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Abstract

We consider an underdetermined noisy linear regression model where the
minimum-norm interpolating predictor is known to be consistent, and ask: can
uniform convergence in a norm ball, or at least (following Nagarajan and Kolter)
the subset of a norm ball that the algorithm selects on a typical input set, explain
this success? We show that uniformly bounding the difference between empiri-
cal and population errors cannot show any learning in the norm ball, and cannot
show consistency for any set, even one depending on the exact algorithm and
distribution. But we argue we can explain the consistency of the minimal-norm
interpolator with a slightly weaker, yet standard, notion: uniform convergence of
zero-error predictors in a norm ball. We use this to bound the generalization error
of low- (but not minimal-) norm interpolating predictors.

1 Introduction

In the past several years, it has become empirically clear that — contrary to traditional intuition — it
is possible for models which exactly interpolate noisy training data to reliably generalize well on
practical problems, especially in deep learning [7, 25, 34]. We refer to this phenomenon as “interpo-
lation learning.” It is closely related to the (re-)discovery of the “double descent” phenomenon [1,
5, 23, 29], where many models first improve as their size is increased, then get much worse around
the point where they can first interpolate the data, and then improve again as they become more and
more overparametrized. Understanding interpolation learning, therefore, seems to be a key step on
the path towards better theoretical understanding of the successes of deep learning.

We now know of a few settings where interpolating models can be shown to generalize well [4,
8]. In particular, significant recent attention has been paid to the minimum-norm linear interpolator
(“ridgeless” regression) in certain high-dimensional linear regression regimes [3, 6, 14, 21]. This
setting is of particular interest not only because it is reasonably accessible to study while exhibiting
many of the surprising properties of more complex models, but also because this predictor is the
same one found by (stochastic) gradient descent initialized at the origin, and so it seems plausible
that its properties may generalize to more complex settings. Much is now understood about the prop-
erties of the minimum-norm interpolator for (sub-)Gaussian data, including necessary and sufficient
conditions for its consistency. This line of inquiry has proved quite fertile for extensions to related
settings and further results [2, 13, 15, 18, 20].

One striking feature of this body of work is that none of it is based on the core workhorse of learning
theory, uniform convergence; most instead uses various tools, mostly from random matrix theory, to
directly analyze the generalization error of a particular predictor. Indeed, some have argued that
uniform convergence is unlikely to be able to explain interpolation learning; for instance, Mikhail
Belkin has said' that “there are no [uniform generalization] bounds” with constants tight enough to

'Talk at the Simons Institute for the Theory of Computing, July 2019: simons.berkeley.edu/talks/tbd-65

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.


http://arxiv.org/abs/2006.05942v3
https://simons.berkeley.edu/talks/tbd-65

explain interpolation learning, “‘and no reason they should exist.” Meanwhile, Nagarajan and Kolter
[22] have also raised significant questions about the ability of uniform convergence arguments to
explain learning in certain high-dimensional regimes. Perhaps, then, it is time to wholly abandon
uniform convergence in favor of other tools.

We connect these two avenues of work by studying uniform convergence in a particular over-
parametrized linear regression problem (Section 2) where the minimal-norm interpolator is consis-
tent. We prove that, indeed, uniform convergence bounds based on predictor norm cannot show
any learning in this setting (Theorem 3.2). We also prove, following Nagarajan and Kolter, that no
uniform convergence bound can show consistency (Theorem 3.3), not only for the minimal-norm
interpolator but even for a wide variety of natural interpolation algorithms.

Yet, even in this setting where the situation looks bleak, we need not abandon uniform convergence
entirely. One option would be sidestep the negative results by considering uniform convergence
not of our predictor, but of a surrogate separately shown to be not too different [24]. We instead
demonstrate that it is possible to show uniform convergence of our predictor directly if we allow
ourselves a slightly weaker notion of uniform convergence, one long in common use in realizable
PAC analyses: uniform convergence for predictors with zero error. Such a bound would be implied
by, for example, “optimistic rates” [30], although existing results are not tight enough to show con-
sistency in our setting. Instead we prove (Theorem 4.1) that a tight version of this notion of uniform
convergence does hold in our setting for low-norm predictors. Our result exactly characterizes the
asymptotic worst-case generalization gap for predictors of a given norm via a novel analysis based
on strong duality of a particular non-convex problem, and show that while neither having a low norm
nor interpolation is sufficient for generalization in our setting, the combination is. By doing so, not
only do we prove consistency of the minimal-norm interpolator with a uniform convergence-type
argument, we also provide new insight about the behavior of interpolation learning for solutions
with low but not minimal norm.

2 Problem setting

We begin with a standard linear regression setup, with Gaussian data and errors. Take i.i.d. observa-
tions (z1,41), .., (Tn, yn) ~ D", where the joint distribution D is given by

A z € R? is drawn from N(0, X)), with ¥ = 0, and € € R is independently A/ (0, o2). There
is some fixed w* € RP such that y = (w*, z) + €.

We consider a “junk features” setting, where  decomposes into “signal” and “junk” components,
and analysis of interpolation learning is particularly appealing:

Ids Oj\iSXdJ
OdJde d_;IdJ
In other words, we can write © = (xg, 2 ), where zg ~ N(0, I3, ) and x ; ~ N (0

B In Setting A, let X = [ } where dg, d satisfy dg + dj; = p, and A, > 0.

) g_jjd.l)'
Further, the label depends only on zg: w* = (w¥,04,) with w} € R9s.

Let Y € R™ be the vector of responses, X € R"™*P the design matrix and £ € R"™ the residual

vector, so Y = Xw* + E. The sample covariance is 3= %X TX. The population and empirical
risks are, respectively,

Lp(w) = Eq y~pl(y — (w,2))%] = Lp(w") + [lw — w*||%
2

“(XTE w—w"),

n

where ||| 4 = V2T Az denotes the Mahalonobis norm, and Lp(w*) = Ee? = o2

We will focus on the regime where dg is fixed, and d; — oo for finite values of n, e.g.
lim;, 00 limg, 00 Lp (). This setting enables relatively easy calculation of many quantities of
interest, and can recover many interesting behaviors of overparametrized interpolation, including
consistency and the double descent phenomenon.

L . . (1)
Ls(w) = EHY—XwII2 = Ls(w*) + [lw — w*|[% —

We will be primarily concerned with the behavior of the minimal-norm interpolator,

yy = argmin  |w|i=XT(XXT)"Y. )
weERP s.t. Xw=Y



This predictor is in fact consistent in Setting B when A,, = o(n) and we consider d; — oo for each
n. We here use a slightly broader notion of consistency than is traditional [e.g. in 28]: we mean that

E [Lp(ﬁ)MN) — LD(’LU*)] —0
for our sequence of learning problems in the given asymptotic regime. Specifically:
Proposition 2.1. In Seiting B with A, = o(n),
lim lim E [LD(’LZ)MN) - LD(’LU*)] =0.

n—00 dj—oo

The proof follows from Lemmas 2.2 and 2.3, which establish first — because the setting was designed
exactly to make this true? — that 1,y becomes equivalent to ridge regression on the signal part of
X with regularization weight \,,, and then that ridge regression is consistent in this setting.

Writing X = (Xg, X ) with Xg € R™*ds and X ; € R"*47 the ridge regression estimate on the
signal components with tuning parameter A is given by

wy = argmin ||V — Xgw|? + \|w||?
weRP
= (XIXs+ Mao) ' XY = XE(Xs XTI + 21,7 Y.

Lemma 2.2. In Setting B, limg, oo E[Lp(Wpn)] = E[Lp (W, )] for any n.

.
Proof. By the strong law of large numbers, we have that X ; X } =\ Z';f" converges almost surely

to A\pJp,. Writing wyny = (Wmn,s, Wmn,s), we can easily verify that

s Wyn.s = X$(XeXT 4+ X;XT)7Y “3 1y, by the continuous mapping theorem.

a.s.

 byy,; = X (Xs X+ X;X])7'Y. Drawing a new z; ~ N(0, 4214,), X x5 =5 0,
and so <’LZ)MN_’J,CCJ> uj)' O

This implies that for any fixed z, (i, ) “3 (), ,xs), and hence via continuity we have that

(v, ) — y)% “3 ((wy, , x) — y)2. Taking expectations over (, ) to get Lp and then over the
training set, then exchanging the limit with each expectation,® we obtain the desired result. O

Lemma 2.3. In Setting B, if A, = o(n), then lim,_,oc E [Lp(wy,) — Lp(w*)] = 0.

The proof, as for all the following results, is in the appendix. Taking A,, = o(n) ensures the bias due
to regularization is negligible; the minimax-optimal scaling would be \,, o v/n [11].

Relationship to previous settings The results of Bartlett et al. [3] apply to our setting, also show-
ing consistency of wyy. Although they do not require p — oo for finite n as we study, their
results show that consistency of Wy is only possible when the effective p grows much faster than
n. Muthukumar et al. [21] showed that no interpolation method can be consistent in Setting A for
p = O(n); we re-derive this (simple) result in Proposition 4.3, since it will also be important for our
purposes.

Hastie et al. [14] and various follow-ups, on the other hand, employ the standard asymptotic regime
of random matrix theory, where n/p — ~ € (0, 00), mostly focusing on ¥ = I. Although no
interpolator can achieve consistency here, they exactly evaluate lim,,, 4) o0 Lp (W ). The setting
of Belkin et al. [6] is related, with general (n, p) but again with ¥ = I, where w0y is not consistent.

21f the noise scaling were w(1/d), then as d; — oo, the minimal-norm solution would exploit the explod-
ing magnitude of the noise components, and all of the signal would “bleed” into the noise dimensions [14, 21],
giving ||Wmn || — 0 and Lp (wmwn) — Lp(0p) — in the ridge regression equivalence, we let the regularization
weight go to infinity. On the other hand, if the noise scaling were o(1/ds), then we would have ||y || — oo,
significantly complicating matters. ©(1/d ) is the only scaling in which ||w || is bounded but nonzero.

3Both exchanges can be justified using dominated convergence thoerem and the techniques from the proof
of Proposition 4.6, which independently shows a stronger statement.



3 Uniform convergence

We now know, via Proposition 2.1, that W,y is consistent in this setting. Could we have discovered
this fact directly via uniform convergence? Typically, we would find some class W, 5 such that
Pr(wpn € Why,s) > 1 — 4, and bound the generalization gap

weEWn s

Pr ( sup Lp(w) — Lg(w) < ew(n, 5)) >1-04. 3)

As Lg(wpyn) = 0, this would directly provide an upper bound on Lp(wpsn) with probability
1—26.

3.1 Uniform convergence over norm balls
Our first thought would likely be to find some high-probability upper bound B,, 5 on ||@pn ||, and
take Wy, 5 = {w € R? : |lw| < B,,s}. We can get a rough asymptotic estimate for B,, 5 based on
the following, since ||Wyn|| = Op EH@Z)MNHQ) by Markov’s inequality.
Proposition 3.1. As n — oo in Setting B, if A, is both o(n) and w(1), then
2 Ell 2 E 2
dim Edun]|” = N L O0) and  tim loaew |) (B[ 2]]%)
J—>00

)\ dj—o0 n

=02+ 0(1).

We could then find €y, (n, §) by studying the Rademacher complexity, given by

1
R, Wp) = Es E,unit(+1)» sup oi{w, x l) - B2 E|z|2;
(Ws) Unif(£1) \wH<B”; ~ B2 E|q|

thus Proposition 3.1 gives us that R,, (W ]EH'LDMNHz) <o+o(1).

Standard Rademacher bounds are for Lipschitz losses, which the squared loss is not. If we let 7;, be
a uniform upper bound on all the labels and @,, on all the predictions, however, the absolute value
of the derivative of the squared loss is at most 2| — y| < 2(Q, + T»), and so we can treat it as
2(Qn + T,)-Lipschitz with high probability. We then obtain in the setting of Proposition 3.1 that

1

sup LD(w) - Ls(U)) < 4(Qn + Tn) (0 +Op <_)> . “4)
Jewll? <E a2 vn

To show consistency, we need a bound exactly approaching o2 as n — oo, i.e. Q, + T}, — icr. But

in fact, each of @),, and T}, diverge to co as n — 0o, because we have more and more chances to see

a large value. Thus for n — oo, (4) says nothing at all.

Now, the path to (4) was potentially quite loose, particularly in the Lipschitz step; perhaps, then, we
could simply put more effort in to obtain the bound we want. This is not the case: balls which are
big enough to contain wpsy also contain predictors with unbounded generalization gaps as n — oo.

Theorem 3.2. In Setting B, if A, = o(n) then

lim lim E
n—00 dj—»o0

sup  |Lp(w) — Ls(w)I] = oo

lwll<[l@w |

Proof sketch. Proposition B.2 shows that the gap is at least || — 3| (|| @ || — [|w*])2 +o(1) using
(1) and then aligning w — w* with ¥ — 3. By Proposition 3.1, (||@ || — ||w*||)? grows like n/\,,.
Now || X — 3| goes to 0, but only at the rate of y/ A, /n [17], so the product grows as \/n/A,. O

Proposition B.2 also gives a lower bound for E [suprHSHleN” Lp(w) — Ls(w)] , the one-sided

generalization gap, based on the algebraically largest eigenvalue of > — S rather than the operator
norm. We expect that this eigenvalue should asymptotically behave similarly to the operator norm,
and hence the one-sided generalization gap should also diverge.

Norm balls around w*, rather than the origin, fare no better; they would merely remove the asymp-
totically irrelevant ||w™*|| term from the result of Proposition B.2.



3.2 Uniform convergence over algorithm- and distribution-dependent hypothesis classes

Choosing W, 5 as a Euclidean norm ball, then, cannot yield the result we want (or, indeed, any
meaningful result at all for large n). But a norm ball doesn’t fully capture everything we know about
Wy for instance, we know that its norm is not likely to be very small. Perhaps taking a shell rather
than a ball would help? Following Nagarajan and Kolter [22], we show that in fact, no choice of
Wh,s can demonstrate consistency using the most common two-sided uniform convergence bounds.

Specifically, let S,, s be a set of typical training examples S = (X,Y) such that Pr(S € S, 5) >
1 — 0, let A(X,Y) be any learning algorithm, and then take the class of typical outputs of A,
W“‘fé = {AX,)Y) : (X,Y) € S,5}. (Clearly, no bound based on S,, 5 could choose a smaller

n

Wh,s.) The tightest algorithm-dependent uniform convergence bound [22] is then

sup sup |Lp(w)— Lg(w)| < eﬁ(nﬁ), 5)
S€Sn, s weWs;

implying Pr ( |Lp(A(X, 1)) = Ls(A(X,1))| < B(n,6)) = 1-6.

In interpolation learning, where Lg is zero, we need lim,,, o, eﬁ(n, 0) = o? to obtain consistency.
Nagarajan and Kolter show that in a particular high-dimensional linear classification setting, stochas-
tic gradient descent has 0 asymptotic loss, but eﬁ(n, 0) must be nearly 1 for any S,, 5. We show a
similar result in our setting, not only for A = 55 but indeed for many interpolation methods.*

Theorem 3.3. In Setting B, let A be an algorithm outputting interpolators, X A(X,Y) =Y, with
A((Xs, X0),9)s = A((Xs,=X)),y)g and  lim lim Lp(A(X,y)) = o® (6)

n—oo dj—o00
For any ¢ € (0, %) and set of typical training examples Sy, 5 satisfying Pr(S € S, 5) > 1 =6, let
Wé(; ={AX,Y) : (X,Y) € Sy 5} denote the set of typical outputs. Then

lim lim sup sup |Lp(w)— Lg(w)] a'ZS. 307 @

n—=00d; =0 8eS,, s weEW, s

Proof sketch. For each S = (X,Y) € Sps. let S = ((Xs,—X),Y), which has equal density

under D, so that S, s must contain some (S, S) pairs. Consider @ = A(S): we know that Lp (w) “5

a.s.
o2 by assumption, but we will show lim,, o limg, 0o Ls (W) > 402.

This is easiest to see in the case when dg = 0, so that y ~ N(0,0?) is independent of . Then
—Xw =Y,sothat X = —Y, and thus Lg (@) = £[|(-Y) = Y[|? = 2||Y||? = 402

The general case, in Appendix B.3, shows that since X is rank dg < n, w; must be large enough
to contribute 402 2= — 402 to the loss. O

From (2), we can see that Wy satisfies the symmetry condition in (6). In fact, Proposition B.3 (in
Appendix B.3) shows this is also true of many more algorithms, including interpolators which mini-
mize ||wl|; (basis pursuit) or even ||w — w*||: any algorithm that picks the interpolator minimizing
fs(ws) + fs(wy), where each function is convex and f;(—w) = f;(w).

The attentive reader may have noticed that Theorem 3.3, like Theorem 3.2, applies only to bounds
on |Lp(w) — Lg(w)|, whereas the general argument as in (3) only needs to bound Lp(w) — Lg(w).
Indeed, the proof of Theorem 3.3 exhibits a hypothesis with low generalization error but high train-
ing error — not a particularly concerning failure mode. Whenever A is consistent, it is trivially
guaranteed that there is a W,, s where (3) holds with ey (n,d) — Lp(w*), and so Nagarajan and
Kolter’s approach is not meaningful for one-sided bounds.’> Thus it is not possible to mathemati-
cally rule out that one could prove a one-sided bound on sup,, ¢y Lp(w) — Lg(w) using a uniform

*Lemma 5.2 of Negrea et al. [24] is closely related; it covers Setting A in general, but applies only to Wan
and shows a smaller gap.
*Take Sns = {(X,Y) : Lp(X,Y) < Lp(w*) + €,,s}; consistency implies that there is a choice of
€n,s — Osuchthat Pr(S € S, 5) > 1— §and
€n,s > sup sup Lp(w)> sup sup Lp(w)— Ls(w).
SES,,5 wew;ﬁé S€Sy, 5 wEWTf‘Y&



convergence-type technique. (Again, since one-sided uniform convergence is always a consequence
of consistency, this question is essentially one of viewpoint: do you first show uniform convergence
and then bound consistency through uniform convergence, or do you establish uniform convergence
as a consequence of consistency?) In any case, as argued by Nagarajan and Kolter, existing uniform
convergence proofs essentially bound |Lp(w) — Lg(w)|, not Lp(w) — Lg(w).

4 Uniform convergence for interpolating predictors

In Setting B, we now know it is impossible to prove consistency of Wy with a bound on
sup,,ew|Lp(w) — Ls(w)| for any fixed choice of W, and it seems quite unlikely that we can
do so with bounds on sup,, ¢y Lp(w) — Lg(w) either. However, since we are concerned only with
zero-training-error predictors, perhaps we should instead look at bounds on

sup Lp(w) — Ls(w). ()

lwl<B, Ls(w)=0

Although Lg(w) is identically 0 in (8), we write it to emphasize that this is still fundamentally a
bound on the generalization gap as in (3). When Lg(w) = 0, of course, one-sided and two-sided
convergence become the same. Moreover, when B = || x|, (8) becomes identically Lp(wn ),
which we know from Proposition 2.1 is small. Our questions are (a) whether we could have shown
this via uniform convergence, and (b) precisely how small B has to be compared to ||« || in order
to maintain consistency.

The uniform convergence of (8) is a weaker notion than that of Section 3, as the hypothesis set
is sample-dependent. But it is still a standard and common form of “uniform convegnce” at the
basis of classical learning theory, and is well understood to be necessary for obtaining tight learning
guarantees when we expect the training error to be zero. For example, this is the notion used by
Valiant [32] to first establish standard (realizable) PAC-learning guarantees, and is the starting point
for standard textbooks, as in Section 2.3.1 of Shalev-Shwartz and Ben-David [28], or Theorem 2.1
of Mohri et al. [19] where that book first introduces the term “uniform convergence bound.”

A bound on (8) would be implied by bounds with “optimistic rates” [26, 30], which interpolate
between a “fast” rate for Lp(w) — Lg(w) and a “slow” one depending on Lg(w). For instance,
the result of [30] implies that if &, is a high-probability upper bound on maxi<;<n ||%; ||2, we have
uniformly over all w with |Jw|| < B that

Lp(w) — Ls(w) < Op <%325n + 1/ Ls(w) ij") . )

But the hidden constants and logarithmic factors in (9) do not meet our needs: to show consistency
(as we discuss shortly) we need an asymptotic coefficient of 1 on B2&,, /n, while [30] showed only
an upper bound of 200 000 log® (n). It seems likely given their extremely indirect proof technique,
though, that a much tighter version holds — especially in the special case of bounded-norm linear
predictors for square loss. Given Proposition 3.1, it is reasonable to suspect that something like the
following may hold fairly generally:

1
sup  Lp(w) — Ls(w) < —B*%, +op(1), (*)

lwl|<B, Ls(w)=0 n
where here &,, might refer either to the high-probability upper bound on ||z||? or, for sub-Gaussian
data, perhaps simply E||z||2. For either choice of &,.° by taking B = ||10y/x|| in Setting B, applying

Proposition 3.1 then gives us (subject to integrability conditions) that for A, = w(1), A, = o(n),

sup Lp(w) — Ls(w)| <o +0o(1).  (10)
lwll <@y, Ls (w)=0

lim ELD(UA)MN): lim E
d,]%OO d,]%OO

But (%) would also do more than this: it makes predictions about the generalization error of interpola-
tors with larger-than-minimal norm, not yet known in the literature. In the setting of Proposition 3.1,
(%) would imply that

lim E

dJ—)OO

sup Lp(w) — Lg(w)

llwl| el |, Ls (w)=0

<a? [0 +0(1)]. (11)

®If &, is a high-probability upper bound, we further require A, = w(logn).



These predictions are important in their own right: outside of linear models, we rarely expect to
obtain the interpolator with exactly minimal norm.

4.1 Uniform convergence of low-norm interpolators in Setting B

The predictions made in (11) in fact hold, with equality.
Theorem 4.1. In Setting B with A, = o(n), fix a sequence (a,) — «, with each o, > 1. Then

lim lim E sup Lp(w) — Ls(w)| = o*Lp(w™).
n=00d; 500 | |lw|| <o |lwmn |, Ls (w)=0

The proof of Theorem 4.1 is based on bounding (8) directly, although it will take us several steps
to get there which we now outline. Along the way, we provide results, especially Proposition 4.3,
which are applicable well beyond Setting B.

The first tool we will require in our analysis is the best-conceivable interpolator for a given X and
D:
Definition 4.2. The minimal-risk interpolator [21, Section 3.3] is

Wyr = argmin  Lp(w) =w* + XX (X2 X)) IE. (12)
ws.t. Xw=Y

Proposition 4.3. In Setting A, the expected risk of the minimal-risk interpolator is

- p_l *
EL =———L .
p(tmr) =~ Lo(w’)

Because w /g has perfect knowledge of %, its expected risk turns out to be independent of . As p
increases for fixed n (the second of the double descents), E Lp(wyr) thus improves monotonically:
W g can pick among more interpolators.

We use wysr as a constructive tool in our proofs: Theorem 4.5 expands the generalization gap
around a fixed predictor in terms of that predictor’s risk, and so the minimal-risk predictor is an
obvious choice for understanding the gap. Proposition 4.3 also provides lower bounds on interpola-
tion methods: if p = O(n), then Wy r is not consistent, and hence no interpolator is. For instance,
LASSO is minimax-optimal and consistent for sparse linear regression when n = ©(p) [10, 12, 27,
31, 33, 35], but no interpolation method can be. Muthukumar et al. [21, Section 3] discuss this type
of result in detail, including for non-Gaussian data; see also [15].

Our next tool measures how much energy in ¥ is missed by the sample X.

Definition 4.4. The restricted eigenvalue under interpolation for covariance ¥ and design X is

kx(X) = sup w' Tw.
Jw]|=1, Xw=0
We now have the tools to show the following result, which holds even more generally than Setting A.

Theorem 4.5. The following results hold deterministically, viewing Lp(w) simply as a quadratic
function Lp(w*) + ||w — w*||s, with no distributional assumptions on S.

(i) It holds that

sup  Lp(w) — Ls(w) = Lp(Wumr) + m kx () |[dmr|® — H@MNHQ}
[lw]| <[ mrl
Lg(w)=0

where 1 < v, < 4.

If the minimal risk interpolator is consistent, E Lp(wpyg) — Lp(w*) — 0, then the class
of interpolators with norm less than ||W g || is uniformly consistent if and only if

Erx(Z) - [loanl® = ldun]2] = 0.



(ii) Fix a sequence (By,) such that By, > ||wyn|| for all n. Then

sup Lp(w) — Ls(w) = Lp(mn) + £x(2) [B2 — |omn|?] + Rn
”w”SBn;LS(w):O

where 0 < Ry, < 2\/[Lp(umn) — Lp(w*)] kx(3) [BZ — [dmn|?]-

IfE Lp(wyn) — Lp(w*) — 0, the class of interpolators with norm less than By, is thus
uniformly consistent if and only if

Exx(X)- B2 - HwMN||2] 0.

The term xx (X)[B? — || ||?] appearing in each bound multiplies , essentially “how much” of
) is orthogonal to the data sample, by the amount of excess norm available inside the norm ball.
This result makes us expect that (x) should in fact hold fairly generally with &,, = n kx (X).

Notice also that, of course, ||[Wyn]| < |@umr|; thus when wpypr is consistent (e.g. via
Proposition 4.3) and E xx (3)[||wmr|* — ||@wamn||?)] — 0, then (i) implies sy is consistent as
well.

Proof sketch. Let 1 be any particular predictor that interpolates the data, and F' € RP*(P~") be the
matrix whose columns form an orthonormal basis of the kernel of X. Then (8) can be rewritten as

sup |+ Fu —w*||3. (13)
wERP— ||+ Ful||2<B?

This is a quadratic program with a single quadratic constraint, which enjoys strong duality even
though it is a convex maximization [9, Appendix B]. We thus need analyze only the (much simpler)
one-dimensional dual problem. For (ii), we take w = wjsn in (13) and obtain the dual as

. N T N % N
A>|\11[£l"fEF|\ Lp(dun) + |FTS(un —w)|Ey, - prse-1 + )\[Bi - ||wMN||2]

Given consistency, we can show that the second term’s contribution is negligible, as

IFTS(day —w*)|? < |[FTEF| - [Lp (@) — Lp(w*)),
and (A,—, — FTXF)~! has controlled eigenvalues so that the Mahalanobis norm is similar to the
Euclidean norm. Observing that kx () = ||FTXF||, the conclusion follows by routine calculations.

Case (i) uses a similar strategy, taking w = wjpsg. The full proof is given in Appendix C.2. O

Now, all that remains is to evaluate the relevant quantities in Setting B.
Proposition 4.6. In Setting B with \,, = o(n),

lim lim E
n—oo dj—o00

sup Lp (’(U) — Lg (’LU)
lwl|<||wmr|l, Ls (w)=0

= Lp(w").

Proof sketch for Theorem 4.1 and Proposition 4.6. We apply Theorem 4.5. With probability one,

MnTxTxs A, 171
lim kx(E) = =2 [S—SJF?IdS}

dj—o0 n n

As the first term inside the inverse converges to I;, and the second term vanishes, we can expect
kx(X) &~ A\, /n. We bound the other terms by observing that there exists a sequence 3, — 1 with

. ~ 02n
lim Eldumr|® = [lws|® + ~—
dj—o0 An
. . n—dg o?dg — I ||ws||?
lim E||wMNH2 _ ”w*HQ +02 +ﬁn ( n“ S” ,
dj—o0 An n

SO limdllﬂoo E [”ﬁ)MRH2 — E”ﬁ)MNHQ] = 0’2d5//\n + O (/\n||w*|\2/n)

Because g is consistent via Proposition 4.3, this proves Proposition 4.6. As ||wyn || < ||@mr],
this further implies Wy, is consistent, so that the R,, term of Theorem 4.5 (ii) vanishes. O



We can see that xx () tends to 0 while ||@sn || explodes, and in Setting B their product turns out
to converge to exactly the Bayes risk. Because the other terms of Theorem 4.5 (ii) cancel, this gives
us precisely the tight result we need for Theorem 4.1, and further suggests that the speculative upper
bound x x (X) B? probably holds in more general settings.

We have at last shown in Theorem 4.1 a uniform convergence bound not only showing consistency of
wprN, but furthermore verifying the predictions of (11). Thus if we obtain an interpolator with norm
1.1||wasn ], we will suffer at most 1.2102 asymptotic risk. If we obtain an interpolator with norm
no more than a constant amount larger than the minimal norm, we achieve asymptotic consistency.

5 Discussion

In this work, we shed new light on uniform convergence and its relationship to interpolation learn-
ing. We show that uniform control of the generalization gap cannot explain interpolation learning,
for almost any interpolator, even in a simple setting. But we argue that when discussing “uniform
convergence” in the context of interpolation learning, we should slightly broaden our horizons to in-
clude interpolation-specific uniform convergence bounds such as (%), or more generally “optimistic”
(training-error-dependent) bounds [26, 30]. We show that despite recent sentiments to the contrary,
such bounds could in principal explain interpolation learning, by demonstrating this in the “junk
features” setting. Doing so requires obtaining very tight bounds, include tight constants — perhaps
a difficult task, but not impossible. (For example, for linear predictors with a Lipschitz loss in a
non-realizable setting, we do know the exact worst-case bound, with a tight numeric constant [16].)

Our results are also of independent interest in ensuring success with interpolation learning: in set-
tings other than linear regression, where a closed-form solution is available, it is generally unlikely
in practice that we find the exact minimum-norm solution. (Even gradient descent for linear regres-
sion would find this only when initialized exactly in the span of the data; other forms of implicit
bias are likewise suboptimal.) Our results give some reassurance that, at least in this simple setting,
approximately minimizing the norm is sufficient. The natural next step in this vein would be to
study predictors with small but nonzero loss. This could either be done directly in the style of our
Theorem 4.1, or by providing an optimistic rate as in (9) with tight constants. Our specific tech-
niques, as well as the general takeaway of considering interpolation-specific bounds, could also be
potentially applicable to settings beyond linear regression, especially the idea of studying the gen-
eralization gap via the dual problem: although strong duality may not be available in more general
settings, upper bounds are always possible with weak duality.

Broader Impact

Interpolation learning is currently thought to be one of the core mysteries standing between us and
a theoretical understanding of modern deep learning. Although there has recently been some key
progress, many challenges remain. Our paper, in advancing the study of interpolation learning,
makes another step on the path towards understanding the deep learning models that are quickly
becoming ubiquitous throughout society, whether we understand them or not. In our view, increased
understanding of these models can lead to safer, more reliable, and more controlled deployment,
especially in sensitive domains.

In particular, we discuss a key component of statistical learning theory, namely uniform convergence,
whose relevance to deep learning in general — and interpolation learning specifically — has recently
been questioned. We make an explicit connection between the work on interpolation learning and the
recent notion of “algorithmic dependent uniform convergence” [22]. Instead of outright dismissal,
we show that a more nuanced view is appropriate. By doing so, we hope to help guide the re-pivoting
that statistical learning theory is currently undergoing.

We emphasize that, despite providing some positive theoretical results, we are certainly not ad-
vocating for preferring interpolation methods over other approaches. In particular, the increased
sensitivity of interpolation methods may have problematic ramifications for robustness or privacy.
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A Proofs for Section 2

Lemma 2.3. In Setting B, if \,, = o(n), then lim,_,o, E [Lp(w), ) — Lp(w*)] = 0.

Proof. We can write

by, —wh = (XIXg 4+ M\Iy) ' X (Xsws + E) — w
= (X3 Xs + Mnlag) ' XEXs — Lug)ws + (X3 Xs + Anlag) ' XIE

XIXs A, .\ ' XTx XIXs A ' XTE
=l(5—5+71ds> STS—IdS wg+( SRt ) kel

n
—+_Ids
n n n n

Therefore, by independence of X g and F,

E[Lp(i,) — Lp(w")] = El|@x, —wi|

2
XIXs A, .\ ' XTX XIXs N, \ ' XTE
=E (5—S+—Ids) 2SS I wil| +E (5—S+—Ids) S
n n n n n n
XIXs A 'xTx ? 1 XTXg A 2 XTx
=K ( S25 —"Ids) S S—Ids]ws +021E—Trl<—5 S+—"Ids> S25
n n n n n n

Write the SVD for Xg = UDVT. Since X has rank at most dg, we denote its singular values as

VP15 -54/Pdgs and

(XEXs + My ) P XEXs|| = ||(DTD + My,) " 'DTD|| = max <1
i€[p] /\n + pi

Thus, we have
XITXs Ao\ 'XIx
[ 20 28]
n n n

which is clearly integrable.

2

< (1 + 1) lws]? = 4f|ws]f?

As dg stays fixed as n — o0, by the strong law of large numbers we have X;nXS — I,. Assuming

that AT" — 7, then by the continuous mapping and dominated convergence theorems, the first term

converges to
2
E lim H [1 — (1—1—7)’1} wil = (2 lw|
o L+ "80) 7

n—oo

Moreover, it holds that

Using the first moment of inverse Wishart distribution, the second term can be controlled by

ds

— 0
n—ds—l

PETr|(XIXs) | =0

Note that the first term converges to 0 as long as v = 0, and the desired conclusion follows. O

12




B Proofs for Section 3

B.1 Size of the minimal-norm interpolator (Proposition 3.1)

Proposition B.1. In Setting B, it holds that
2

o°n
d]—)oo )\n
Moreover, there exists a sequence (53y,) such that 3, — 1 and
. N n—d 2de — M |lw |12
dj—o00 A’ﬂ n

Consequently, we have

2 w2 2
) w2 e g2 O%ds M||wi||? — o%ds
d'}ILI}DOE Nlwmrl® = llwmn|?] = S + Bn ( - .

Proof. Let {e;} be the standard basis in R? and write = ¥, pieiel, with p; = 1for1 <i <
ds and p; = A, /dj fori > dg. By independence of X and E, we have
Elldumg|® = |w*|* +E[ET X T(XE'XT) 7 EB|?

= |w*|? + *E [Tr ((ZZT)_l(ZE_lzT)(ZZT)_l)}

P2

* a —

=P+ —E[I(Z227) " Zeil*] .
o1 M

By rotational invariance of the standard normal distribution for Z, we have

_EW(27(227)22) _ETx((2Z2T)7Y) _ n

TN—1r7_ 112
EIzZ7)" zeil] p p plp—n—1)

Plugging in, we get

Ld 0'2 n
Ellwumr|? = [lw*|* + E — )
pi | p(p—n—1)

i=1

d>? n
* (2 2 J
= |w*||* + 0% [ ds + —) _
el ( An) p(p—n—1)
Sending d; — oo and recalling p = dg + d, we obtain

0’2TL

lim Elldyr|? = |w]?+ =—.
Jim Ellbanll® = o |2 + 5

Moreover, it holds that

llwnrl? = |w*]|? + Tr ((ZZT)*l(ZE*ZT)(ZZT)*EET) +2(w*, 2V2Z2T (22T E)

TN\ 1 —15T TN 1 —1/2, % T T\ 1
:|w*”2+ﬁ<<zz ) (ZE 2Z )(ZZ ) EET>+2<ZE w*E 7(22 ) >
p p p p p

Notice that

p
zy-1z7 1 d? Z;27 1
li — =1 —\zgzt + 2L J) e g
Iy Odgxd * Z5" 1 2*ET
—1/2 « T:Z 7 s S J Wg T: R as.
) w'E [ S J] Od]XdS A—i]d, Od,] E ZSwSE =3 7}) 0.




Plugging in, we obtain
2
lim [[dpg|* = Hw*||2+u, and so E[ lim ||uaMR|2] = lim E|dyzg|>
dJ—)OO )\n dJ—)OO dJ—)OO

Clearly, the sequence of random variables (||1r||*) as we let d; — oo dominates (||@wan ||?). By
the dominated convergence theorem ’

lim Eldyy|?=E| lim ||’UAJMN|2:|
dJ—)OO _d]—)oo
=E[ lim (Xsuwg+B)T (XX XXT(XXT) ™ (Xsu§ + B)
Laj—oo
=E[ lim (Xsuw§+ E)T(XsX] + X,X]) ™ (Xsu + E)

_dJ—>OO

(Xsws + B) (Xs X3 + Auln) " (X5} + E)]
= (w5 E[XI(Xs X + M) ' Xslwh + 02 ETr (XsX& + MIn)7h).

With probability one, XSX-S'- is a n x n matrix with rank dg, so the eigenvalues of (XSX-S'- +An 1)~ 1
consist of the dg eigenvalues of (X1 Xs + A, Jas) ! and (n — dg) copies of OJ%. This implies

n—ds
0’2—.

o? ETr (XsX§ 4+ A) ') =c? ETr (X3 Xs + M) ') + 3

Moreover, by the rotational invariance of Xg ~ N (0, I5),

* |2
* — * w —_
(W) "EXE(Xs X T + \o1n) " Xs|wh = lws]” dSSH ETr (XJ(Xs X+ MTn) ' X5s)

w* 2 _

Plugging in, we get

nods (o 3l

" s ) ETr (X$Xs + Mlag) ™)

lim E|dun]? = [w*]]* + o?
d,]‘)OO

XIXs | Ay )_1
= ds , (otds = Mfug? e (24 + ) )
)\n dS

= |lw*|* + o

n

"We use the following version of the theorem, which is slightly more general than the usual one. Suppose
there exists a sequence of [, random variables Y;, such that Y,, > X, and

lim EY, =E lim Y,;
n— oo

n—oo

then we have

lim E X,, =E lim X,.

n— o0 n— o0

The proof is essentially the same and applies Fatou’s lemma to X,, and Y, — X,,.
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n

-1 -1
As Tr ((@) >, which has limit dg in expectation,8 dominates Tr ((@ + A—”Ids) ),

by the dominated convergence theorem

1 XTX R
lim —]ETr(( 5 S+/\—Ids) ) =1
n—o00 dS n n

Letting the term in brackets be /3,,, we have the result. O

Proposition 3.1. As n — oo in Setting B, if A, is both o(n) and w(1), then

2 Ell4 2) (R |12
lim Eldun|* = 7n +0(1) and lim (Ellwnmn %) E[2]*)
dj—o0 An dj—o00 n

=02 +o(1).

Proof. By Proposition B.1, there exists a sequence () such that 3, — 1 and

d 2q — A |Jw 2
lim Bl |® = 0> + {”w*p_gz_s%(a 5 = ullus] ﬂ
d,]%OO )\

n An n
Moreover, we have

An
E|z|? = Tr(X) =dg -1 +dy - o= ds + Ap.

Plugging in, we obtain

IE i 2 E 2 d n d n d 2d - \n Ak
o PIEIA) _ sy et o ot g (s = Mo Y],

n

An

n An n

By assumption, 1/), — 0 and \,,/n — 0; thus the dominant term inside the brackets is ||w*||? =
O(1). The conclusion follows by

ds + An ds + X\,
s+ — 1 and L —
n n

0. (]

B.2 Divergence of the generalization gap of norm balls (Section 3.1)

Proposition B.2. Ler p(¥ — 2) be the algebraically largest eigenvalue of > — . It holds that
& ~ * * 1
s Low) ~ Ls(w) 2 p(5 ~ 5) (o] - 'l + o) - 15T
lwll<[l@mw | n
and similarly for two sided uniform convergence, it holds that

lpy

n

sup  |Lp(w) — Ls(w)| 2 | £ = EI| - ([ daw| — [|lw™])* - ‘LD(w*)

llwll < 1@
Proof. Recall from (1) that
1
Ls(w) = [ Xw - Y|?

1
— ~J|X (w — w") + Xu* — Y
n

X 2 T
= (w—w")"S(w —w*) + 121" _ 2<w —w", X E>
n

8Using standard properties of the inverse Wishart distribution, we can check that

T —1 T —1
hmm«w) >_ds_m Tr(<w) )
n—oo n n— oo n
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Therefore, we can decompose the generalization gap as

Lp(w) — Ls(w) = Lp(w*) 4+ (w — w*)"¥(w — w*) — Lg(w)

B2 - XTE
= [Lp(w*)—%] +(w—w*)T(E—E)(w—w*)+2<w—w*, >
Observe that
. X'E
sup (w—w*)T(E—E)(w—w*)+2<w—w*, >
llwl| <l@mn |l
- XTE
> sup w' (2 — X)w + 2<w, >
llwll <ll@aw [|—[lw=]|
> p(Z=3) - ([omn] — [lw*])?.

The last inequality holds by picking w to be &(||@asn || — ||w*||) times the top eigenvector of ¥ — 3
for whichever sign makes the linear term nonnegative. By the same reasoning, we have

_ BN
—|.

sup  |Lp(w) — Ls(w)| 2 £ = EI| - ([ dawl| — [lw™])* - ‘LD(w*) O

lwll<ll@awl

Theorem 3.2. In Setting B, if A, = o(n) then

lim lim E sup  |Lp(w) — Ls(w)|] = 00.

o0 ds =00 | ||| <[y |

Proof. We will show that in Setting B as long as \,, = o(n),

lim lim E|X -3 - |@un]? = co.
n—0o0 dj—o0o

By Fatou’s lemma and the calculation in Proposition B.1,
lim E|X - 2| [liyn|? > E lim |2 -S| ]
d,]‘)OO d,]‘)OO
=E lim |3~ S (Xswh + B) (Xs XE + ML) H(Xswh + E)).

J—> 00

By independence of X and E, we have

lim B[S =S a2 2 E lim |2 =S| (ET(XsXT + AuLn)'E)
dJ*}OO d,]*}OO

:aQE{ lim |E—2||-Tr((XSX§+)\nIn)1)}
dj—o0

> o2E { lim |5 — 5| ("_dsﬂ
dJ—>OO )\n

_ (02"_dS>E[ lim ||2—2|].
)\n dj—o0

Next we want to interchange limit and expectation. Note that

I =2 < I=)+ =)
XIXs+X,XT

n
X;XT
+Tr(—J J>
n

n Z,;77
+A—T&~( JZJ).
n dj

= =l +

XTXg
<IB)+ || ===

XTXg
n

= =l +
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The first two terms do not depend on d ;. It is easy to verify that

T T
lim E[A—"Tr<ZJZJ>} :Aan[ lim ﬁﬂ(ZJZJ)]

dj—o0 n dJ dj—oo N dJ
as Zf} ©8 I,,. Therefore, by the dominated convergence theorem
: - - 2 . 21— ds ~
lim E [||2_2|\ Naw | ] > lim (222 ) E|z - 5.
dj—o0 dj—o00 An

Koltchinskii and Lounici [17] show that, for Gaussian data,

B[S - 5 > Cmax ( e Tha “@)) ,

n n

where C is a universal constant. Thus, in our case

- d An
B[S -3 > /20
n
Since A\, = o(n), this implies
. —d d An
lim lim E[HE—EH-H@MNH?} > lim (02" S)C,/ st _
n—00 d j—00 n— o0 An n

It is easy to see that the remaining terms in the lower bound of Proposition B.2 are negligible. [

B.3 Uniform convergence on tighter sets (Section 3.2)
Theorem 3.3. In Setting B, let A be an algorithm outputting interpolators, X A(X,Y) =Y, with
A((Xs,X),9)g = A((Xs,—XJ),y)s and lim lim Lp(A(X,y)) = o2  (6)

n—00 dj—00
Forany 6 € (0, %) and set of typical training examples Sy, 5 satisfying Pr(S € S, 5) > 1 =6, let
Wé(; ={AX,Y) : (X,Y) € Sy 5} denote the set of typical outputs. Then
lim lim sup sup |Lp(w)— Lg(w)] ag 302 (7

n—00 dj—+00 SGSn,s wWEW,, 5

Proof. Fix any S, s satisfying Pr(S € S, 5) > 1 — 0. Foreach S = ((Xg, X),Y), we define
S = ((Xs,—X),Y). Note that the marginal distribution of S is the same as S because of the
isotropic Gaussian distribution. Thus we also have Pr(S € S,, s) > 1 — §. By a simple union bound

1-Pr(Se€S,s NSESs)=Pr(SZSs USES,s)
< Pr(S¢€8ns)+Pr(S¢S,s) <20

As § < %, we have Pr(S € S,5 N S € Sns) > 0,s0the set {S € S5 : S € Sp,s} must
be nonempty. Pick any S = ((Xg, X),Y) in this set; thus @ = A((Xs,Xy),Y) € W, s and

w=A((Xs,—Xs),Y) € W, s. As A outputs interpolators, we have that
Xswg + Xywy =Y = Xgwg — Xjwy,

and (6) implies that wg = wg, so then X jw; = —X yw . Thus
. 1 . 1 . . R R 1 R
Ls(w) = EHXw ~Y|?= EHXSwS — Xy — (Xgbs + X gig)||* = EH—zXJwJH?

4 .
EH(In — )X i,

Y
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where II € R™*™ is the orthogonal projection onto the range of X s. Now,

(I — H)X]’LU] = (In — H)(Xsﬁ)s + XJUA)J)
=, -I)Y
= —I)(Xsws + E)
— (I, —-TE

~ N(0,02(I,, — II))

using E ~ N(0,0%L,). Asn — oo, because X is almost surely rank dg, Tr(I,, — II) is almost
surely n — dg. Thus we have

and so

The conclusion follows by the observation that

sup sup |Lp(w) — Ls(w)] = Ls(d) — Lo(d). O
SESn,(s weEWSs

Proposition B.3. Ler fg : R — R and f; : R% — R be convex functions, with f; symmetric,

fr(=w) = fj(w). Let A be an interpolation algorithm satisfying
A(X,y) = argmin fs(ws) + fs(wy).

ws.t. Xw=y

Then negating junk dimensions simply negates the corresponding dimensions of the predictor:

L. Ousxd,
Al(Xs =X, 1) = [ o2 O] A (s, ). ).

(If the minimizer is not unique, the equation holds as an operation on sets.)

Proof. The KKT conditions for A(X, y), which are both necessary and sufficient in this case, are
Xw=Xgws+Xw; =Y, 0€0fs(ws)+viXs, 0€0fs(ws)+v;X;, (14

where & denotes the subdifferential, and the dual variables vg € R% and v; € R% are otherwise
unconstrained. Also note that because f; is symmetric, if g € Jf; then for any ¢, there is some
g’ € Ofy such that g'(—¢) = —g(¢).

Let (w0, vs, vy) be some solution to (14), and define w = (g, —wy), X = (Xs,—Xy). Then
(Xs,=X7) 0 = Xs0s — Xy = Xsws + Xy =Y,
afs(’lf)s) + VSXS = dfs(ws) + VSXS 30,
and Of () +v Xy =0fs(—iy)+ v (=X;) >0 because 0 € dfs(wys)+ vy Xy

Thus (@, v, v;) satisfies the KKT conditions for A(X,Y"). When the minimizer is not unique, the
same argument works in reverse, showing that solution sets are related in the same way. O

C Proofs for Section 4

C.1 Consistency of the minimal risk interpolator (Proposition 4.3)

Proposition 4.3. In Setting A, the expected risk of the minimal-risk interpolator is

p—1

E Lp(w =
p(WMR) p—1-n

LD(’LU*)
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Proof. Recall that
yr =w* + XTI XT(XSTIXT) TR,

From this, we can compute

Lp(wyr) — Lp(w*) = (Wyr — w*) " (yr — w*)
(pyr —w*) XT(X2IXT)E
= (Xwyr — Xw)(XLIXTIE
=Y - Xuw)" (X2 IXN)"E
=E"(zZ")'E
={((ZZ")"1, EET).
By independence of Z and E, we get

E[Lp(iyp) — Lo(w*)] = 02 ETr [(ZZT)_l] .

—1 . . . ..
Note that (Z ZT) follows an inverse-Wishart distribution whose expectation is In__ Therefore,

p—n—1"
we obtain
E[Lp(wymr)] = 0 +o* Tr _ I
D(WMR p—n—1
2 n p—1 *
— 14— =L - ). . O
7 ( +p—n—1> (p—n—l) D(w)

C.2 Uniform consistency of low norm interpolators (Section 4.1)
C.2.1 General results

Our key lemma is as follows:

Lemma C.1. Let i be any predictor that interpolates the data, with ||| < B, and F € RP*(P—")
be the matrix whose columns form an orthonormal basis of the kernel of X. In other words, if
Xw =Y, XF = 0pxp—n) and FTF = I,_p, then (8), the worst-case generalization gap for
interpolators up to norm B, is equal to

Lp(i inf  ||FT[\d — X(v — w* L+ NB? = ||w]]?).
D(w)+A>”g1TEFHII M — X5 — w)]|| (a1, —Frsm)-1 + A [[@]]%)

Proof. Observe that {w € RP : Lg(w) = 0} = {0+ Fu: u € RP~"}. Then
sup Lp(w)— Lg(w)

lwli<B
Lg(w)=0
=Lp(w*)+ sup Lp(w)— Lp(w")
lwl<B
Ls(w)=0
= Lp(w*) + sup (4 Fu—w")"S(w + Fu — w*)
lli+Ful®<B?
= Lp(w") + sup u (FTSF)u+ 2(u, FTS (0 — w*)) 4 (b — w*) T8(w — w*)
llull®+2¢u, FTa)+||@|* < B
= Lp(w) + sup u (FTSF)u + 2(u, FTS (0 — w*))
l[ll®+2¢u, FT@) +||@||* < B
= Lp(w) — inf u (=FTSF)u — 2(u, FTS (i — w*)).

l[ll®+2¢u, FT@) +||@||* < B

Although the second term involves a concave minimization problem, it is a quadratic optimization
problem with a single quadratic inequality constraint. This is a classical example where strong
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duality holds even though the objective is not convex [9, Appendix B]. In order to derive the dual,
we write down the Lagrangian:

L(u,\) = u" (=F"SF)u — 2(u, FTS( — w*)) + M(J|Jul|® + 2(u, FTd) + ||| — B?)
=u' (Mp—n — FTEF)u+2(u, FT (A — S(db — w*))) — M(B* — ||[0]|*);
strong duality tells us that the infimum is equal to supysinf, L(u,A). For A < [|[FTSF]|,
AM,_, — FTYF has strictly negative eigenvalues, and so then inf, L(u,\) = —oo. If instead
A > ||[FTSF|, AM,—, — FTSF is strictly positive definite, and setting the u derivative to zero
yields that inf,, L(\, u) is
—[FT (M — S(w — w*))]T My —FTSF)™' [FT (A — S( — w*))| = A\(B®—[|@]|?). (15)

If instead A\ = || FTSF||, we again have inf,, L(u, \) = —oc unless F'T (M — FTY (0 — w*)) = 0
so that the linear term is identically zero; in this case, the quadratic term is minimized by u = 0,

and inf, L(u,\) = A\(B? — ||w||?) agrees with (15), so this case is covered by the strict case as
well. Thus the dual problem is to maximize (15) over A > ||FTSF||. The desired result follows by
passing the minus sign into the sup of the dual problem. o

We will now prove Theorem 4.5.

Theorem 4.5. The following results hold deterministically, viewing Lp(w) simply as a quadratic
Sfunction Lp(w*) + ||w — w*||s, with no distributional assumptions on S.

(i) It holds that

sup  Lp(w) — Ls(w) = Lp(Wumr) + m ix () |[[dmr]® — H@MNHQ}
[lw]| <[ mrl
Lg(w)=0

where 1 <y, < 4.

If the minimal risk interpolator is consistent, E Lp(wyr) — Lp(w*) — 0, then the class
of interpolators with norm less than || r|| is uniformly consistent if and only if

Erx(Z) - [lburl? = loan]2] = 0.

(ii) Fix a sequence (By,) such that By, > || wuyn|| for all n. Then

sup Lp(w) — Lg(w) = Lp(wyy) + £x(2) [BZ _ HwMN||2] +R,
”w”SBn;LS(w):O

where 0 < R,, < 2\/[LD(’LZ)MN) — Lp(w*)| kx (X) [BZ — ||dmn||?].

IfE Lp(wyn) — Lp(w*) — 0, the class of interpolators with norm less than By, is thus
uniformly consistent if and only if

Exx () [B2 - |\wMN||2} 0.

Proof. For case (i), observe that
F'S(yr —w*) = FTIXT(X2'X)'E= (XP)T(XS' X)) E=0.
Thus picking @ = wWyg and B = || pr|| in Lemma C.1 gives that

sup Lp(w) = Lp(iyr) +  inf  [INF duglg, , prsm-1. (16)
lwlI<ll@umell, Ls(w)=0 A>||FTSF||

Since we have 1
Tlon = (Mpy_p — FTSF)7Y
we know that SUp|j, | <|j@ x|, Ls (w)=0 LD (w) is lower bounded by

1

inf  —||ANFTuyg|? = Lp(img) + ||FTSF|| - || F g
AS|FTSF| A

Lp(wmr) +
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In order to compute || F'Tyr||?, we notice that F'F'T is the orthogonal projection onto the kernel
of X. Using the fact that im(XT) = ker(X )", we get I — FFT is the orthogonal projection onto
the image of X T. Thus,
X(I - FFNygr = Xidyg =Y,
and left-multiplying both sides by X T(X X T)~! gives that
yy = X (XXX (T - FF ygr = (I — FF )yg,

and so

|F T inr||® = by FF T bar
=Wy rF(FTF)F g
= |[|FF Tzl
= [lomrl? = (I = FF")dur|?
= [[omrll® — ldmn|?
which establishes the lower bound with a constant of 1.
Similarly, we can use (Al,—, — FTSF)~! < Wlp,n to upper bound (16) as
inf 1
in T —
AS|FTsF| A — ||[FTEF|

A FTYF|)?
ZLD(QDMR) + inf —( + ” ”)
A>0 A

Lp(wmr) + INF T ||
(lonmerll® = lan|I?)
|FTSF|?
A
=Lp(yr) + 4| FTSF| - ([dmr|? = lloun|?).

This gives the desired upper bound with a constant of 4. It follows immediately that (16) converges
to Lp(w*) if and only if

~Lo(oum) + jut, (A+2IFTSF] + ) (sal? = sl

E|FTSF|| - ([@mr]? — [[@mn]?) — 0.

Turning to part (ii), observe that
Fliyny = FTXT(XXT) "y = (XF)"(XX")"ly =0,
so that Lemma C.1 with w = Wy gives

sup Lp(w) = Lp(yy)+  inf  [|[FTS(w—w* _prsry 1 AN BE | |?).
T S (w) ( ) A>HFTEFHH ( Mo, n—rrsr) ( [ %)

Moreover, it is clear that
1
——————lpn.
A—|[[FTEZF|
Therefore, Supj,<p,, £s(w)=0 LD (w) is lower bounded by, recalling that |FTSF| = kx(2),

ABE = lwun|l) = Lo(bun) + £x () - [B — loun|?], A7)

0p—n <= Mp_y — FTEF)7! <

LD(’LZ)MN) + inf
A>|[FTSF||

and we have shown that R,, > 0 in the result. On the other hand, sup,<g, Lg(w)=0 LD (w) is
upper bounded by
1

Lo (i nf  —
plba) + ik XS

|FTS (= w*)? + A[B2 = [[onw]?]
N . 1 N N .
=Lp(Wwmn) + /{I;fo XHFTE(U)MN — w2+ A+ kx(X)) {BZ - ||wMN||2]

. . e 1 . x .
= Lp(ta) + kx (D) - | B2 = s [|?] + inf S TSy — w2+ A|BE = [ ]

= Lo(bun) + kx(Z) - [ B2 — ] + M |FTS(an — w2+ [BE = [dan]?]- (18)
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We can upper bound
|FTS(wpn — w*)|]? = (pn — w*) T SFFTE(wyy — w*)
_ [El/Q(wMN _ w*)]T(El/QFFTEl/Q)[El/Q(wMN —w*)]
< |IEVEFFTSY?| - 22 (dary — w2
= |[FTSF| - [Lp(dumy) — Lp(w")]

)

using the fact that || AAT || = || AT A|| with A = FTX'/2, Plugging into the third term of (18) yields
our desired upper bound on R,

To show the statement about expectations when E Lp (wpsn ) — Lp (w*) — 0, note for one direction
that (17) gives

lminfE | sup Lp(w) — Ls(w)| > Lp(w*) + lim Exx(E)- [Bi— |\wMN||2]

Lg(w)=0

For the other direction, we have

R, < 2\/ |FTSF - (Lo (un) — Lo(w)][B2 = dn|?]

. 1 - *
< €| FTSF| - B2 — |bun 2] + < [Lo(iwn) = Lo(w")]
for any € > 0. This implies

limsupE | sup Lp(w) — Ls(w)| < Lp(w*)+(1+e)E( lim rx(Z) - [Bg - ||mMN|\2D :
n—00 w]|< By o
Lg(w)=0

showing the desired result. o

C.2.2 Special case of Setting B

In Setting B, we are able to compute £ x (2).
Proposition C.2. With probability 1, it holds in Setting B that

MTxTxs A, 171
lim kx(E) =22 [S—SJF?IdS}

dj—o0 n n

Proof. Recall that
rx (D) = |[FTEF|| = [SV2FFTSY?)| = |2V2(1 - XT(XXT) 1 X)),
It is a routine calculation to show that
- [n -
S U2 p T2 Iig — XI(Xs XTI+ X, X)) 1 Xs - d—JX-Sr(XSX-Sr + X, X)X,
—/EXT(XsXT+ XyX)) ' X 2 [Ia, — XJ(Xs X+ Xy X)) X]
Intuitively, since only the upper-left block does not vanish as d; — oo, we should expect

lim rx (D) = |l — X§(XsXT 4+ N\ L) 1 X5

dj—o0

However, as the dimensions of ©'/2F FTX1/2 also increase with d s, the analysis of x (X) requires
more care.

Itis clear that kx (X) > ||Igs — X3 (XsXd + X;XT)"1Xg]|, and so
liminf rx(8) > [log — X3(Xs X3+ Anln) ™' X
J—00
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To upper bound the limit, fix any v = (v1, v2) such that v; € RS, vy € R% and ||v|| = 1. We can
write

VTSY2RETSY 2y = o (I, — XE(XsXT + XX T) 1 X g)uy

A _
+ 200) [T, — X (Xs X3+ X5X]) 1 Xg] v
ds (19)

An
-2/ d—]ufxg(xsxg + X X)) X e
The first term is upper bounded by
a5 — X5(Xs X5 + X5 X7) "' Xs|l - ol < as — X§(XsXg + XsX7) ™ X,
and the second term is upper bounded by \,, /d s, because

vavg < 1 and vy X (Xs X4+ XX X jvg > 0.

For any € > 0, we have
An -
—24/ d—ufxg(xsxg + X, XD X o
J

_ An _
<2 XT(Xe X3 + XX 1)V H,/d—J(szngXJX}) 12X 0g

2

1

An
<e|of XT(XsXT + X,XT)7 V22 + - /d—J(szg + XX 7V2X 0,

- An -
<€l X$(XsX$ + Xy X)) Xl + EHX}(X:;X; + X, X)X

- An - -
= el X5 (Xs X5 + X, X)) X | + Zll(Xs X + X, X)) P XX (Xs X5 + X, X)) 2.

Taking a supremum over v in (19), we get

Ax(B) < las = Xo(Xs X5+ Xy X)) Xs| + e X3 (X5 X5 + X, X)) ™ X
+ 2_7; L+ %”(XSX;— + X, XDV XT(Xs XE 4+ X, X)) 7121
Note that
Jim [[(XsXT 4 X, XD 72X XT (6 XT 4 X,X0) 72
= M| (Xs X T+ ML) 7Y < o0,

so for any € > 0,

limsup kx(X) < |[Tgs — XT(Xs X3 + X\ L) 7 X || + €| X (X X + N 1) 1 X

dJ—)OO

Sending ¢ — 0 matches the lim inf and lim sup. Finally, because

(XsX§ 4+ Andn) ' Xs = Xs(X3Xs + Anlag) ",

we have
Ijg — XE(Xe XTI+ Mdn) ' Xs = Ing — XIXs(XEXs + Noag) ™"
= M (XEX s + Modag) ™!
-1
and the proof is concluded. o
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Proposition C.3. In Setting B, it holds that

lim lim Exx(%)- |wun]? = Lp(w*),
n—oo dj—00

lim lim Erxx (%) [|@mzl® — |@mn|?] = 0.
n—o00 dj—o00

Proof. Notice that x x (X)-||1n ||? can be dominated by || |||z ||? and Proposition B.1 showed
that ||1rr||? is integrable, so by the dominated convergence theorem,

lim Ekx(2) - [opuy]? =E lim kx(2) - |[duy]?.
dJ—)OO d]—)oo

ey 4 NEIP
(e + 121

Similarly, limg, oo £x (X) - ||@Wan | can be dominated by

ws M llTxTxg A, 171
‘2 = — |:STS+7IdS:|

n

lim xx(X)-||Wmg]
d,]*}OO

according to Propositions B.1 and C.2.

-1
XIx 5 ? as
As [s_s + A_"Ids} ©3 1 and LEIZ “% 52 we have
n n n
lim lim sx(%)-[|omg|*E o2

n—00 dj—00

Moreover, by independence of Xg and

* |12
E lim kx () ||[ugl? = <W +02> ‘E

dj—o0

XIXs A, . 1"
LA
n n

. XIx -1
Again, {—Sn 5 4 %"Ids}

-1
can be dominated by Tr ((%) > , so that

lim E lim wx(X)- |omrl? =0 =F lim lim kx(¥) - ||dur|?.
n—oo0 dj—oo n—o00 dj—»o0

It is also straightforward to check that
Ao [0 . — . .
lim E— < lim ||wMR|2) =0?=E lim 2. < lim ||wMR|2) .
n—roo n dj—o0 n—oo N dj—o0
Another application of DCT shows that

. . o 2: . . T 2
Aol B X ) aan = i Bl () - I

_ . . Mo 2

M ITXTxs A, 17
—E lim =2 [ S S—I——Ids}
n—oo N n

: ( lim |1DMN|2)
d,]%OO

n

An
=FE lim ~=*. ( lim ||mMN||2>.
d,]*}OO

Using the fact that

)\n . A 2 /\n . ~ 2
— | lm ||Joyn|]?) <= lim ||dyrl
n dj—o0 n dj—o0

and || W ||? < ||wamr|?, two final applications of DCT give

lim lim E sx(Z)- |[dun|? = lim An <]Edlirn ||wMN||2>
J—>00

n—00 dj—o00 n—oo N
A
= lim = ( lim E||mMN||2>
n—oo M dj—o0
A —d 2ds — A |2
= lim 2™ {”w*|2+02” S 1B, (U S nllwg|] )]
n—oo n An n
:(7'2.
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by Proposition B.1. Consequently, we have established
. . . 2 - 2)1 —
Jim lim B [kx (D) - (lomr]® = llwun|?)] = 0. O
We are finally ready to prove Theorem 4.1 and Proposition 4.6.
Proposition 4.6. In Seiting B with A, = o(n),
sup Lp(w) — Ls(w)

lwl<l@umrll; Ls(w)=0

lim lim E
n—00 dj—00

= LD(’U}*).

Proof. Recall in the proof of Theorem 4.5, it is shown that
sup Lp(w) < Lp(dur) +4£x(2) - [ldmrl® — ldun|?] -
[lwl|<||[@mrll, Ls(w)=0
Proposition 4.3 implies that
lim E LD(’UA}MR) = LD(U}*)
dJ—>OO
Combined with Proposition C.3, we have shown

lim lim E
n—oo dj—o00

sup Lp (’(U) — Lg (’LU)
lw||<|[Wmrll, Ls (w)=0

On the other hand, we have the trivial lower bound

lim lim E sup Lp(w)—Ls(w)| > lim lim ELp(dygr)=Lpw*). O

o0 ds =00 |lw| <[z n=00 dy—00
Lg(w)=0

Theorem 4.1. In Setting B with A, = o(n), fix a sequence (a,) — «, with each o, > 1. Then

lim lim E
n—o00 dj—+00

sup Lp(w) — Ls(w)] = a*Lp(w*).

lwll <anll@mwll, Ls (w)=0

Proof. In the proof of Theorem 4.5, it is shown for every € > 0 that
. . 1 . .
sup L (w)—~Ls(w) < Lp(n)+(1+)kx (2): [ Bi= a2 +~[Lo ()~ Lo (w)].
lwl|<Bn
Lg(w)=0
Proposition 4.6 implies that lim,, o limg, 00 E Lp(10an) = Lp(w*). Thus, plugging in B, =
ap || W || and taking expectations and limits on both sides gives

lim lim E sup Lp(w)| < Lp(w*)+(1+¢) lim lim E(a2 —1)rx(X)||dun]|?;
n—oo dj—00 ”w”LS‘z‘n')‘wMNH n—00 d j—»00
s(w)=0

further applying Proposition C.3 yields

< Lp(w*) + (14 €)(a? — 1) Lp(w*).

lim lim E sup Lp(w)
n—o0 d j—o0 [|w]| < cvn || Warn ||
Ls(w)=0

Sending € — 0 yields the upper bound o Lp (w*).

To get the lower bound, in the proof of Theorem 4.5 it is also shown

H SHUP Lp(w) — Ls(w) > Lp(yn) + kx(Z) - | B — ||U7MNH2]
wl||<Bp
Lg(w)=0

By Proposition C.3, letting B,, = a, ||wasn || we obtain

> Lp(w*) + (@ — 1)Lp(w*) = o*Lp(w*)

lim lim E sup Lp(w)
=00 ds =00 | |lw||<ap iyl Ls(w)=0

and the proof is concluded. o
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