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ABSTRACT

A key element of understanding the efficacy of overparameterized neural networks
is characterizing how they represent functions as the number of weights in the
network approaches infinity. In this paper, we characterize the norm required to
realize a function f : Rd → R as a single hidden-layer ReLU network with an
unbounded number of units (infinite width), but where the Euclidean norm of the
weights is bounded, including precisely characterizing which functions can be re-
alized with finite norm. This was settled for univariate functions f : R → R in
Savarese et al. (2019), where it was shown that the required norm is determined
by the L1-norm of the second derivative of the function. We extend the charac-
terization to multi-variate functions (d ≥ 2, i.e., multiple input units), relating
the required norm to the L1-norm of the Radon transform of a (d + 1)/2-power
Laplacian of the function. This characterization allows us to show that all func-
tions in Sobolev spaces W s,1(Rd), s ≥ d + 1, can be represented with bounded
norm, to calculate the required norm for several specific functions, and to obtain a
depth separation result. These results have important implications for understand-
ing generalization performance and the distinction between neural networks and
more traditional kernel learning.

1 INTRODUCTION

It has been argued for a while, and is becoming increasingly apparent in recent years, that in terms
of complexity control and generalization in neural network training, “the size [magnitude] of the
weights is more important then the size [number of weights or parameters] of the network” (Bartlett,
1997; Neyshabur et al., 2014; Zhang et al., 2016). That is, inductive bias and generalization are not
achieved by limiting the size of the network, but rather by explicitly (Wei et al., 2019) or implicitly
(Nacson et al., 2019; Lyu & Li, 2019) controlling the magnitude of the weights.

In fact, since networks used in practice are often so large that they can fit any function (any labels)
over the training data, it is reasonable to think of the network as virtually infinite-sized, and thus
able to represent essentially all functions. Training and generalization ability then rests on fitting
the training data while controlling, either explicitly or implicitly, the magnitude of the weights.
That is, training searches over all functions, but seeks functions with small representational cost,
given by the minimal weight norm required to represent the function. This “representational cost
of a function” is the actual inductive bias of learning—the quantity that defines our true model
class, and the functional we are actually minimizing in order to learn. Understanding learning with
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overparameterized (virtually infinite) networks thus rests on understanding this “representational
cost”, which is the subject of our paper. Representational cost appears to play an important role in
generalization performance; indeed Mei & Montanari (2019) show that minimum norm solutions
are optimal for generalization in certain simple cases, and recent work on “double descent” curves
is an example of this phenomenon (Belkin et al., 2019; Hastie et al., 2019).

We can also think of understanding the representational cost as asking an approximation theory
question: what functions can we represent, or approximate, with our de facto model class, namely
the class of functions representable with small magnitude weights? There has been much celebrated
work studying approximation in terms of the network size, i.e., asking how many units are necessary
in order to approximate a target function (Hornik et al., 1989; Cybenko, 1989; Barron, 1993; Pinkus,
1999). But if complexity is actually controlled by the norm of the weights, and thus our true model
class is defined by the magnitude of the weights, we should instead ask how large a norm is necessary
in order to capture a target function. This revised view of approximation theory should also change
how we view issues such as depth separation: rather then asking how increasing depth can reduce
the number of units required to fit a function, we should instead ask how increasing depth can reduce
the norm required, i.e., how the representational cost we study changes with depth.

Our discussion above directly follows that of Savarese et al. (2019), who initiated the study of the
representational cost in term of weight magnitude. Savarese et al. considered two-layer (i.e., single
hidden layer) ReLU networks, with an unbounded (essentially infinite) number of units, and where
the overall Euclidean norm (sum of squares of all the weights) is controlled. (Infinite width networks
of this sort have been studied from various perspectives by e.g., Bengio et al. (2006); Neyshabur
et al. (2015); Bach (2017); Mei et al. (2018)). For univariate functions f : R → R, corresponding
to networks with a single one-dimensional input and a single output, Savarese et al. obtained a crisp
and precise characterization of the representational cost, showing that minimizing overall Euclidean
norm of the weights is equivalent to fitting a function by controlling:

max

(∫
|f ′′(x)|dx, |f ′(−∞) + f ′(+∞)|

)
. (1)

While this is an important first step, we are of course interested also in more than a single one-
dimensional input. In this paper we derive the representational cost for any function f : Rd → R in
any dimension d. Roughly speaking, the cost is captured by:

‖f‖R ≈̇‖R{∆
(d+1)/2f}‖1 ≈ ‖∂d+1

b R{f}‖1 (2)
whereR is the Radon transform, ∆ is the Laplacian, and ∂b is a partial derivative w.r.t. the offset in
the Radon transform (see Section 3 for an explanation of the Radon transform). This characterization
is rigorous for odd dimensions d and for functions where the above expressions are classically well-
defined (i.e., smooth enough such that all derivatives are finite, and the integrand in the Radon
transform is integrable). But for many functions of interest these quantities are not well-defined
classically. Instead, in Definition 1, we use duality to rigorously define a semi-norm ‖f‖R that
captures the essence of the above quantities and is well-defined (though possibly infinite) for any
f in any dimension. We show that ‖f‖R precisely captures the representational cost of f , and in
particular is finite if and only if f can be approximated arbitrarily well by a bounded norm, but
possibly unbounded width, ReLU network. Our precise characterization applies to an architecture
with unregularized bias terms (as in Savarese et al. (2019)) and a single unregularized linear unit—
otherwise a correction accounting for a linear component is necessary, similar but more complex
than the term |f ′(−∞) + f ′(+∞)| in the univariate case, i.e., (1).

As we uncover, the characterization of the representational cost for multivariate functions is unfor-
tunately not as simple as the characterization (1) in the univariate case, where the Radon transform
degenerates. Nevertheless, it is often easy to evaluate, and is a powerful tool for studying the rep-
resentational power of bounded norm ReLU networks. Furthermore, as detailed in Section 5.5,
there is no kernel function for which the associated RKHS norm is the same as (2); i.e., training
bounded norm neural networks is fundamentally different from kernel learning. In particular, using
our characterization we show the following:

• All sufficiently smooth functions have finite representational cost, but the necessary de-
gree of smoothness depends on the dimension. In particular, all functions in the Sobolev
space W d+1,1(Rd), i.e., when all derivatives up to order d+ 1 are L1-bounded, have finite
representational cost, and this cost can be bounded using the Sobolev norm. (Section 5.1)
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• We calculate the representational cost of radial “bumps”, and show there are bumps with
finite support that have finite representational cost in all dimensions. The representational
cost increases as 1/ε for “sharp” bumps of radius ε (and fixed height). (Section 5.2)
• In dimensions greater than one, we show a general piecewise linear function with bounded

support has infinite representational cost (i.e., cannot be represented with a bounded norm,
even with infinite networks). (Section 5.3)
• We obtain a depth separation in terms of norm: we demonstrate a function in two dimen-

sions that is representable using a depth three ReLU network (i.e., with two hidden layers)
with small finite norm, but cannot be represented by any bounded-norm depth two (single
hidden layer) ReLU network. As far as we are aware, this is the first depth separation result
in terms of the norm required for representation. (Section 5.4)

1.1 RELATED WORK

Although the focus of most previous work on approximation theory for neural networks was on the
number of units, the norm of the weights was often used as an intermediate step. However, this
use does not provide an exact characterization of the representational cost, only a (often very loose)
upper bound, and in particular does not allow for depth separation results where a lower bound is
needed. See Savarese et al. (2019) for a detailed discussion, e.g., contrasting with the work of Barron
(1993; 1994).

The connection between the Radon transform and two-layer neural networks was previously made
by Carroll & Dickinson (1989) and Ito (1991), who used it to obtain constructive approximations
when studying approximation theory in terms of network size (number of units) for threshold and
sigmoidal networks. This connection also forms the foundation of ridgelet transform analysis of
functions Candès & Donoho (1999); Candès (1999). More recently, Sonoda & Murata (2017) used
ridgelet transform analysis to study the approximation properties of two-layer neural networks with
unbounded activation functions, including the ReLU.

While working on this manuscript, we learned through discussions with Matus Telgarsky of his
related parallel work. In particular, Telgarsky obtained a calculation formula for the norm required
to represent a radial function, paralleling our calculations in Section 5.2, and used it to show that
sufficiently smooth radial functions have finite norm in any dimension, and studied how this norm
changes with dimension.

2 INFINITE WIDTH RELU NETWORKS

We repeat here the discussion of Savarese et al. (2019) defining the representational cost of infinite-
width ReLU networks, with some corrections and changes that we highlight.

Consider the collection of all two-layer networks having an unbounded number of rectified linear
units (ReLUs), i.e., all gθ : Rd → R defined by

gθ(x) =
k∑
i=1

ai[w
>
i x− bi]+ + c, for all x ∈ Rd (3)

with parameters θ = (k,W = [w1, ...,wk], b = [b1, ..., bk]>,a = [a1, ..., ak]>, c), where the width
k ∈ N is unbounded. Let Θ be the collection of all such parameter vectors θ. For any θ ∈ Θ we
let C(θ) be the sum of the squared Euclidean norm of the weights in the network excluding the bias
terms, i.e.,

C(θ) =
1

2

(
‖W ‖2F + ‖a‖2

)
=

1

2

k∑
i=1

(
‖wi‖22 + |ai|2

)
, (4)

and consider the minimal representation cost necessary to exactly represent a function f ∈ Rd → R

R(f) := inf
θ∈Θ

C(θ) s.t. f = gθ. (5)

By the 1-homogeneity of the ReLU, it is shown in Neyshabur et al. (2014) (see also Appendix A of
Savarese et al. (2019)) that minimizing C(θ) is the same as constraining the inner layer weight
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vectors {wi}ki=1 to be unit norm while minimizing the `1-norm of the outer layer weights a.
Therefore, letting Θ′ be the collection of all θ ∈ Θ with each wi constrained to the unit sphere
Sd−1 := {w ∈ Rd : ‖w‖ = 1}, we have

R(f) = inf
θ∈Θ′
‖a‖1 s.t. f = gθ. (6)

However, we see R(f) is finite only if f is exactly realizable as a finite-width two layer ReLU
network, i.e., f must be a continuous piecewise linear function with finitely many pieces. Yet, we
know that any continuous function can be approximated uniformly on compact sets by allowing the
number of ReLU units to grow to infinity. Since we are not concerned with the number of units, only
their norm, we modify our definition of representation cost to capture this larger space of functions,
and define1

R(f) := lim
ε→0

(
inf
θ∈Θ′

C(θ) s.t. |gθ(x)− f(x)| ≤ ε ∀ ‖x‖ ≤ 1/ε and gθ(0) = f(0)

)
(7)

In words, R(f) is the minimal limiting representational cost among all sequences of networks con-
verging to f uniformly (while agreeing with f at zero).

Intuitively, if R(f) is finite this means f is expressible as an “infinite-width” two layer ReLU net-
work whose outer-most weights are described by a density α(w, b) over all weight and bias pairs
(w, b) ∈ Sd−1 × R. To make this intuition precise, let M(Sd−1 × R) denote the space of signed
measures α defined on (w, b) ∈ Sd−1 × R with finite total variation norm ‖α‖1 =

∫
Sd−1×R d|α|

(i.e., the analog of the L1-norm for measures), and let c ∈ R. Then we define the infinite-width
two-layer ReLU network hα,c (or “infinite-width net” for short) by2

hα,c(x) :=

∫
Sd−1×R

(
[w>x− b]+ − [−b]+

)
dα(w, b) + c (8)

We prove in Appendix B that R(f) is equivalent to

R(f) = min
α∈M(Sd−1×R),c∈R

‖α‖1 s.t. f = hα,c. (9)

Hence, learning an unbounded width ReLU network gθ by fitting some loss functional L(·) while
controlling the Euclidean norm of the weights C(θ) by minimizing

min
θ∈Θ

L(gθ) + λC(θ) (10)

is effectively the same as learning a function f by controlling R(f):

min
f :Rd→R

L(f) + λR(f). (11)

In other words, R(f) captures the true inductive bias of learning with unbounded width ReLU
networks having regularized weights. Our goal is then to calculate R(f) for any function f : Rd →
R, and in particular characterize when it is finite in order to understand what functions can be
approximated arbitrarily well with bounded norm but unbounded width ReLU networks.

2.1 SIMPLIFICATION VIA UNREGULARIZED LINEAR UNIT

Every two-layer ReLU network decomposes into the sum of a network with absolute value units
plus a linear part3. As demonstrated by Savarese et al. (2019) in the 1-D setting, the weights on the
absolute value units typically determine the representational cost, with a correction term needed if

1Our definition ofR(f) differs from the one given in Savarese et al. (2019). We require |gθ(x)−f(x)| ≤ ε
on the ball of radius 1/ε rather than all of Rd, and we additionally require gθ(0) = f(0). These modifications
are needed to ensure (7) and (9) are equivalent. Also, we note the choice of zero in the condition gθ(0) = f(0)
is arbitrary and can be replaced with any point x0 ∈ Rd.

2Our definition of hα,c also differs from the one given in Savarese et al. (2019). To ensure the integral is
well-defined, we include the additional −[−b]+ term in the integrand. See Remark 1 in Appendix A for more
discussion on this point.

3Such a decomposition follows immediately from the identity [t]+ = 1
2
(|t|+ t)
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the linear part has large weight. To allow for a cleaner formulation of the representation cost without
this correction term, we consider adding in one additional unregularized linear unit v>x (similar to
a “skip connection”) to “absorb” any representational cost due to the linear part.

Namely, for any θ ∈ Θ and v ∈ Rd we define the class of unbounded with two-layer ReLU networks
gθ,v with a linear unit by gθ,v(x) = gθ(x) + v>x where gθ is as defined in (3), and associate gθ,v
with the same weight norm C(θ) as defined in (4) (i.e., we exclude the norm of the weight v on the
additional linear unit from the cost). We then define the representational cost R1(f) for this class of
networks by

R1(f) := lim
ε→0

(
inf

θ∈Θ′,v∈Rd
C(θ) s.t. |gθ,v(x)− f(x)| ≤ ε ∀ ‖x‖ ≤ 1/ε and gθ(0) = f(0)

)
.

(12)
Likewise, for all α ∈ M(Sd−1 × R), v ∈ Rd, c ∈ R, we define an infinite width net with a linear
unit by hα,v,c(x) := hα,c(x) + v>x. We prove in Appendix B that R1(f) is equivalent to:

R1(f) = min
α∈M(Sd−1×R),v∈Rd,c∈R

‖α‖1 s.t. f = hα,v,c. (13)

In fact, we show the minimizer of (13) is unique and is characterized as follows:
Lemma 1. R1(f) = ‖α+‖1 where α+ ∈ M(Sd−1 × R) is the unique even measure4 such that
f = hα+,v,c for some v ∈ Rd, c ∈ R.

The proof of Lemma 1 is given in Appendix C. The uniqueness in Lemma 1 allows for a more
explicit characterization R1(f) in function space relative to R(f), as we show in Section 4.

3 THE RADON TRANSFORM AND ITS DUAL

Our characterization of the representational cost R1(f) in Section 4 is posed in terms of the Radon
transform — a transform that is fundamental to computational imaging, and whose inverse is the
basis of image reconstruction in computed tomography. For an investigation of its properties and
applications, see Helgason (1999). Here we give a brief review of the Radon transform and its dual
as needed for subsequent derivations; readers familiar with these topics can skip to Section 4.

The Radon transform R represents a function f : Rd → R in terms of its integrals over all possible
hyperplanes in Rd, as parameterized by the unit normal direction to the hyperplane w ∈ Sd−1 and
the signed distance of the hyperplane from the origin b ∈ R:

R{f}(w, b) :=

∫
w>x=b

f(x) ds(x) for all (w, b) ∈ Sd−1 × R, (14)

where ds(x) represents integration with respect to (d−1)-dimensional surface measure on the hyper-
planew>x = b. Note the Radon transform is an even function, i.e.,R{f}(w, b) = R{f}(−w,−b)
for all (w, b) ∈ Sd−1 × R, since the equations w>x = b and −w>x = −b determine the same
hyperplane. See Figure 1 for an illustration of the Radon transform in dimension d = 2.

The Radon transform is invertible for many common spaces of functions, and its inverse is a compo-
sition of the dual Radon transform R∗ (i.e., the adjoint ofR) followed by a filtering step in Fourier
domain. The dual Radon transform R∗ maps a function ϕ : Sd−1 × R → R to a function over
x ∈ Rd by integrating over the subset of coordinates (w, b) ∈ Sd−1 × R corresponding to all
hyperplanes passing through x:

R∗{ϕ}(x) :=

∫
Sd−1

ϕ(w,w>x) dw for all x ∈ Rd (15)

where dw represents integration with respect to the surface measure of the unit sphere Sd−1. The
filtering step is given by a (d− 1)/2-power of the (negative) Laplacian (−∆)(d−1)/2, where for any
s > 0 the operator (−∆)s/2 is defined in Fourier domain by

̂(−∆)s/2f(ξ) = ‖ξ‖sf̂(ξ), (16)
4Roughly speaking, a measure α is even if α(w, b) = α(−w,−b) for all (w, b) ∈ Sd−1×R; see Appendix

A for a precise definition.
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(a) Radon transform (b) Dual Radon transform

Figure 1: Radon transform. (a) Illustration of the Radon transform in equation (14) in dimension d = 2. The
red line of points x satisfying w>x = b defines the domain of the integral over f(x), where w determines the
line orientation (angle relative to the coordinate axes) and b determines its offset from the origin. (b) Illustration
of the support of the Radon transform for f(x) = δ(x− (−1,−1)) (red), f(x) = δ(x− (1, 0)) (green), and
f(x) = δ(x−(0, 1)) (blue). If a function f is a superposition of such δ functions, thenR{f} is the sum of the
curves in (b); this is typically referred to as a “sinogram”. Furthermore, the dual Radon transform in equation
(15) integrates any function ϕ(w, b) over all curves like one of the three in (b).

using ĝ(ξ) := (2π)−d/2
∫
g(x)e−iξ

>xdx to denote the d-dimensional Fourier transform at the
Fourier domain (frequency) variable ξ ∈ Rd. When d is odd, (−∆)(d−1)/2 is the same as applying
the usual Laplacian (d − 1)/2 times, i.e., (−∆)(d−1)/2 = (−1)(d−1)/2∆(d−1)/2, while if d is even
it is a pseudo-differential operator given by convolution with a singular kernel. Combining these
two operators gives the inversion formula f = γd(−∆)(d−1)/2R∗{R{f}}, where γd is a constant
depending on dimension d, which holds for f belonging to many common function spaces (see,
e.g., Helgason (1999)).

The dual Radon transform is also invertible by a similar formula, albeit under more restrictive con-
ditions on the function space. We use the following formula due to Solmon (1987) that holds for all
Schwartz class functions5 on Sd−1 × R, which we denote by S(Sd−1 × R):
Lemma 2 (Solmon (1987)). If ϕ is an even function6, i.e., ϕ(−w,−b) = ϕ(w, b) for all (w, b) ∈
Sd−1 × R, belonging to the Schwartz class S(Sd−1 × R), then

γdR{(−∆)(d−1)/2R∗{ϕ}} = ϕ, (17)

where γd = 1
2(2π)d−1 .

Finally, we recall the Fourier slice theorem for Radon transform (see, e.g., Helgason (1999)): Let
f ∈ L1(Rd), then for all σ ∈ R and w ∈ Sd−1 we have

FbR{f}(w, σ) = f̂(σ ·w) (18)

where Fb indicates the 1-D Fourier transform in the offset variable b. From this it is easy to establish
the following intertwining property of the Laplacian and the Radon transform: assuming f and ∆f
are in L1(Rd), we have

R{∆f} = ∂2
bR{f} (19)

where ∂b is the partial derivative in the offset variable b. More generally for any positive integer s,
assuming f and (−∆)s/2f are in L1(Rd) we have

R{(−∆)s/2f} = (−∂2
b )
s/2R{f} (20)

where fractional powers of −∂2
b can be defined in Fourier domain, same as fractional powers of

the Laplacian. In particular, if d is odd, (−∂2
b )(d−1)/2 = (−1)(d−1)/2∂d−1

b , while if d is even,
(−∂2

b )(d−1)/2 = (H∂b)d−1 whereH is the Hilbert transform in the offset variable b.

5i.e., functions ϕ : Sd−1 × R → R that are C∞-smooth such that ϕ(w, b) and all its partial derivatives
decrease faster than O(|b|−N ) as |b| → ∞ for any N ≥ 0

6The assumption that ϕ is even is necessary since odd functions are annihilated byR∗.
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4 REPRESENTATIONAL COST IN FUNCTION SPACE: THE R-NORM

Our starting point is to relate the Laplacian of an infinite-width net to the dual Radon transform of
its defining measure. In particular, consider an infinite width net f defined in terms of a smooth
density α(w, b) over Sd−1 × R that decreases rapidly in b, so that we can write

f(x) =

∫
Sd−1×R

(
[w>x− b]+ − [−b]+

)
α(w, b) dw db+ v>x+ c. (21)

Differentiating twice inside the integral, the Laplacian ∆f(x) =
∑d
i=1 ∂

2
xi
f(x) is given by

∆f(x) =

∫
Sd−1×R

δ(w>x− b)α(w, b) dw db =

∫
Sd−1

α(w,w>x) dw. (22)

where δ(·) denotes a Dirac delta. We see that the right-hand side of (22) is precisely the dual Radon
transform of α, i.e., we have shown ∆f = R∗{α}. Applying the inversion formula for the dual
Radon transform given in (17) to this identity, and using the characterization of R1(f) given in
Lemma 1, immediately gives the following result.
Lemma 3. Suppose f = hα,v,c for some α ∈ S

(
Sd−1 × R

)
with α even, and v ∈ Rd, c ∈ R. Then

α = −γdR{(−∆)(d+1)/2f}, and R1(f) = γd‖R{(−∆)(d+1)/2f}‖1 where γd = 1
2(2π)d−1 .

See Figure 2 for an illustration of Lemma 3 in the case d = 2. This result suggests that more
generally if we are given a function f , we ought to be able to compute R1(f) using the formula in
Lemma 3. The following result, proved in Appendix C, shows this is indeed the case assuming f is
integrable and sufficiently smooth, which for simplicity we state in the case of odd dimensions d. 7.
Proposition 1. Suppose d is odd. If both f ∈ L1(Rd) and ∆(d+1)/2f ∈ L1(Rd), then

R1(f) = γd‖R{∆(d+1)/2f}‖1 = γd‖∂d+1
b R{f}‖1 <∞. (23)

Here we used the intertwining property of the Radon transform and the Laplacian to write
R{∆(d+1)/2f} = ∂d+1

b R{f} (see Section 3 for more details).

Given these results, one might expect for an arbitrary function f we should have R1(f) equal to
one of the expressions in (23). However, for many functions of interest these quantities are not
classically well-defined. For example, the finite-width ReLU net f(x) =

∑n
i=1 ai[w

>
i x− bi]+ is a

piecewise linear function that is non-smooth along each hyperplanew>i x = bi, so its derivatives can
only be understood in the sense of generalized functions or distributions. Similarly, in this case the
Radon transform of f is not well-defined since f is unbounded and not integrable along hyperplanes.

Instead, we use duality to define a functional (the “R-norm”) that extends to the more general
case where f is possibly non-smooth or not integrable along hyperplanes. In particular, we define a
functional on the space of all Lipschitz continuous functions8. The main idea is to re-express the L1-
norm in (23) as a supremum of the inner product over a space of dual functions ψ : Sd−1 ×R→ R,
i.e., using the factR∗ is the adjoint ofR and the Laplacian ∆ is self-adjoint we write

‖R{∆(d+1)/2f}‖1 = sup
‖ψ‖∞≤1

〈R{∆(d+1)/2f}, ψ〉 = sup
‖ψ‖∞≤1

〈f,∆(d+1)/2R∗{ψ}〉 (24)

then restrict ψ to a space where ∆(d+1)/2R∗{ψ} is always well-defined. More formally, we have:
Definition 1. For any Lipschitz continuous function f : Rd → R define itsR-norm9 ‖f‖R by

‖f‖R := sup
{
−γd〈f, (−∆)(d+1)/2R∗{ψ}〉 : ψ ∈ S(Sd−1 × R), ψ even , ‖ψ‖∞ ≤ 1

}
. (25)

where γd = 1
2(2π)d−1 , S(Sd−1 × R) is the space of Schwartz functions on Sd−1 × R, and 〈f, g〉 :=∫

Rd f(x)g(x)dx. If f is not Lipschitz we define ‖f‖R = +∞.

7For d even, Proposition 1 holds with the pseudo-differential operators (−∆)(d+1)/2 and (−∂2
b )(d+1)/2 in

place of ∆(d+1)/2 and ∂d+1
b ; see Section 3.

8Recall that f is Lipschitz continuous if there exists a constant L (depending on f ) such that
|f(x)− f(y)| ≤ L‖x− y‖ for all x,y ∈ Rd.

9Strictly speaking, the functional ‖·‖R is not a norm, but it is a semi-norm on the space of functions for
which it is finite; see Appendix E.
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f(x) g(x) = (−∆)3/2f(x) R{g}(w(θ), b)
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Figure 2: We illustrate the steps in computing the R-norm of the 2-D function f(x) shown in the left-most
figure using the formula for R1(f) in Lemma 3. First, we apply the 3/2-power negative Laplacian (−∆)3/2

(roughly speaking, a third-order derivative of the function), which gives the function g(x) shown in the middle
figure. Following this, we apply the Radon transform R{g}, which gives “sinogram” shown in the right-most
figure, plotted as a function of angle θ of the unit direction w(θ) = [cos(θ), sin(θ)] and offset parameter b. Up
to a scaling, R{g} are the weights used to represent f as an infinite-width two-layer ReLU network, and the
R-norm is its scaled L1-norm: R1(f) = ‖f‖R = 1

4π
‖R{g}‖1.

We prove in Appendix C that theR-norm is well-defined, though not always finite, for all Lipschitz
functions and, whether finite or infinite, is always equal to the representational cost R1(·):

Theorem 1. R1(f) = ‖f‖R for all functions f . In particular, R1(f) is finite if and only if f is
Lipschitz and ‖f‖R is finite.

We give the proof of Theorem 1 in Appendix C, but the following example illustrates many key
elements of the proof.
Example 1. We compute R1(f) = ‖f‖R in the case where f is a finite-width two-layer ReLU
network. First, consider the case where f consists of a single ReLU unit: f(x) = a1[w>1 x − b1]+
for some a1 ∈ R and (w1, b1) ∈ Sd−1. Note that ∆f(x) = a δ(w>1 x−b1) in a distributional sense,
i.e., for any smooth test function ϕ we have 〈∆f, ϕ〉 = 〈f,∆ϕ〉 = a1

∫
ϕ(x)δ(w>1 x − b1)dx =

a1R{ϕ}(w1, b1). So for any even ψ ∈ S(Sd−1 × R) we have

−γd〈f, (−∆)(d+1)/2R∗{ψ}〉 = γd〈∆f, (−∆)(d−1)/2R∗{ψ}〉 (26)

= a1γdR{(−∆)(d−1)/2R∗{ψ}}(w1, b1) (27)
= a1ψ(w1, b1) (28)

where in the last step we used the inversion formula (17). Since the supremum defining ‖f‖R is over
all even ψ ∈ S(Sd−1×R) such that ‖ψ‖∞ ≤ 1, taking any ψ∗ such that ψ∗(w1, b1) = sign(a1) and
|ψ∗(w1, b1)| ≤ 1 otherwise, we see that ‖f‖R = |a1|. The general case now follows by linearity: let
f(x) =

∑k
i=1 ai[w

>
i x− bi]+ such that all the pairs {(wi, bi)}ki=1 ∪ {(−wi,−bi)}ki=1 are distinct.

Then for any ψ ∈ S(Sd−1 × R) we have

− γd〈f, (−∆)(d+1)/2R∗{ψ}〉 =
k∑
i=1

aiψ(wi, bi). (29)

Letting ψ∗ be any even Schwartz function such that ψ∗(wi, bi) = ψ∗(−wi,−bi) = sign(ai) for all
i = 1, ..., k and |ψ∗(w, b)| ≤ 1 otherwise, we see that R1(f) = ‖f‖R =

∑k
i=1 |ai|.

The representational cost R(f) defined without the unregularized linear unit is more difficult to
characterize explicitly. However, we prove that R(f) is finite if and only if ‖f‖R is finite, and give
bounds for R(f) in terms of ‖f‖R and the norm of the gradient of the function “at infinity”, similar
to the expressions derived in Savarese et al. (2019) in the 1-D setting.
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Theorem 2. R(f) is finite if and only if ‖f‖R is finite, in which case we have the bounds

max{‖f‖R , 2‖∇f(∞)‖} ≤ R(f) ≤ ‖f‖R + 2‖∇f(∞)‖, (30)

where∇f(∞) := limr→∞
1

cdrd−1

∮
‖x‖=r∇f(x)ds(x) ∈ Rd with cd :=

∫
Sd−1 dw = 2πd/2

Γ(d/2) .

In particular, if∇f(∞) = 0 then R(f) = R1(f) = ‖f‖R.

We give the proof of Theorem 2 in Appendix D. The lower bound max{‖f‖R , 2‖∇f(∞)‖} is anal-
ogous to the expression for the 1D representational cost (1) obtained in Savarese et al. (2019). From
this, one might speculate that R(f) is equal to max{‖f‖R , 2‖∇f(∞)‖2}. However, in Appendix
D we show this is not the case: there are examples of functions f in all dimensions such that R(f)
attains the upper bound in a non-trivial way (e.g., f(x, y) = |x|+ y in d = 2).

4.1 PROPERTIES OF THE R-NORM

In Appendix E we prove several useful properties for the R-norm. In particular, we show the R-
norm is in fact a semi-norm, i.e., it is absolutely homogeneous and satisfies the triangle inequality,
while ‖f‖R = 0 if and only if f is affine. We also showR-norm is invariant to coordinate translation
and rotations, and prove the following scaling law under contractions/dilation:
Proposition 2. If fε(x) := f(x/ε) for any ε > 0, then ‖fε‖R = ε−1 ‖f‖R

Proposition 2 shows that “spikey” functions will necessarily have large R-norm. For example, let
f be any non-negative function supported on the ball of radius 1 with maximum height 1 such that
‖f‖R is finite. Then the contraction fε is supported on the ball of radius ε with maximum height 1,
but ‖fε‖R = ε−1 ‖f‖R blows up as ε→ 0.

From a generalization perspective, the fact that theR-norm blows up with contractions is a desirable
property, since otherwise the minimum norm fit to data would be spikes on data points. In particular,
this is what would happen if the representational cost involved derivatives lower than d+ 1, and so
in this sense it is not a coincidence that ‖f‖R involves derivatives of order d+ 1.

Finally, we show the smoothness requirements of the R-norm are also reflected in Fourier domain.
In particular, we show that for a broad class of functions in order R-norm to be finite the Fourier
transform of f must decay rapidly along every ray. A precise statement is given in Proposition 12 in
Appendix E.

5 CONSEQUENCES, APPLICATIONS AND DISCUSSION

Our characterization of the representational cost for multivariate functions in terms of the R-norm
is unfortunately not as simple as the characterization in the univariate case. Nevertheless, it is often
easy to evaluate, and is a powerful tool for studying the representational power of bounded norm
ReLU networks.

5.1 SOBOLEV SPACES

Here we relate Sobolev spaces and theR-norm. The key result is the following upper bound, which
is proved in Appendix F.

Proposition 3. If f : Rd → R is Lipschitz and (−∆)(d+1)/2f exists in a weak sense10 then

‖f‖R ≤ cdγd‖(−∆)(d+1)/2f‖1. (31)

where cd =
∫
Sd−1 dw = 2πd/2

Γ(d/2) , and γd = 1
2(2π)d−1 .

Recall that if the dimension d is odd then (−∆)(d+1)/2 is just an integer power of the negative
Laplacian, which is a linear combination of partial derivatives of order d + 1. Hence, we have

10i.e., for all compactly supported smooth functions ϕ there exists a locally integrable function g ∈ L1
loc(Rd)

such that
∫
f (−∆)(d+1)/2ϕdx =

∫
gϕ dx.
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‖(−∆)(d+1)/2f‖1 ≤ cdγd‖f‖Wd+1,1 , where ‖f‖Wd+1,1 is the Sobolev norm given by the sum of
L1-norm of f and the L1-norms of all its weak partial derivatives up to order d + 1. This gives the
following immediate corollary to Proposition 3:

Corollary 1. Suppose d is odd. If f belongs to the Sobolev space W d+1,1(Rd), i.e., f and all its
weak derivatives up to order d+ 1 are in L1(Rd), then ‖f‖R is finite and ‖f‖R ≤ cdγd‖f‖Wd+1,1 .

Corollary 1 shows that the space of functions with finite R-norm is “dense” in the space of all
functions, in the sense that it contains a full Sobolev space.

5.2 RADIAL BUMP FUNCTIONS

Here we study the case where f is a radially symmetric function, i.e., f(x) = g(‖x‖) for some
function g : [0,∞) → R. In this case, the R-norm is expressible entirely in terms of derivatives of
the radial profile function g, as shown in the following result, which is proved in Appendix G.

Proposition 4. Suppose d ≥ 3 is odd. If f ∈ L1(Rd) with f(x) = g(‖x‖) then

‖f‖R =
2

(d− 2)!

∫ ∞
0

∣∣∣∂(d+1)ρ(b)
∣∣∣ db. (32)

where ρ(b) =
∫∞
b
g(t)(t2 − b2)(d−3)/2t dt,

For example, in the d = 3 dimensional case, we have

‖f‖R = 2

∫ ∞
0

|b ∂3g(b) + 3∂2g(b)|db, (d = 3) (33)

More generally, for any odd dimension d ≥ 3 a simple induction shows (32) is equivalent to

‖f‖R =
2

(d− 2)!

∫ ∞
0

|Qd{g}(b)|db (34)

where Qd is a differential operator of degree (d+ 3)/2 having the form Qd =
∑(d+3)/2
k=2 pk,d(b)∂

k

where each pk,d(b) is a polynomial in b of degree k−2. In particular, if the weak derivative ∂(d+1)/2g
exists and has bounded variation, then ‖f‖R is finite.

Example 2. Consider the radial bump function f(x) = g(‖x‖) with x ∈ R3 where

g(r) =

{
(1− r2)2 if 0 ≤ r < 1

0 if r ≥ 1.
(35)

which is non-negative, supported on the unit ball, and has maximum height f(0) = 1, and let
fε(x) = f(x/ε) be the contraction of f to a ball of radius ε with the same height. Then using
formula (33), and the dilation property (2), we can compute

‖fε‖R = ‖f‖R /ε = 16(1 + 1
5 (5 + 2

√
5))/ε. (36)

Note that if we move up to dimension d = 5, then the function defined by (35) no longer has finite
norm since its derivatives of order (d+ 3)/2 = 4 do not exist; this phenomenon is explored in more
detail in the next example.

Example 3. Suppose d ≥ 3 is odd. Consider the radial bump function fd,k(x) = gd,k(‖x‖) with
x ∈ Rd where

gd,k(r) =

{
(1− r2)k if 0 ≤ r < 1

0 if r ≥ 1.
(37)

for any k > 0. We prove ‖fd,k‖R is finite if and only if k ≥ d+1
2 (see Appendix G). To illustrate the

scaling with dimension d, in Appendix G we prove that for the choice kd = (d + 1)/2 + 2 we have
the bounds (d + 5)d ≤ ‖fd,kd‖R ≤ 2d(d + 5), hence ‖fd,kd‖R ∼ d2. Similarly, by the dilation
property (2), a contraction of fd,kd to the ball of radius ε will haveR-norm scaling as ∼ d2/ε.
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The next example11 shows there there is a universal choice of radial bump function in all (odd)
dimensions with finiteR-norm:
Example 4. Suppose d ≥ 3 is odd. Consider the radial bump function f(x) = g(‖x‖) with x ∈ Rd
where

g(r) =

{
e
− 1

1−r2 if 0 ≤ r < 1

0 if r ≥ 1.
(38)

Since g is C∞-smooth and its derivatives of all orders are L1-bounded, f has finite R-norm by
Proposition 4.

5.3 PIECEWISE LINEAR FUNCTIONS

Every finite-width two-layer ReLU network is a continuous piecewise linear function. However, the
reverse is not true. For example, in dimensions two and above no compactly supported piecewise
linear function is expressible as a finite-width two-layer ReLU network. A natural question then is:
what piecewise linear functions are represented by bounded norm infinite-width nets, i.e., have finite
R-norm? In particular, can a compactly supported piecewise linear function have finite R-norm?
Here we show this is generally not the case.

Before stating our result, we will need a few definitions relating to the geometry of piecewise linear
functions. Recall that any piecewise linear function (with finitely many pieces) is divided into poly-
hedral regions separately by a finite number of boundaries. Each boundary is (d − 1)-dimensional
and contained in a unique hyperplane. Hence, with every boundary we associate the unique (up to
sign) unit normal to the hyperplane containing it, which we call the boundary normal. Additionally,
in the case of compactly supported piecewise linear function, every boundary set that touches the
complement of the support set we call an outer boundary, otherwise we call it an inner boundary.

The following result is proved in Appendix H, and is a consequence of the Fourier decay estimates
established in Appendix E.
Proposition 5. Suppose f : Rd → R is a continuous piecewise linear function with compact support
such that one (or both) of the following conditions hold:

(a) at least one of the boundary normals is not parallel with every other boundary normal, or

(b) f is everywhere convex (or everywhere concave) when restricted to its support, and at least
one of the inner boundary normals is not parallel with all outer boundary normals.

Then f has infiniteR-norm.

Note that condition (a) holds for a “generic” piecewise linear function with compact support, i.e., if
a function fails to satisfy (a) we can always perturb it slightly such that (a) holds. In this sense
no “generic” compactly supported piecewise linear function has finite R-norm. In fact, we are not
aware of any compactly supported piecewise linear function with finiteR-norm, but our theory does
not rule them out a priori.

This result suggests that the space of piecewise linear functions expressible as a bounded norm
infinite-width two-layer ReLU network is not qualitatively different than those captured by finite-
width networks. We go further and make the following conjecture:
Conjecture 1. A continuous piecewise linear function f has finiteR-norm if and only if it is exactly
representable by a finite-width two-layer ReLU network.

5.4 DEPTH SEPARATION

In an effort to understand the power of deeper networks, there has been much work showing how
some functions can be much more easily approximated in terms of number of required units by
deeper networks compared to shallower ones, including results showing how functions that can be
well-approximated by three-layer networks require a much larger number of units to approximate

11The existence of such a radial function was noted in parallel work by Matus Telgarsky. Discussions with
Telgarsky motivated us to construct and analyze it using theR-norm.
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if using a two-layer network (e.g. Pinkus (1999); Telgarsky (2016); Liang & Srikant (2016); Safran
& Shamir (2017); Yarotsky (2017)). The following example shows that, also in terms of the norm,
such a depth separation exists for ReLU nets:
Example 5. The pyramid function f(x) = [1 − ‖x‖1]+ is a compactly supported piecewise linear
function that satisfies condition (b) of Proposition 5, hence has infinite representational cost as a
two-layer ReLU network (R(f) = R1(f) = +∞), but can be exactly represented as a finite-width
three-layer ReLU network.

Interestingly, this result shows that, in terms of the norm, we have a qualitative rather then quanti-
tative depth separation: the required norm with three layers is finite, while with only two layers it
is not merely very large, but infinite. In contrast, in standard depth separation results, the separation
is quantitative: we can compensate for a decrease in depth and use more neurons to achieve the
same approximation quality. It would be interesting to further strengthen Example 5 by obtaining a
quantitative lower bound on the norm required to ε-approximate the pyramid with an infinite-width
two-layer ReLU network.

5.5 THE R-NORM IS NOT A RKHS NORM

There is an ongoing debate in the community on whether neural network learning can be simulated
or replicated by kernel machines with the “right” kernel. In this context, it is interesting to ask
whether the inductive bias we uncover can be captured by a kernel, or in other words whether the
R-norm is an RKHS (semi-)norm. The answer is no:
Proposition 6. TheR-norm is not a RKHS (semi-)norm.

This is seen immediately by the failure of the parallelogram law to hold. For example,
if f1(x) = [w>1 x]+, f2 = [w>2 x]+ with w1,w2 ∈ Sd−1 distinct, then by Exam-
ple 1 we have ‖f1‖R = ‖f2‖R = 1, while ‖f1 + f2‖R = ‖f1 − f2‖R = 2, and so
2(‖f1‖2R + ‖f2‖2R) 6= ‖f1 + f2‖2R + ‖f1 − f2‖2R.

5.6 GENERALIZATION IMPLICATIONS

Neyshabur et al. (2015) shows that training an unbounded-width neural network while regularizing
the `2 norm of the weights results in a sample complexity proportional to a variant12 of R(f). This
paper gives an explicit characterization of R(f) and thus of the sample complexity of learning a
function using regularized unbounded-width neural networks.
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APPENDICES

A INFINITE-WIDTH NETS

Measures and infinite-width nets Let α be a signed measure 13 defined on Sd−1 × R, and let
‖α‖1 =

∫
d|α| denote its total variation norm. We let M(Sd−1 × R) denote the space of measures

on Sd−1×R with finite total variation norm. Since Sd−1×R is a locally compact space,M(Sd−1×R)
is the Banach space dual of C0(Sd−1×R), the space of continuous functions on Sd−1×R vanishing
at infinity (Malliavin, 2012, Chapter 2, Theorem 6.6), and

‖α‖1 = sup

{∫
ϕdα : ϕ ∈ C0(Sd−1 × R), ‖ϕ‖∞ ≤ 1

}
. (39)

For any α ∈M(Sd−1 × R) and ϕ ∈ C0(Sd−1 × R), we often use 〈α,ϕ〉 to denote
∫
ϕdα.

Any α ∈M(Sd−1×R) can be extended uniquely to a continuous linear functional onCb(Sd−1×R),
the space continuous and bounded functions on Sd−1×R. In particular, since the function ϕ(w, b) =
[w>x− b]+ − [−b]+ belongs to Cb(Sd−1 × R), we see that the infinite-width net

hα(x) :=

∫
Sd−1×R

([w>x− b]+ − [−b]+)dα(w, b) (40)

is well-defined for all x ∈ Rd.
Remark 1. Our definition of an infinite-width net in differs slightly from Savarese et al. (2019): we
integrate a constant shift of the ReLU [w>x − b]+ − [−b]+ with respect to the measure α(w, b)
rather than [w>x − b]+ as in Savarese et al. (2019). As shown above, this ensures the integral
is always well-defined for any measure α with finite total variation. Alternatively, we could have
restricted to measures that have finite first moment, i.e.,

∫
Sd−1×R |b| d|α|(w, b) <∞, which ensures

the definition h̃α(x) :=
∫
Sd−1×R[w>x− b]+dα(w, b) proposed in Savarese et al. (2019) is always

well-defined. However, restricting to measures with finite first moment complicates the function
space description, and excludes from our analysis certain functions that are still naturally defined
as limits of bounded norm finite-width networks, and so we opt for the definition above instead. In
the case that α has a finite first moment the difference between definitions is immaterial since hα
and h̃α are equal up to an additive constant, which implies they have the same representational cost
under R(·) and R1(·).

Even and odd measures We say α ∈M(Sd−1 × R) is even if∫
Sd−1×R

ϕ(w, b)dα(w, b) =

∫
Sd−1×R

ϕ(−w,−b)dα(w, b) for all ϕ ∈ C0(Sd−1 × R) (41)

or α is odd if∫
Sd−1×R

ϕ(w, b)dα(w, b) = −
∫
Sd−1×R

ϕ(−w,−b)dα(w, b) for all ϕ ∈ C0(Sd−1 × R). (42)

It is easy to show every measure α ∈ M(Sd−1 × R) is uniquely decomposable as α = α+ + α−

where α+ is even and α− is odd, which we call the even and odd decomposition of α. For example,
if α has a density µ(w, b) then α+ is the measure with density µ+(w, b) = 1

2 (µ(w, b)+µ(−w,−b))
and α− is the measure with density µ−(w, b) = 1

2 (µ(w, b)− µ(−w,−b)).

We let M(Pd) denote the subspace of all even measures in M(Sd−1 × R), which is the Banach
space dual of C0(Pd), the subspace of all even functions ϕ ∈ C0(Sd−1 × R). Even measures play
an important role in our results because of the following observations.

Let α ∈ M(Sd−1 × R) with even and odd decomposition α = α+ + α−. Then we have hα =
hα+ + hα− . By the identity [t]+ + [−t]+ = |t| we can show

hα+(x) =
1

2

∫
Sd−1×R

(|w>x+ b| − |b|)dα+(w, b). (43)

13To be precise, we assume α is a signed Radon measure; see, e.g., Malliavin (2012) for a formal definition.
We omit the word “Radon” and simply call α a measure to avoid confusion with the Radon transform, which
is central to this work.
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Likewise, by the identity [t]+ − [−t]+ = t we have

hα−(x) = v>0 x. (44)

where v0 = 1
2

∫
Sd−1×Rwdα

−(w, b). Hence, hα decomposes into a sum of a component with
absolute value activations and a linear function. In particular, if f = hα,v,c for some α ∈M(Sd−1×
R),v ∈ Rd, c ∈ R, letting α+ be the even part of α, we always have f = hα+,v′,c for some
v′ ∈ Rd. In other words, we lose no generality by restricting ourselves to infinite width nets of the
form f = hα,v,c where α is even (i.e., α ∈M(Pd)).

We will need the following fact about even and odd decompositions of measures under the total
variation norm:

Proposition 7. Let α ∈ M(Sd−1 × R) with α = α+ + α− where α+ is even and α− is odd. Then
‖α+‖1 ≤ ‖α‖1 and ‖α−‖1 ≤ ‖α‖1.

Proof. For any ϕ ∈ C0(Sd−1 × R) we can write ϕ = ϕ+ + ϕ− where ϕ+(w, b) = 1
2 (ϕ(w, b) +

ϕ(−w,−b)) is even and ϕ−(w, b) = 1
2 (ϕ(w, b) − ϕ(−w,−b)) is odd. Note that

∫
ϕdα+ =∫

ϕ+ dα
+ since

∫
ϕ−dα

+ = 0. Furthermore, if |ϕ(w, b)| ≤ 1 for all (w, b) ∈ Sd−1 × R we see
that |ϕ+(w, b)| ≤ 1

2 (|ϕ(w, b)| + |ϕ(−w,−b)|) ≤ 1 for all (w, b) ∈ Sd−1 × R. Therefore, in
the dual definition of ‖α+‖1 given in (39) it suffices to take the supremum over all even functions
ϕ ∈ C0(Sd−1 × R). Hence,

‖α‖1 = sup

{∫
ϕdα : ϕ ∈ C0(Sd−1 × R), ‖ϕ‖∞ ≤ 1

}
(45)

= sup

{∫
ϕdα+ +

∫
ϕdα− : ϕ ∈ C0(Sd−1 × R), ‖ϕ‖∞ ≤ 1

}
(46)

≥ sup

{∫
ϕdα+ +

∫
ϕdα− : ϕ ∈ C0(Sd−1 × R), ‖ϕ‖∞ ≤ 1, ϕ even

}
(47)

= sup

{∫
ϕdα+ : ϕ ∈ C0(Sd−1 × R), ‖ϕ‖∞ ≤ 1, ϕ even

}
(48)

= ‖α+‖1 (49)

A similar argument shows ‖α−‖1 ≤ ‖α‖1.

Lipschitz continuity of infinite-width nets Define Lip(Rd) to be the space of all real-valued
Lipschitz continuous functions on Rd. For any f ∈ Lip(Rd), define ‖f‖L := supx6=y

|f(x)−f(y)|
‖x−y‖ ,

i.e., the smallest possible Lipschitz constant. The following result shows that Lip(Rd) is a natural
space to work in when considering infinite-width nets:

Proposition 8 (Infinite-width nets are Lipschitz). Let f = hα,v,c for any α ∈ M(Sd−1 × R),v ∈
Rd, c ∈ R. Then f ∈ Lip(Rd) with ‖f‖L ≤ ‖α‖1 + ‖v‖.

Proof. First we prove for all even α ∈M(Pd), ‖hα‖L ≤ ‖α‖1/2.

By the reverse triangle inequality we have
∣∣|w>x− b| − |w>y − b|∣∣ ≤ ∣∣w>(x− y)

∣∣ for all x,y ∈
Rd, w ∈ Sd−1, b ∈ R. Therefore, using identity (43), for all x,y ∈ Rd we see that

|hα(x)− hα(y)| = 1

2

∣∣∣∣∫
Sd−1×R

(
|w>x− b| − |w>y − b|

)
dα(w, b)

∣∣∣∣ (50)

≤ 1

2

∫
Sd−1×R

∣∣|w>x− b| − |w>y − b|∣∣ d|α|(w, b) (51)

≤ 1

2

∫
Sd−1×R

|w>(x− y)|d|α|(w, b) (52)

≤ 1

2
‖x− y‖‖α‖1 (53)
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which shows hα is Lipschitz with ‖hα‖L ≤ ‖α‖1/2.

More generally, for any infinite-width net f = hα,v,c with α ∈ M(Sd−1 × R), v ∈ Rd and
c ∈ R. From the even and odd decomposition α = α+ + α− we have f = hα+,v0+v,c, where
v0 = 1

2

∫
Sd−1×Rwdα

−(w, b). Hence, ‖v0‖2 ≤ ‖α−‖1/2, Therefore, by the triangle inequality,
‖f‖L ≤ ‖α+‖1/2 + ‖α−‖1/2 + ‖v‖ ≤ ‖α‖1 + ‖v‖, which gives the claim.

B OPTIMIZATION CHARACTERIZATION OF REPRESENTATIONAL COST

Here we establish the optimization equivalents of the representational costs R(f) and R1(f) given
in (9) and (13).

As an intermediate step, we first give equivalent expressions for R(f) and R1(f) in terms of se-
quences finite-width two-layer ReLU networks converging pointwise to f . For this we need to
introduce some additional notation and definitions.

We letA(Sd−1×R) denote the space of all measures given by a finite linear combination of Diracs,
i.e., all α ∈M(Sd−1×R) of the form α =

∑k
i=1 aiδ(wi,bi) for some ai ∈ R, (wi, bi) ∈ Sd−1×R,

i = 1, ..., k, where δ(w,b) denotes a Dirac delta at location (w, b) ∈ Sd−1 × R. We call any
α ∈ A(Sd−1 × R) a discrete measure.

Note there is a one-to-one correspondence between discrete measures and finite-width two layer
ReLU nets (up to a bias term). Namely, for any θ ∈ Θ′ defining a finite-width net gθ(x) =∑k
i=1 ai[w

>
i x − bi]+ + c, setting α =

∑k
i=1 aiδ(wi,bi) we have f = hα,c′ with c′ = gθ(0).

We write θ ∈ Θ′ ↔ α ∈ A(Sd−1 × R) to indicate this correspondence. Furthermore, in this case
C(θ) =

∑k
i=1 |ai| = ‖α‖1.

We also recall some facts related to the convergence of sequences of measures. Let Cb(Sd−1 × R)
denote the set of all continuous and bounded functions on Sd−1 × R. A sequence of measures
{αn}, with αn ∈ M(Sd−1 × R) is said to converge narrowly to a measure α ∈ M(Sd−1 × R) if∫
ϕdαn →

∫
ϕdα for all ϕ ∈ Cb(Sd−1 ×R). Also, a sequence {αn} is called tight if for all ε > 0

there exists a compact set Kε ⊂ Sd−1×R such that |αn|(Kc
ε) ≤ ε for all n sufficiently large. Every

narrowly convergent sequence of measures is tight (Malliavin, 2012, Theorem 6.8). Conversely, any
sequence {αn} that is tight and uniformly bounded in total variation norm has a narrowly convergent
subsequence; this is due to a version of Prokhorov’s Theorem for signed measures (Bogachev, 2007,
Theorem 8.6.2).

Now we establish the following equivalent expressions for the representational costsR(·) andR1(·).

Lemma 4. For any f : Rd → R let f0 denote the function f0(x) = f(x) − f(0). For R(f) as
defined in (7) and R1(f) as defined in (12), we have

R(f) = inf

{
lim sup
n→∞

‖αn‖1 : αn ∈ A(Sd−1 × R), hαn → f0 pointwise, {αn} tight
}
. (54)

and

R1(f) = inf

{
lim sup
n→∞

‖αn‖1 : αn ∈ A(Sd−1 × R),vn ∈ Rd, hαn,vn,0 → f0 pointwise, {αn} tight
}
.

(55)

Proof. We prove the identity in (54) for R(f); the identity in (55) for R1(f) follows by the same
argument. Define

Rε(f) := inf
θ∈Θ′

C(θ) s.t. |gθ(x)− f(x)| ≤ ε ∀ ‖x‖ ≤ 1/ε and gθ(0) = f(0) (56)

so that R(f) = limε→0Rε(f). Also, let L(f) denote the right-hand side of (54).

First, suppose R(f) is finite. Let εn = 1/n. Then by definition of R(f), for all n there exists
θn ∈ Θ′ such that C(θn) ≤ Rεn(f) + εn, while |gθn(x) − f(x)| ≤ εn for ‖x‖ ≤ 1/εn and
gθn(0) = f(0). Note that θn ∈ Θ′ ↔ αn ∈ M(Sd−1 × R) with gθn = hαn,c where c = gθn(0) =
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f(0) and ‖αn‖1 = C(θn). Hence, hαn
(x) = gθn(x) − f(0), and we have |hαn

(x) − f0(x)| =
|gθn(x)− f(x)| ≤ εn for ‖x‖ ≤ 1/εn. Therefore, hαn

→ f0 pointwise, while

lim sup
n→∞

‖αn‖1 ≤ lim sup
n→∞

(Rεn(f) + εn) = R(f), (57)

which shows L(f) ≤ R(f). Finally, it suffices to show {αn} has a tight subsequence, since we
can reproduce the steps above with respect to the subsequence. Towards this end, define qn(x) =∫
|w>x− b|d|αn|(w, b), which is well-defined since αn is discrete and has compact support. Then

qn is Lipschitz with ‖qn‖L ≤ ‖αn‖1 ≤ B for some finite B, hence the sequence {qn} is uniformly
Lipschitz. By the Arzela-Ascoli Theorem, {qn} has a subsequence {qnk

} that converges uniformly
on compact subsets. In particular, qnk

(0) =
∫
|b|d|αnk

|(w, b) ≤ L <∞ for some L, which implies
the sequence {αnk

} is tight.

Conversely, supposeL(f) is finite. Fix any ε > 0. Then by definition ofL(f) there exists a sequence
αn ∈M(Sd−1 ×R)↔ θn ∈ Θ′ such that limn→∞ ‖αn‖1 exists with limn→∞ ‖αn‖1 < L(f) + ε,
while fn := hαn,c = gθn with c = f(0) converges to f pointwise and satisfies fn(0) = f(0)
for all n. Since, limn→∞ ‖αn‖1 < L(f) + ε, there exists an N1 such that for all n ≥ N1 we
have ‖αn‖1 ≤ L(f) + ε. By Proposition 8, the Lipschitz constant of fn is bounded above by
‖αn‖1 for all n, hence the sequence fn is uniformly Lipschitz. This implies fn → f uniformly on
compact subsets, and so there exists an N2 such that ‖fn(x) − f(x)‖ ≤ ε for all ‖x‖ ≤ 1/ε and
fn(0) = f(0) for all n ≥ N2. For all n ≥ N2, fn satisfies the constraints in the definition of Rε(·).
Therefore, for all n ≥ max{N1, N2} we have

Rε(f) ≤ C(θn) = ‖αn‖1 ≤ L(f) + ε. (58)

Taking the limit as ε → 0, we get R(f) ≤ L(f). Therefore, we have shown R(f) is finite if and
only if L(f) is finite, in which case R(f) = L(f), giving the claim.

The following lemma shows every infinite-width net is the pointwise limit of a sequence of finite-
width nets defined in terms of sequence of measures uniformly bounded in total variation norm.
Lemma 5. Let f = hα,v,c for any α ∈ M(Sd−1 × R),v ∈ Rd, and c ∈ R. Then there exists a
sequence of discrete measures αn ∈ A(Sd−1 × R) with ‖αn‖1 ≤ ‖α‖1 such that fn = hαn,v,c

converges to f pointwise.

Proof. For any α ∈ M(Sd−1 × R) there exists a sequence of discrete measures αn converging
narrowly to α such that ‖αn‖1 ≤ ‖α‖1 (Malliavin, 2012, Chapter 2, Theorem 6.9). Let fn =
hαn,v,c. Since the function (w, b) 7→ [w>x − b]+ − [−b]+ is continuous and bounded, we have
fn(x)→ f(x) for all x ∈ Rd, i.e., fn → f pointwise.

Lemma 6. We have the equivalences
R(f) = min

α∈M(Sd−1×R),c∈R
‖α‖1 s.t. f = hα,c, (59)

and
R1(f) = min

α∈M(Sd−1×R),v∈Rd,c∈R
‖α‖1 s.t. f = hα,v,c. (60)

Proof. We prove the R(f) case; the R1(f) case follows by the same argument. Throughout the
proof we use the equivalence of R(f) given in Lemma 4, and letM(f) denote the right-hand side
of (59).

Assume R(f) is finite. Then there exists a tight sequence {αn}, αn ∈ A(Sd−1 × R) , that is uni-
formly bounded in total variation norm such that hαn

→ f0 pointwise. Therefore, by Prokhokov’s
Theorem, {αn} has a subsequence {αnk

} converging narrowly to a measure α, hence f0 = hα.
Furthermore, narrow convergence implies ‖α‖1 ≤ lim supk→∞ ‖αnk

‖1 ≤ lim supn→∞ ‖αn‖1,
and soM(f) ≤ lim supn→∞ ‖αn‖1. Taking the infimum over all such sequences {αn}, we have
M(f) ≤ R(f).

Conversely, assume M(f) is finite. Let α ∈ M(Sd−1 × R) be any measure such that f0 = hα.
By Lemma 5 there exists a sequence {αn}, αn ∈ A(Sd−1 × R), such that hαn → f0 pointwise,
while ‖αn‖1 ≤ ‖α‖1. Hence, R(f) ≤ lim supn→∞ ‖αn‖1 ≤ ‖α‖1. Since this holds for any α with
f0 = hα, we see that R(f) ≤M(f), proving the claim.
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Now we show that if f is an infinite-width net, R1(f) is equal to the minimal total variation norm of
all even measures defining f (in fact, later we show for every infinite-width net is defined in terms
of a unique even measure, whose total variation norm is equal to R1(f); see Lemma 10).

Lemma 7. We have

R1(f) = min
α+∈M(Pd),v∈Rd,c∈R

‖α+‖1 s.t. f = hα+,v,c. (61)

where the minimization is over all even α+ ∈M(Pd).

Proof. Suppose f = hα,v,c for some α ∈ M(Sd−1 × R),v ∈ Rd, c ∈ R. If α has even and odd
decomposition α = α+ + α− then f = hα+,0,0 + hα−,v,c = hα+,v′,c for some v′ ∈ Rd. Also, by
Proposition 7, we have ‖α+‖1 ≤ ‖α+ + α−‖1 = ‖α‖1 for any α− odd. Hence, the optimization
problem describing R1(f) in (60) reduces to (61).

C EXTENSION OF R-NORM TO LIPSCHITZ FUNCTIONS AND PROOF OF THEOREM 1

To simplify notation we let S(Pd) denote the space of even Schwartz functions on Sd−1×R, i.e., ψ ∈
S(Pd) if ψ ∈ S(Sd−1 × R) with ψ(w, b) = ψ(−w,−b) for all (w, b) ∈ Sd−1 × R.

We will need a finer characterization of the image of Schwartz functions under the dual Radon
transform than what is given in Lemma 9, which is also due to Solmon (1987):

Lemma 8 (Solmon (1987), Theorem 7.7). Let ψ ∈ S(Pd) and define ϕ = γd(−∆)(d−1)/2R∗{ψ}.
Then ϕ ∈ C∞(Rd) with ϕ(x) = O(‖x‖−d) and ∆ϕ(x) = O(‖x‖−d−2) as ‖x‖ → ∞. Moreover,
R{ϕ} = ψ.

Using the above result we show the functional ‖f‖R given in Definition 1 is well-defined:

Proposition 9. For any f ∈ Lip(Rd), the map Lf (ψ) := −γd〈f, (−∆)(d+1)/2R∗{ψ}〉 is finite for
all ψ ∈ S(Pd), hence ‖f‖R = sup

{
Lf (ψ) : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1

}
is a well-defined functional

taking on values in [0,+∞].

Proof. Since f is globally Lipschitz we have |f(x)| = O(‖x‖), while for any ψ ∈ S(Pd) we
have |(−∆)(d+1)/2R∗{ψ}| = O(‖x‖−d−2) by Lemma 8, hence |f(x)(−∆)(d+1)/2R∗{ψ}(x)| =
O(‖x‖−d−1) is absolutely integrable, and so 〈f, (−∆)(d+1)/2R∗{ψ}〉 is finite. If
〈f, (−∆)(d+1)/2R∗{ψ}〉 6= 0, we can choose the sign of ψ so that the inner product is positive,
which shows that ‖f‖R ≥ 0.

In Section 4 we showed ∆hα = R∗{α} when α was a measure with a smooth density having rapid
decay. The next key lemma shows this equality still holds in the sense of distributions when α is any
measure in M(Pd).

Lemma 9. Let f = hα,v,c for any α ∈ M(Pd),v ∈ Rd, c ∈ R. Then we have 〈f,∆ϕ〉 =
〈α,R{ϕ}〉 for all ϕ ∈ C∞(Rd) such that ϕ(x) = O(‖x‖−d) and ∆ϕ(x) = O(‖x‖−d−2) as
‖x‖ → ∞.

Proof. Consider the ridge function rw,b(x) := 1
2 |w

>x−b|, which is generated by the even measure
α0(w′, b′) = 1

2 (δ(w′−w, b′−b)+δ(w′+w, b′+b)). An easy calculation shows that ∆rw,b(x) =

δ(w>x− b) in the sense of distributions, i.e., for all test functions ϕ ∈ S(Rd) we have∫
rw,b(x)∆ϕ(x) dx =

∫
w>x=b

ϕ(x) ds(x) = R{ϕ}(w, b). (62)

Since R{ϕ}(w, b) is well-defined for all ϕ ∈ C∞(Rd) with decay like O(‖x‖−d), by continuity
∆rw,b(x) extends uniquely to a distribution acting on this larger space of test functions.
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Now consider the more general case of f = hα with α ∈ M(Pd). Then for all ϕ ∈ C∞(Rd) with
ϕ(x) = O(‖x‖−d) and ∆ϕ(x) = O(‖x‖−d−2) as ‖x‖ → ∞ we have∫

Rd

f(x)∆ϕ(x) dx =

∫
Rd

(∫
Sd−1×R

1

2
(|w>x− b| − |b|) dα(w, b)

)
∆ϕ(x) dx (63)

=

∫
Sd−1×R

(∫
Rd

1

2
(|w>x− b| − |b|)∆ϕ(x) dx

)
dα(w, b) (64)

=

∫
Sd−1×R

(∫
Rd

rw,b(x)∆ϕ(x) dx

)
dα(w, b) (65)

=

∫
Sd−1×R

R{ϕ}(w, b) dα(w, b) (66)

where in (64) we applied Fubini’s theorem to exchange the order of integration, whose application
is justified since

h+(x) :=
1

2

∫
Sd−1×R

(|w>x− b| − |b|) d|α|(w, b) ≤ ‖α‖1‖x‖ (67)

and by assumption ∆ϕ(x) = O(‖x‖−d−2), hence h+(x)|∆ϕ(x)| = O(‖x‖)−d−1, and so∫
h+(x)|∆ϕ(x)| dx <∞.

Finally, if f = hα,v,c for any α ∈ M(Pd), v ∈ Rd, c ∈ R, since affine functions vanish under
the Laplacian we have 〈f,∆ϕ〉 = 〈hα,∆ϕ〉, reducing this to the previous case, which gives the
claim.

The following lemma shows ‖f‖R is finite if and only if f is an infinite-width net, in which case
‖f‖R is given by the total variation norm of the unique even measure defining f .

Lemma 10. Let f ∈ Lip(Rd). Then ‖f‖R is finite if and only if there exists a unique even measure
α ∈M(Pd) and unique v ∈ Rd, c ∈ R with f = hα,v,c, in which case ‖f‖R = ‖α‖1.

Proof. Suppose ‖f‖R is finite. Then by definition f belongs to Lip(Rd) and the linear functional
Lf (ψ) = −γd〈f, (−∆)(d−1)/2R∗{ψ}〉 is continuous on S(Pd) with norm ‖f‖R. Since S(Pd) is a
dense subspace of C0(Pd), by continuity there exists a unique extension L̃f to all of C0(Pd) with
the same norm. Hence, by the Riesz representation theorem, there is a unique measure α ∈ M(Pd)
such that L̃f (ψ) =

∫
ψ dα for all ψ ∈ C0(Pd) and ‖f‖R = ‖α‖1.

We now show f = hα,v,c for some v ∈ Rd, c ∈ R. First, we prove ∆f = ∆hα as tempered
distributions (i.e., as linear functionals on the space of Schwartz functions S(Rd)). By Lemma 9 we
have 〈∆hα, ϕ〉 = 〈α,R{ϕ}〉 for any ϕ ∈ S(Rd), hence

〈∆hα, ϕ〉 = 〈α,R{ϕ}〉 (68)

= L̃f (R{ϕ}) (69)
= Lf (R{ϕ}) (70)

= γd〈f, (−∆)(d+1)/2R∗{R{ϕ}}〉 (71)

= −γd〈f,∆(−∆)(d−1)/2R∗{R{ϕ}}〉 (72)
= 〈f,∆ϕ〉 (73)
= 〈∆f, ϕ〉 (74)

where in (70) we used the fact that R{ϕ} ∈ S(Pd) for all ϕ ∈ S(Rd) (Helga-
son, 1999, Theorem 2.4), and in (73) we used the inversion formula for Radon transform:
−γd(−∆)(d−1)/2R∗{R{ϕ}} = ϕ for all ϕ ∈ S(Rd) (Helgason, 1999, Theorem 3.1).

Hence, we have shown ∆f = ∆hα as tempered distributions. This means f −hα is in null space of
the Laplacian acting on tempered distributions, which implies f−hα = pwhere p is some harmonic
polynomial (i.e., p is a polynomial in x = (x1, ..., xd) such that ∆p(x) = 0 for all x ∈ Rd). Finally,
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since both f and hα are Lipschitz they have at most linear growth at infinity, so must p. This implies
p must be an affine function p(x) = v>x+ c, which shows f = hα,v,c as claimed.

Conversely, suppose f = hα,v,c for some α ∈ M(Pd),v ∈ Rd, c ∈ R. Let ψ ∈ S(Pd). By
Lemma 8, the function ϕ = −γd(−∆)(d−1)/2R∗{ψ} is in C∞(Rd) with ϕ(x) = O(‖x‖−d),
∆ϕ(x) = O(‖x‖−d−2) as ‖x‖ → ∞, and ψ = R{ϕ}. Hence, by Lemma 9 we have

Lf (ψ) = 〈f,∆ϕ〉 = 〈α,R{ϕ}〉 = 〈α,ψ〉. (75)

This shows

‖f‖R = sup{〈α,ψ〉 : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1} (76)

= sup{〈α,ψ〉 : ψ ∈ C0(Pd), ‖ψ‖∞ ≤ 1} (77)
= ‖α‖1 (78)

where the second to last equality holds since S(Rd) is a dense subspace of C0(Rd), and the last
equality is by the dual characterization of the total variation norm.

Finally, to show uniqueness, suppose hα,v,c = hβ,v′,c′ for some other even β ∈ M(Pd), v′ ∈ Rd,
c′ ∈ R. Then the function hα,v,c − hβ,v′,c′ = hα−β,v−v′,c−c′ is identically zero, hence by the
argument above ‖hα−β,v−v′,c−c′‖R = ‖α − β‖1 = 0, which implies α = β. Therefore, hα,v,c =
hα,v′,c′ , which also implies v′ = v and c = c′.

Note that Lemma 1 is essentially a corollary of the uniqueness in the preceding result; we give the
proof here for completeness.

Proof of Lemma 1. Suppose R1(f) is finite. Then by the optimization characterization in Lemma
7, we have f = hα,v,c for some even α ∈ M(Pd), v ∈ Rd, c ∈ Rd, and R1(f) is the minimum
of ‖α+‖1 over all even measures α+ ∈ M(Pd) and v′ ∈ Rd, c′ ∈ R such that f = hα+,v′,c′ . By
Lemma 10, there is a unique even measure α+ ∈M(Pd), v ∈ Rd, and c ∈ R such that f = hα+,v,c.
Hence, R1(f) = ‖α+‖1.

Now we give the proof of our main theorem, which shows ‖f‖R = R1(f).

Proof of Theorem 1. Suppose R1(f) is finite. By Lemma 1, R1(f) = ‖α‖1 where α ∈ M(Pd) is
the unique even measure such that f = hα,v,c for some v ∈ Rd, c ∈ R. Furthermore, ‖f‖R = ‖α‖1
by Lemma 10. Hence, R1(f) = ‖f‖R. Conversely, if ‖f‖R is finite, then by Lemma 10 we have
f = hα,v,c for a unique even measure α ∈ M(Pd), and again by Lemma 1, ‖f‖R = ‖α‖1 =

R1(f).

Proof of Proposition 1. The Radon transform is a bounded linear operator from L1(Rd) to
L1(Sd−1 × R) (see, e.g., Boman & Lindskog (2009)). Hence, if ∆(d+1)/2f ∈ L1(Rd) then
R{∆(d+1)/2f} ∈ L1(Rd). Let α ∈ M(Pd) be the even measure on Sd−1 × R with density
γdR{∆(d+1)/2f}. Then ‖α‖1 = γd‖R{∆(d+1)/2f}‖1, i.e., the total variation norm of α coincides
with the L1-norm of its density. Therefore, by definition of ‖f‖R we have

‖f‖R = sup{γd〈f,∆(d+1)/2R∗{ψ}〉 : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1} (79)

= sup{〈γdR{∆(d+1)/2f}, ψ〉 : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1} (80)

= sup{〈α,ψ〉 : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1} (81)

= ‖α‖1 = γd‖R{∆(d+1)/2f}‖1. (82)

where we used the fact that the Schwartz class S(Pd) is dense in C0(Pd) and the dual definition of
the total variation norm (39). If additionally f ∈ L1(Rd), we have R{∆(d+1)/2f} = ∂d+1

b R{f}
by the Fourier slice theorem, which gives ‖f‖R = γd‖∂d+1

b R{f}‖1.
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D PROOF OF THEOREM 2

We show how our results change without the addition of the unregularized linear unit v>x in (3).
Specifically, we want to characterize R(f) given in (7) (or equivalently its optimization formulation
(9)). Unlike in the univariate setting, R(f) does not have a simple closed form expression in higher
dimensions. However, for any f ∈ Lip(Rd) we prove the bounds

max{‖f‖R , 2‖∇f(∞)‖} ≤ R(f) ≤ ‖f‖R + 2‖∇f(∞)‖ (83)

where the vector ∇f(∞) ∈ Rd can be thought of as the gradient of the function f “at infinity”; see
below for a formal definition. In particular, if f(x) vanishes at infinity then ∇f(∞) = 0 and we
have R(f) = ‖f‖R = R1(f).

For any f ∈ Lip(Rd), define ∇f(∞) ∈ Rd by14

∇f(∞) := lim
r→∞

1

cdrd−1

∮
‖x‖=r

∇f(x) ds(x), (84)

where cd =
∫
Sd−1 dw. We will relate ∇f(∞) to the “linear part” of an infinite-width net. Towards

this end, define V : M(Sd−1 × R)→ Rd to be the linear operator given by

V(α) =
1

2

∫
Sd−1×R

w dα(w, b). (85)

Note that if α = α+ + α− where α+ is even and α− is odd, then V(α) = V(α−) since∫
Sd−1×Rw dα+(w, b) = 0. In particular, if we set v0 = V(α−), then hα−(x) = v>0 x.

Lemma 11. Suppose f = hα,c for any α ∈M(Sd−1 × R), c ∈ R. Then, ∇f(∞) = V(α).

Proof. A simple calculation shows the weak gradient of f = hα,c is given by

∇f(x) =

∫
Sd−1×R

H(w>x− b)w dα(w, b) (86)

where H is defined as H(t) = 1 if t ≥ 0 and H(t) = 0 if t < 0 otherwise. Therefore, we have

lim
r→∞

1

rd−1

∮
‖x‖=r

∇f(x) ds(x) = lim
r→∞

∫
Sd−1×R

∫
Sd−1

H(rw>w′ − b)w dw′dα(w, b) (87)

= lim
r→∞

∫
Sd−1×R

w

(∫
w>w′≥b/r

dw′

)
dα(w, b) (88)

=

(
1

2

∫
Sd−1

dw′
)∫

Sd−1×R
w dα(w, b) (89)

Finally, dividing both sides by cd =
∫
Sd−1 dw gives the result.

Lemma 12. If f(x) = v>0 x+ c then R(f) = 2‖v0‖.

Proof. Note that f = hα,c only if α is odd and V(α) = v0. Hence, we have

R(f) = min
α odd
‖α‖1 s.t. V(α) = v0 (90)

The adjoint V∗ : Rd → Cb(Sd−1×R) is given by [V∗y](w, b) = 1
2w
>y. Therefore, the dual of the

convex program above is given by

max
y∈Rd

‖V∗y‖∞≤1

v>0 y = max
‖y‖≤2

v>0 y = 2‖v0‖ (91)

14Note every Lipschitz function has a weak gradient∇f ∈ L∞(Rd), so∇f(∞) is well-defined.
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where we used the fact that ‖V∗y‖∞ = maxw∈Sd−1
1
2‖w

>y‖ ≤ 1 holds if and only if ‖y‖ ≤ 2.
This means 2‖v0‖ is a lower bound for R(f). Since this bound is reached with the primal feasible
choice α defined by

α(w, b) = ‖v0‖
(
δ

(
w − v0

‖v0‖
, b

)
− δ

(
w +

v0

‖v0‖
, b

))
(92)

we have R(f) = 2‖v0‖ as claimed.

Now we give the proof of Theorem 2.

Proof of Theorem 2. Suppose ‖f‖R is finite. Set v0 = ∇f(∞). Then by Lemma 10, there is a
unique even measure α+ such that f = hα+,v0,c for some unique v0 ∈ Rd, c ∈ R, with ‖f‖R =

‖α+‖1. Therefore, R(f) is equivalent to the optimization problem

R(f) = min
α−odd

‖α+ + α−‖1 s.t. V(α−) = v0 (93)

Since ‖α+ + α−‖1 ≤ ‖α+‖1 + ‖α−‖1, by Lemma 12 we see that R(f) ≤ ‖α+‖1 + 2‖v0‖. Now
we show the lower bound. The above optimization problem is equivalent to

R(f) = min
α
‖α‖1 s.t. V(α) = v0, E(α) = α+ (94)

where E(α) projects onto the even part of α. The Banach space adjoint E∗ : C0(Sd−1 × R) →
C0(Sd−1 × R) is also projection onto the even part, i.e., [E∗ϕ](w, b) = 1

2 (ϕ(w, b) + ϕ(−w,−b)).
Therefore, the dual problem is given by

sup
ϕ∈C0(Sd−1×R),y∈Rd

‖V∗y+E∗ϕ‖∞≤1

v>0 y +

∫
Sd−1×R

ϕ(w, b)dα+(w, b) (95)

We can constrain ϕ to be even without changing the maximum since α+ is even. Thus the dual
feasible set reduces to pairs (ϕ,y) with ϕ ∈ C0(Sd−1×R) even and y ∈ Rd are such that |ϕ(w, b)+
1
2w
>y| ≤ 1 for all (w, b) ∈ Sd−1 × R. Taking the supremum over all dual feasible pairs (ϕ,0)

such that ‖ϕ‖∞ ≤ 1, we see R(f) ≥ ‖α+‖1 = ‖f‖R. Likewise, if we choose the dual feasible
pair (ϕ,y) = (0, 2v0/‖v0‖) then the dual objective is 2‖v0‖, hence R(f) ≥ 2‖v0‖. This gives
R(f) ≥ max{‖f‖R , 2‖v0‖}, as desired.

Finally, we show there are examples where the upper bound in Theorem 2 is attained.
Proposition 10. There exist infinite nets f : Rd → R in all dimensions d such that

R(f) = ‖f‖R + 2‖∇f(∞)‖. (96)

Proof. Let w+,w− ∈ Sd−1 be orthogonal. Consider f = hα defined by α = α+ + α− with

α+ = δ(w −w+, b) + δ(w +w+, b) (97)

α− = δ(w −w−, b)− δ(w +w−, b) (98)

Hence, f(x) = |w>+x| + w>−x (e.g., in 2-D one such function is f(x, y) = x + |y|). The dual
problem for R(f) in this instance is given by:

sup
ϕ∈C0(Sd−1×R),y∈Rd

‖W∗y+E∗ϕ‖∞≤1

w>−y +

∫
Sd−1×R

ϕ(w, b)dα+(w, b) (99)

Set y∗ = 2w+
−, and let ϕ∗ be a continuous approximation to sign(α+) whose support is localized

to an arbitrarily small neighborhood of ±(w+, 0). Then the pair (ϕ∗,y∗) is dual feasible since

ψ(w, b) := [V∗y∗](w, b)+E∗ϕ∗(w, b) = w>w−+ϕ∗(w, b) =

{
1 if w = ±w+ and b = 0

w>w− else

and so |ψ(w, b)| ≤ 1. For these choices of (β∗,y∗) the dual objective is 2‖w−‖+‖f‖R, which gives
a lower bound on R(f). But this is also an upper bound on R(f) hence R(f) = ‖f‖R + 2‖w−‖.
Since∇f(∞) = w−, the result follows.
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E PROPERTIES OF THE R-NORM

Here we prove the properties ofR-norm discuseed in Section 4.1, including Proposition 2.
Proposition 11. TheR-norm has the following properties:

• (1-homogeneity and triangle inequality) If ‖f‖R , ‖g‖R < ∞, then ‖c · f‖R = |c| ‖f‖R
for all c ∈ R and ‖f + g‖R ≤ ‖f‖R + ‖g‖R, i.e., ‖·‖R is a semi-norm.

• (Annihilation of affine functions) ‖f‖R = 0 if and only if f is affine, i.e., f(x) = v>x+ c
for some v ∈ Rd, c ∈ R.

• (Translation and rotation invariance) If g(x) = f(Ux+y) where y ∈ Rd andU ∈ Rd×d
is any orthogonal matrix, then ‖g‖R = ‖f‖R.

• (Scaling with dilations/contractions) Suppose ‖f‖R < ∞. Let fε(x) := f(x/ε), then
‖fε‖R = ε−1‖f‖R.

Proof. The 1-homogenity and triangle inequality properties follow immediate from the linearity of
all operations and the definition by way of a set supremum.

Clearly ‖f‖R = 0 if f is affine. Conversely, suppose ‖f‖R = 0 then by the uniqueness in Lemma
10, we have α = 0, and so f = h0,v,c for some v ∈ Rd and c ∈ R, hence f is affine.

For simplicity we demonstrate proofs of the remaining properties under the same condi-
tions of Proposition 1, i.e., d odd, and where f , ∆(d+1)/2f ∈ L1(Rd) so that ‖f‖R =

γd‖R{∆(d+1)/2f}‖1 = γd‖∂d+1
b R{f}‖1 < ∞. The general case follows from standard duality

arguments.

To show translation invariance, define f(y)(x) := f(x− y). Then since ∆ commutes with transla-
tions we have ∆(d+1)/2f(y) = [∆(d+1)/2f ](y). Also, for any function g we see that

R{g(y)}(w, b) = R{g}(w, b+w>y), (100)

Therefore, ∥∥f(y)

∥∥
R =

∫
Sd−1×R

|R{∆(d+1)/2f(y)}(w, b)| dw db (101)

=

∫
Sd−1×R

|R{∆(d+1)/2f}(w, b+w>y)| dw db (102)

=

∫
Sd−1×R

|R{∆(d+1)/2f}(w, b)| dw db = ‖f‖R . (103)

To show rotation invariance, let fU (x) = f(Ux) where U is any orthogonal d × d matrix.
Then, using the fact that the Laplacian commutes with rotations, we have ∆(d+1)/2fU (x) =
∆(d+1)/2f(Ux), and since R{gU}(w, b) = R{g}(Uw, b), we see that R{∆(d+1)/2fU}(w, b) =
R{∆(d+1)/2f}(Uw, b), and so

‖fU‖R = ‖f‖R . (104)

To show the scaling under contractions/dilations (i.e., Proposition 2), let fε(x) = f(x/ε) for ε > 0.
Then

R{fε}(w, b) =

∫
w>x=b

f(x/ε)ds(x) (105)

= εd−1

∫
w>x̃=b/ε

f(x̃)ds(x̃) (106)

= εd−1R{f}(w, b/ε). (107)

Hence, we have

|∂d+1
b R{fε}(w, b)| = εd−1ε−d−1|∂d+1

b R{f}(w, b/ε)| (108)

= ε−2|∂d+1
b R{f}(w, b/ε)| (109)
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and so ∫
Sd−1×R

|∂d+1
b R{fε}(w, b)| dw db = ε−2

∫
Sd−1×R

|∂d+1
b R{f}(w, b/ε)| dw db (110)

= ε−1

∫
Sd−1×R

|∂d+1
b R{f}(w, b̃)| dw db̃ (111)

= ε−1 ‖f‖R . (112)

Fourier estimates For any Lipschitz function f we can always interpret ∆f in a distributional
sense. An interesting special case is when ∆f is a distribution of order zero, i.e., when there exists
a constant C such that |〈∆f, ϕ〉| ≤ C‖ϕ‖∞ for all smooth compactly supported functions ϕ so that
∆f extends uniquely to a measure having finite total variation. In this case, the Fourier transform
of ∆f , defined as ∆̂f(ξ) := 〈∆f, e−j2πx>ξ〉 for all ξ ∈ Rd, is a continuous and bounded function,
and we can make use of an extension of the Fourier slice theorem to Radon transforms of measures
(see, e.g., Boman & Lindskog (2009)) to analyze properties of ‖f‖R. In particular, the following
result shows that in order for ‖f‖R to be finite, the Fourier transform of ∆f (or the Fourier transform
of f if it exists classically) must decay at a dimensionally dependent rate.

Proposition 12. Suppose ∆f is a distribution of order zero. Then ‖f‖R is finite only if ∆̂f(σ ·w) =

O(|σ|−(d−1)) as |σ| → ∞ for allw ∈ Sd−1. If additionally f ∈ L1(Rd), then ‖f‖R is finite only if
f̂(σ ·w) = O(|σ|−(d+1)) as |σ| → ∞ for all w ∈ Sd−1.

Proof. If ∆f ∈ M(Rd) is a finite measure then its Radon transform R{∆f} ∈ M(Pd) exists as a
finite measure, i.e., we can define R{∆f} via duality as 〈R{∆f}, ϕ〉 = 〈∆f,R∗{ϕ}〉 for all ϕ ∈
C0(Rd) (see, e.g., Boman & Lindskog (2009)). Additionally, the restriction R{∆f}(w, ·) ∈ M(R)
is well-defined finite measure for all w ∈ Sd−1, and its 1-D Fourier transform in the b variable is
given by

FbR{∆f}(w, σ) = ∆̂f(σ ·w) for all w ∈ Sd−1, σ ∈ R. (113)

By Lemma 10, ‖f‖R is finite if and only if the functional Lf (ψ) = −γd〈f, (−∆)(d+1)/2R∗{ψ}〉
defined for all ψ ∈ S(Pd) extends to a unique measure α ∈ M(Pd). We compute the Fourier
transform of α in the b variable via duality: for all ϕ ∈ S(Pd) we have

〈Fbα,ϕ〉 = 〈α,Fbϕ〉 (114)

= −γd〈f, (−∆)(d+1)/2R∗{Fbϕ}〉 (115)

= γd〈∆f, (−∆)(d−1)/2R∗{Fbϕ}〉 (116)

= γd〈∆f,R∗{(−∂2
b )(d−1)/2Fbϕ}〉 (117)

= γd〈∆f,R∗{Fb(|σ|d−1ϕ)}〉 (118)

= γd〈R{∆f},Fb(|σ|d−1ϕ)〉 (119)

= γd〈FbR{∆f}, |σ|d−1ϕ〉 (120)

= γd〈|σ|d−1FbR{∆f}, ϕ〉 (121)

This shows Fbα = γd|σ|d−1FbR{∆f} in the sense of distributions. Since FbR{∆f} is defined
pointwise for all (w, b) ∈ Sd−1 × R so is Fbα and we have

Fbα(w, σ) = γd|σ|d−1FbR{∆f}(w, σ) = γd|σ|d−1∆̂f(σ ·w). (122)

Finally, since α is a finite measure, we know ‖Fbα‖∞ ≤ ‖α‖1 = O(1), which gives the first result.
If additionally f ∈ L1(Rd) then we have ∆̂f(ξ) = ‖ξ‖2f̂(ξ), and so (Fbα)(w, b) = |σ|d+1f̂(σ ·w)
which gives the second result.
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F UPPER AND LOWER BOUNDS

Here we prove several upper and lower bounds for the R-norm. Proposition 3 is an immediate
corollary of the following upper bound:

Proposition 13. If (−∆)(d+1)/2f is a finite measure, then

‖f‖R ≤ γdcd‖(−∆)(d+1)/2f‖1, (123)

In particular, if (−∆)(d+1)/2f exists in a weak sense then ‖ · ‖1 can be interpreted as the L1-norm.

Proof. Straight from definitions we have

‖f‖R = sup
{
γd〈f, (−∆)(d+1)/2R∗{ψ}〉 : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1

}
(124)

= sup
{
γd〈(−∆)(d+1)/2f,R∗{ψ}〉 : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1

}
(125)

≤ sup
{
γd〈(−∆)(d+1)/2f, ϕ〉 : ϕ ∈ C0(Rd), ‖ϕ‖∞ ≤ cd

}
(126)

= γdcd‖(−∆)(d+1)/2f‖1 (127)

where we used the fact thatR∗{ϕ} ∈ C0(Rd) for ϕ ∈ S(Pd) (Solmon, 1987, Corollary 3.6) and we
have ‖R∗{ϕ}‖∞ ≤ cd for all ϕ ∈ S(Pd) such that ‖ϕ‖∞ ≤ 1 since

|R∗{ϕ}(x)| ≤
∫
Sd−1

|ϕ(w,w>x)| dw ≤
∫
Sd−1

dw = cd. (128)

The following result also gives a useful lower bound on theR-norm.

Proposition 14. If f ∈ Lip(Rd) then

‖f‖R ≥ sup
{
〈f,∆ϕ〉 : ϕ ∈ S(Rd), ‖R{ϕ}‖∞ ≤ 1

}
. (129)

Proof. Let SH(Pd) ⊂ S(Pd) denote the image of S(Rd) under the Radon transform. Then

‖f‖R = sup
{
γd〈f, (−∆)(d+1)/2R∗{ψ}〉 : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1

}
(130)

≥ sup
{
γd〈f, (−∆)(d+1)/2R∗{ψ}〉 : ψ ∈ SH(Pd), ‖ψ‖∞ ≤ 1

}
(131)

= sup
{
γd〈f, (−∆)(d+1)/2R∗{R{ϕ}}〉 : ϕ ∈ S(Rd), ‖R{ϕ}‖∞ ≤ 1

}
(132)

= sup
{
〈f,∆ϕ〉 : ϕ ∈ S(Rd), ‖R{ϕ}‖∞ ≤ 1

}
(133)

where in the last step we used the inversion formula: ϕ = γd(−∆)(d−1)/2R∗{R{ϕ}} for all ϕ ∈
S(Rd).

Further simplifying the lower bound above gives the following.

Proposition 15. If f ∈ Lip(Rd) then

‖f‖R ≥ sup
{
〈f,∆ϕ〉 : ϕ ∈ S(Rd), ‖ϕ‖1 ≤ 1

}
. (134)

In particular, if ∆f exists in a weak sense then ‖f‖R ≥ ‖∆f‖∞.

Proof. If ‖ϕ‖1 =
∫
|ϕ(x)| dx ≤ 1 then clearly |R{ϕ}(w, b)| = |

∫
w>x=b

ϕ(x)ds(x)| ≤∫
w>x=b

|ϕ(x)| ds(x) ≤ 1. Hence ‖ϕ‖1 ≤ 1 implies ‖R{ϕ}‖∞ ≤ 1. Combining this with the
previous proposition gives the first bound. Additionally, by the dual definition of the L∞ norm, and
since S(Rd) is dense in L1(Rd), the second bound follows.
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G RADIAL BUMP FUNCTIONS

Proof of Proposition 4. Assume f ∈ L1(Rd) so that its Radon transform R{f} is well-
defined, and for simplicity assume d is odd. Note that for a radially symmetric function we have
R{f}(w, b) = ρ(b) for some even function ρ ∈ L1(R), i.e., the Radon transform of a radially
symmetric function does not depend on the unit direction w ∈ Sd−1. Supposing ∂(d+1)ρ(b) exists
either as a function or a measure, we have

‖f‖R = γd‖∂d+1
b R{f}‖1 = γdcd

∫
|∂d+1ρ(b)|db, (135)

where cd =
∫
Sd−1 dw = 2πd/2

Γ(d/2) .

Now we derive an expression for ρ(b) in terms of g. First, since ρ(b) = R{f}(w, b) for any
w ∈ Sd−1, we can choose w = e1 = (1, 0, ..., 0), which gives

ρ(b) = R{f}(e1, b) =

∫
x1=b

g(‖x‖)dx2 · · · dxd =

∫
Rd−1

g(
√
b2 + ‖x̃‖2)dx̃ (136)

where we have set x̃ = (x2, ..., xd). Changing to polar coordinates over Rd−1, we have

ρ(b) =

∫
Rd−1

g(
√
b2 + ‖x̃‖2)dx̃ = cd−1

∫ ∞
0

g(
√
b2 + r2)rd−2dr. (137)

By the change of variables t2 = b2 + r2, t > 0, we have

ρ(b) = cd−1

∫ ∞
b

g(t)(t2 − b2)(d−3)/2t dt. (138)

Hence, we see that

‖f‖R =
1

(d− 2)!

∥∥∥∥∂(d+1)
b

[∫ ∞
b

g(t)(t2 − b2)(d−3)/2t dt

]∥∥∥∥
1

(139)

where we used the fact that γdcdcd−1 = 1
(d−2)! .

Calculations in Example 3. Let f(x) = gd,k(‖x‖) with x ∈ Rd where

gd,k(r) =

{
(1− r2)k if 0 ≤ r < 1

0 if r ≥ 1.
(140)

for any k > 0. Then a straightforward calculation using (138) gives

ρ(b) =

{
Cd,k(1− b2)k+ d−1

2 if |b| < 1

0 if b ≥ 1.
(141)

where Cd,k = Γ((d−3)/2)·Γ(1+k)
2Γ((d+1)/2)+k) . Hence, we have ‖f‖R finite if and only if ∂db ρ(b) has bounded

variation, which is true if and only if k − d + d−1
2 ≥ 0, or equivalently, k ≥ d+1

2 . For example, if
d = 3 then we need k ≥ 2 in order for ‖f‖R to be finite, consistent with the previous example.

To illustrate scaling of ‖f‖R with dimension d, we set k = (d + 1)/2 + 2 = (d + 5)/2 so that
ρ(b) = Cd,(d+5)/2(1 − b2)d+2 for |b| ≤ 1 and ρ(b) = 0 otherwise. Then we can show that
|∂d+1ρ(b)| ≤ |∂d+1ρ(0)| for |b| ≤ 1 and ∂d+1ρ(b) = 0 for all |b| ≥ 1. Therefore,

‖f‖R =
1

(d− 2)!

∫ 1

−1

|∂d+1ρ(b)| ≤ 2

(d− 2)!
|∂d+1ρ(0)| (142)

Performing a binomial expansion of ρ(b) and taking derivatives, we obtain

2

(d− 2)!
|∂d+1ρ(0)| = 2Cd,(d+5)/2

(
d+ 2

(d+ 1)/2

)
(d+ 1)d(d− 1) = 2d(d+ 5) (143)

for all odd d ≥ 3. By the lower bound in Proposition 15, we also have ‖f‖R ≥ ‖∆f‖∞ =
|∆f(0)| = d(d+ 5). Hence ‖f‖R ∼ d2.
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H PIECEWISE LINEAR FUNCTIONS

Proof of Proposition 5

Proof. Assume f is a continuous piecewise linear function with compact support satisfying assump-
tion (a) or (b). LetB1, ..., Bn denote the boundaries between the regions. Since f is piecewise linear
and continuous, the distributional Laplacian ∆f decomposes into a linear combination of Dirac mea-
sures supported on the d− 1 dimensional boundary sets Bk, i.e., for all smooth test functions ϕ we
have

〈∆f, ϕ〉 =
n∑
k=1

ck

∫
Bk

ϕ(x) ds(x). (144)

for some non-zero coefficients ck ∈ R, where ds indicates integration with respect to the d − 1
dimensional surface measure on Bk. In particular, if Bk is the boundary separating neighboring
regions Rp and Rq , then ck = ±‖gp − gq‖ where gp and gq are the gradient vectors of f in the
region Rp and Rq , respectively, with sign determined by whether the function is locally concave (+)
or convex (-) at the boundary. Note that ∆f is a distribution of order zero, i.e., it can be identified
with a measure having finite total variation, and it has a well-defined Fourier transform given by

∆̂f(ξ) =
n∑
k=1

ck

∫
Bk

e−i2πξ
>x ds(x). (145)

We show that ∆̂f(ξ) violates the necessary decay requirements of Proposition 12 in order for f to
have finite R-norm. In particular, we show under both conditions (a) and (b) there exists a w such
that ∆̂f(σ ·w) is asymptotically constant as |σ| → ∞, which gives the claim.

For all k = 1, ..., n, let wk denote a boundary normal to the boundary Bk (i.e., a vector wk ∈ Sd−1

such that w>k x = 0 for all x ∈ Bk, which is unique up to sign).

We first prove the claim under condition (a). Suppose, without loss of generality, that the boundary
normal w1 is not parallel with all the others, i.e., w1 6= wk for all k = 2, ..., n. We will write

∆̂f(σ ·w1) = F1(σ) + F2(σ) (146)

where F1(σ) = c1
∫
B1
e−i2πσw

>
1 xds(x) and F2(σ) =

∑n
k=2 ck

∫
Bk
e−i2πσw

>
1 xds(x), and give

decay estimates for F1 and F2 separately.

First, consider F1(σ). Since w>1 x = 0 for all x ∈ B1 we have

F1(σ) =

∫
B1

e−i2πσw
>
1 xds(x) =

∫
B1

ds(x) = s(B1), (147)

where s(B1) is the (d − 1)-dimensional surface measure of B1. In particular F (σ) is a non-zero
constant for all σ ∈ R.

Now consider F2(σ). In this case, the integrand of
∫
Bk
e−i2πσw

>
1 xds(x) for all k = 2, ..., n is

not constant, since by assumption w1 not parallel with any of the boundary normals w2, ...,wn.
By an orthogonal change of coordinates, we can rewrite the surface integral over Bk as a vol-
ume integral over a set B̃k embedded in (d − 1)-dimensional space x̃ = (x̃1, ..., x̃d−1), so that∫
Bk
e−i2πσw

>
j xds(x) =

∫
B̃k
e−i2πσw̃

>
1 x̃dx̃ for some for some non-zero w̃1 ∈ Rd−1. Observe

that g(x̃) := − w̃1

i2πσ‖w̃1‖e
−i2πσw̃>1 x̃ has divergence ∇ · g(x̃) = e−i2πσw̃

>
1 x̃. Therefore, by the

divergence theorem we have∫
B̃k

e−i2πσw̃
>
1 x̃dx̃ =

∫
B̃k

∇ · g(x̃)dx̃ (148)

=

∮
∂B̃k

g(x̃)>n(x̃)ds(x̃) (149)

= − 1

i2πσ‖w̃1‖

∮
∂B̃k

e−i2πσw̃
>
1 x̃w̃>1 n(x̃)ds(x̃) (150)
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where n(x̃) is the outward unit normal to the boundary ∂B̃k. This gives the estimate∣∣∣∣∫
B̃k

e−i2πσw̃
>
1 x̃dx̃

∣∣∣∣ = O(1/σ), |σ| → ∞, (151)

which holds for any k = 2, ..., n. Therefore, F2(σ) =
∑n
k=2 ck

∫
Bk
e−i2πσw

>
i x ds(x) = O(1/σ)

as |σ| → ∞. This shows that ∆̂f(σ ·w1) → c1s(B1), i.e., ∆̂f(σ ·w1) is asymptotically constant,
which proves the claim.

Now we prove the claim under condition (b). Without loss of generality, letw1 be an inner boundary
normal that is not parallel with any outer boundary normal, and assume f is concave when restricted
to its support. Let I1 be the indices of all inner boundary normals parallel withw1 (including itself),
let I2 be the indices of all inner boundary normals that are not parallel with w1, and let O be the
indices of all outer boundary normals. Then we write

∆̂f(σ ·w1) = FI1(σ) + FI2(σ) + FO(σ) (152)

where FI1(σ) =
∑
k∈I1 ck

∫
Bk
e−i2πσw

>
1 xds(x), FI2(σ) =

∑
k∈I2 ck

∫
Bk
e−i2πσw

>
1 xds(x), and

FO(σ) =
∑
k∈O ck

∫
Bk
e−i2πσw

>
1 xds(x). By the same argument as above, we can show FI1(σ) =∑

k∈I1 cks(Bk). Since the function is concave when restricted to its support, all of the ck with
k ∈ I1 are positive, hence the sum

∑
k∈I1 cks(Bk) is non-zero, which shows FI1(σ) is a non-

zero constant for all σ ∈ R. Likewise, by the same argument as above, we can show FI1(σ) =

O(1/σ) and FO(σ) = O(1/σ). Therefore, ∆̂f(σ ·w1) is asymptotically constant, which proves the
claim.
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