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ABSTRACT

A key element of understanding the efficacy of overparameterized neural networks
is characterizing how they represent functions as the number of weights in the
network approaches infinity. In this paper, we characterize the norm required to
realize a function f : RY — R as a single hidden-layer ReLU network with an
unbounded number of units (infinite width), but where the Euclidean norm of the
weights is bounded, including precisely characterizing which functions can be re-
alized with finite norm. This was settled for univariate functions f : R — R in
Savarese et al. (2019), where it was shown that the required norm is determined
by the L'-norm of the second derivative of the function. We extend the charac-
terization to multi-variate functions (d > 2, i.e., multiple input units), relating
the required norm to the L!-norm of the Radon transform of a (d + 1)/2-power
Laplacian of the function. This characterization allows us to show that all func-
tions in Sobolev spaces stl(Rd), s > d + 1, can be represented with bounded
norm, to calculate the required norm for several specific functions, and to obtain a
depth separation result. These results have important implications for understand-
ing generalization performance and the distinction between neural networks and
more traditional kernel learning.

1 INTRODUCTION

It has been argued for a while, and is becoming increasingly apparent in recent years, that in terms
of complexity control and generalization in neural network training, “the size [magnitude] of the
weights is more important then the size [number of weights or parameters] of the network” (Bartlett,
1997; Neyshabur et al., 2014; Zhang et al., 2016). That is, inductive bias and generalization are not
achieved by limiting the size of the network, but rather by explicitly (Wei et al., 2019) or implicitly
(Nacson et al., 2019; Lyu & Li, 2019) controlling the magnitude of the weights.

In fact, since networks used in practice are often so large that they can fit any function (any labels)
over the training data, it is reasonable to think of the network as virtually infinite-sized, and thus
able to represent essentially all functions. Training and generalization ability then rests on fitting
the training data while controlling, either explicitly or implicitly, the magnitude of the weights.
That is, training searches over all functions, but seeks functions with small representational cost,
given by the minimal weight norm required to represent the function. This “representational cost
of a function” is the actual inductive bias of learning—the quantity that defines our true model
class, and the functional we are actually minimizing in order to learn. Understanding learning with



overparameterized (virtually infinite) networks thus rests on understanding this “representational
cost”, which is the subject of our paper. Representational cost appears to play an important role in
generalization performance; indeed Mei & Montanari (2019) show that minimum norm solutions
are optimal for generalization in certain simple cases, and recent work on “double descent” curves
is an example of this phenomenon (Belkin et al., 2019; Hastie et al., 2019).

We can also think of understanding the representational cost as asking an approximation theory
question: what functions can we represent, or approximate, with our de facto model class, namely
the class of functions representable with small magnitude weights? There has been much celebrated
work studying approximation in terms of the network size, i.e., asking how many units are necessary
in order to approximate a target function (Hornik et al., 1989; Cybenko, 1989; Barron, 1993; Pinkus,
1999). But if complexity is actually controlled by the norm of the weights, and thus our true model
class is defined by the magnitude of the weights, we should instead ask how large a norm is necessary
in order to capture a target function. This revised view of approximation theory should also change
how we view issues such as depth separation: rather then asking how increasing depth can reduce
the number of units required to fit a function, we should instead ask how increasing depth can reduce
the norm required, i.e., how the representational cost we study changes with depth.

Our discussion above directly follows that of Savarese et al. (2019), who initiated the study of the
representational cost in term of weight magnitude. Savarese et al. considered two-layer (i.e., single
hidden layer) ReLU networks, with an unbounded (essentially infinite) number of units, and where
the overall Euclidean norm (sum of squares of all the weights) is controlled. (Infinite width networks
of this sort have been studied from various perspectives by e.g., Bengio et al. (2006); Neyshabur
et al. (2015); Bach (2017); Mei et al. (2018)). For univariate functions f : R — R, corresponding
to networks with a single one-dimensional input and a single output, Savarese et al. obtained a crisp
and precise characterization of the representational cost, showing that minimizing overall Euclidean
norm of the weights is equivalent to fitting a function by controlling:
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While this is an important first step, we are of course interested also in more than a single one-
dimensional input. In this paper we derive the representational cost for any function f : R? — R in
any dimension d. Roughly speaking, the cost is captured by:
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where R is the Radon transform, A is the Laplacian, and 3, is a partial derivative w.r.t. the offset in
the Radon transform (see Section 3 for an explanation of the Radon transform). This characterization
is rigorous for odd dimensions d and for functions where the above expressions are classically well-
defined (i.e., smooth enough such that all derivatives are finite, and the integrand in the Radon
transform is integrable). But for many functions of interest these quantities are not well-defined
classically. Instead, in Definition 1, we use duality to rigorously define a semi-norm || f|| that
captures the essence of the above quantities and is well-defined (though possibly infinite) for any
f in any dimension. We show that || f||, precisely captures the representational cost of f, and in
particular is finite if and only if f can be approximated arbitrarily well by a bounded norm, but
possibly unbounded width, ReLLU network. Our precise characterization applies to an architecture
with unregularized bias terms (as in Savarese et al. (2019)) and a single unregularized linear unit—
otherwise a correction accounting for a linear component is necessary, similar but more complex
than the term | f/(—o0) + f’(+00)] in the univariate case, i.e., (1).

As we uncover, the characterization of the representational cost for multivariate functions is unfor-
tunately not as simple as the characterization (1) in the univariate case, where the Radon transform
degenerates. Nevertheless, it is often easy to evaluate, and is a powerful tool for studying the rep-
resentational power of bounded norm ReLU networks. Furthermore, as detailed in Section 5.5,
there is no kernel function for which the associated RKHS norm is the same as (2); i.e., training
bounded norm neural networks is fundamentally different from kernel learning. In particular, using
our characterization we show the following:

e All sufficiently smooth functions have finite representational cost, but the necessary de-
gree of smoothness depends on the dimension. In particular, all functions in the Sobolev
space WA4t1L1(R?), i.e., when all derivatives up to order d + 1 are L!-bounded, have finite
representational cost, and this cost can be bounded using the Sobolev norm. (Section 5.1)



e We calculate the representational cost of radial “bumps”, and show there are bumps with
finite support that have finite representational cost in all dimensions. The representational
cost increases as 1/¢ for “sharp” bumps of radius ¢ (and fixed height). (Section 5.2)

e In dimensions greater than one, we show a general piecewise linear function with bounded
support has infinite representational cost (i.e., cannot be represented with a bounded norm,
even with infinite networks). (Section 5.3)

e We obtain a depth separation in terms of norm: we demonstrate a function in two dimen-
sions that is representable using a depth three ReLLU network (i.e., with two hidden layers)
with small finite norm, but cannot be represented by any bounded-norm depth two (single
hidden layer) ReLU network. As far as we are aware, this is the first depth separation result
in terms of the norm required for representation. (Section 5.4)

1.1 RELATED WORK

Although the focus of most previous work on approximation theory for neural networks was on the
number of units, the norm of the weights was often used as an intermediate step. However, this
use does not provide an exact characterization of the representational cost, only a (often very loose)
upper bound, and in particular does not allow for depth separation results where a lower bound is
needed. See Savarese et al. (2019) for a detailed discussion, e.g., contrasting with the work of Barron
(1993; 1994).

The connection between the Radon transform and two-layer neural networks was previously made
by Carroll & Dickinson (1989) and Ito (1991), who used it to obtain constructive approximations
when studying approximation theory in terms of network size (number of units) for threshold and
sigmoidal networks. This connection also forms the foundation of ridgelet transform analysis of
functions Candes & Donoho (1999); Candes (1999). More recently, Sonoda & Murata (2017) used
ridgelet transform analysis to study the approximation properties of two-layer neural networks with
unbounded activation functions, including the ReLLU.

While working on this manuscript, we learned through discussions with Matus Telgarsky of his
related parallel work. In particular, Telgarsky obtained a calculation formula for the norm required
to represent a radial function, paralleling our calculations in Section 5.2, and used it to show that
sufficiently smooth radial functions have finite norm in any dimension, and studied how this norm
changes with dimension.

2 INFINITE WIDTH RELU NETWORKS

We repeat here the discussion of Savarese et al. (2019) defining the representational cost of infinite-
width ReLU networks, with some corrections and changes that we highlight.

Consider the collection of all two-layer networks having an unbounded number of rectified linear
units (ReLUs), i.e., all gg : R — R defined by

k
Zaqw x — bl +c, forall € R? 3)
i=1

with parameters @ = (k, W = [wy, ..., wi], b = [b1,...,bx] T, @ = [ay, ...,ax] T, c), where the width
k € N is unbounded. Let © be the collection of all such parameter vectors §. For any § € © we
let C(0) be the sum of the squared Euclidean norm of the weights in the network excluding the bias
terms, i.e.,
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and consider the minimal representation cost necessary to exactly represent a function f € R? — R
R(f):= inf C(0) st. f = go. 5
(f):= jnf C(0) st. f =g (5)

By the 1-homogeneity of the ReLU, it is shown in Neyshabur et al. (2014) (see also Appendix A of
Savarese et al. (2019)) that minimizing C(6) is the same as constraining the inner layer weight



vectors {w;}¥_, to be unit norm while minimizing the ¢'-norm of the outer layer weights a.
Therefore, letting ©’ be the collection of all § € © with each w; constrained to the unit sphere
S 1= {w € R4 : ||w| = 1}, we have

R(f) = eiélef), lally st. f=ge. (6)

However, we see R(f) is finite only if f is exactly realizable as a finite-width two layer ReLU
network, i.e., f must be a continuous piecewise linear function with finitely many pieces. Yet, we
know that any continuous function can be approximated uniformly on compact sets by allowing the
number of ReLU units to grow to infinity. Since we are not concerned with the number of units, only
their normi we modify our definition of representation cost to capture this larger space of functions,
and define

(1) = iy juf CO) st lao@) ~ S(@)] <& ¥ ol < 1z and (0) = S0)) )
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In words, R(f) is the minimal limiting representational cost among all sequences of networks con-
verging to f uniformly (while agreeing with f at zero).

Intuitively, if R(f) is finite this means f is expressible as an “infinite-width” two layer ReLU net-
work whose outer-most weights are described by a density «(w,b) over all weight and bias pairs
(w,b) € ST~! x R. To make this intuition precise, let M (S?~! x R) denote the space of signed
measures o defined on (w,b) € S~ x R with finite total variation norm |||y = [ou 1, 5 d|a]

(i.e., the analog of the L'-norm for measures), and let ¢ € R. Then we define the infinite-width
two-layer ReLU network h,, . (or “infinite-width net” for short) by2

hae(®) = /SCHX]R (lw'ae — b4 — [-b]+) da(w, b) + ¢ (8)

We prove in Appendix B that R(f) is equivalent to

R(f) = i b f=hae. 9
(7) aeM(sEIIIiR),ceR”aHIS / ' ©)

Hence, learning an unbounded width ReLU network gy by fitting some loss functional L(-) while
controlling the Euclidean norm of the weights C'() by minimizing

min L(ge) + AC(0) (10)

is effectively the same as learning a function f by controlling R(f):

f;%ﬂRL(f) + AR(f). (11)

In other words, R(f) captures the true inductive bias of learning with unbounded width ReLU
networks having regularized weights. Our goal is then to calculate R(f) for any function f : R% —
R, and in particular characterize when it is finite in order to understand what functions can be
approximated arbitrarily well with bounded norm but unbounded width ReL U networks.

2.1 SIMPLIFICATION VIA UNREGULARIZED LINEAR UNIT

Every two-layer ReLU network decomposes into the sum of a network with absolute value units
plus a linear part®. As demonstrated by Savarese et al. (2019) in the 1-D setting, the weights on the
absolute value units typically determine the representational cost, with a correction term needed if

'Our definition of R( f) differs from the one given in Savarese et al. (2019). We require |gg () — f(x)| < €
on the ball of radius 1/e rather than all of R?, and we additionally require gg (0) = f(0). These modifications
are needed to ensure (7) and (9) are equivalent. Also, we note the choice of zero in the condition g¢(0) = f(0)
is arbitrary and can be replaced with any point 2y € RY.

2Qur definition of ha,c also differs from the one given in Savarese et al. (2019). To ensure the integral is
well-defined, we include the additional —[—b] term in the integrand. See Remark 1 in Appendix A for more
discussion on this point.

*Such a decomposition follows immediately from the identity [t = 1 (|¢| +t)



the linear part has large weight. To allow for a cleaner formulation of the representation cost without
this correction term, we consider adding in one additional unregularized linear unit v x (similar to
a “skip connection”) to “absorb” any representational cost due to the linear part.

Namely, for any # € © and v € R? we define the class of unbounded with two-layer ReLU networks
go.» With a linear unit by gp () = go(x) + v = where gy is as defined in (3), and associate gg
with the same weight norm C'(6) as defined in (4) (i.e., we exclude the norm of the weight v on the
additional linear unit from the cost). We then define the representational cost R (f) for this class of
networks by

Ri(f) := 1in%( inf  C(0) s.t. |gon(z) — f(x)] <e Vx| <1/eand gg(0) = f(0)
e— 0€O’ veR

(12)
Likewise, for all « € M (Sdil xR),v € RY, ¢ € R, we define an illﬁnite width net with a linear
unit by by v.c(€) := ha.o(x) + v x. We prove in Appendix B that R; (f) is equivalent to:

R = i t f=have 13
1(f) aeM(Sdflglﬂl%I)l,veRd,ceRHanl st f v (13)

In fact, we show the minimizer of (13) is unique and is characterized as follows:

Lemma 1. R (f) = ||a™|1 where a™ € M(S?! x R) is the unique even measure* such that
f = ho+ pcforsomev € R ce R

The proof of Lemma 1 is given in Appendix C. The uniqueness in Lemma 1 allows for a more
explicit characterization Ry (f) in function space relative to R(f), as we show in Section 4.

3 THE RADON TRANSFORM AND ITS DUAL

Our characterization of the representational cost Ry (f) in Section 4 is posed in terms of the Radon
transform — a transform that is fundamental to computational imaging, and whose inverse is the
basis of image reconstruction in computed tomography. For an investigation of its properties and
applications, see Helgason (1999). Here we give a brief review of the Radon transform and its dual
as needed for subsequent derivations; readers familiar with these topics can skip to Section 4.

The Radon transform R represents a function f : R? — R in terms of its integrals over all possible
hyperplanes in R?, as parameterized by the unit normal direction to the hyperplane w € S¢~! and
the signed distance of the hyperplane from the origin b € R:

R{f}H w,b) := / f(x)ds(x) forall (w,b) € S ! xR, (14)
wTx=b

where ds(x) represents integration with respect to (d—1)-dimensional surface measure on the hyper-

plane w " = = b. Note the Radon transform is an even function, i.e., R{f}(w,b) = R{f}(—w, —b)

for all (w,b) € S x R, since the equations w'x = b and —w'x = —b determine the same

hyperplane. See Figure 1 for an illustration of the Radon transform in dimension d = 2.

The Radon transform is invertible for many common spaces of functions, and its inverse is a compo-
sition of the dual Radon transform R* (i.e., the adjoint of R) followed by a filtering step in Fourier
domain. The dual Radon transform R* maps a function ¢ : S~! x R — R to a function over
x € R by integrating over the subset of coordinates (w,b) € S%~! x R corresponding to all
hyperplanes passing through «:

R*{p}(x) = / o(w,w'x)dw forall x € R? (15)
Sd—l

where dw represents integration with respect to the surface measure of the unit sphere S*~!. The

filtering step is given by a (d — 1) /2-power of the (negative) Laplacian (—A)(@—1)/2 where for any

s > 0 the operator (—A)*/2 is defined in Fourier domain by

——
~

(=A)/2f(&) = lIElI° f (&), (16)

*Roughly speaking, a measure « is even if a(w, b) = o —w, —b) forall (w, b) € S¥~! x R; see Appendix
A for a precise definition.
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Figure 1: Radon transform. (a) Illustration of the Radon transform in equation (14) in dimension d = 2. The
red line of points  satisfying w ' & = b defines the domain of the integral over f(a), where w determines the
line orientation (angle relative to the coordinate axes) and b determines its offset from the origin. (b) Illustration
of the support of the Radon transform for f(x) = §(x — (=1, —1)) (red), f(x) = d(x — (1,0)) (green), and
f(x) = 6(x—(0,1)) (blue). If a function f is a superposition of such § functions, then R{ f} is the sum of the
curves in (b); this is typically referred to as a “sinogram”. Furthermore, the dual Radon transform in equation
(15) integrates any function ¢(w, b) over all curves like one of the three in (b).

using g(§) = (2m)"¥2 [ g(m)e’igmdw to denote the d-dimensional Fourier transform at the
Fourier domain (frequency) variable & € R%. When d is odd, (—A)(¢~1/2 is the same as applying
the usual Laplacian (d — 1)/2 times, i.e., (—A)(@=1/2 = (=1)(d=1D/2A(d=1)/2 while if d is even
it is a pseudo-differential operator given by convolution with a singular kernel. Combining these

two operators gives the inversion formula f = y4(—A)@~D/2R*{R{f}}, where 4 is a constant
depending on dimension d, which holds for f belonging to many common function spaces (see,
e.g., Helgason (1999)).

The dual Radon transform is also invertible by a similar formula, albeit under more restrictive con-
ditions on the function space. We use the following formula due to Solmon (1987) that holds for all
Schwartz class functions® on S¢~1 x R, which we denote by S(S?~! x R):

Lemma 2 (Solmon (1987)). If o is an even function®, i.e., o(—w, —b) = p(w,b) for all (w,b) €
S9! x R, belonging to the Schwartz class S(S%~1 x R), then

YaR{(=A) VPR )} = o, (17)

where yq = W.

Finally, we recall the Fourier slice theorem for Radon transform (see, e.g., Helgason (1999)): Let
f € LY(R%), then forall ¢ € R and w € S~! we have

~

FoR{fHw,0) = f(o-w) (18)

where F, indicates the 1-D Fourier transform in the offset variable b. From this it is easy to establish
the following intertwining property of the Laplacian and the Radon transform: assuming f and A f
are in L' (R), we have

R{ASY = O;R{f} (19)
where 0y, is the partial derivative in the offset variable b. More generally for any positive integer s,
assuming f and (—A)*/2f are in L' (R%) we have

R{(=A)*2f} = (=07)""R{S} (20)
where fractional powers of —82 can be defined in Fourier domain, same as fractional powers of

the Laplacian. In particular, if d is odd, (—97)@~1/2 = (=1)(@=1/294~1 while if d is even,
(—=02)(d=1/2 = (3409;)9~! where H is the Hilbert transform in the offset variable b.

s/2

%i.e., functions ¢ : S9! x R — R that are C*°-smooth such that (w, b) and all its partial derivatives
decrease faster than O(|b| ™) as |b| — oo for any N > 0
SThe assumption that ¢ is even is necessary since odd functions are annihilated by R*.



4 REPRESENTATIONAL COST IN FUNCTION SPACE: THE R-NORM

Our starting point is to relate the Laplacian of an infinite-width net to the dual Radon transform of
its defining measure. In particular, consider an infinite width net f defined in terms of a smooth
density a(w, b) over S?~! x R that decreases rapidly in b, so that we can write

f(x) = / (w'z — b4 — [~b]4) a(w,b)dwdb+v 'z +c. (21)
Sd-1xR
Differentiating twice inside the integral, the Laplacian A f(x) = Z?Zl 92, f(x) is given by
Af(x) = / S(w'x — b)a(w,b) dw db = / a(w, w' z) dw. (22)
Sd—1 xR §d—1

where §(-) denotes a Dirac delta. We see that the right-hand side of (22) is precisely the dual Radon
transform of «, i.e., we have shown Af = R*{a}. Applying the inversion formula for the dual
Radon transform given in (17) to this identity, and using the characterization of Ry (f) given in
Lemma 1, immediately gives the following result.

Lemma 3. Suppose f = hq v, for some a € S (Sdfl X R) with o even, and v € R%, ¢ € R. Then
& = —7R{(~A)HV/2 ), and By (f) = val R{(~2) D2 Y| where 7a = grzbor.

See Figure 2 for an illustration of Lemma 3 in the case d = 2. This result suggests that more
generally if we are given a function f, we ought to be able to compute Ry (f) using the formula in
Lemma 3. The following result, proved in Appendix C, shows this is indeed the case assuming f is
integrable and sufficiently smooth, which for simplicity we state in the case of odd dimensions d. .

Proposition 1. Suppose d is odd. If both f € L'(R?) and A+1)/2 f ¢ LY (R?), then
Ri(f) = 7al| READ Y|y = 5al| 0y T RS < o0 (23)

Here we used the intertwining property of the Radon transform and the Laplacian to write
R{AHD/2 {1 = §IHIR{ £} (see Section 3 for more details).

Given these results, one might expect for an arbitrary function f we should have R;(f) equal to
one of the expressions in (23). However, for many functions of interest these quantities are not
classically well-defined. For example, the finite-width ReLU net f(z) = > ;" a;[w; ¢ — b;]; is a
piecewise linear function that is non-smooth along each hyperplane w," = b;, so its derivatives can
only be understood in the sense of generalized functions or distributions. Similarly, in this case the
Radon transform of f is not well-defined since f is unbounded and not integrable along hyperplanes.

Instead, we use duality to define a functional (the “R-norm”) that extends to the more general
case where f is possibly non-smooth or not integrable along hyperplanes. In particular, we define a
functional on the space of all Lipschitz continuous functions®. The main idea is to re-express the L!-
norm in (23) as a supremum of the inner product over a space of dual functions 1) : S“~! x R — R,
i.e., using the fact R* is the adjoint of R and the Laplacian A is self-adjoint we write

[R{AC 2, = sup (R{AUTD2f1 ) = sup (f, ATD2R*{4p}) (24)
I ]loo <1 [[Y]l oo <1

then restrict 1 to a space where A(¢+1D/2R* {1} is always well-defined. More formally, we have:
Definition 1. For any Lipschitz continuous function f : RY — R define its R-norm’ || f|| by

1l 2= sup { =alf, () HV2R ) 1 € SE™ < R), 6 even, [f]loe 1} 29)

where g = W, S(S%1 x R) is the space of Schwartz functions on S~ x R, and (f, g) =
Jga f(x)g(@)da. If f is not Lipschitz we define || f||r = +oo0.

"For d even, Proposition 1 holds with the pseudo-differential operators (—A)(@+1)/2 and (—82)(@+1)/2 in
place of A@+1/2 and §9+; see Section 3.

8Recall that f is Lipschitz continuous if there exists a constant L (depending on f) such that
[f (@) = f(y)| < L]z - y| forall z, y € R™.

*Strictly speaking, the functional |||, is not a norm, but it is a semi-norm on the space of functions for
which it is finite; see Appendix E.
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Figure 2: We illustrate the steps in computing the R-norm of the 2-D function f(x) shown in the left-most
figure using the formula for R;(f) in Lemma 3. First, we apply the 3/2-power negative Laplacian (—A)/?
(roughly speaking, a third-order derivative of the function), which gives the function g(z) shown in the middle
figure. Following this, we apply the Radon transform R{g}, which gives “sinogram” shown in the right-most
figure, plotted as a function of angle 6 of the unit direction w(#) = [cos(8), sin(#)] and offset parameter b. Up
to a scaling, R{g} are the weights used to represent f as an infinite-width two-layer ReLU network, and the
R-norm is its scaled L' -norm: R1(f) = || f|lr = 1= [IR{g}.

We prove in Appendix C that the R-norm is well-defined, though not always finite, for all Lipschitz
functions and, whether finite or infinite, is always equal to the representational cost R; (-):

Theorem 1. R,(f) = | fll» for all functions f. In particular, Ry (f) is finite if and only if f is
Lipschitz and || f ||, is finite.

We give the proof of Theorem 1 in Appendix C, but the following example illustrates many key
elements of the proof.

Example 1. We compute Ri(f) = | f||r in the case where f is a finite-width two-layer ReLU
network. First, consider the case where f consists of a single ReLU unit: f(x) = aj[w] = — by]+
for some a; € R and (w1,by) € STL. Note that Af(x) = a 6(w{ = —by) in a distributional sense,
i.e., for any smooth test function ¢ we have (Af,p) = (f,Ap) = a1 [ p(z)5(w{ z — b))dx =

arR{¢} (w1, b1). So for any even 1) € S(S¥~! x R) we have

—ya{f, (—A) DR}y = (A f, (—A) VR {4} (26)
= a17aR{(—A) VPR (¢} } (wy, by) 27)
= alw(wl, bl) (28)

where in the last step we used the inversion formula (17). Since the supremum defining || f||  is over
all even i € S(S¥=1 x R) such that ||1)|| o < 1, taking any 1* such that 1* (w1, by) = sign(a,) and
|* (w1, b1)| < 1otherwise, we see that || f|| . = |a1|. The general case now follows by linearity: let
flx) = Zle a;[w," & — b such that all the pairs {(w;, b;)}*_; U{(—w;, —b;)}r_, are distinct.
Then for any 1) € S(S*! x R) we have

k
—Yalf, (=AY VERYY) = " as(wi, by). (29)
i=1

Letting 1* be any even Schwartz function such that ¢* (w;, b;) = ¢*(—w;, —b;) = sign(a;) for all
i=1,...kand [{*(w,b)| < 1 otherwise, we see that Ri(f) = || f|l = Zle |a;].

The representational cost R(f) defined without the unregularized linear unit is more difficult to
characterize explicitly. However, we prove that R(f) is finite if and only if || f|| 5 is finite, and give

bounds for R(f) in terms of || f|| 5 and the norm of the gradient of the function “at infinity”, similar
to the expressions derived in Savarese et al. (2019) in the 1-D setting.



Theorem 2. R(f) is finite if and only if || f || is finite, in which case we have the bounds
max{||fllx . 2V f(e0)lI} < R(f) < [[fllx + 21V f(c0)ll, (30)

where V f(00) := lim, o0 Cdr% §|\sz7" Vf(x)ds(x) € R with cg := Jsar dw = Fors
In particular, if V f (c0) = 0 then R(f) = Ri(f) = || f||»-

We give the proof of Theorem 2 in Appendix D. The lower bound max{|| f||x , 2||V f(c0)||} is anal-
ogous to the expression for the 1D representational cost (1) obtained in Savarese et al. (2019). From
this, one might speculate that R(f) is equal to max{|| f||x , 2|V f(co)||2}. However, in Appendix
D we show this is not the case: there are examples of functions f in all dimensions such that R(f)
attains the upper bound in a non-trivial way (e.g., f(z,y) = |z| + yin d = 2).

4.1 PROPERTIES OF THE R-NORM

In Appendix E we prove several useful properties for the R-norm. In particular, we show the R-
norm is in fact a semi-norm, i.e., it is absolutely homogeneous and satisfies the triangle inequality,
while || f|| . = Oif and only if f is affine. We also show R-norm is invariant to coordinate translation
and rotations, and prove the following scaling law under contractions/dilation:

Proposition 2. If f.(x) := f(x/e) forany e > 0, then || f-|| = " ||l

Proposition 2 shows that “spikey” functions will necessarily have large R-norm. For example, let
f be any non-negative function supported on the ball of radius 1 with maximum height 1 such that
|| f|| is finite. Then the contraction f. is supported on the ball of radius € with maximum height 1,
but || |l =& || f]lx blows up as e — 0.

From a generalization perspective, the fact that the /R-norm blows up with contractions is a desirable
property, since otherwise the minimum norm fit to data would be spikes on data points. In particular,
this is what would happen if the representational cost involved derivatives lower than d + 1, and so
in this sense it is not a coincidence that || f|| 5 involves derivatives of order d + 1.

Finally, we show the smoothness requirements of the /R-norm are also reflected in Fourier domain.
In particular, we show that for a broad class of functions in order R-norm to be finite the Fourier
transform of f must decay rapidly along every ray. A precise statement is given in Proposition 12 in
Appendix E.

5 CONSEQUENCES, APPLICATIONS AND DISCUSSION

Our characterization of the representational cost for multivariate functions in terms of the R-norm
is unfortunately not as simple as the characterization in the univariate case. Nevertheless, it is often
easy to evaluate, and is a powerful tool for studying the representational power of bounded norm
ReLU networks.

5.1 SOBOLEV SPACES

Here we relate Sobolev spaces and the R-norm. The key result is the following upper bound, which
is proved in Appendix F.

Proposition 3. If f : RY — R is Lipschitz and (—A)@tV/2 f exists in a weak sense'® then

Ifllz < cavall(—A) D2 31)

a/2
where cg = fgd,l dw = %, and g = W

Recall that if the dimension d is odd then (—A)(d+1)/ 2 is just an integer power of the negative
Laplacian, which is a linear combination of partial derivatives of order d + 1. Hence, we have

19}.¢., for all compactly supported smooth functions ¢ there exists a locally integrable function g € Li.. (Rd)
such that [ f (—=A)**D/ 24 de = [ gp da.



(=AY @HD2 £ < cqvall fllwaerr, where || f|lya+11 is the Sobolev norm given by the sum of
L'-norm of f and the L'-norms of all its weak partial derivatives up to order d + 1. This gives the
following immediate corollary to Proposition 3:

Corollary 1. Suppose d is odd. If f belongs to the Sobolev space WItH1(RY), ie., f and all its
weak derivatives up to order d+ 1 are in L'(R?), then || f|| s is finite and || f | < cavall f|lwa+1.1.

Corollary 1 shows that the space of functions with finite R-norm is “dense” in the space of all
functions, in the sense that it contains a full Sobolev space.

5.2 RADIAL BUMP FUNCTIONS

Here we study the case where f is a radially symmetric function, i.e., f(x) = g(||z|) for some
function ¢ : [0,00) — R. In this case, the R-norm is expressible entirely in terms of derivatives of
the radial profile function g, as shown in the following result, which is proved in Appendix G.

Proposition 4. Suppose d > 3 is odd. If f € L*(R?) with f(x) = g(||x||) then

2 (oo}
e = =gy [ [0t @)

where p(b) = [,”° g(t)(t* — b%)[@=3/2¢ 4,

For example, in the d = 3 dimensional case, we have
Ifle =2 [ 100%0) + 30Pg)as. (4 =3 (33)
0

More generally, for any odd dimension d > 3 a simple induction shows (32) is equivalent to

2 o0
e = =gy [ 1Qula}®iay G4)

where () is a differential operator of degree (d + 3)/2 having the form Q, = ](;1:+23)/ 2 Pk.a(b)OF
where each py, 4(b) is a polynomial in b of degree k—2. In particular, if the weak derivative o+ /24
exists and has bounded variation, then || f|| 5 is finite.

Example 2. Consider the radial bump function f(x) = g(||z||) with x € R3 where

(1-r?)% fo<r<1
= 35
o) ={{ A (35)
which is non-negative, supported on the unit ball, and has maximum height f(0) = 1, and let

fe(x) = f(x/e) be the contraction of f to a ball of radius € with the same height. Then using
formula (33), and the dilation property (2), we can compute

£l = IIfllg /e = 16(1 + £(5+2V5))/e. (36)

Note that if we move up to dimension d = 5, then the function defined by (35) no longer has finite
norm since its derivatives of order (d + 3)/2 = 4 do not exist; this phenomenon is explored in more
detail in the next example.

Example 3. Suppose d > 3 is odd. Consider the radial bump function fq(x) = gar(||x||) with
x € R% where
(1—-r2)k jfo<r<1
9a(r) {0 ifr>1. G7

forany k > 0. We prove || fq 1||r is finite if and only if k > % (see Appendix G). To illustrate the
scaling with dimension d, in Appendix G we prove that for the choice kg = (d + 1)/2 + 2 we have
the bounds (d + 5)d < || fa k|l < 2d(d +5), hence || far, |l ~ d. Similarly, by the dilation

property (2), a contraction of fa., to the ball of radius  will have R-norm scaling as ~ d? /e.
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The next example!! shows there there is a universal choice of radial bump function in all (odd)
dimensions with finite R-norm:

Example 4. Suppose d > 3 is odd. Consider the radial bump function f(z) = g(||||) with z € R?

where )
e =2 jfo<r<l1
g(r) {0 i, (38)

Since g is C>°-smooth and its derivatives of all orders are L'-bounded, f has finite R-norm by
Proposition 4.

5.3 PIECEWISE LINEAR FUNCTIONS

Every finite-width two-layer ReLU network is a continuous piecewise linear function. However, the
reverse is not true. For example, in dimensions two and above no compactly supported piecewise
linear function is expressible as a finite-width two-layer ReLU network. A natural question then is:
what piecewise linear functions are represented by bounded norm infinite-width nets, i.e., have finite
R-norm? In particular, can a compactly supported piecewise linear function have finite R-norm?
Here we show this is generally not the case.

Before stating our result, we will need a few definitions relating to the geometry of piecewise linear
functions. Recall that any piecewise linear function (with finitely many pieces) is divided into poly-
hedral regions separately by a finite number of boundaries. Each boundary is (d — 1)-dimensional
and contained in a unique hyperplane. Hence, with every boundary we associate the unique (up to
sign) unit normal to the hyperplane containing it, which we call the boundary normal. Additionally,
in the case of compactly supported piecewise linear function, every boundary set that touches the
complement of the support set we call an outer boundary, otherwise we call it an inner boundary.

The following result is proved in Appendix H, and is a consequence of the Fourier decay estimates
established in Appendix E.

Proposition 5. Suppose f : R? — R is a continuous piecewise linear function with compact support
such that one (or both) of the following conditions hold:

(a) at least one of the boundary normals is not parallel with every other boundary normal, or

(b) f is everywhere convex (or everywhere concave) when restricted to its support, and at least
one of the inner boundary normals is not parallel with all outer boundary normals.

Then f has infinite R-norm.

Note that condition (a) holds for a “generic” piecewise linear function with compact support, i.e., if
a function fails to satisfy (a) we can always perturb it slightly such that (a) holds. In this sense
no “generic” compactly supported piecewise linear function has finite R-norm. In fact, we are not
aware of any compactly supported piecewise linear function with finite R-norm, but our theory does
not rule them out a priori.

This result suggests that the space of piecewise linear functions expressible as a bounded norm
infinite-width two-layer ReLU network is not qualitatively different than those captured by finite-
width networks. We go further and make the following conjecture:

Conjecture 1. A continuous piecewise linear function f has finite R-norm if and only if it is exactly
representable by a finite-width two-layer ReLU network.

5.4 DEPTH SEPARATION

In an effort to understand the power of deeper networks, there has been much work showing how
some functions can be much more easily approximated in terms of number of required units by
deeper networks compared to shallower ones, including results showing how functions that can be
well-approximated by three-layer networks require a much larger number of units to approximate

"'The existence of such a radial function was noted in parallel work by Matus Telgarsky. Discussions with
Telgarsky motivated us to construct and analyze it using the 7R-norm.
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if using a two-layer network (e.g. Pinkus (1999); Telgarsky (2016); Liang & Srikant (2016); Safran
& Shamir (2017); Yarotsky (2017)). The following example shows that, also in terms of the norm,
such a depth separation exists for ReLU nets:

Example 5. The pyramid function f(x) = [1 — ||z||1]+ is a compactly supported piecewise linear
Sfunction that satisfies condition (b) of Proposition 5, hence has infinite representational cost as a
two-layer ReLU network (R(f) = R1(f) = 400), but can be exactly represented as a finite-width
three-layer ReLU network.

Interestingly, this result shows that, in terms of the norm, we have a qualitative rather then quanti-
tative depth separation: the required norm with three layers is finite, while with only two layers it
is not merely very large, but infinite. In contrast, in standard depth separation results, the separation
is quantitative: we can compensate for a decrease in depth and use more neurons to achieve the
same approximation quality. It would be interesting to further strengthen Example 5 by obtaining a
quantitative lower bound on the norm required to e-approximate the pyramid with an infinite-width
two-layer ReLU network.

5.5 THE R-NORM IS NOT A RKHS NORM

There is an ongoing debate in the community on whether neural network learning can be simulated
or replicated by kernel machines with the “right” kernel. In this context, it is interesting to ask
whether the inductive bias we uncover can be captured by a kernel, or in other words whether the
R-norm is an RKHS (semi-)norm. The answer is no:

Proposition 6. The R-norm is not a RKHS (semi-)norm.

This is seen immediately by the failure of the parallelogram law to hold. For example,

if fi(x) = [w{z., fo = [w)zx]; with wi,wy € S distinct, then by Exam-

ple 1 we have |fillx = lfallg = 1. while [fi+ follz = [fi—follx = 2. and so
2 2 2 2

2111l + [1f2IR) # [Lfr + fallm + I1f1 = foll%-

5.6 GENERALIZATION IMPLICATIONS

Neyshabur et al. (2015) shows that training an unbounded-width neural network while regularizing
the £ norm of the weights results in a sample complexity proportional to a variant'? of R(f). This
paper gives an explicit characterization of R(f) and thus of the sample complexity of learning a
function using regularized unbounded-width neural networks.
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APPENDICES

A INFINITE-WIDTH NETS

Measures and infinite-width nets Let o be a signed measure '* defined on S¢~! x R, and let
llalli = [ d|o| denote its total variation norm. We let M (S¢~! x R) denote the space of measures
on S~ xR with finite total variation norm. Since S¢~! xR is a locally compact space, M (S?~! xR)
is the Banach space dual of C(S?~! x R), the space of continuous functions on S¥~* x R vanishing
at infinity (Malliavin, 2012, Chapter 2, Theorem 6.6), and

ol = sup { [ pdaspe st <R ol < 1}. (39)

Forany a € M(S?! x R) and ¢ € Co(S?~! x R), we often use (a, ) to denote [ pdo.

Any o € M (S9! xR) can be extended uniquely to a continuous linear functional on Cy(S?~! xR),
the space continuous and bounded functions on SY~! x R. In particular, since the function ¢ (w, b) =
[w'x —b]y — [~b]4 belongs to Cp,(S4~t x R), we see that the infinite-width net

he(x) = /Sd?l R([wT:c — b+ — [-b]+)da(w,b) (40)

is well-defined for all € R?.

Remark 1. Our definition of an infinite-width net in differs slightly from Savarese et al. (2019): we
integrate a constant shift of the ReLU [w = — b, — [~b], with respect to the measure o/(w, b)
rather than [w'x — b]; as in Savarese et al. (2019). As shown above, this ensures the integral
is always well-defined for any measure « with finite total variation. Alternatively, we could have
restricted to measures that have finite first moment, i.e., [q4_1 . [0 d|o|(w,b) < co, which ensures

the definition ko () := [ou—1, p[w @ — b]yda(w,b) proposed in Savarese et al. (2019) is always
well-defined. However, restricting to measures with finite first moment complicates the function
space description, and excludes from our analysis certain functions that are still naturally defined
as limits of bounded norm finite-width networks, and so we opt for the definition above instead. In
the case that « has a finite first moment the difference between definitions is immaterial since h,,

and E(L are equal up to an additive constant, which implies they have the same representational cost
under R(-) and Ry ().

Even and odd measures We say o € M (S~ x R) is even if

/ o(w,b)da(w,b) = / o(—w, —b)da(w,b) forall ¢ € Co(S*™ ! xR)  (41)
S4=1 xR Sd—1xR

or « is odd if
/ o(w,b)da(w,b) = 7/ o(—w, —b)da(w,b) forall p € Co(S*1 x R). (42)
§d—1xR Sd—1xR

It is easy to show every measure o € M (S?~! x R) is uniquely decomposable as o = a* + a~
where o is even and o~ is odd, which we call the even and odd decomposition of c. For example,
if o has a density yu(w, b) then " is the measure with density u T (w, b) = 3 (u(w, b)+p(—w, —b))
and a~ is the measure with density 1~ (w,b) = 1 (u(w,b) — p(—w, —b)).

We let M (P?) denote the subspace of all even measures in M (S?~! x R), which is the Banach
space dual of Cy(IP4), the subspace of all even functions ¢ € Cy(S%~! x R). Even measures play
an important role in our results because of the following observations.

Let « € M(S% ! x R) with even and odd decomposition & = at + a~. Then we have h, =
ho+ + ho-. By the identity [t] 4+ [—t]; = |t| we can show
1

ot (@) = 3 /S ('@ 48] = bda (w,b). (43)

3To be precise, we assume « is a signed Radon measure; see, e.g., Malliavin (2012) for a formal definition.
We omit the word “Radon” and simply call o a measure to avoid confusion with the Radon transform, which
is central to this work.
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Likewise, by the identity [t] — [—t]; = t we have
b (@) = v . (44)

where vy = % de,lxR'wdoz‘(w, b). Hence, h, decomposes into a sum of a component with
absolute value activations and a linear function. In particular, if f = h,, , . for some o € M (Sd’l X
R),v € R% ¢ € R, letting ot be the even part of a, we always have f = ho+ o, for some
v’ € R%. In other words, we lose no generality by restricting ourselves to infinite width nets of the
form f = ha.. . Where « is even (i.e., « € M (P?)).

We will need the following fact about even and odd decompositions of measures under the total
variation norm:

Proposition 7. Let o € M(S?! x R) with a« = at + a~ where o™ is even and o™ is odd. Then
ol < llafly and la~ [l < el

Proof. For any ¢ € Co(S?1 x R) we can write ¢ = ¢ + ¢_ where 4 (w,b) = 1(p(w,b) +
¢(—w, —b)) is even and ¢_(w,b) = F(p(w,b) — p(—w, b)) is odd. Note that [ pda™ =
J o4 dat since [¢_dat = 0. Furthermore, if [o(w, b)| < 1 for all (w,b) € S¥~! x R we see
that |¢4 (w,b)] < 3(Jo(w,b)] + |p(—w,—b)|) < 1 for all (w,b) € S*~! x R. Therefore, in
the dual definition of ||a™||; given in (39) it suffices to take the supremum over all even functions
¢ € Co(S%~1 x R). Hence,

ol —sup{/wza € oS X R), gl < 1} (45)
= sup{/gpdoﬁ' —l—/gpda‘ tp € Co(ST X R), [|¢0]loo < 1} (46)

> sup {/<,odaJr —l—/godof 1 € Co(ST X R), [|¢]loo < l,goeven} 47)

= sup {/godoz+ 1 € Co(ST1 X R), |olle < cheven} (48)
= lla™lx (49)
A similar argument shows [|a™ |1 < ||a|1. O

Lipschitz continuity of infinite-width nets Define Lip(R¢) to be the space of all real-valued

Lf (2)—f(y)]
le—yll

i.e., the smallest possible Lipschitz constant. The following result shows that Lip(R¢) is a natural
space to work in when considering infinite-width nets:

Proposition 8 (Infinite-width nets are Lipschitz). Let f = hq 4 for any a € M(S4™ x R),v €
RY c € R. Then f € Lip(RY) with || f||r. < ||lall1 + [|Jv].

Lipschitz continuous functions on R¢. For any f € Lip(R?), define || ||z := sup,.,

Proof. First we prove for all even o € M (P?), ||he ||z < |lev]l1/2.

By the reverse triangle inequality we have ||w @ — b| — [w Ty — b|| < |w (x — y)| forall x,y €
R%, w € S% 1, b € R. Therefore, using identity (43), for all x,y € R? we see that

1
|ha(z) — ha(y)| = 3 / (jw'e—b - |w'y - b|) da(w, b) (50)
Sd—1xR
<5 [Tt~ Ty bl i, 51
2 Sd*lXR
1
<5 [ W@ yldalwsy) (52
Sd-1xR
1
< glz —ylllalh (53)
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which shows h,, is Lipschitz with ||hq ||z < ||a||1/2.

More generally, for any infinite-width net f = hq . With o € M(S? x R), v € R? and
¢ € R. From the even and odd decomposition &« = a™ + o~ we have f = hy+ 440, Where
Vo = % Joa1, g wda (w,b). Hence, ||vgllz < [l [|1/2, Therefore, by the triangle inequality,

£l <lleTlli/2 + la=||1/2 + ||v]] < |la|li + ||v||, which gives the claim. O

B OPTIMIZATION CHARACTERIZATION OF REPRESENTATIONAL COST

Here we establish the optimization equivalents of the representational costs R(f) and Ry (f) given
in (9) and (13).

As an intermediate step, we first give equivalent expressions for R(f) and R (f) in terms of se-
quences finite-width two-layer ReLU networks converging pointwise to f. For this we need to
introduce some additional notation and definitions.

We let A(S~! x R) denote the space of all measures given by a finite linear combination of Diracs,
ie,alla € M(S?! x R) of the form o = Zle ;0 (aw; by;) for some a; € R, (w;,b;) € ST xR,
i = 1,...,k, where 0(,, ;) denotes a Dirac delta at location (w,b) € S4=1 x R. We call any
a € A(S?! x R) a discrete measure.

Note there is a one-to-one correspondence between discrete measures and finite-width two layer
ReLU nets (up to a bias term). Namely, for any § € ©’ defining a finite-width net go(x) =
Zle a;lw] x — b;]4 + ¢, setting a = Zle ai0(w, b;) We have f = hq o with ¢ = gg(0).
We write § € ©' <+ a € A(S?! x R) to indicate this correspondence. Furthermore, in this case

C0) = S0 Jail = [lall.

We also recall some facts related to the convergence of sequences of measures. Let Cy,(S4~1 x R)
denote the set of all continuous and bounded functions on S?~! x R. A sequence of measures
{ay, }, with a,, € M(S?! x R) is said to converge narrowly to a measure o € M (S?~! x R) if
[ pda, — [odaforall p € Cp(S¥! x R). Also, a sequence {«, } is called fight if for all e > 0
there exists a compact set K. C S~ x R such that |, |(KE) < e for all n sufficiently large. Every
narrowly convergent sequence of measures is tight (Malliavin, 2012, Theorem 6.8). Conversely, any
sequence { ., } that is tight and uniformly bounded in total variation norm has a narrowly convergent
subsequence; this is due to a version of Prokhorov’s Theorem for signed measures (Bogachev, 2007,
Theorem 8.6.2).

Now we establish the following equivalent expressions for the representational costs R(-) and R (-).

Lemma 4. For any f : R? — R let fq denote the function fo(xz) = f(x) — f(0). For R(f) as
defined in (7) and Ry (f) as defined in (12), we have

R(f) = inf {lim sup ||anll1 : an € ASTE X R), ha, — fo pointwise, {o,} tight} . (54)

n—oo

and

Ri(f) =inf {lim sup [l 1 : an € AST X R), v, € R, he, w0 — fo pointwise, {ay,} tight} .
n—oo
(55)
Proof. We prove the identity in (54) for R(f); the identity in (55) for R (f) follows by the same

argument. Define

Re(f) = jnf C(0) st lga(@) — (@) <& V] < 1/c and go(0) = f(0)  (56)

so that R(f) = lim._,0 R-(f). Also, let L(f) denote the right-hand side of (54).

First, suppose R(f) is finite. Let &, = 1/n. Then by definition of R(f), for all n there exists
0, € © such that C(0,,) < R, (f) + en, while |gp, () — f(x)| < &, for ||z|| < 1/e, and
go,,(0) = £(0). Note that §,, € O ++ a,, € M(S?~! x R) with gy, = haq,, . where c = gg, (0) =
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f£(0) and |l |]1 = C(6y). Hence, hy, () = go, (x) — f(0), and we have |h,, (x) — fo(x)| =
|90, () — f(z)| < &, for ||| < 1/e,. Therefore, h,, — fo pointwise, while

limsup [l ||y < limsup(Re, (f) +en) = R(f), (57)

n—o0 n—roo

which shows L(f) < R(f). Finally, it suffices to show {a,,} has a tight subsequence, since we
can reproduce the steps above with respect to the subsequence. Towards this end, define g, (x) =
J lw "2 — b|d|a, |(w, b), which is well-defined since v, is discrete and has compact support. Then
qr 1s Lipschitz with ||g, || < ||e ||z < B for some finite B, hence the sequence {g,, } is uniformly
Lipschitz. By the Arzela-Ascoli Theorem, {¢, } has a subsequence {g,, } that converges uniformly
on compact subsets. In particular, g, (0) = [ |b|d|ay, |(w,b) < L < oo for some L, which implies
the sequence {«,, } is tight.

Conversely, suppose L( f) is finite. Fix any € > 0. Then by definition of L( f) there exists a sequence
a, € M(SY™1 x R) 6, € ©' such that lim,, o ||av, |1 exists with lim,, o [|n|lr < L(f) + &,
while f,, := hq, . = gp, With ¢ = f(0) converges to f pointwise and satisfies f,,(0) = f(0)
for all n. Since, lim, o [lan|l1 < L(f) + &, there exists an Ny such that for all n > N; we
have ||lay |1 < L(f) + . By Proposition 8, the Lipschitz constant of f,, is bounded above by
||, ||1 for all n, hence the sequence f,, is uniformly Lipschitz. This implies f,, — f uniformly on
compact subsets, and so there exists an Ny such that || f,,(z) — f(x)|| < e for all ||| < 1/¢ and
fn(0) = £(0) for all n > Na. For all n > Na, f,, satisfies the constraints in the definition of R. ().
Therefore, for all n > max{N;, N2} we have

R.(f) < C(05) = [lanl < L(f) +e. (58)
Taking the limit as ¢ — 0, we get R(f) < L(f). Therefore, we have shown R(f) is finite if and
only if L(f) is finite, in which case R(f) = L(f), giving the claim. O

The following lemma shows every infinite-width net is the pointwise limit of a sequence of finite-
width nets defined in terms of sequence of measures uniformly bounded in total variation norm.
Lemma 5. Let f = hoqc forany a € M(S™1 x R),v € R% and c € R. Then there exists a
sequence of discrete measures o, € A(ST1 x R) with |lan|l1 < ||al1 such that f,, = ha, v.c
converges to [ pointwise.

Proof. For any a € M(S?! x R) there exists a sequence of discrete measures o, converging
narrowly to « such that ||ay,|1 < |la|l1 (Malliavin, 2012, Chapter 2, Theorem 6.9). Let f, =
e, w.c. Since the function (w,b) +— [w @ — b], — [~b]y is continuous and bounded, we have
fo(z) — f(x) forall z € R, ie., f, — f pointwise. O

Lemma 6. We have the equivalences

R(f) = i t. f = hae, 59
(f) aeM@?—“fiR),ceR”a”ls f : (59)

and

Ri(f) = llaflr st f=hawe (60)

min
a€M (S4—1 xR),veERT cER

Proof. We prove the R(f) case; the R;(f) case follows by the same argument. Throughout the

proof we use the equivalence of R(f) given in Lemma 4, and let M(f) denote the right-hand side
of (59).

Assume R(f) is finite. Then there exists a tight sequence {c,}, a,, € A(S?"! x R) , that is uni-
formly bounded in total variation norm such that h,, — fo pointwise. Therefore, by Prokhokov’s
Theorem, {av,} has a subsequence {a,, } converging narrowly to a measure o, hence fo = hq.
Furthermore, narrow convergence implies ||a||; < limsup,_, o [lan, |1 < limsup,,_, . [[anl1,
and so M(f) < limsup,,_, . ||an|l1. Taking the infimum over all such sequences {«;, }, we have

M(f) < R(f).

Conversely, assume M(f) is finite. Let « € M(S?! x R) be any measure such that fo = h,,.
By Lemma 5 there exists a sequence {a, }, o, € A(S?! x R), such that h,, — fo pointwise,
while [[a[l1 < [|al1. Hence, R(f) < limsup,,_,«, [lan |1 < [|af1. Since this holds for any « with
fo = ha, we see that R(f) < M(f), proving the claim. O
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Now we show that if f is an infinite-width net, R, (f) is equal to the minimal total variation norm of
all even measures defining f (in fact, later we show for every infinite-width net is defined in terms
of a unique even measure, whose total variation norm is equal to R; (f); see Lemma 10).

Lemma 7. We have

Ri(f) = la®|i st. f= hat vc (61)

min
ateM(P4),veERE,ceR

where the minimization is over all even ot € M (P?).

Proof. Suppose f = hy v, for some o € M(S?! x R),v € R% c € R. If « has even and odd
decomposition &« = o + a~ then f = hy+ 0.0 + Pa- w.c = Pat o, for some v’ € R?. Also, by
Proposition 7, we have |[at|; < |[a* + a~ |1 = ||a||; for any o~ odd. Hence, the optimization
problem describing R (f) in (60) reduces to (61). O

C EXTENSION OF R-NORM TO LIPSCHITZ FUNCTIONS AND PROOF OF THEOREM 1

To simplify notation we let S(P¢) denote the space of even Schwartz functions on S?"! xR, i.e., 1) €
S(P4)if ¢ € S(S¥ ! x R) with ¢(w, b) = ¢(—w, —b) for all (w,b) € S*! x R.

We will need a finer characterization of the image of Schwartz functions under the dual Radon
transform than what is given in Lemma 9, which is also due to Solmon (1987):

Lemma 8 (Solmon (1987), Theorem 7.7). Let ¢) € S(P?) and define ¢ = ~v4(—A)4=D/2R* {4},
Then ¢ € C*(RY) with p(x) = O(||z||~%) and Ap(x) = O(||z||~?72) as ||| — co. Moreover,
Rip} =1

Using the above result we show the functional || ||, given in Definition 1 is well-defined:

Proposition 9. For any f € Lip(R?), the map L () := —va(f, (—A)EHD/2R*L}) is finite for
all p € S(PY), hence || f||g = sup {L(¥) : ¥ € S(P?), |[¢]loo < 1} is a well-defined functional
taking on values in [0, 400].

Proof. Since f is globally Lipschitz we have |f(x)| = O(||z|), while for any ¢ € S(P%) we
have [(—A) V2R {¢}| = O([l||~*~?) by Lemma 8, hence | f(z)(—A) V2R {y}(z)| =
O(||l||=¢=") is absolutely integrable, and so (f,(—A)HD/2R*{4)}) is finite. If
(f, (=A)@FD/2R L)) £ 0, we can choose the sign of ¢ so that the inner product is positive,
which shows that || | o > 0. O

In Section 4 we showed Ah, = R*{«a} when « was a measure with a smooth density having rapid
decay. The next key lemma shows this equality still holds in the sense of distributions when « is any
measure in M (P?).

Lemma 9. Let f = hyo for any a € M(PY),v € R% c € R Then we have (f,Ap) =
(o, R{p}) for all p € C>(RY) such that o(z) = O(||z||~?) and Ap(z) = O(||z||~*72) as
le]| = oc.

Proof. Consider the ridge function 14,4 () := §|w " —b|, which is generated by the even measure
ap(w', ') = 3(6(w —w, b —b)+6(w’ +w,b +b)). An easy calculation shows that Ary, ,(z) =
§(w T x — b) in the sense of distributions, i.e., for all test functions ¢ € S(R) we have

[ros@ac@yie = [ @) ist@) = Righw.b). (62

Since R{¢}(w,b) is well-defined for all ¢ € C>°(R?) with decay like O(||z||~¢), by continuity
Ar,, p(x) extends uniquely to a distribution acting on this larger space of test functions.
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Now consider the more general case of f = h,, with @ € M(P?). Then for all ¢ € C*(R?) with
p(x) = O(||lz|| %) and Ap(x) = O(||z||~*~?) as [|x[| — oo we have

1
y f(@®)Ap(x) de = /]Rd </Sd1><]R §(|wT:c —b| —|b]) do(w, b)) Ap(x) dx (63)

= [ ([ 500 e o= A e ) datw.t) o4

e 2
= /sdflxR (/Rd T (T) Ap(x) da:) da(w, b) (65)
_ /S . RI}aw.b) dofuw.b (66)

where in (64) we applied Fubini’s theorem to exchange the order of integration, whose application
is justified since

1
h(z) == 5/ (Jw" @ — b — [b]) d|a| (w,b) < [la1]|z]| (67)
Sd—1xR
and by assumption Ap(xz) = O(||z||~%"2), hence hy(x)|Ap(x)] = O(||z|)~¢"!, and so
[ @) Ag()]| d < oo.

Finally, if f = hq,c forany o € M (Pd), v € R ¢ € R, since affine functions vanish under
the Laplacian we have (f, Ay) = (ha, Ayp), reducing this to the previous case, which gives the
claim. O

The following lemma shows || f|| is finite if and only if f is an infinite-width net, in which case
|| f|| is given by the total variation norm of the unique even measure defining f.

Lemma 10. Let f € Lip(R?). Then | f|| is finite if and only if there exists a unique even measure
o € M(P?) and unique v € R%, ¢ € Rwith f = hg v, in which case || f|z = ||a/)1.

Proof. Suppose || f|| is finite. Then by definition f belongs to Lip(R?) and the linear functional
Ly () = —ya(f, (—A)4=D/2R*{1)}) is continuous on S(P4) with norm || f|| 5. Since S(P%) is a
dense subspace of Cy(PP?), by continuity there exists a unique extension L to all of Cp(P?) with
the same norm. Hence, by the Riesz representation theorem, there is a unique measure o € M (P?)
such that L (1)) = [ ¢ da for all 1 € Co(P?) and || f|| . = ||/

We now show f = hg v, for some v € R? ¢ € R. First, we prove Af = Ah, as tempered

distributions (i.e., as linear functionals on the space of Schwartz functions S(R?)). By Lemma 9 we
have (Ah,, @) = (o, R{¢}) for any p € S(R?), hence

(Ahq, @) = (o, R{e}) (68)
= Ls(R{¢}) (69)
= Ly(R{p}) (70)
= ya(f, (=A)TIPRYR{p}}) (71
= —7a(f, A(=A) VPR R{}}) (72)
= (f,Ap) (73)
= (Af, ) (74)

where in (70) we used the fact that R{p} € S(P?) for all ¢ € S(RY) (Helga-
son, 1999, Theorem 2.4), and in (73) we used the inversion formula for Radon transform:
—a(=A)ID2RAR{p}} = ¢ for all ¢ € S(R?) (Helgason, 1999, Theorem 3.1).

Hence, we have shown A f = Ah,, as tempered distributions. This means f — h,, is in null space of
the Laplacian acting on tempered distributions, which implies f — h,, = p where p is some harmonic
polynomial (i.e., p is a polynomial in # = (21, ..., 24) such that Ap(x) = 0 for all z € R?). Finally,
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since both f and h,, are Lipschitz they have at most linear growth at infinity, so must p. This implies
p must be an affine function p(x) = v ' x + ¢, which shows f = hy . as claimed.

Conversely, suppose f = hq v for some a € M(P4),v € R% c € R. Lety) € S(PY). By
Lemma 8, the function ¢ = —vg(—=A)d="D2R {4} is in C°(R?) with p(z) = O(||z||~%),
Ap(x) = O(||z||~¢72) as ||z|| — oo, and 1 = R{p}. Hence, by Lemma 9 we have

Ly() = (f, Ap) = (o, R{p}) = (a,9). (75)
This shows
£l = sup{{c,¥) : ¥ € S(P), ||| < 1} (76)
= sup{{(a, ¥) : ¢ € Co(P?), |40 < 1} (77)
= llallx (78)

where the second to last equality holds since S(R?) is a dense subspace of Cy(IR?), and the last
equality is by the dual characterization of the total variation norm.

Finally, to show uniqueness, suppose hq v,c = hg . o for some other even § € M(]P’d), v’ € R,
¢’ € R. Then the function Ay 4 — hgo e = Ra—pBw—v,c—e is identically zero, hence by the
argument above ||ho—p v ,c—c |l = [l — Bll1 = 0, which implies o = 3. Therefore, hq v, =
ha,v e, Which also implies v/ = v and ¢ = ¢'. O

Note that Lemma 1 is essentially a corollary of the uniqueness in the preceding result; we give the
proof here for completeness.

Proof of Lemma 1. Suppose R1(f) is finite. Then by the optimization characterization in Lemma
7, we have f = hg 4 . for some even a € M(]P’d), v € R ¢ € R?, and Ry(f) is the minimum
of [|a™||1 over all even measures o™ € M (P?) and v’ € R% ¢’ € R such that f = hy+ o . By
Lemma 10, there is a unique even measure at € M (P?), v € R%, and ¢ € R such that f = hat v
Hence, R1(f) = ||a*]|1. O

Now we give the proof of our main theorem, which shows || f|| 5 = R1(f).

Proof of Theorem 1. Suppose Ry (f) is finite. By Lemma 1, Ry (f) = ||a||; where o € M (P?) is
the unique even measure such that f = h 4 . for some v € R%, ¢ € R. Furthermore, || f| = ||a1
by Lemma 10. Hence, Ry (f) = | f| . Conversely, if || f|| is finite, then by Lemma 10 we have
f = ha,v,c for a unique even measure o € M (P?), and again by Lemma 1, ||f||l, = [la|; =
B (f). O

Proof of Proposition 1. The Radon transform is a bounded linear operator from L'(R?) to
LY(S%! x R) (see, e.g., Boman & Lindskog (2009)). Hence, if A@TD/2f ¢ L1(RY) then
R{A@HD/2f1 ¢ LY (R?). Let a € M(P?) be the even measure on S%~! x R with density
YaR{AD/2 £1 Then ||arf|; = 74||R{AETD/2£1||1, i.e., the total variation norm of o coincides
with the L'-norm of its density. Therefore, by definition of || f|| , we have

£z = sup{ya(f, AR} 1 9p € S(P), [0 < 1} (79)
= sup{ (WaR{A V2 1} 4) - ¢ € S(PY), |¢)]|oe < 1} (80)
= sup{(, ) : ¥ € S(P), [¢[loo < 1} (81)
= [lafli = va|R{IAETD2 1, (82)

where we used the fact that the Schwartz class S(PP9) is dense in Co(IP?) and the dual definition of
the total variation norm (39). If additionally f € L'(R?), we have R{A@H+D/2f} = 91 R{f}
by the Fourier slice theorem, which gives || f|| = = al|0f T R{f}1. O
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D PROOF OF THEOREM 2

We show how our results change without the addition of the unregularized linear unit v in (3).
Specifically, we want to characterize }i( f) given in (7) (or equivalently its optimization formulation

(9)). Unlike in the univariate setting, R(f) does not have a simple closed form expression in higher
dimensions. However, for any f € Lip(R?) we prove the bounds

max{||fllg . 2lIVf(c0) [} < R(f) < | fllr + 21V (o0)] (83)

where the vector V f(00) € R? can be thought of as the gradient of the function f “at infinity”; see
below for a formal definition. In particular, if f(z) vanishes at infinity then V f(co) = 0 and we

have R(f) = || fllx = R1(f)-
For any f € Lip(R%), define V f(oc) € R? by

Vf(oo):= lim !

7—00 cd’r‘d_l

?{ — Vf(x)ds(x), (84)

where ¢4 = de71 dw. We will relate V f(00) to the “linear part” of an infinite-width net. Towards
this end, define V : M (S?~! x R) — R to be the linear operator given by

V(a) = %/Sd_l Rwda(w7b). (85)

Note that if & = a™ + o~ where o™ is even and a~ is odd, then V(a) = V(a™) since

Jsi-1 g wda™ (w,b) = 0. In particular, if we set vg = V(a ™), then hy- (z) = vg .

Lemma 11. Suppose f = hq, . forany a € M(S%~! x R), ¢ € R. Then, V f(00) = V().
Proof. A simple calculation shows the weak gradient of f = h,, . is given by
Vi(x)= / H(w'x — b)w do(w,b) (86)
Sd-1xR
where H is defined as H(¢) = 1ift > 0 and H(t) = 0 if ¢ < 0 otherwise. Therefore, we have

. 1
lim 1
r—oo r¢—

7{ Vf(z)ds(x) = lim / H(rw'w' — b)w dw'da(w,b)  (87)
llef|=r Sa-1xR Jsd-1

T—00

= lim w / dw' | do(w,b) (88)
T00 Jed—1 xR wTw' >b/r

_ (1 / dw’> / w dow, b) (89)
2 §d—1 Sd—1 xR

Finally, dividing both sides by ¢4 = de,l dw gives the result. O
Lemma 12. If f(x) = v « + c then R(f) = 2||vo .
Proof. Note that f = h, . only if « is odd and V(«) = vo. Hence, we have

R(f) = min [laly st. V(a) = (90)

The adjoint V* : RY — C},(S4! x R) is given by [V*y](w, b) = 1w "y. Therefore, the dual of the
convex program above is given by

max vy = max vy y = 2|yl 1)
yeR? lyll<2
IV ylleo <1

"“Note every Lipschitz function has a weak gradient V f € L>(R?), so V f(c0) is well-defined.
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where we used the fact that ||V*y||oc = max,,ega—1 1[[w y|| < 1 holds if and only if ||y|| < 2.

This means 2||vy|| is a lower bound for R(f). Since this bound is reached with the primal feasible
choice a defined by

v v
ot = oo (8 (1= oty 0) - (s + ipt)) o
we have R(f) = 2| vo| as claimed. O

Now we give the proof of Theorem 2.

Proof of Theorem 2. Suppose || f|| is finite. Set vy = V f(oc0). Then by Lemma 10, there is a
unique even measure o such that f = h,+ ,, . for some unique vy € R%, ¢ € R, with || f||, =
lat]|1. Therefore, R(f) is equivalent to the optimization problem

R(f) = min fa™ + a7 [ st V(aT) =wvo (93)

Since |[at + a~ |1 < |lat|]1 + |[[a”|/1, by Lemma 12 we see that R(f) < [la*||; + 2||vo]|. Now
we show the lower bound. The above optimization problem is equivalent to

R(f) =minllafy st. V(a) =wvo, E(a) =aT (94)

where &£(a) projects onto the even part of o. The Banach space adjoint £* : Cp(S?~! x R) —
Co(S*~! x R) is also projection onto the even part, i.e., [£*¢](w,b) = & (p(w,d) + ¢(—w, —b)).

Therefore, the dual problem is given by

sup vy + / o(w,b)da™t (w, b) 95)
peCo(ST™ 1 xR),ycR? Sd-1xR

V' y+E7pllo<1
We can constrain ¢ to be even without changing the maximum since o+ is even. Thus the dual
feasible set reduces to pairs (i, y) with p € Co(S~! xR) even and y € R? are such that |o(w, b) +
Tw'y| < 1forall (w,b) € S*™! x R. Taking the supremum over all dual feasible pairs (¢, 0)

such that |||l < 1, we see R(f) > |la*|li = ||f|l. Likewise, if we choose the dual feasible

pair (¢,y) = (0,2vo/||vo]|) then the dual objective is 2||vo||, hence R(f) > 2|vo|. This gives

R(f) > max{[|f|lx ,2|lvoll}, as desired. O

Finally, we show there are examples where the upper bound in Theorem 2 is attained.
Proposition 10. There exist infinite nets f : R* — R in all dimensions d such that

R(f) = Iflr + 21V f(c0)l. (96)

Proof. Letw.,,w_ € S%! be orthogonal. Consider f = h,, defined by a = at + o~ with
at =§(w—wi,b)+ 6(w +wy,b) 97)
a =6(w—-w_,b) —d(w+w_,b) (98)

Hence, f(x) = |w]@| + w x (e.g, in 2-D one such function is f(z,y) = z + |y|). The dual
problem for R(f) in this instance is given by:

sup w!y +/ o(w, b)da™ (w,b) (99)
PECH(S*™1 xR),ycR? Se-1xR
W y+Epllo <1
Set y* = 2w™, and let ©* be a continuous approximation to sign(a™) whose support is localized
to an arbitrarily small neighborhood of 4+(w., 0). Then the pair (¢*, y*) is dual feasible since
1 ifw=2w;andb=0
7b = [Vry* ,b E*Xo* ,b: T _ * 7b: +
b)) = Dl )+ w0) 0wt ) = (L R
and so [¢)(w, b)| < 1. For these choices of (3", y*) the dual objective is 2||w_ [|+| f|| =z, which gives
a lower bound on R(f). But this is also an upper bound on R(f) hence R(f) = || f|lx + 2|lw_][.
Since V f(00) = w_, the result follows. O
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E PROPERTIES OF THE R-NORM

Here we prove the properties of R-norm discuseed in Section 4.1, including Proposition 2.
Proposition 11. The R-norm has the following properties:

|l < o0, then ||c- fllz = |c|||fllg

e (I-homogeneity and triangle inequality) If || f||z , || 9]
i.e., |||l is @ semi-norm.

forallc e Rand | f +gll < | fllx + lgllg e

e (Annihilation of affine functions) || f||» = 0 if and only if f is affine, i.e., f(x) =v'x +c
for some v € R%, c € R.

e (Translation and rotation invariance) If g(x) = f(Ux +y) where y € R? and U € R¥4
is any orthogonal matrix, then ||gllr = ||f |-

o (Scaling with dilations/contractions) Suppose ||f|lr < oco. Let f.(x) = f(x/e), then

Ifellr = e | flI=

Proof. The 1-homogenity and triangle inequality properties follow immediate from the linearity of
all operations and the definition by way of a set supremum.

Clearly || f||z = 0if f is affine. Conversely, suppose || f||z = O then by the uniqueness in Lemma
10, we have o = 0, and so f = hg 4, for some v € R? and ¢ € R, hence f is affine.

For simplicity we demonstrate proofs of the remaining properties under the same condi-
tions of Proposition 1, i.e., d odd, and where f, AlD/2f ¢ LYR?) so that ||f|r =
Yal| RAAUEHD2 £ = 74|08 R{f}||1 < oo. The general case follows from standard duality
arguments.

To show translation invariance, define f,(x) := f(x — y). Then since A commutes with transla-
tions we have AFTD/2 = [A@HD/2f] 1 Also, for any function g we see that

R{gw) H(w,b) = R{g}(w.b+w'y), (100)
Therefore,

1wl =/ [R{ATD f } (w,b)| dw db (101)

Sd-1xR
:/ IR{AHD/2 3 (w, b+ w " y)| dw db (102)

Sd—1 xR
- / [R{AHD2 f} (w, b)| dw db = || || - (103)

Sd-1xR
To show rotation invariance, let fyy(x) = f(Ux) where U is any orthogonal d x d matrix.

Then, using the fact that the Laplacian commutes with rotations, we have A+TD/2fy(x) =
AUHD/2 f(Ux), and since R{gy }(w,b) = R{g}(Uw,b), we see that R{A+1/2 f; 1 (w, b) =
R{A@HD/2 1 (Uw,b), and so

Ifolle = 11£llz - (104)

To show the scaling under contractions/dilations (i.e., Proposition 2), let f.(x) = f(x/e) fore > 0.
Then

RUMwb) = [ fla/eis(z) (105)
_ _d-1 Vs (i
—c /Tib/ef(a:)d (&) (106)
=" R{fH(w, b/e). (107)
Hence, we have
07 R{f}(w, b)| = e e HOFT R{ fH(w, b/e))| (108)
= e 2Oy T R{fH(w, b)) (109)
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and so

/ 1O R fo} (w, b)| dw db = 2 / | IR f}(w, b/e)| dw db (110)
Sd-1xR Sd—1xR
:8,1/ 0 RS (w, B)| daw db (11
Sd—1 xR
=e I fllg- (112)
O

Fourier estimates For any Lipschitz function f we can always interpret A f in a distributional
sense. An interesting special case is when A f is a distribution of order zero, i.e., when there exists
a constant C such that | (A f, ¢}| < C||¢||s for all smooth compactly supported functions ¢ so that
A f extends uniquely to a measure having finite total variation. In this case, the Fourier transform
of Af, defined as Af(€) := (Af,e=327@ &) for all € € RY, is a continuous and bounded function,
and we can make use of an extension of the Fourier slice theorem to Radon transforms of measures
(see, e.g., Boman & Lindskog (2009)) to analyze properties of || f||. In particular, the following
result shows that in order for || f|| , to be finite, the Fourier transform of A f (or the Fourier transform
of f if it exists classically) must decay at a dimensionally dependent rate.

Proposition 12. Suppose A f is a distribution of order zero. Then || f ||, is finite only if &} (o-w) =
O(lo|= 4=V as |o| — oo for all w € S, If additionally f € L*(R?), then || f||r is finite only if
flo-w) = O(lo|~4*V) as |o| = oo forall w € S*1,

Proof. 1If Af € M(R?) is a finite measure then its Radon transform R{Af} € M (P%) exists as a
finite measure, i.e., we can define R{Af} via duality as (R{Af}, ) = (Af, R*{p}) forall ¢ €
Co(R9) (see, e.g., Boman & Lindskog (2009)). Additionally, the restriction R{Af}(w,-) € M(R)
is well-defined finite measure for all w € S%!, and its 1-D Fourier transform in the b variable is
given by

FoR{Af}w,o) = ﬁ\f(a -w) forall we S o eR. (113)

By Lemma 10, || f|| is finite if and only if the functional Lf(¢)) = —ya(f, (—A)@HD/2R*{4})
defined for all 1/ € S(P9) extends to a unique measure o € M (P?). We compute the Fourier
transform of « in the b variable via duality: for all ¢ € S(P?) we have

(Fva, o) = (o, Fop) (114)
= —ya(f, (=A) VPR Fyp}) (115)
= qa(AS, (—A) VPR Fipl) (116)
= 7a(Af, R (=07) V2 Fyp}) (117)
= 2(Af, R {Fo(|o]* 0)}) (118)
= (R{Af}, Fo(lo]" o)) (119)
= (FR{ASY o] ) (120)
= va{lo| " R R{A T}, ) (121)

This shows Fpa = 74|0|? L F,R{Af} in the sense of distributions. Since F, R{Af} is defined
pointwise for all (w, b) € S?~1 x R so is F, and we have

Fya(w, o) = v4lo| TP RR{AfHw, 0) = yalo|* T Af (0 - w). (122)

Finally, since « is a finite measure, we know || Fp0||co < |||z = O(1), which gives the first result.

If additionally f € L*(R?) then we have Af(&) = [|€]|2f(£), and so (Fypa)(w, b) = |o|%+ f(o-w)
which gives the second result. O
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F UPPER AND LOWER BOUNDS

Here we prove several upper and lower bounds for the R-norm. Proposition 3 is an immediate
corollary of the following upper bound:

Proposition 13. If (—A)(@+1/2 f is q finite measure, then

I£llR < Yacall(—A) D2, (123)

In particular; if (—A)9TD/2 f exists in a weak sense then || - ||, can be interpreted as the L*-norm.

Proof. Straight from definitions we have

1l = sup {7a(f, (=) V2R (}) 1 6 € SEY, ] <1} (124)
= sup {7a((~A) V2 f, R w)) 1 € SBY, o]0 < 1} (125)
< sup {7a((=2) /21, 0) o € Co®Y), llplloe < ca (126)
= acal| (=)D £ (127)

where we used the fact that R*{p} € Cy(R?) for ¢ € S(P?) (Solmon, 1987, Corollary 3.6) and we
have |R*{¢}||oe < cq forall p € S(P?) such that ||p]|o < 1 since

R{eh@ < [ letwwTa)dws [ dw= e (128)
O
The following result also gives a useful lower bound on the R-norm.
Proposition 14. If f € Lip(R?) then
Ifll= = sup {(f, Ap) : ¢ € SR, [[R{p}|oc <1} (129)
Proof. Let Sg(P?) C S(PP?) denote the image of S(R?) under the Radon transform. Then
Il = sup {valf, (~A) V2R (6} 1 € S@), ¥l <1 (130)
> sup {ya(f, (=) VR Y) 1 € S (B, oo < 1] (131
= sup {valf, () VPRYR{GH) s o € SR, IR{e}lw <1} (132)
= sup {(f,Ap) : p € SR, [R{p}o <1} (133)

where in the last step we used the inversion formula: ¢ = ~v4(—A)@=D/2R*{R{p}} for all ¢ €
S(RY). O

Further simplifying the lower bound above gives the following.
Proposition 15. If f € Lip(RY) then

Ifll= = sup {(f, A¢) : o € S®RY), ol <1} (134)
In particular, if Af exists in a weak sense then || f||lr > [|Af]]co-
Proof. 1f [¢ly = [le(x)/dz < 1 then clearly [R{p}(w,b)| = |[,r,_,p(x)ds(@)| <
Jowm oy lo(x) ds(z) < 1. Hence ||¢||; < 1 implies |[R{¢}[loc < 1. Combining this with the

previous proposition gives the first bound. Additionally, by the dual definition of the L*° norm, and
since S(RY) is dense in L' (R?), the second bound follows. O
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G RADIAL BUMP FUNCTIONS

Proof of Proposition 4. Assume f € L'(R?) so that its Radon transform R{f} is well-
defined, and for simplicity assume d is odd. Note that for a radially symmetric function we have
R{f}(w,b) = p(b) for some even function p € L(R), i.e., the Radon transform of a radially
symmetric function does not depend on the unit direction w € S?~'. Supposing 3@+ p(b) exists
either as a function or a measure, we have

1l = 7l O RS = vaca / 10T+ p(b)| b, (135)

o . 27_([1/2
where Cq = fsd,l dw = W

in terms of g. First, since p(b) = R{f}(w,b) for any

Now we derive an expression for p(b
(1,0, ...,0), which gives

w € S ! we can choose w = e; =

p(b) = R{f}(er,b) = /

mlzb

)
1

g(llﬂcll)alarrg~--da:d=/R g(v/ b2 + || Z?)dz (136)

d—1

where we have set = (13, ..., 74). Changing to polar coordinates over R9~!, we have

o(b) = / o(VE L EP)dé = cas / g(VP £ 1)y, (137)
Rd—1 0
By the change of variables t2 = b2 + 12, ¢ > 0, we have
p(b) = cq_1 / g(t)(t? — b?)@=3/2¢ gy, (138)
b

Hence, we see that

1 o _
I P [/ () — bY@ 3)/2tdt] (139)
(d—2)! b 1
where we used the fact that ygcgcqg—1 = ﬁ.
Calculations in Example 3. Let f(x) = gq.1(||z|) with € R? where
1-r)* ifo<r<1
= 140
9a4(r) {0 itr> 1. (140)
for any & > 0. Then a straightforward calculation using (138) gives
Car(1 =)+ if | < 1
b) = ’ 141
p(®) {0 ith> 1. (4h
where Cy ) = %W. Hence, we have || f||z finite if and only if O¢p(b) has bounded

variation, which is true if and only if kK — d + % > 0, or equivalently, & > %. For example, if
d = 3 then we need k£ > 2 in order for || || to be finite, consistent with the previous example.

To illustrate scaling of || f||, with dimension d, we set k& = (d + 1)/2 + 2 = (d 4 5)/2 so that

p(b) = Cayais)/2(1 — b?)42 for [b] < 1 and p(b) = 0 otherwise. Then we can show that
A1 p(b)| < 194t p(0)| for |b] < 1 and %1 p(b) = 0 for all |b| > 1. Therefore,
p p p

1 ! 2
=——— [ 9% p(b)| < o™ p(0 142
s = =gy || 1000 < gl 000 (142)
Performing a binomial expansion of p(b) and taking derivatives, we obtain
2 d+2
O p(0)] = 2Cy (a+5 d+1)d(d—1)=2d(d+5 143
(d—2)!| p(0)] a@+9)/2\ (44 1) /2 (d+1)d( ) (d+5) (143)

for all odd d > 3. By the lower bound in Proposition 15, we also have || f||z > [|Af]lec =
|Af(0)| = d(d + 5). Hence || f|| 5 ~ d*.
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H PIECEWISE LINEAR FUNCTIONS

Proof of Proposition 5

Proof. Assume f is a continuous piecewise linear function with compact support satisfying assump-
tion (a) or (b). Let By, ..., B, denote the boundaries between the regions. Since f is piecewise linear
and continuous, the distributional Laplacian A f decomposes into a linear combination of Dirac mea-
sures supported on the d — 1 dimensional boundary sets By, i.e., for all smooth test functions ¢ we
have

N ; N /B (@) ds(a) (144)

for some non-zero coefficients ¢, € R, where ds indicates integration with respect to the d — 1
dimensional surface measure on By. In particular, if By is the boundary separating neighboring
regions R, and R, then ¢, = =%||g, — g,|| where g, and g, are the gradient vectors of f in the
region R, and R, respectively, with sign determined by whether the function is locally concave (+)
or convex (-) at the boundary. Note that A f is a distribution of order zero, i.e., it can be identified
with a measure having finite total variation, and it has a well-defined Fourier transform given by

AFf(€) :ch/ e~2me" @ gg(z). (145)
k=1 Br

We show that Ef (&) violates the necessary decay requirements of Proposition 12 in order for f to
have finite R-norm. In particular, we show under both conditions (a) and (b) there exists a w such

that A f (o - w) is asymptotically constant as |o| — oo, which gives the claim.

Forall £ = 1,...,n, let wy denote a boundary normal to the boundary By, (i.e., a vector wy, € Sd-1
such that 'w,;ra: = 0 for all x € By, which is unique up to sign).

We first prove the claim under condition (a). Suppose, without loss of generality, that the boundary
normal w; is not parallel with all the others, i.e., wy # wy, for all k = 2, ..., n. We will write

Af(o-w:) = Fi(0) + Fs(o) (146)

where Fi(0) = c1 [, e~ 2wl B (x) and Fy(o) = Yy cr s, e~2mowl T (), and give
decay estimates for F} and F5 separately.

First, consider F (o). Since w{ « = 0 for all z € B; we have

Fi(o) = / emizmowlegoy = [ ds(@) = s(By), (147)
Bi By

where s(By) is the (d — 1)-dimensional surface measure of B;. In particular F'(o) is a non-zero
constant for all o € R.

Now consider F5(o). In this case, the integrand of ka e*ﬁ”wfwds(m) forall k = 2,...,n is

not constant, since by assumption w,; not parallel with any of the boundary normals ws, ..., w,,.

By an orthogonal change of coordinates, we can rewrite the surface integral over By as a vol-

ume integral over a set By embedded in (d — 1)-dimensional space & = (Z1,...,Z4—1), so that
. T . ST -

[, e 7% Tds(x) = [z e 7™ #dE for some for some non-zero w; € R?'. Observe
- ~ ; 7T 4 . . ; 5T 5

that g(&) := —izm’;’me_lzﬂ”“’l % has divergence V - g(Z) = e ?77%1 ®_ Therefore, by the

divergence theorem we have

/ eTi2mOW &g ~ V.g(&)dz (148)
By By
= 74 _ 9(2) n(@)ds(z) (149)
OBy
_o b el g T ) ds(a) (150)

i2molwi | Jop,
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where 12(Z) is the outward unit normal to the boundary OB, This gives the estimate

. =T
/ e 2ToW, z 1z
B

which holds for any k = 2, ..., n. Therefore, F5(0) = >}, ck ka e~2mow @ gg(z) = O(1/0)

as |o| — oo. This shows that A\f(a ~wy) — ¢18(By), Le., 5}”(0 - w1 ) is asymptotically constant,
which proves the claim.

=0(1/0), |o| = oo, (151)

Now we prove the claim under condition (b). Without loss of generality, let w; be an inner boundary
normal that is not parallel with any outer boundary normal, and assume f is concave when restricted
to its support. Let I; be the indices of all inner boundary normals parallel with w; (including itself),
let I5 be the indices of all inner boundary normals that are not parallel with w;, and let O be the
indices of all outer boundary normals. Then we write

&f(o‘-’wl)ZFII(O')—FFIZ(O')—‘,-Fo(O') (152)

where Fy, (o) = > 5cp, Ck ka e*i%awfmds(a:), Fr,(0) = X per, Ck ka e*i%awfmds(a:), and
Fo(o) =Y heo o [, e~i2mow @ jg(z). By the same argument as above, we can show F, (o) =
> rer, ckS(Bx). Since the function is concave when restricted to its support, all of the ¢, with
k € I, are positive, hence the sum ), -, cxs(By) is non-zero, which shows Fr, (o) is a non-
zero constant for all o € R. Likewise, by the same argument as above, we can show Fr, (o) =
O(1/0) and Fp (o) = O(1/0). Therefore, &} (o - wq) is asymptotically constant, which proves the
claim. O
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