no longer visible. We used implementation of
persistence estimation from [1] with general purpose survival
prior [21] as there is no information about the activity pattern
of features. In order to accurately incorporate persistence filter
into ORB-SLAM, we have to track observations of map points
and propagate the impact of map point removals throughout
the algorithm.

Persistence Filter Creation: Whenever a map point is
created, a persistence filter is initiated and assigned to it. Upon
arrival of every new frame, the persistence probability of all
the map points is reviewed for current time stamp and any map
point with a probability under a certain threshold is removed.
In order to update the persistence filters, we have to track the
observations of corresponding map points.

Track Observations: For tracking observations, we have to
go through all modules of ORB-SLAM as shown in Fig. 1.
Whenever a decision is made about accepting or rejecting
a candidate keypoint match for a map point in the current
frame/keyframe, we update the correspondent persistence fil-
ter. As discussed, ¢1.x C {0, 1}N in Eq. 1 represents the noisy
observations of corresponding feature. One main challenge for
using persistence filter in ORB-SLAM is deciding whether
we should assign hit (1) or missed (0) observations to map
points. In ORB-SLAM, upon receiving each new visual frame
and at different modules, the map points in the spatial locality
of current position which are expected to be in the field of
view, are projected on the current frame. For each projected
map point, a specific neighborhood radius is defined based on
the scale invariance region of the point. The ORB keypoints
in the respective neighborhood radius are inspected and the
one with matching scale level and least descriptor distance
is considered a potential match. The final decision about
observed map points are made in further optimizations. Prior
work on persistence suggests that any map point with no match
in this process should be assigned a missed observation and
hit otherwise. But from our empirical experimentation, this
approach wrongly removes many persistent map points and

decreases the localization capability of ORB-SLAM. These
details are shown in Section IV.

We observed that the reason for not finding a match for
a persistent map point are threefold, 1) Unavailability of ex-
pected ORB keypoints in the current frame due to randomness
of ORB features, distance between current position and map
point position or occlusion, 2) Unexpected higher descriptor
distance due to sensitivity of feature descriptors to distance
and orientation and 3) Unexpected difference in scale level of
corresponding keypoints.

Map Points Removal: If we decide to remove a map point
due to low persistence probability, we have to update other
required elements relating to that map point. Each map point
has an analogous keypoint in the keyframes which observe
it and each keypoint contributes to a visual word. Visual
words are used by loop detection thread through a visual
word dictionary (Recognition Database in Fig. 1). When we
remove a map point, we set the corresponding keypoint to
unavailable and update the Recognition Database accordingly
to avoid picking wrong candidates for loop closure.

2) Persistence+Dist in ORB-SLAM: In order to resolve
the issue of missed matches for persistent map points, we
add the following criteria to identify missed observations. 1)
Since each map point has a reference keyframe represent-
ing the agent’s position when it was initially created, the
distance and orientation difference between the position of
reference keyframe and current position should be bounded.
The intuition behind these constraints are the sensitivity of
keypoint extraction and descriptor calculation to distance and
orientation upon observation, 2) Since we have access to depth
information of each keypoint, the average received depth value
correspondent to pixel locality of projected map point should
be in accordance to expected depth for discarding occlusions.

3) Persistent-SLAM: The persistence filter approach re-
quires the current mapping and feature associations to con-
struct the (3. vector and to estimate the persistence of map
points. Our observation is that this need not be one-sided i.e.,
the mapping process helping the estimation of persistence. We
envision techniques that allow the persistence estimation to
help the mapping. If a map point is expected to be in the field
of view and its persistence probability is high, we do a finer
search to find a matching keypoint in the current frame. If there
is any keypoint within a few pixels of projected map point
with acceptable descriptor distance, we accept it as a match
disregarding any scale level difference. It should be noted that
we restrict our search to highly persistent map points to avoid
potential mis-matches and extra computation overhead.

IV. EVALUATION

In this section, we evaluate the incorporated changes into
ORB-SLAM algorithm in different steps. We provide results
for four different versions of ORB-SLAM:

Vanilla : ORB-SLAM algorithm with no change.
Persistence : Adding persistence filter defined in [1] to each
map point and assigning observations to them solely based on
ORB-SLAM feature matching decisions.

#KeyFrames
#KeyFrames

-
12000 32500

30000

10000 27500

25000
8000

22500

#Map Points
#Map Points

6000 20000

17500
4000
15000

16000

8000 14000

12000
6000
10000

8000
4000
6000

#Removed Points
#Removed Points

2000 4000

2000

o 1 a H o 1 a s

2 3
Video Num

2 H
Video Num

Fig. 2: Map related statistics for DronesLab (left column) and
NetworksLab (right column) across days.

Persistence+Dis : Incorporating distance, orientation and oc-
clusion constraints to persistence filtering to minimize false
removal of map points.

Persistent-SLAM : Using persistence probabilities from Per-
sistence+Dis to improve feature matching in ORB-SLAM.

A. Experimental Methodology

We collected two datasets to test the algorithms. As there
is some randomness in extracted keypoints, detected feature
matches and number of constructed keyframes, we run each
algorithm three times and average our results. We vary the
distance threshold in Persistence+Dis and Persistent-SLAM
which specifies the admissible distance for assigning missed
observations (Section III) with four values — 0.5, 1.0, 3.0
and 5.0 meters. We should notice that this parameter distance
threshold has no impact on Vanilla and Persistence approaches.

B. Datasets

We used a Turtlebot with a Kinect 360 at 30 fps with RGB
and depth images using ROS at two different locations each
day for six days.

DronesLab: This dataset is collected from a lab environment
with an occupancy of about fifteen people. The space is a
typical office space with cubicles with fixed desks, cabinets
and shelves around the lab, and about twenty chairs that
move over the course of a day. Sample images are shown
in Figure 3(left).

NetworksLab: This dataset is collected from a larger office
with two long aisles. There are many static objects scattered
uniformly in this space like fixed boards, cubicles with desks,
cabinets. There are also a couple of chairs/boxes that move

Fig. 3: Available(green) and removed(red) map points of two
example keyframes of DronesLab (left) and NetworksLab
(right) for three approaches; Persistence (top), Persistence+Dis
(middle), Persistent-SLAM (bottom)

#KeyFrames
#KeyFrames

2 3 2 H
Video Num Video Num

10000

#Map Points

#Map Points

4000

a H] 1 3 3

H 3 H 3
Video Num Video Num

s000

3000

2000

#Removed Points
#Removed Points

] 1

3 H] 1 3 H

Fig. 4: Map-related statistics in Persistence+Dis (left) and
Persistent-SLAM (right) with different distance thresholds for

DronesLab dataset over daily videos.

around over the course of a day. This space represents a less
dynamic setting than DronesLab. Sample images are shown in
Figure 3(right).

C. Experiments

1) SLAM Experiment: In this experiment, we run each
ORB-SLAM version over all videos for both datasets in order
and measure the number of keyframes and map points. Unless

410

Running Time (s)
Running Time (s)

"

H 1

1 H

2 3
Distance (m)

Fig. 5: Runtime for DronesLab (left) and NetworksLab (right)

H 3
Distance (m)

otherwise noted, most discussions are regarding map size after
running each algorithm through all datasets from Figure 2.

From Figure 2, the Vanilla algorithm keeps the most number
of keyframes (top row) and most number of map points in
the map (second row). These are direct consequences of not
removing map points. The figure also shows the increasing
number of removed map points through time in Persistence
, Persistence+Dis , and Persistent-SLAM algorithms, and a
corresponding decrease in the number of keyframes compared
to Vanilla approach. Overall, we see a decrease of about 30%
in number of map points and keyframes for the DronesLab
dataset, and about 20% in number of map points and 10%
in keyframes for the NetworksLab dataset between Vanilla
and Persistent-SLAM algorithms. We will make several, more
detailed observations that explain these results.

Our first observation is that directly incorporating a persis-
tence filter into a visual SLAM algorithm (Persistence), is
inadequate. While it removes a large number of map points
during repeated runs (Figure 2(bottom row)), it also removes
map points that are actually persistent. The same is observed
to a lesser extent when we add the distance constraints (Persis-
tence+Dis). This is visualized in Figure 3 where we highlight
retained map points (green) and removed map points (red). We
have highlighted the moved objects over the course of 6 days.
As you can see, Persistence algorithm removes most of the
map points including ones on the floor, on static objects like
cabinets and white boards along with ones on the chairs. The
Persistent-SLAM implementation (Figure 3(bottom)) retains
most static map points and only removes the ones on moved
objects such as chairs, bag, contents of trash can etc.

A second observation is that the reduction of total keyframes
created between Vanilla and Persistent-SLAM algorithms is
much smaller in the NetworksLab dataset in comparison with
the DronesLab dataset. We believe that this is from the
inherent dynamics observed in the environment. DronesLab,
with larger occupation, saw more change in the environment
through the six days in comparison to the NetworksLab.
This observation should be intuitive as well - if there was
no change in the scenes across multiple days, we should
expect our persistence filter to observe that all map points
are persistent, and not remove any of them. We believe that
this observation demonstrates that our Persistent-SLAM , is
able to correctly capture the persistent features and reflect the
dynamics accurately in the final map.

Figure 4 shows the three metrics of interest for four set-
tings of the distance parameter - .5m, lm, 2m, and 5m on
DronesLab. The left and right columns show results from

Map Size (KB) #Map Points F1 Score
Method 0.5 1 3 5 0.5 1 3 5 0.5 1 3 5
Vanilla 7063.3 70633 7063.3 7063.3 4873 4873 4873 4873 | 095 095 095 0.95
Persistence 68344 68344 68344 68344 1430 1430 1430 1430 | 0.74 074 074 0.74
Persistence+Dis | 67487 6719.5 6291.2 6899.9 | 2416.6 22453 17206 21073 | 095 091 07 0.81
Persistent-SLAM | 6026.0 62129 6295.8 6021.2 2397 1999.6 17326 17823 | 095 09 083 093

Fig. 6: Localization results for DronesLab dataset using the constructed map from first two videos

Map Size (MB) #Map Points F1 Score
Method 0.5 1 3 5 0.5 1 3 5 0.5 1 3 5
Vanilla 2192 21.92 21.92 21.92 20197 20197 20197 20197 | 0.95 0.95 095 0.95
Persistence 21.67 21.67 21.67 21.67 9319 9319 9319 9319 [075 075 075 0.75
Persistence+Dis | 21.899 21.650 21.597 21.734 | 16486 13950 13256 12644 | 098 098 096 093
Persistent-SLAM | 20.21 20.79 20.38 20.69 15810 14964 12110 12831 | 095 097 096 0.92

Fig. 7: Localization results for NetworksLab dataset using the constructed map from first two videos

the Persistence+Dis and Persistent-SLAM respectively. Since
this distance threshold specifies the maximum admissible
distance between current pose and the position of the reference
keyframe where map point was created to determine if a
map point was actually missed, larger distance thresholds
seemingly cause assignment of more missed observations
resulting in removal of a larger number of map points. Hence
the number of available map points decrease with distance
threshold. More map point removals increase keyframe re-
movals which leads to lower number of keyframes in larger
distance thresholds. Lower number of available map point
and keyframes generates lower sized maps.Persistent-SLAM
approach provides us with lower number of keyframes and
map size compared to Persistence+Dis . This is due to the finer
search for highly persistent map points which cause additional
feature matching among visual frames. Better feature matching
lowers creation of unnecessary keyframes and the map size
decreases accordingly. The map statistics of NetworksLab
for different distance thresholds follow the same pattern as
DronesLab. Larger distance thresholds increase map point
removals. But there is not much difference among the number
of keyframes for different distance thresholds which is due to
characteristics of the environment as stated before.

Figure 5 shows the cumulative running time of all ORB-
SLAM threads for all approaches and different distance
thresholds. For DronesLab, Vanilla approach owns the longest
run time and Persistence approach has the largest decrease
in processing time due to higher map point and keyframe
removals which decrease the feature matching time. However
for NetworksLab, since there are many stationary objects
distributed uniformly over the place and less dynamics, fewer
keyframe removals happen and the overhead of processing for
updating required persistence filters keeps the processing time
of all approaches on par or higher than Vanilla . The running
time of Persistent-SLAM and Persistence+Dis usually decrease
with larger distance thresholds through removing more map
points and keyframes. Persistent-SLAM saves more running
time than Persistence+Dis approach by creating less number
of keyframes and spending less time in keyframe processing.
Finally, we observe that the processing time of Sm threshold
is higher than 3m for NetworksLab unexpectedly. In environ-
ments with little dynamics, more map point removals could
increase the probability of removing persistent map points
which may lead to the construction of additional keyframes
in future visits. Our analysis shows that the number of total

1w5{ o

tet

Running Time (s)
Running Time (s)

H 3 H 3
Distance (m) Distance (m)

Fig. 8: Run time for localization for DronesLab (left) and
NetworksLab(right)

constructed keyframes in Persistence approaches is higher than
Vanilla which is not true for the DronesLab dataset.

2) Localization Experiment: In this experiment, we let
each algorithm create a map of the environment using the
first two collected videos. For the following four videos, we
prohibit addition of any map point and only do localization
as well as map point removal. This experiment is intended
to highlight a benefit of persistence, which is to capture the
relevant features but remove irrelevant ones. If our persistence
setup is working well, the localization accuracy will remain
high after several runs. We evaluate three metrics in this
experiment - Map size, number of map points and F1 score
which indicates the percentage of frames localized correctly.

Table 6 shows the localization and mapping results on
DronesLab for all methods and distance thresholds. While the
Persistence approach has the least number of map points, it has
the least F1 score. This behavior is due to incorrect removal of
many persistent map points resulting in several false negative
localizations. However, Persistent-SLAM shows accuracy close
to Vanilla with fewer number of map points (50% lesser for
0.5m distance threshold) and much higher than Persistence
approach even for larger distance thresholds. Unlike our ex-
pectation of lower F1 score for higher distance thresholds
due to larger number of map point removals, the F1 score
of Persistent-SLAM approach for distance of 5m is relatively
close to lower distance thresholds. One reason for this could
be the inherent randomness in keyframe construction. This
was the reason we ran each algorithm thrice and averaged the
results, but its effects could still be persistent. This randomness
may affect the map point removals, keyframe removals and
feature matching among frames. On finer inspection, our
results indicate that 86 frames have been successfully localized
only once in the three runs for distance threshold of Sm. This
number is 26 for distance of 0.5m. An interesting observation
is that the Persistence approach has a larger map size than

RMSE of Translational Error (m) Map Size (MB)
Dataset Method 0.5 1 3 5 0.5 1 3 5
Static Weighting [6] | 0.039 0.039 0.039 0.039 - - - -
low dynamic Vanilla 0.041 0.041 0.041 0.041 10.14 10.14 10.14 10.14
fr3/sitting-halfsphere Persistence 0.039 0.039 0039 0.039 5.0 5.0 5.0 5.0
Persistence+Dis 0.02 0.019 0.019 0.019 | 743 6.72 748 6.44
Persistent-SLAM 0.034 0.024 0.021 0.021 7.58 6.92 7.08 7.05
Static Weighting [6] | 0.053 0.053 0.053 0.053 - - - -
high dynamic Vanilla 0369 0369 0369 0369 | 1526 1526 1526 15.26
fr3/walking-halfsphere Persistence 0271 0271 0271 0.271 6.7 6.7 6.7 6.7
Persistence+Dis 027 0177 0.242 0.266 | 1236 10.68 11.0 11.72
Persistent-SLAM 0.281 0.221 0.38 0.266 12.2 12.1 1343 1292
Fig. 9: Localization results for TUM RGB-D dataset
Localization Error(RMSE(m)) Map Size (MB) # Unlocalized Frames
Method 0.5 1 3 5 0.5 1 3 0.5 1 3 5
Vanilla 0.11 0.11 0.11 0.11 6.63 6.63 6.63 6.63 449 449 449 449
Persistence 0.14 0.14 0.14 0.14 443 443 443 443 638 638 638 638
Persistence+Dis | 0.11 0.12 0.1 0.13 6.28 651 646 631 | 4513 451 441 445.6
Persistent-SLAM | 0.13 0.11 0.11 0.13 579 577 548 565 | 446.6 449.3 447 451.6

Fig. 10: Localization results for Kidnapped Robot dataset

Persistent-SLAM in this experiment. The reason is that no
keyframe culling is allowed when the localization mode is
activated. But since Persistent-SLAM creates less number of
keyframes due to a finer search for highly persistent map
points, it has a smaller map size.

Figure 8(a) shows the running time of all threads of ORB-
SLAM for all approaches in this experiment on DronesLab.
Although the Persistence+Dis is showing a comparable per-
formance to Persistent-SLAM wrt F1 score, the map sizes
and running time of Persistent-SLAM are much lower than
Persistence+Dis approach. The reason is that the Persistent-
SLAM creates lower number of keyframes which leads to
lower computation time for keyframe processing and feature
matching between current frame and spatially local keyframes.
Similarly, larger distance thresholds result in larger number of
map point removals which in turn result in less time spent in
feature matching. Therefore, larger distance thresholds result
in lower running times. Figure 8(b) shows the accumulated
running time for all approaches on NetworksLab. The Vanilla
version seems to have the least running time unlike DronesLab
dataset where the Persistence approach had the lowest running
time. We again attribute this to the limited dynamics in
this dataset. Having same number of keyframes as Vanilla
approach makes the processing time of other approaches com-
parable to it with additional overheads to maintain persistence.
Table 7 shows the localization results for all approaches for
NetworksLab over different distance thresholds. The results
almost follow the same pattern as DronesLab. Even with
a distance threshold of 5m, Persistence+Dis and Persistent-
SLAM approaches reach an F1 score of more than 0.91 which
is better than the Persistence approach and they only retain
about 65% of map points compared to Vanilla version.

3) Comparison to Static Point Weighting [6]: [6] employs
static weighting to indicate the probability of being part of the
static environment and update their weights across time. To
the best of our knowledge, this is the most recent approach
applicable to semi-static environments which also provide their
results on public datasets. We run our approach on two public
dynamic sequences of TUM RGB-D dataset [22] and measure
the tracking error of both methods.

Table 9 shows the localization error and map size of our

proposed method and [6]. We tested two different kinds of
sequences, with low and high dynamics. In low dynamics,
Persistence+Dis and Persistent-SLAM experience the lowest
error most of the times which shows their higher capability
for keeping static features in the map. The map size of Persis-
tence+Dis and Persistent-SLAM are in the same order for this
dataset due to low dynamics. For high dynamics, [6] has lower
error. The reason is that our proposed method is well fitted
for semi-static environments, but this sequence includes rapid
movements of people. In this sequence, Persistence approach
shows comparable results to Persistence+Dis and Persistent-
SLAM which stems from removing too many features and
having low probability of wrong feature matching. Also, due
to higher rate of dynamics, there is more fluctuation in the
localization accuracy of Persistence+Dis and Persistent-SLAM
over different distance thresholds.

4) Kidnapped Robot: This section shows the performance
of our different approaches for kidnapped robot problem.
For this purpose, we used the 360-kidnap sequence of TUM
RGB-D dataset. This dataset doesn’t include any dynamics.
Table 10 shows the statistics of all approaches for kidnapped
robot problem. Persistence approach has the highest number of
unlocalized frames which stems from too frequent wrong map
point removal even in a static environment. The performance
of Persistence+Dis and Persistent-SLAM is close to Vanilla
version, but with lower sized map especially for Persistent-
SLAM approach. The localization accuracy of Persistence+Dis
and Persistent-SLAM is usually a little lower than Vanilla
version due to removal of some map points.

V. CONCLUSION

We demonstrate the first implementation of persistence
filters in Visual SLAM. First, we show that directly in-
corporating persistence filters is not sufficient. Through a
series of modifications, we were able to customize persistence
filtering for visual SLAM. Using two datasets, and through
two experiments, we demonstrate the benefits of persistence
filtering in visual SLAM by 30% map size reduction and run
time improvements. Using publicly available datasets, we also
compare our implementation with static weighting, and show
that our implementation works better in some scenarios.

[1]

[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

REFERENCES

D. M. Rosen, J. Mason, and J. J. Leonard, “Towards lifelong feature-
based mapping in semi-static environments,” in Robotics and Automation
(ICRA), 2016 IEEE International Conference on. 1EEE, 2016, pp.
1063-1070.

Discovery Robotics, 2020 (accessed February 20, 2020). [Online].
Available: https://discoveryrobotics.com/

Double Robotics, 2020 (accessed February 20, 2020).
Available: https://doublerobotics.com/

Savioke, 2020 (accessed February 20, 2020). [Online]. Available:
https://savioke.com/

R. Mur-Artal and J. D. Tardés, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017.

S. Li and D. Lee, “Rgb-d slam in dynamic environments using static
point weighting,” IEEE Robotics and Automation Letters, vol. 2, no. 4,
pp. 2263-2270, 2017.

Z. Hashemifar, Persistent ORB-SLAM2, 2020 (accessed February
20, 2020). [Online]. Available: https://github.com/droneslab/persistent_
orbslam

D. F. Wolf and G. S. Sukhatme, “Mobile robot simultaneous localization
and mapping in dynamic environments,” Autonomous Robots, vol. 19,
no. 1, pp. 53-65, 2005.

B. Bescos, J. M. Ficil, J. Civera, and J. Neira, “Dynaslam: Tracking,
mapping, and inpainting in dynamic scenes,” IEEE Robotics and Au-
tomation Letters, vol. 3, no. 4, pp. 40764083, 2018.

G. D. Tipaldi, D. Meyer-Delius, and W. Burgard, “Lifelong localiza-
tion in changing environments,” The International Journal of Robotics
Research, vol. 32, no. 14, pp. 1662-1678, 2013.

D. Meyer-Delius, M. Beinhofer, and W. Burgard, “Occupancy grid
models for robot mapping in changing environments,” in Twenty-Sixth
AAAI Conference on Artificial Intelligence, 2012.

T. Krajnik, J. P. Fentanes, J. M. Santos, and T. Duckett, “Fremen:
Frequency map enhancement for long-term mobile robot autonomy in

[Online].

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

changing environments,” IEEE Transactions on Robotics, vol. 33, no. 4,
pp. 964-977, 2017.

F. Dayoub, G. Cielniak, and T. Duckett, “Long-term experiments with
an adaptive spherical view representation for navigation in changing
environments,” Robotics and Autonomous Systems, vol. 59, no. 5, pp.
285-295, 2011.

F. Nobre, C. Heckman, P. Ozog, R. W. Wolcott, and J. M. Walls, “Online
probabilistic change detection in feature-based maps,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), May
2018, pp. 1-9.

S. Hochdorfer, H. Neumann, and C. Schlegel, “Landmark Rating and Se-
lection for SLAM in Dynamic Environments,” in Intelligent Autonomous
Systems 13. Springer, 2016, pp. 401-414.

M. Dymczyk, S. Lynen, T. Cieslewski, M. Bosse, R. Siegwart, and
P. Furgale, “The gist of maps - summarizing experience for lifelong
localization,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), May 2015, pp. 2767-2773.

J. S. Berrio, J. Ward, S. Worrall, and E. Nebot, “Identifying robust
landmarks in feature-based maps,” pp. 1166-1172, 2019.

P. Miihlfellner, M. Biirki, M. Bosse, W. Derendarz, R. Philippsen, and
P. Furgale, “Summary maps for lifelong visual localization,” Journal of
Field Robotics, vol. 33, no. 5, pp. 561-590, 2016.

M. Dymczyk, E. Stumm, J. Nieto, R. Siegwart, and I. Gilitschenski,
“Will it last? learning stable features for long-term visual localization,”
in 2016 Fourth International Conference on 3D Vision (3DV), Oct 2016,
pp. 572-581.

Y. Verdie, K. Yi, P. Fua, and V. Lepetit, “Tilde: a temporally invariant
learned detector,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 5279-5288.

David Rosen, 2020 (accessed February 20, 2020). [Online]. Available:
https://github.com/david-m-rosen/persistence_filter

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Proc. of the
International Conference on Intelligent Robot Systems (IROS), Oct.
2012.

https://discoveryrobotics.com/
https://doublerobotics.com/
https://savioke.com/
https://github.com/droneslab/persistent_orbslam
https://github.com/droneslab/persistent_orbslam
https://link.springer.com/article/10.1007/s10514-005-0606-4
https://link.springer.com/article/10.1007/s10514-005-0606-4
https://journals.sagepub.com/doi/abs/10.1177/0278364913502830
https://journals.sagepub.com/doi/abs/10.1177/0278364913502830
https://link.springer.com/chapter/10.1007/978-3-319-08338-4_30
https://link.springer.com/chapter/10.1007/978-3-319-08338-4_30
https://github.com/david-m-rosen/persistence_filter

	Introduction
	Related Work
	Persistence in Visual SLAM
	Background on ORB-SLAM and Persistence
	ORB-SLAM
	Persistence Filter

	ORB-SLAM for Semi-Static Environments
	Persistence in ORB-SLAM
	Persistence+Dist in ORB-SLAM
	Persistent-SLAM

	Evaluation
	Experimental Methodology
	Datasets
	Experiments
	SLAM Experiment
	Localization Experiment
	Comparison to Static Point Weighting li2017rgb
	Kidnapped Robot

	Conclusion
	References

