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Abstract
We present and study approximate notions of dimensional and margin complexity, which corre-
spond to the minimal dimension or norm of an embedding required to approximate, rather then
exactly represent, a given hypothesis class. We show that such notions are not only sufficient for
learning using linear predictors or a kernel, but unlike the exact variants, are also necessary. Thus
they are better suited for discussing limitations of linear or kernel methods.1
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1. Introduction

A possible approach to learning is to choose some feature map ϕ(x), or equivalently some kernel
K(x, x′) := 〈ϕ(x), ϕ(x′)〉, appropriate for the problem, and then reduce the problem of learning,
to that of learning a linear predictor, or a low (Euclidean or Hilbert) norm linear predictor, with
respect to this embedding. Such an approach is often successful in practice, and is the basis of
“kernel methods”. But what are the inherent limits of such an approach? Are there easily learn-
able hypothesis classes that cannot be learnt using such an approach, or perhaps require many more
samples for learning, no matter what feature map or kernel is used? This classic question about
the limits of kernel methods has been explored by, e.g. Ben-David et al. (2002), and has lead to the
notions of dimensional and margin complexity of a hypothesis class— these correspond to the min-
imal dimension and minimal norm (respectively) of a feature space sufficient to exactly represent
all hypotheses in the class as linear predictors (see precise definitions in Section 2). Dimensional
and margin complexity have also been studied in communication complexity (See e.g., Forster and
Simon, 2006; Forster et al., 2003; Sherstov, 2008; Razborov and Sherstov, 2010). Questions about
the limits of kernel methods have resurfaced in recent years, in the context of understanding the
advantage of deep learning over kernel methods, and identifying hypothesis classes that are learn-
able by training a neural network (using an efficient and simple training procedure) but that are not
learnable, or at least not without many more samples, using any kernel or feature map (Allen-Zhu
and Li, 2019, 2020; Yehudai and Shamir, 2019).

While the standard notions of dimensional and margin complexity are sufficient for learning by
reduction to linear learning, they might not be necessary for such an approach. This is because
these notions insist on a feature map that can be used to exactly represent all hypotheses in the class,
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without any errors. But for learning, it is sufficient to only approximate the hypotheses, up to a small
error ε. Furthermore, once we allow small errors, we might want to consider randomized rather
than deterministic feature maps or kernels. This is not only a hypothetical possibility—examples of
specific randomized feature maps and kernels include Random Fourier Features (Rahimi and Recht,
2008), the Conjugate Kernel (Daniely, 2017), and the Neural Tangent Kernel at a random initialized
neural network (Jacot et al., 2018). One might ask if such randomized approximate embedding
are in fact more powerful, or whether perhaps they can always be de-randomized and made exact.
In this paper we establish (Theorem 6, combined with Theorem 11) that randomized approximate
embedding are indeed more powerful: we show that learning is possible using a randomized feature
map, even for a hypothesis class for which no exact low dimensional representation exists (i.e. with
a very high, or even infinite, dimensional complexity). In order to truly understand the power of
kernel methods and reduction to linear learning, we must therefore also allow for such randomized
feature maps and kernels, and understand their power and limitations.

In this paper we propose and study relaxed notions of dimensional and margin complexity that
(a) allow for randomized feature maps; and (b) can be shown to be not only sufficient, but also
necessary for learning by reduction to linear or kernel methods, and so yield strong lower bounds
on the power of such an approach. In discussing approximation of a hypothesis class, we must
consider the loss used, and we study both classification problems with respect to a hard (0/1) loss,
as well as classification and regression with continuous losses such as the hinge and squared loss.

In order to be able to discuss a necessary condition for “learning by reduction to linear or
kernel methods” we must precisely define what we mean by this phrase. We do so in Section 3.
We consider both distribution-dependent and distribution-independent learning. Correspondingly,
we define both distribution-dependent and distribution-independent approximate dimensional and
margin complexity (in Section 2). Our complexity definitions are justified by showing how they are
both necessary and sufficient (in a sense) for learning by reduction to kernel or linear methods. We
also show how the distribution-dependent approximate dimension complexity lower bounds linear
and kernel learning in a very broad sense, and with respect to a generic loss function. In Section 4
we further show how this complexity measure can be lower bounded, in turn, by other well studied
complexity measures, providing for a generic way of obtaining strong lower bounds on the power
of kernel methods.

Our generic lower bound approach mirrors, to a large extent, the lower bound on the sample
complexity of kernel based learning in several recent papers exploring the power of deep learning
versus kernel method (Allen-Zhu and Li, 2019, 2020; Yehudai and Shamir, 2019). We distil the ap-
proach to a crisp complexity measure, which simplifies making such lower bound claims on specific
hypothesis classes, and can also lead to stronger statements—we demonstrate this by strengthening
the lower bound and resolving an open question of Yehudai and Shamir (2019). Our lower bound
is stated in terms of the Statistical Query dimension, as defined by Blum et al. (1994), making a
concrete connection between these complexity measures (“dimensionalities”). Our treatment also
highlights a potential deficiency of this approach: although we can establish lower bounds for learn-
ing w.r.t. the squared loss, using the same technique to establish a strong lower bound on learning
w.r.t. the 0/1 loss would resolve a long-standing question in circuit complexity theory and thus seems
much more difficult.

We emphasize that when we speak of “linear learning” we refer to learning by minimizing the
loss over all linear predictors without any regularization, and when we refer to “kernel learning”
or “norm based learning” we are specifically referring to constraining or regularizing the Euclidean
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or Hilbert norm of linear predictors. Learning using regularized linear predictors with other reg-
ularizers can be much more powerful—e.g. any (finite) hypothesis class can be optimally learned
using `1 regularized learning with a feature map with dimension corresponding to the cardinality
of the hypothesis class. But this is not much different than using the hypothesis class itself, and
we cannot use the “kernel trick” in order to avoid an explicit representation and search over this
very high dimensional feature space. In this paper, we are only concerned with (low dimensional)
unregularized and `2 regularized (kernel based) learning.

Throughout the paper, we are not overly concerned with the precise dependence on the “error
parameter” ε. Although we always explicitly note the dependence on ε, we think of it as a small con-
stant, perhaps 0.01, and do not worry about factors which are polynomial in ε. In this paper, we only
refer to learning and approximating in expectation—it is possible to define and relate approximating
and learning with high probability instead, but we avoid doing so for notational simplicity.
Notations. We refer to hypothesis classes H ⊆ YX over a domain X and label space Y (both
being measurable spaces). When Y is R or {1,−1}, and |X | and |H| are finite, we associate H
with a matrix MH ∈ RH×X defined as MH(h, x) := h(x). We consider loss functions of the
form ` : R × Y → R≥0. In particular, we consider the 0/1 loss `0-1(ŷ, y) := 1 {ŷy ≤ 0}, margin
loss `mgn(ŷ, y) := 1 {ŷy ≤ 1} and hinge loss `hinge(ŷ, y) := max {0, 1− ŷy} for binary labels
Y = {1,−1}, and the squared loss `sq(ŷ, y) := 1

2(ŷ − y)2, for Y ⊆ R. A loss ` is said to be
L-Lipschitz if |`(a, y)− `(a′, y)| ≤ L|a− a′| for all a, a′ ∈ R and y ∈ Y .

We view learning algorithms as operating on sample set S = {(x1, y1), . . . , (xm, ym)} drawn
i.i.d. from distribution D over X × Y . We say that D is realizable w.r.t. a hypothesis class H, to
mean that (x, y) ∼ D is sampled as : (x ∼ D, y = h∗(xi)) for someD and h∗ ∈ H. We always use
D to denote a distribution over X ×Y and D to denote its marginal over X . The population loss of
a predictor g : X → R w.r.t. a loss ` is L`D(g) := E(x,y)∼D `(g(x), y) whereas its empirical loss is
L`S(g) := 1

|S|
∑

(x,y)∈S `(g(x), y). Similarly, L`D,h(g) := Ex∼D [`(g(x), h(x))].

2. Dimension & Margin Complexities and their Probabilistic Variants

We recall the definitions of the dimension and margin complexities of a hypothesis class and intro-
duce their probabilistic variants. Our definitions of the error-free notions are also stated in terms of
a loss function so that we can then extend them to allow errors.

2.1. Dimension Complexity

Definition 1 Fix a hypothesis class H ⊆ YX and a loss `. The dimension complexity dc`(H) is
the smallest d for which there exists an embedding ϕ : X → Rd and a map w : H → Rd such that
for all h ∈ H and x ∈ X , it holds that `(〈w(h), ϕ(x)〉 , h(x)) = 0.

For classification problems (Y = {1,−1}) our definition coincides with the standard definition of
dimensional complexity (equivalent to sign-rank(MH)) for ` = `0-1, and we will denote dc(H) :=
dc`0-1(H). For finite hypothesis classes we also have dc(H) = dc`mgn(H) = dc`hinge(H). For
regression problems (Y = R), e.g. with the `sq loss, dc`sq(H) coincides with rank(MH).

Definition 2 Fix a hypothesis classH ⊆ YX , a loss ` and a parameter ε ≥ 0.

Probabilistic Distributional Dimension Complexity. dcD,`ε (H), parameterized by a distribution
D over X , is the smallest d for which there exists a distribution P over embeddings ϕ : X →
Rd such that for all h ∈ H,

Eϕ∼P
[
infw∈Rd L`D,h(〈w,ϕ(·)〉)

]
≤ ε . (1)
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Probabilistic Dimension Complexity. dc`ε(H) is the smallest d for which there exists a distribu-
tion P over embeddings ϕ : X → Rd such that for all distributions D over X and all h ∈ H,
Equation (1) above holds.

Again, for classification Y = {1,−1} we denote dcε(H) = dc`0-1
ε (H) and dcDε (H) = dcD,`0-1

ε (H),
and at least for finite hypothesis classes these also agree with the complexities with respect to losses
`mgn and `hinge. Note that dc`ε(H) is different from simply supD dcD,`ε (H). In particular, note the
difference in order of quantifiers: dc`ε corresponds to ∃P , ∀D, ∀h, ∃w|ϕ, h, whereas supD dcD,`ε

corresponds to ∀D, ∃P , ∀h, ∃w|ϕ, h.

2.2. Margin Complexity

Margin complexity is defined in terms of embeddings ϕ : X → H, for any Hilbert space H, thereby
also allowing infinite dimensional embeddings, typically represented via a kernel Kϕ(x, x′) :=
〈ϕ(x), ϕ(x′)〉H. The sup-norm of the embedding is defined as ‖ϕ‖∞ := supx∈X ‖ϕ(x)‖H =
supx∈X

√
Kϕ(x, x). For a parameter R ∈ R≥0, let B(H;R) := {w ∈ H : ‖w‖H ≤ R} be a norm

ball of radius R in the Hilbert space.
Definition 3 Fix a hypothesis class H ⊆ YX and a loss `. The margin complexity mc`(H) is the
smallest R for which there exists an embedding ϕ : X → H and a map w : H → H with ‖ϕ‖∞ ≤ 1
and ‖w‖∞ ≤ R such that for all h ∈ H and x ∈ X , it holds that `(〈w(h), ϕ(x)〉 , h(x)) = 0.
This definition does not make sense for the `0-1 loss, since `0-1 is scale-invariant. However, in the
case of Y = {1,−1}, it coincides with the standard definition of margin complexity for the margin
loss `mgn (and hinge loss `hinge), and we denote mc(H) := mc`mgn(H). For the squared loss `sq,
the definition coincides with the γ2:`1→`∞ norm (Jameson, 1987), a.k.a. the “max norm” (Srebro
and Shraibman, 2005). Especially with a general loss function, “mc” is really a form of “norm-
complexity”, but we still refer to it as “margin complexity” and use mc since it does capture the
(inverse) margin when ` = `mgn and this term is already widely used in the literature.

Definition 4 Fix a hypothesis classH ⊆ YX , a loss ` and a parameter ε ≥ 0.

Probabilistic Distributional Margin Complexity. mcD,`ε (H), parameterized by a distribution D
over X , is the smallestR for which there exists a distribution P over embeddings ϕ : X → H
with ‖ϕ‖∞ ≤ 1 such that for all h ∈ H,

Eϕ∼P
[
infw∈B(H;R) L`D,h(〈w,ϕ(·)〉)

]
≤ ε . (2)

Probabilistic Margin Complexity. mc`ε(H) is the smallest R for which there exists a distribution
P over embeddings ϕ : X → H with ‖ϕ‖∞ ≤ 1 such that for all distributions D over X and
all h ∈ H, Equation (2) above holds.

When Y = {1,−1}, we denote mcε(H) = mc
`mgn
ε (H) and mcDε (H) = mc

D,`mgn
ε (H).

2.3. Relationship between Probabilistic Dimension & Margin Complexity

A classic result attributed to Arriaga and Vempala (1999) and Ben-David et al. (2002) shows that
dc(H) ≤ mc(H)2 · O(log |H||X |). This result is proved by an application of the lemma of Johnson
and Lindenstrauss (1984). The term ofO(log |H||X |) comes up due to a union bound over all pairs
of (x, h) ∈ X ×H. Although the result can be seen as establishing a tight connection between the
dimension and margin complexity, it is not applicable with continuous (or simply infinite) domains,
and we are not aware of any way of avoiding this dependence on the cardinality of the domain.
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As a first application of our probabilistic notions, we show how this bypasses the cardinality
dependence when allowing a randomized feature map.

Lemma 5 (Relating dc and mc) For all H ⊆ YX and parameters ε, η > 0, the following hold:
(i) dcε+η(H) ≤ mcε(H)2 · O (log(1/η)), (ii) dc`ε+η(H) ≤ mc`ε(H)2 · O (L/η)2 for any L-

Lipschitz loss `, and (iii) dc`sqε+η(H) ≤ mc
`sq
ε (H)2 ·O

(
(ε+ η)/η2

)
. Analogous statements relating

dcD,`ε+η and mcD,`ε hold as well for any distribution D over X .

The proof is similar to that of Ben-David et al. (2002) in its use of the lemma of Johnson and
Lindenstrauss (1984). We defer the proof details to Appendix A. The random feature map used here
is analogous to random features used in practice to approximate kernels (Rahimi and Recht, 2007).

2.4. Separations between Deterministic and Probabilistic Dimension Complexity

We show that the probabilistic variants dcε and dcDε can sometimes be significantly smaller than the
classic notion of dc. We show that dimension complexity can be exponentially larger than prob-
abilistic dimension complexity (with respect to `0-1). Moreover, if we focus on the distributional
version, then in fact dimension complexity can be “infinitely larger” than probabilistic distributional
dimension complexity and moreover this separation holds for different losses such as `0-1, `sq and
`hinge, as well as for margin complexity.
Theorem 6 (Exponential Distribution Independent Gap ) For X = {1,−1}n, there exists a
hypothesis class H ⊆ {1,−1}X with |H| = 2n such that, for all ε ∈ (0, 1/2), it holds that,
dcε(H) ≤ O

(
n4/ε

)
and dc(H) ≥ 2Ω(n1/4).

Theorem 7 (“Infinite” Distribution Dependent Gap) For every n, there exist hypothesis classes
H ⊆ {1,−1}X with |H| = |X | = 2n such that for all ε ∈ (0, 1/2),

sup
D

dcD,`ε (H) ≤ O
(
1/ε2

)
and dc`(H) ≥ 2Ω(n) for ` ∈ {`0-1, `sq, `hinge}

sup
D

mcD,`ε (H) ≤ O
(
1/ε2

)
and mc`(H) ≥ 2Ω(n) for ` ∈ {`mgn, `sq, `hinge}

We prove Theorem 6 as follows (full details in Appendix B.1): We define another notion of prob-
abilistic dimension complexity that has a stronger requirement of pointwise correctness and hence
is larger than dcε. This notion is equivalent to probabilistic sign-rank studied in communication
complexity. In particular, Alman and Williams (2017) showed that if the function EH : H × X →
{1,−1} defined as EH(h, x) := h(x) is computable by a “small” depth-2 threshold circuit (for
some encoding of H and X into bits), then MH has “small” probabilistic sign-rank. The theorem
follows from a lower bound on sign-rank shown by Chattopadhyay and Mande (2018) for matrices
that are computable by “small” depth-2 threshold circuits. The hypothesis class H witnessing this
separation is a class of decision lists of conjunctions over disjoint variables.

We prove Theorem 7 as follows (full details in Appendix B.2): We use the “covering lemma” of
Haussler (1995) to show that the probabilistic distributional dimension complexity of any class can
be bounded, albeit exponentially, in terms of the VC dimension, establishing the following Lemma:

Lemma 8 (dcD,`
ε and mcD,`

ε versus VC-dim) There exists universal constants c,K such that for
all hypothesis classes H ⊆ {1,−1}X , parameter ε > 0 and all losses ` ∈ {`0-1, `sq, `hinge} (in
case of dc) and ` ∈ {`mgn, `sq, `hinge} (in case of mc),

sup
D

dcD,`ε (H) , sup
D

mcD,`ε (H) ≤ c · VC-dim(H) · (K/ε)VC-dim(H) .
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This is in contrast to the exact dimensional complexity, which can be polynomially large in |H||X |
even for classes of bounded VC dimension Alon et al. (2016). Theorem 7 now follows by consider-
ing a hypothesis class with VC-dimension 2 with dimensional complexity of 2Ω(n).

The construction in Theorem 6 uses extremely large magnitude features and weights, whereas
the construction in Theorem 7 uses bounded magnitude of features and weights, but relies on having
a known marginal D over X . Our theorems therefore leave open the following questions.

Open Questions. Is there an “infinite” separation between distribution independent dcε and exact
dc? Is there a large (even finite) separation between distribution independent mcε and exact mc?
Also between distribution independent dc`ε and exact dc` for ` ∈ {`sq, `hinge}? Can the distribution
independent dcε also be bounded in terms of the VC dimension?

3. Linear & Kernel Learnability with Probabilistic Embeddings

We now turn to precisely defining learning by reduction to Linear Learning or Kernel Learning.
These notions serve as the primary motivation for our work, and their definitions guided the defini-
tions of the other complexity notions we consider.

3.1. Linear Learning Complexity

Linear learning with a feature map ϕ : X → Rd boils down to relying on a learning rule of the form
ERM`

ϕ(S) := argminw∈Rd L`S(〈w,ϕ(·)〉), where we require generalization for any minimizer of
the empirical error. We formalize the Linear Learning Complexity of a hypothesis class H as the
minimal sample complexity of any learning rule of this form.

Definition 9 Fix a hypothesis classH ⊆ YX , a loss ` and parameter ε > 0.

Distributional Linear Learning Complexity LinD,`ε (H), parameterized by a distribution D over
X , is the smallest m for which there exists a distribution P over embeddings ϕ : X → Rd
(for some d ∈ N) s.t. for all realizable distributions D over X × Y with marginal D over X ,

Eϕ∼P ES∼Dm

[
supw∈ERM`

ϕ(S) L`D(〈w,ϕ(·)〉)
]
≤ ε. (3)

Linear Learning Complexity Lin`ε(H) is the smallest m for which there exists a distribution P
over embeddings ϕ : X → Rd (for some d ∈ N) such that for all realizable distributions D
over X × Y , Equation (3) above holds.

For Y = {1,−1}, we denote Linε(H) = Lin`0-1
ε (H) and LinDε (H) = LinD,`0-1

ε (H).

To see more explicitly how low dimensional complexity is sufficient for linear learning, we also
consider a stronger definition which requires that learning can be ensured by relying on linear di-
mension based generalization guarantees. Recall that for a bounded or Lipschitz loss ` we have that
for any distribution D (c.f. Shalev-Shwartz and Ben-David, 2014),

ES∼Dm

[
supw∈Rd

(
L`D(〈w,ϕ(·)〉)− L`S(〈w,ϕ(·)〉)

)]
≤ C`dc

√
d/m (4)

for some constantC`dc that depends on either the range or Lipschitz constant of the loss. We note that
the square-root dependence in the right-hand side can be improved to a nearly linear dependence
when the empirical error is small, as it would be in our realizable setting. This would yield a better
polynomial dependence on the error parameter ε. Since we are less concerned here with the precise
polynomial dependence on the error parameter, we refer only to the simpler uniform bound (4).
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Definition 10 Fix a hypothesis classH ⊆ YX , a loss ` that is either bounded or Lipschitz over the
domain, and parameter ε > 0. The Guaranteed Linear Learning Complexity gLin`ε(H) and Dis-
tributional Guaranteed Linear Learning Complexity gLinD,`ε (H) are defined as in Definition 9,
but in terms of the smallest m satisfying Equation (5) below instead of (3),

Eϕ∼P ES∼Dm

[
infw∈Rd L`S(〈w,ϕ(·)〉)

]
+ C`dc ·

√
d/m ≤ ε, (5)

where C`dc is the loss-specific constant from Equation (4).

Theorem 11 For anyH, ε > 0 and Lipschitz or bounded loss `, it holds that, Lin`ε(H) ≤ gLin`ε(H)
and Ω(dc`ε(H)/ε2) ≤ gLin`ε(H) ≤ O(dc`ε/2(H)/ε2) and analogously for LinD,`ε , gLinD,`ε and dcD,`ε

and any distributions D over X .

The proof of Theorem 11 is presented in Appendix C. Thus, dcε(H) (and dcDε (H)) precisely cap-
tures “the sample complexity of learning H using a linear embedding by relying on a guarantee
that follows from dimension based generalization bounds”, and are therefore sufficient for linear
learning. In Section 3.3, we will return to the question of whether they are also necessary for the
weaker notion of linear learning of Definition 9, i.e. whether they also lower bound Linε and LinDε .
But before that, we introduce the analogous notions for kernel based learning.

3.2. Kernel Learning Complexity

Recall that for any D , any bounded embedding with ‖ϕ‖∞ ≤ 1, any R and any Lipschitz loss (c.f.
Shalev-Shwartz and Ben-David, 2014),

ES∼Dm

[
supw∈B(H;R)

(
L`D(〈w,ϕ(·)〉)− L`S(〈w,ϕ(·)〉)

)]
≤ C`mc ·R/

√
m, (6)

where C`mc is twice the Lipschitz constant, which motivates the norm constrained ERM, given as
ERM`

ϕ(S;R) := argminw∈B(H;R) L`S(〈w,ϕ(·)〉). We therefore define the Kernel Learning Com-
plexity and the Guaranteed Kernel Learning Complexity analogously to Definitions 9 and 10 but
relying on ERM`

ϕ(S;R). We must be a bit more careful though, when considering margin based bi-
nary classification since neither the 0/1 error nor the margin error are Lipschitz. We can still discuss
the ERM w.r.t. the margin loss, but can only use it to bound the population 0/1 loss.

Definition 12 Fix a hypothesis classH ⊆ YX , a Lipschitz loss ` and parameter ε > 0.

Distributional Kernel Learning Complexity KerD,`ε (H), parameterized by a distribution D over
X , is the smallestm for which there exists a distribution P over embeddings ϕ : X → H with
‖ϕ‖∞ ≤ 1 and R s.t. for all realizable distributions D over X ×Y with marginal D over X ,

Eϕ∼P ES∼Dm

[
supw∈ERM`

ϕ(S;R) L`D(〈w,ϕ(·)〉)
]
≤ ε . (7)

Kernel Learning Complexity Ker`ε(H) is the smallest m for which there exists a distribution P
over embeddings ϕ : X → H with ‖ϕ‖∞ ≤ 1 and a parameter R such that for all realizable
distributions D over X × Y , Equation (7) above holds.

ForY = {1,−1} and ` = `mgn, we define Kerε(H) := Ker
`mgn
ε (H) and KerDε (H) := Ker

D,`mgn
ε (H)

analogously, but require that Equation (8) below holds instead of (7):

Eϕ∼P ES∼Dm

[
sup

w∈ERM
`mgn
ϕ (S;R)

L`0-1
D (〈w,ϕ(·)〉)

]
≤ ε . (8)
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As we did in the case of linear learning, to relate Kerε(H) to mcε(H), we again consider a stronger
notion that requires learning that can be guaranteed based only on the norm, using Equation (6):

Definition 13 For a Lipschitz loss `, the Guaranteed Kernel Learning Complexity gKer`ε(H)
and Distributional Guaranteed Kernel Learning Complexity gKerD,`ε (H) are defined as in Def-
inition 9, but in terms of the smallest m satisfying Equation (9) below instead of (7),

Eϕ∼P ES∼Dm

[
infw∈B(H;R) L`S(〈w,ϕ(·)〉)

]
+ C`mc · R√

m
≤ ε. (9)

For Y = {1,−1} and ` = `mgn, gKerε(H) and gKerDε (H) are analogous but we require Equa-
tion (10) holds instead:

Eϕ∼P ES∼Dm

[
infw∈B(H;R) L

`mgn

S (〈w,ϕ(·)〉)
]

+ 2 · R√
m
≤ ε. (10)

Theorem 14 For anyH, ε > 0 and Lipschitz or bounded loss `, it holds that, Ker`ε(H) ≤ gKer`ε(H)
and Ω(mc`ε(H)2/ε2) ≤ gKer`ε(H) ≤ O(mc`ε/2(H)2/ε2) and analogously for KerD,`ε , gKerD,`ε

and mcD,`ε for all distributions D over X .

The proof of Theorem 14 is presented in Appendix C. Thus, mcε(H) and mcDε (H) precisely cap-
tures “the sample complexity of learningH using a kernel with a guarantee that follows from norm
based generalization bounds”, both for margin-based binary classification, and with respect to a
Lipschitz loss.

Remark. Our definitions of Linε and Kerε capture realizable learning. We can also consider agnostic
variants where we allow any D and the right hand side of (3), (5), (7), (8), (9) and (10) changes
to infh∈H LD(h) + ε, for loss functions where this makes sense. The lower bounds on learning of
course still hold, and for typical loss functions, including those discussed in this work, we can still
get upper bounds in terms of the approximate dimensional and margin complexities.

3.3. Lower Bounds on Learning

We saw that dcε(H) and mcε(H) precisely capture gLinε(H) and gKerε(H) i.e. “learning based on
dimension or norm guarantees”. But what about Linε(H) and Kerε(H)? Perhaps for specific feature
maps, e.g. if the image ϕ(X ) is degenerate in special ways, ERM on linear predictors, or perhaps
low norm predictors, could give learning guarantees with significantly less than d or R2 samples?
Can we say that dcε(H) and mcε(H) also tightly capture Linε(H) and Kerε(H)? While we are not
able to say this in the distribution-independent setting, we can prove lower bounds in terms of the
distribution dependent notion dcD,`ε (H).
Theorem 15 For allH, losses `, distributions D over X and ε > 0,

Lin`ε(H) ≥ LinD,`ε (H) ≥ dcD,`ε (H) and Ker`ε(H) ≥ KerD,`ε (H) ≥ dcD,`ε (H)

This follows as a consequence of the Representer Theorem, which allows us to replace any high-
dimensional embedding by an m dimensional one that is obtained as the span of the embeddings of
the samples from D . The proof is presented in Appendix C.

Since Theorem 15 holds for any distribution D, the lower bound on distribution independent
learning can also be stated as Lin`ε(H), Ker`ε(H) ≥ supD dcDε (H).

This supremum, which following Theorem 15 tightly characterizes supD LinD,`ε (H), should not
be confused with the distribution independent dcε(H). We can view supD LinDε (H) as correspond-
ing to a semi-supervised learning model where we have unlimited amount of unlabeled data, from
which we can infer D, and use it to decide on a distribution over embeddings ϕ.

8
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Alternate Learning Rules. The learning rule we studied as a “kernel method” was to minimize
the loss subject to a constraint on the norm, minL`S(〈w,ϕ(·)〉) subject to ‖w‖H ≤ R. This
is reasonable as it corresponds to our generalization bounds, but often in practice other Pareto-
optimal choices are considered, such as the minimum norm zero error (i.e. hard margin) predictor
min ‖w‖H subject to L`S(〈w,ϕ(·)〉) = 0, or perhaps a more relaxed version, min ‖w‖H subject to
L`S(〈w,ϕ(·)〉) ≤ ε or Tikhonov-type regularization minL`S(〈w,ϕ(·)〉) + λ‖w‖H.

All of the above are variants of argminw∈H g(L`S(〈w,ϕ(·)〉), ‖w‖H) for some monotone func-
tion g : R×R→ R∪{∞}, and hence the Representer Theorem holds for all them. Thus dcD,`ε (H)
would continue to be a lower bound on KerD,`ε (H) for any variant of its definition based on any of
the above learning rules.

4. Lower bounds on Probabilistic Distributional Dimension Complexity

In Theorem 15, we established that the sample complexity of learning a hypothesis class H with
dimension-based or kernel-based linear learning is lower bounded by its probabilistic distributional
dimension complexity, dcD,`ε (H). In this section, we prove lower bounds on dcD,`ε (H) in the case of
squared-loss and the zero-one loss, demonstrating the utility of our proposed complexity measures
in characterizing the limitations of linear learning.

4.1. Probabilistic dimension complexity w.r.t. Square Loss

Notations. For a distribution D over X , for any f : X → R and g : X → R we define 〈f, g〉D :=
Ex∼D f(x)g(x) and ‖f‖D :=

√
〈f, f〉D =

√
Ex∼D f(x)2. We say that a hypothesis classH ⊆ RX

is normalized if ‖h‖D = 1 for every h ∈ H. For any subset of hypotheses H′ ⊆ H, define its
corresponding Gram matrix GDH′ ∈ R|H′|×|H′| as GDH′(h, h′) := 〈h, h′〉D. For any M ∈ Rt×p with
t ≤ p, we use σ1(M) ≤ . . . ≤ σt(M) to denote its singular values. For any symmetric M ∈ Rt×t,
we use λ1(M) ≤ . . . ≤ λt(M) to denote its eigenvalues. We use λmin(M) to mean λ1(M).

Definition 16 (SQ dimension) For a distribution D over X , the Statistical Query dimension of a
normalized hypothesis class H ⊆ RX , denoted as SQ-dimD(H), is the largest t for which there
exist hypotheses h1, . . . , ht ∈ H such that 〈hi, hj〉D ≤ 1/2t for each i 6= j.

While the Statistical Query dimension is a well studied quantity in learning theory (Blum et al.,
1994), we introduce a new measure that is more suited to our goal of proving lower bounds on
dc
D,`sq
ε . This measure is lower bounded by SQ-dimD(H), but in general can be much larger.

Definition 17 (minEV dimension) For a distributionD over X , the min-Eigenvalue dimension of
a normalized hypothesis class H, denoted as minEV-dimD(H;λ), is the largest t for which there
exists a subset of hypotheses Ht := {h1, . . . , ht} ∈ H such that λmin(GDHt

) ≥ λ.

Proposition 18 For all distributions D over X and all normalized hypothesis classesH ⊆ RX ,
SQ-dimD(H) = t implies that minEV-dimD (H; 1/2) ≥ t
Remark. More generally, we could define SQ-dimD(H; γ) with respect to parameter γ < 1, as the
largest t for which there exist hypotheses h1, . . . , ht ∈ H such that 〈hi, hj〉D ≤ γ for each i 6= j.
Proposition 18 could then be SQ-dim(H; γ) = t implies that minEV-dim(H; 1− tγ) ≥ t.
Theorem 19 For all ε > 0, all distributionsD overX and normalized hypothesis classesH ∈ RX ,
it holds for any λ ∈ (2ε, 1] that dcD,`sqε (H) ≥ (1− 2ε/λ) ·minEV-dimD(H;λ).

9
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Observe that the bound becomes vacuous at ε = 1
2 , and rightly so, because the zero function incurs a

square loss of 1/2 for any h ∈ H, sinceH is a normalized hypothesis class. The constant 0 function
is realizable with an embedding of dimension 1.

Our proof of Theorem 19 is inspired by the technique due to Alon et al. (2013) for lower bound-
ing the “approximate rank” of a matrix that is well studied in communication complexity. We
present the full proof in Appendix D.1. Combining Proposition 18 with Theorem 19 immediately
gives us the following corollary.

Corollary 20 For all distributions D over X and normalized hypothesis classesH ⊆ RX , it holds
that, dcD,`sqε (H) ≥ (1− 4ε) · SQ-dimD(H).

4.1.1. APPLICATIONS OF THEOREM 19

Example 1 : Parities. LetXn = {1,−1}n andH⊕n =
{
χS(x) :=

∏
i∈S xi : S ⊆ [n]

}
be the class

of all parity functions on n bits. Let D be the uniform distribution over X . For any two distinct
subsets S, T ⊆ [n], we have that 〈χS , χT 〉D = 0. Thus, SQ-dimD(H⊕n ) = 2n. More strongly, we
also have minEV-dim(H⊕n ; 1) = 2n. Thus, from Theorem 19, we get dcD,`sqε (H⊕n ) ≥ (1−2ε) ·2n.

Example 2 : ReLU with bounded weights. The Rectified Linear Unit is a popular activation
function used in neural networks; given by x 7→ [x]+ = max {x, 0}. It was recently shown by
Yehudai and Shamir (2019) that random features cannot be used to learn (or even approximate) a
single ReLU neuron (over standard Gaussian inputs in Rn with poly(n) weights) unless the number
of features or the magnitude of the learnt coefficients are exponential in n. Using Corollary 20, we
are able to improve on this result by removing the restriction on the magnitude of learnt coefficients
and obtain a lower bound simply on the number of random features required (this was conjectured
to be possible by Yehudai and Shamir (2019)).

Let Hrelu
n,W,B := {x 7→ [〈w, x〉+ b]+ : w ∈ Rn, b ∈ R, s.t. ‖w‖2 ≤W, |b| ≤ B} be the class of

all functions obtained as a ReLU applied on a linear function with bounded weights.

Theorem 21 (Strengthens Thm 4.2 in Yehudai and Shamir (2019)) For D being the standard
Gaussian distribution over Rn, there exists a choice of W ≤ O(n3) and B ≤ O(n4), such that, for
any ε < 1/4 that dcD,`sqε (Hrelu

n,W,B) ≥ exp(Ω(n)).

Our proof builds on a proposition from Yehudai and Shamir (2019) and somewhat follows the
outline there. However, we believe that this way of presenting the proof is more insightful as it is
modular, involving a lower bound on SQ-dimension. The details are deferred to Appendix E.

Example 3 : studied by Allen-Zhu and Li (2019, 2020). Recently, Allen-Zhu and Li (2019,
2020) exhibited functions classes that can provably be “efficiently” learnt using a neural network,
but require “large” number of samples or run-time for any kernel method to learn with respect to
square loss. In our terminology, the function classes they consider can be shown to have “large”
dc
D,`sq
ε measure using Theorem 19 and Corollary 20. Since, the function classes they consider are

somewhat specialized, we skip the details.

4.2. Probabilistic dimension complexity w.r.t. 0-1 loss

In the previous subsection we considered regression problems, and learning with respect to the
squared loss. We now turn to the classification and learning with respect to the 0/1 loss.

10
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We prove a lower bound on the probabilistic distributional dimension complexity w.r.t. `0-1
loss for the class of all 1-sparse predictors H1-sp

n ⊆ {1,−1}Xn for Xn = {1,−1}n defined as
H1-sp
n := {hi : Xn → {1,−1} : i ∈ [n] and hi(x) = xi}.

Theorem 22 Fix ε < 1/2. For D being the uniform distribution over Xn = {1,−1}n it holds that,
dcDε (H1-sp

n ) ≥ n · (1 − h(ε)/(4 log(16e/(1 − h(ε)))) − o(n) where h(q) := −q log2 (q) − (1 −
q) log2 (1− q) is the binary entropy function.

In particular, we have that dcDε (H1-sp
n ) ≥ Ω(n) for any ε < 1

2 , while the bound rightly becomes
vacuous at ε = 1

2 . Contrast this linear scaling with n to the VC dimension of 1-sparse predictors
VC-dim(Hn) ≤ log n, which implies sparse linear predictors are learnable, using a direct approach,
which only O(log n) samples. Thus, Theorem 22 establishes that linear or kernel-based learning
would require exponentially more samples than a direct approach.

Theorem 22 also shows that the exponential dependence in our upper bound of dcDε (H) in terms
of VC-dim(H) (Lemma 8) is indeed necessary, and Lemma 8 is, in this sense, tight.

The key technique used in the proof of Theorem 22 is the fact that random n× n sign-matrices
require a sign-rank of Ω(n) to be even approximated on a constant (> 1/2) fraction of the entries.
We partition the n× 2n sign matrix MH1-sp

n
randomly into blocks of n× n matrices and argue that

most of those blocks must incur large error if the dimension of the embedding is small. The proof
details are deferred to Appendix D.2.

A Complexity-Theoretic Barrier. In Theorem 22 we proved a lower bound on dcDε (Hn) for the
class of 1-sparse predictors, which has |Xn| = 2|Hn|. Even just representing a single instance in
this example requires log |Xn| = n bits, and so the runtime for any learning algorithm would also
be at least Ω(n). That is, even though we showed the sample complexity for linear or kernel based
learning is exponential in the VC-dimension, i.e. insisting on linear or kernel based learning causes
an exponential increase in sample complexity, the sample complexity of linear learning is still no
more than linear in the runtime or even memory of a direct approach. This is in contrast to the
examples of Section 4.1, where the lower bound on the sample complexity of linear or kernel based
learning was exponential also in the representational cost of instances, i.e. in log |X |.

Can we prove such a stronger lower bound also with respect to the 0/1 loss, i.e. a lower bound
on dcDε that is exponential (or even just super-polynomial) in both VC-dim(H) and log |X | ? In
particular, can we prove a poly(n) lower bound on dcDε for the class of all parities over n bits, for
which we do have a strong lower bound w.r.t. square loss?

In turns out that proving such a lower bound for any explicit class H will have significant
complexity theoretic consequences. Suppose for example, we have an explicit classH ⊆ {1,−1}X
for which we could prove, for some value of ε > 0, that dcDε (H) ≥ (log |H||X |)ω(1)·(1/ε). That is,
we could establish a lower bound on dcDε (H) that is super-polynomial in log |X | and in VC-dim(H)
(recall that VC-dim(H) ≤ log |H|). As shown by Alman and Williams (2017) (see Lemma 25 &
Proposition 24) it will follow that depth-2 threshold circuits computing EH : (h, x) 7→ h(x) require
size that is at least (log |H||X |)ω(1), for any binary encoding ofH and X .

Proving super-polynomial lower bounds on the size of depth-2 threshold circuits is a major
frontier in Complexity Theory (the best lower bounds known so far is due to Kane and Williams
(2016), who show a lower bound of Ω̃(n1.5) for an explicit n-bit function). And so, establishing
strong lower bounds on linear or kernel based learning with respect to the 0/1 loss for specific classes
seems difficult. This explains, perhaps, why recent work on the relative power of deep learning over
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kernel method focused on regression w.r.t. the square loss, and indicates that establishing similar
results also for classification might not be so easy.

Since proving explicit lower bounds for dcDε (H) faces a complexity theoretic barrier, we could
ask for lower bounds on dc

D,`hinge
ε (H). Interestingly, it was shown by Balcan et al. (2008) (stated

in our notations) that mc
D,`hinge
ε (H) ≥ ( 2

π − ε) ·Ω
(
SQ-dimD(H)1/2

)
, which suggests the following

open question.

Open Question. Can we prove lower bounds on dc
D,`hinge
ε (H) in terms of SQ-dimD(H)?

5. Summary

We formalized a notion of Linear Learning (Lin`ε) and Kernel Learning (Ker`ε) with respect to any
loss `. We defined probabilistic variants of the classic notions of dimensional complexity (dc`ε) and
margin complexity (mc`ε), which we show are equivalent to a notion of “guaranteed” Linear Learn-
ing (gLin`ε) and Kernel Learning (gKer`ε) respectively, where the guarantee follows from standard
generalization bounds which follow from dimension-based or norm-based arguments respectively.
For each of the notions above, we also defined a distributional version, where we fix a marginal
distribution D over the input space X .

We showed that dc`ε and mc`ε (resp. dcD,`ε and mcD,`ε ) are sufficient for learning with finite
dimension or with finite norm embeddings (respectively in the distribution dependent setting). Mo-
rover, in the case of ` = `0-1 loss, dc`0-1

ε can be exponentially smaller than the classic notion of
dc`0-1 . We also showed that the distributional versions dcD,`ε and mcD,`ε are upper bounded in terms
of the VC-dimension.

Finally, we showed that dcD,`ε is necessary for learning with either finite dimension or with
finite norm embeddings, in the distribution dependent setting and hence also in the distribution
independent setting. These connections are summarized in Figure 1.

In the case of ` = `sq, we proved a lower bound on dc
D,`sq
ε in terms of the notion of minEV-dimD,

which in turn is lower bounded by SQ-dimD; this allows us to re-prove (and even improve upon)
similar lower bounds proved in literature (Yehudai and Shamir, 2019; Allen-Zhu and Li, 2019,
2020). In the case of ` = `0-1, we prove a lower bound on dcD,`0-1

ε of Ω(n) for the class of 1-sparse
predictors on n variables. But this is only logarithmic in |X |. However, we identified a complexity
theoretic barrier, namely that any lower bound on dcD,`0-1

ε for any D that is super-polynomial in
log(|H||X |) for any explicit classH will imply super-polynomial lower bounds for depth-2 thresh-
old circuits which is long-standing open question in circuit complexity.

We hope that our notions of probabilistic dimensional and margin complexity prove useful in
the further understanding of the limitations of linear and kernel learning.
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May 1994, Montréal, Québec, Canada, pages 253–262, 1994. URL https://doi.org/10.
1145/195058.195147.

Arkadev Chattopadhyay and Nikhil S. Mande. A Short List of Equalities Induces Large Sign
Rank. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 47–58, 2018. URL https://doi.org/10.1109/
FOCS.2018.00014.

13

http://papers.nips.cc/paper/9103-what-can-resnet-learn-efficiently-going-beyond-kernels
http://papers.nips.cc/paper/9103-what-can-resnet-learn-efficiently-going-beyond-kernels
https://arxiv.org/abs/2001.04413
https://doi.org/10.1145/3055399.3055484
https://doi.org/10.1145/3055399.3055484
https://doi.org/10.1145/2488608.2488694
https://doi.org/10.1145/2488608.2488694
http://proceedings.mlr.press/v49/alon16.html
http://proceedings.mlr.press/v49/alon16.html
https://doi.org/10.1109/SFFCS.1999.814637
https://doi.org/10.1007/s10994-008-5059-5
https://doi.org/10.1007/s10994-008-5059-5
http://jmlr.org/papers/v3/bendavid02a.html
https://doi.org/10.1145/195058.195147
https://doi.org/10.1145/195058.195147
https://doi.org/10.1109/FOCS.2018.00014
https://doi.org/10.1109/FOCS.2018.00014


PROBABILISTIC DIMENSIONAL AND MARGIN COMPLEXITY

Amit Daniely. SGD learns the conjugate kernel class of the network. In Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, pages 2422–2430, 2017. URL http://papers.nips.cc/paper/
6836-sgd-learns-the-conjugate-kernel-class-of-the-network.

Jürgen Forster and Hans Ulrich Simon. On the smallest possible dimension and the largest possible
margin of linear arrangements representing given concept classes. Theoretical Computer Science,
350(1):40–48, 2006. URL https://doi.org/10.1016/j.tcs.2005.10.015.

Jürgen Forster, Niels Schmitt, Hans Ulrich Simon, and Thorsten Suttorp. Estimating the optimal
margins of embeddings in euclidean half spaces. Machine Learning, 51(3):263–281, 2003. URL
https://doi.org/10.1023/A:1022905618164.
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Appendix A. Relating dc and mc : Proof of Lemma 5

Proof of Lemma 5 For any Hilbert space H, by the lemma of (Johnson and Lindenstrauss, 1984),
we have that there exists a distribution A over projections π : H→ Rd such that for any u, v ∈ H,

Pr
π∼A

[∣∣〈u, v〉H − 〈π(u), π(v)〉Rk

∣∣ > τ
]
< δ for d = Θ

(
‖u‖2H‖v‖2H

τ2
log

1

δ

)
. (11)

We can also derive an expectation version of the above to get

E
π∼A

∣∣〈u, v〉H − 〈π(u), π(v)〉Rk

∣∣2 ≤ O(‖u‖2H‖v‖2H
d

)
(12)

which also implies
E

π∼A

∣∣〈u, v〉H − 〈π(u), π(v)〉Rk

∣∣ ≤ O(‖u‖H‖v‖H√
d

)
(13)

Let Pmc be a distribution over embeddings ϕ : X → H with ‖ϕ‖∞ ≤ 1 that realizes the definition
of mc`ε(H) =: R. That is, for all distributions D over X and all h ∈ H,

E
ϕ∼Pmc

[
inf

w∈B(H;R)
L`D,h(〈w,ϕ(·)〉)

]
≤ ε .
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dcdcεLinεLinDε

dcDε

KerDε

mcDε

Kerε mcε mc

exp
(
Õ
(
VC-dim · log 1

ε

))

Figure 1: A comparison of all measures introduced, specialized to `0-1/`mgn. A solid arrowA→ B
denotes A(H) ≤ B(H), a solid purple arrow A→ B denotes A(H) ≤ B(H) up to some
change of parameter ε and some multiplicative factors (either poly(1/ε) or log(|H||X |
in case of dc→ mc). A 99K B denotes A(H) ≤ B(H) and that there exists a classH for
which A(H) � B(H). If A is a distribution-dependent measure and B is a distribution
independent measure, then an arrow from A→ B is meant for all D.

Consider a distribution Pdc over embeddings ψ : X → Rd obtained as ψ(x) = π(ϕ(x)) for
independently sampled ϕ ∼ Pmc and π ∼ A. For any distribution D over X and any h ∈ H, we
have,

E
ψ∼Pdc

[
inf
w∈Rd

L`D,h(〈w,ψ(·)〉)
]
≤ E

ϕ∼Pmc
π∼A

[
inf

w∈B(H;R)
L`D,h(〈π(w), π(ϕ(·))〉)

]

≤ E
ϕ∼Pmc

[
inf

w∈B(H;R)
E

π∼A
L`D,h(〈π(w), π(ϕ(·))〉)

]
(14)

Proof of (i). We first infer from (11) that for any u, v ∈ H,

E
π∼A

[1 {〈π(u), π(v)〉 < 0}] ≤ 1 {〈u, v〉 < τ}+ δ for d = Θ

(
‖u‖2H‖v‖2H

τ2
log

1

δ

)
(15)

Starting from the inner term in (14), for any w ∈ H with ‖w‖H ≤ R and ‖ϕ‖∞ ≤ 1

E
π∼A
L`0-1
D,h(〈π(w), π(ϕ(·))〉) = E

x∼D
E

π∼A
1 {〈π(w), π(ϕ(x))〉h(x) ≤ 0}

≤ E
x∼D

1 {〈w,ϕ(x)〉h(x) ≤ 1}+ η . . . (from (15))

= L`mgn

D,h (〈π(w), π(ϕ(·))〉) + η

where we instantiate (15) with τ = 1, δ = η, by setting d = O(R2 log(1/η)). Plugging this upper
bound into (14), we get our desired goal

E
ψ∼Pdc

[
inf
w∈Rd

L`0-1
D,h(〈w,ψ(·)〉)

]
≤ E

ϕ∼Pmc

[
inf

w∈B(H;R)
L`mgn

D,h (〈w,ϕ(·)〉)
]

+ η ≤ ε+ η .
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Proof of (ii). We use (13). For any w ∈ H with ‖w‖H ≤ R, we have from L-Lipschitzness of `
and ‖ϕ‖∞ ≤ 1 that

E
π∼A

[
L`D,h(〈π(w), π(ϕ(·))〉)

]
− L`D,h(〈w,ϕ(·)〉)

= E
x∼D

E
π∼A

[`(〈π(w), π(ϕ(x))〉 , h(x))− `(〈w,ϕ(x)〉 , h(x))]

≤ L · E
x∼D

E
π∼A

∣∣〈π(w), π(ϕ(x))〉 − 〈w,ϕ(x)〉)
∣∣

≤ O
(
LR√
d

)
Combining this with (14), we get,

E
ψ∼Pdc

[
inf
w∈Rd

L`D,h(〈w,ψ(·)〉)
]
≤ E

ϕ∼Pmc

[
inf

w∈B(H;R)
L`D,h(〈w,ϕ(·)〉) +O

(
LR√
d

)]
≤ ε+O

(
LR√
d

)
Thus, we get our desired statement for a choice of d = O (LR/η)2.

Proof of (iii). We use (12) and (13). We use (13). For any w ∈ H with ‖w‖H ≤ R we have

E
π∼A

[
L`sqD,h(〈π(w), π(ϕ(·))〉)

]
− L`sqD,h(〈w,ϕ(·)〉)

=
1

2
E
x∼D

E
π∼A

[
(h(x)− 〈π(w), π(ϕ(x))〉)2 − (h(x)− 〈w,ϕ(x)〉)2

]
≤ 1

2
E
x∼D

E
π∼A

∣∣h(x)− 〈w,ϕ(x)〉
∣∣ · ∣∣〈π(w), π(ϕ(x))〉 − 〈w,ϕ(x)〉

∣∣
+

1

2
E
x∼D

E
π∼A

∣∣〈π(w), π(ϕ(x))〉 − 〈w,ϕ(x)〉
∣∣2

≤ E
x∼D

∣∣h(x)− 〈w,ϕ(x)〉
∣∣ · O( R√

d

)
+O

(
R2

d

)
≤
(

E
x∼D

∣∣h(x)− 〈w,ϕ(x)〉
∣∣2)1/2

· O
(
R√
d

)
+O

(
R2

d

)
= L`sqD,h(〈w,ϕ(·)〉)1/2 · O

(
R√
d

)
+O

(
R2

d

)
Combining this with (14), we get,

E
ψ∼Pdc

[
inf
w∈Rd

L`sqD,h(〈w,ψ(·)〉)
]

≤ E
ϕ∼Pmc

[
inf

w∈B(H;R)
L`sqD,h(〈w,ϕ(·)〉) + L`sqD,h(〈w,ϕ(·)〉)1/2 · O

(
R√
d

)
+O

(
R2

d

)]
≤ ε+O

(√
εR√
d

)
+O

(
R2

d

)
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where, we use that Eϕ infw L
`sq
D,h(〈w,ϕ(·)〉)1/2 ≤

(
Eϕ infw L

`sq
D,h(〈w,ϕ(·)〉)

)1/2
≤
√
ε. Thus, we

get our desired statement for a choice of d = R2 · O
(
(ε+ η)/η2

)
. This completes the proof for all

the parts (i), (ii) and (iii). The analogous cases relating dcD,`ε+η and mcD,`ε follows similarly.

Appendix B. Proofs of Separation between Deterministic and Probabilistic
Dimension Complexity

B.1. Exponential gap : Proof of Theorem 6

We first introduce a variant of probabilistic dimension complexity that requires a stronger point-wise
notion of correctness.

Definition 23 Fix a hypothesis classH ⊆ YX and a loss ` and a parameter ε ≥ 0. The point-wise
probabilistic dimension complexity dcpt,`

ε (H) is the smallest d for which there exists a distribution
P over a pair of embeddings (ϕ : X → Rd, w : H → Rd) such that,

sup
(x,h)∈X×H

E
(ϕ,w)∼P

[`(〈w(h), ϕ(x)〉 , h(x))] ≤ ε .

This notion of point-wise probabilistic dimension complexity requires that (the distribution over) w
is chosen without the knowledge of the distributionD over X and hence is stronger than probabilis-
tic dimension complexity as in Definition 2. In particular, we have the following.

Proposition 24 For allH ⊆ YX , loss ` and parameter ε > 0, it holds that,

sup
D

dcD,`ε (H) ≤ dc`ε(H) ≤ dcpt,`
ε (H)

The notion of dcpt,`0-1
ε (H) is equivalent to the notion of probabilistic sign-rank studied in the com-

munication complexity. In particular, stating in our notations, Alman and Williams (2017) showed
that if the function EH : H × X → {1,−1} given by EH(h, x) := h(x) is computable by small
depth-2 threshold circuits (for any encoding ofH and X into bits), then dcpt,`0-1

ε (H) is also small.

Lemma 25 (Alman and Williams (2017)) If EH is computable by a depth-2 threshold circuit of
size s, then

dcpt,`0-1
ε (H) ≤ O

(
s2 log2(|H| · |X |)

ε

)
Theorem 6 now follows readily from a recent lower bound on sign-rank shown by Chattopadhyay
and Mande (2018) for matrices that are computable by small depth-2 threshold circuits.

Proof of Theorem 6 We describe the construction of the class H, which is indexed by {1,−1}n.
To describe how an h ∈ H acts on an x ∈ X , we divide the n bits in h and x into k blocks by
writing h = (h1, . . . , hk) and x = (x1, . . . , xk) where each hi, xi ∈ {1,−1}p with kp = n. The

18



PROBABILISTIC DIMENSIONAL AND MARGIN COMPLEXITY

hypothesis h on input x outputs −1 iff the largest index i ∈ [k] for which hi = xi holds is an odd
index.2 For p = k1/3 + log k, it was shown by Chattopadhyay and Mande (2018) that

dc(H) ≥ 2Ω(n1/4) .

Chattopadhyay and Mande (2018) also observe thatEH : (h, x) 7→ h(x) is computable by a depth-2
threshold circuit of size O(n). Thus, from Lemma 25, we have that

dcpt,`0-1
ε (H) ≤ O

(
n4

ε

)
Combining with Proposition 24 we get our desired separation.

B.2. “Infinite” gap : Proof of Theorem 7

We first prove Lemma 8 that probabilistic distributional dimension complexity can be upper bounded
in terms of VC dimension.

Proof of Lemma 8 A classic result due to Haussler (1995) shows that for any distribution D over
X there exists a cover Cε ⊆ H, with |Cε| ≤ c · VC-dim(H) · (K/ε)VC-dim(H) for some universal
constants c,K, such that,

∀h ∈ H, ∃ch ∈ Cε such that Pr
x∼D

[h(x) 6= ch(x)] ≤ ε .

Thus for any given distribution D, we can construct a (deterministic) embedding ϕ : X → R|Cε|
given as ϕ(x) = (c(x))c∈Cε and w(h) = (1[c = ch])c∈Cε satisfying the property that,

∀h ∈ H : E
x∼D

1[h(x) 6= sign(〈ϕ(x), w(h)〉)] ≤ ε.

This implies that dcDε (H) ≤ |Cε|. Note that, since 〈w(h), ϕ(x)〉 always takes values in {1,−1},
dc
D,`sq
2ε (H) and dc

D,`hinge
2ε (H) are also at most |Cε|.

Also, observe that if we can scale ϕ by 1/
√
|Cε|, we will have ‖ϕ‖∞ ≤ 1. To compensate for

this, we can scale up w by
√
|Cε| and get the desired upper bound on mcD,`ε (H).

Proof of Theorem 7 Alon et al. (2016) showed that for X = {1,−1}n there exists a hypoth-
esis class H ⊆ {1,−1}X such that VC-dim(H) = 2 but dc(H) ≥ 2Ω(n). Note that dc`sq(H)
and dc`hinge(H) are each larger than dc(H). Also note that mc(H) ≥ Ω(

√
dc(H)/n) (from the

classic result relating mc and dc). Thus we get the desired lower bound on mc(H), mc`sq(H)
and mc`hinge(H) as well. On the other hand, from Lemma 8, we get that both dcD,`ε (H) (for
` ∈ {`0-1, `sq, `hinge}) and mcD,`ε (H) (for ` ∈ {`mgn, `sq, `hinge}) are at most O

(
1/ε2

)
for ev-

ery distribution D over X .

2. In communication complexity parlance, the associated MH would be called a “pattern matrix”.
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Appendix C. Proofs of Upper and Lower Bounds on Learning

C.1. Learning via Random embeddings : Proof of Theorems 11 and 14

Proof of Theorem 11 Lin`ε(H) ≤ gLin`ε(H) and Ω
(
dc`ε(H)
ε2

)
≤ gLin`ε(H) ≤ O

(
dc`ε/2(H)

ε2

)
LetP be the distribution over embeddingsϕ : X → Rd underlying the definition of gLin`ε(H) =: m.
That is, we have for any realizable distribution D over X × Y that

E
ϕ∼P

E
S∼Dm

[
inf
w∈Rd

L`S(〈w,ϕ(·)〉)
]

+ C`dc ·
√
d

m
≤ ε . (16)

On the other hand, from standard generalization bounds (cf. Equation (4)), we have for any choice
of ϕ : X → Rd and D that

E
S∼Dm

[
sup
w∈Rd

L`D(〈w,ϕ(·)〉)− L`S(〈w,ϕ(·)〉)

]
≤ C`dc ·

√
d

m
.

And hence,

E
S∼Dm

[
sup

w∈ERM`
ϕ(S)

L`D(〈w,ϕ(·)〉)

]
≤ E

S∼Dm

[
inf
w∈Rd

L`S(〈w,ϕ(·)〉)
]

+ C`dc

√
d

m

Thus, taking expectation over ϕ ∼ P , we have from (16) that

E
ϕ∼P

E
S∼Dm

[
sup

w∈ERM`
ϕ(S)

L`D(〈w,ϕ(·)〉)

]
≤ ε

Thus, we get Lin`ε(H) ≤ m = gLin`ε(H). It also follows that dcε(H) ≤ ε2gLin`ε(H), since firstly
d ≤ ε2m by definition of gLin`ε(H) = m. Moreover, if we let D to be the distribution sampled as
x ∼ D and y = h(x) for some h ∈ H, we get,

E
ϕ∼P

[
inf
w∈Rd

L`D,h(〈w,ϕ(·)〉)
]
≤ E

ϕ∼P
E

S∼Dm

[
sup

w∈ERM`
ϕ(S)

L`D(〈w,ϕ(·)〉)

]
≤ ε

Finally, it remains to show that gLin`ε(H) ≤ O(dc`ε/2(H)/ε2). Let P be the distribution over
embeddings ϕ : X → Rd that realizes the definition of dc`ε/2(H) =: d. Thus, we have for any
realizable distribution D over X × Y that

E
ϕ∼P

[
inf
w∈Rd

L`D(〈w,ϕ(·)〉)
]
≤ ε

2
. (17)

Now, for any choice of ϕ : X → Rd and any w∗ ∈ Rd we have

E
S∼Dm

[
inf
w∈Rd

L`S(〈w,ϕ(·)〉)
]
≤ E

S∼Dm

[
L`S(〈w∗, ϕ(·)〉)

]
= L`D(〈w∗, ϕ(·)〉)
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Taking infimum over w∗ (in RHS) and an expectation over ϕ ∼ P , we get,

E
ϕ∼P

E
S∼Dm

[
inf
w∈Rd

L`S(〈w,ϕ(·)〉)
]

+ C`dc ·
√
d

m

≤ E
ϕ∼P

[
inf
w∈Rd

L`D(〈w,ϕ(·)〉)
]

+ C`dc ·
√
d

m

≤ ε

2
+ C`dc ·

√
d

m
. . . (from (17))

≤ ε . . . (for a choice of m = O(d/ε2))

This establishes gLin`ε(H) ≤ O(dc`ε/2(H)/ε2), thereby completing the proof for the distribution-
independent case. The distribution-dependent analogs follow in an identical manner.

Proof of Theorem 14 Ker`ε(H) ≤ gKer`ε(H) and Ω
(
mc`ε(H)2

ε2

)
≤ gKer`ε(H) ≤ O

(
mc`

ε/2
(H)2

ε2

)
This proof is very similar to that of Theorem 11, except that we use norm-based generalization
bounds instead of dimension-based ones. We present the proof for `0-1/`mgn and the case of general
Lipshitz ` follows in a similar manner.

LetP be the distribution over embeddingsϕ : X → H underlying the definition of gKerε(H) =:
m. That is, we have for any realizable distribution D over X × Y that

E
ϕ∼P

E
S∼Dm

[
inf

w∈B(H;R)
L`mgn

S (〈w,ϕ(·)〉)
]

+ Cmc ·
R√
m
≤ ε . (18)

On the other hand, from standard norm based generalization bounds (see Equation (6)), we have for
any choice of ϕ : X → H and D that

E
S∼Dm

[
sup

w∈B(H;R)
L`0-1

D (〈w,ϕ(·)〉)− L`mgn

S (〈w,ϕ(·)〉)

]
≤ Cmc ·

R√
m
.

And hence,

E
S∼Dm

 sup
w∈ERM

`mgn
ϕ (S;R)

L`0-1
D (〈w,ϕ(·)〉)

 ≤ E
S∼Dm

[
inf

w∈B(H;R)
L`mgn

S (〈w,ϕ(·)〉)
]

+ Cmc
R√
m

Thus, taking expectation over ϕ ∼ P , we have from (18) that

E
ϕ∼P

E
S∼Dm

 sup
w∈ERM

`0-1
ϕ (S)

L`0-1
D (〈w,ϕ(·)〉)

 ≤ ε

Thus, we get Kerε(H) ≤ m = gKerε(H). It also follows that mcε(H) ≤ ε
√
gLinε(H), since firstly

R ≤ ε
√
m by definition of gKerε(H) = m. Moreover, if we let D to be the distribution sampled as

x ∼ D and y = h(x) for some h ∈ H, we get,

E
ϕ∼P

[
inf

w∈B(H;R)
L`0-1
D,h(〈w,ϕ(·)〉)

]
≤ E

ϕ∼P
E

S∼Dm

 sup
w∈ERM

`0-1
ϕ (S;R)

L`0-1
D (〈w,ϕ(·)〉)

 ≤ ε
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Finally, it remains to show that gKerε(H) ≤ O(mcε/2(H)/ε2). Let P be the distribution over
embeddings ϕ : X → H with ‖ϕ‖∞ ≤ 1 that realizes the definition of mcε/2(H) =: R. Thus, we
have for any realizable distribution D over X that

E
ϕ∼P

[
inf

w∈B(H;R)
L`mgn

D (〈w,ϕ(·)〉)
]
≤ ε

2
. (19)

Now, for any choice of ϕ : X → H and any w∗ ∈ H with ‖w∗‖H ≤ R we have

E
S∼Dm

[
inf

w∈B(H;R)
L`mgn

S (〈w,ϕ(·)〉)
]
≤ E

S∼Dm

[
L`mgn

S (〈w∗, ϕ(·)〉)
]

= L`mgn

D (〈w∗, ϕ(·)〉)

Finally, taking expectation over ϕ ∼ P and taking infimum over w∗ (in RHS), we get

E
ϕ∼P

E
S∼Dm

[
inf

w∈B(H;R)
L`mgn

S (〈w,ϕ(·)〉)
]

+ Cmc ·
R√
m

≤ E
ϕ∼P

[
inf

w∈B(H;R)
L`mgn

D (〈w,ϕ(·)〉)
]

+ Cmc ·
R√
m

≤ ε

2
+ Cmc ·

R√
m

. . . (from (19))

≤ ε . . . (for a choice of m = O(R2/ε2))

This establishes gKerε(H) ≤ O(mcε/2(H)/ε2), thereby completing the proof for the distribution-
independent case. The distribution-dependent analogs follow in an identical manner.

C.2. Lower Bound on Learning : Proof of Theorem 15

Proof of Theorem 15 We start with part (i). The first inequality of Lin`ε(H) ≥ LinD,`ε (H) holds by
definition; we focus on the second inequality. Let D be an arbitrary distribution over X and ε > 0.
Let P be the distribution over embeddings ϕ : X → Rd that realizes the definition of Linε(H) =: m
for some d. For any h ∈ H, let Dh be the distribution over X × Y given by (x, h(x)) for x ∼ D
(that is, Dh is a distribution realizable underH). Thus, we have for any h ∈ H that

E
ϕ∼P

E
S∼Dm

h

[
inf
w∈Rd

L`D,h(〈w,ϕ(·)〉)
]
≤ ε.

For any ϕ : X → Rd and S ∼ Dm
h , define the subspace spanned by embedding of the data Uϕ,S :=

span {ϕ(x1), . . . , ϕ(xm)}. We show that ERM`
ϕ(S) ∩ Uϕ,S 6= ∅; also known as “Representer

Theorem”. Namely, for any w ∈ ERM`
ϕ(S), we can decompose w = w||+w⊥ such that w|| ∈ Uϕ,S

and
〈
w⊥, u

〉
= 0 for all u ∈ Uϕ,S . Thus, 〈w,ϕ(x)〉 =

〈
w||, ϕ(x)

〉
for each x ∈ S. Hence

w|| ∈ ERM`
ϕ(S) ∩ Uϕ,S . Thus, we have

E
ϕ∼P
S∼Dm

h

[
inf

w∈Uϕ,S

L`D,h(〈w,ϕ(·)〉)
]
≤ E

ϕ∼P
S∼Dm

h

[
inf

w∈ERM`
ϕ(S)∩Uϕ,S

L`D,h(〈w,ϕ(·)〉)

]
≤ ε.
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Note that in the definition of Uϕ,S , the labels sampled from Dh are unused. So we abuse notations
and define Uϕ,S even for S ∼ Dm. In order to show that dcD,`ε (H) ≤ m we construct a distribution
Pdc over embeddings ψ : X → Rm as follows: Sample ϕ ∼ P and S ∼ Dm and let ψ(x) :=
πϕ,S(ϕ(x)), where πϕ,S : Rd → Rm is the projection onto the subspace Uϕ,S , expressed in terms of
some canonical orthonormal basis. Note that for any ϕ, S and w ∈ Uϕ,S , it holds that 〈w,ϕ(x)〉 =
〈πϕ,S(w), ψ(x)〉. Thus, we get

E
ψ∼Pdc

[
inf

w∈Rm
L`D,h (〈w,ψ(·)〉)

]
= E

ϕ∼P
E

S∼Dm

[
inf

w∈Uϕ,S

L`D,h (〈w,ϕ(·)〉)
]
≤ ε.

Part (ii) follows in an identical manner, so we skip the details.

Appendix D. Proofs of Lower Bounds on Probabilistic Distributional Dimension
Complexity

Proof of Proposition 18 Let Ht = {h1, . . . , ht} ⊆ H such that 〈hi, hj〉D ≤ 1/2t. Thus, all off-
diagonal entries of GDHt

are at most 1/2t in magnitude, whereas all diagonal entries are 1. It follows
from Geršgorin (1931) “circle theorem” that all eigenvalues of GDHt

are at least 1− t/2t = 1/2.

D.1. Case of square loss : Proof of Theorem 19

Our proof is inspired by the technique for lower bounding the approximate rank of a matrix due to
Alon et al. (2013).

Proof of Theorem 19 For ease of presentation, we only focus on the case where X is a finite
discrete space. The proof readily extends to the case where X is an arbitrary measurable space.

For λ > 2ε, let t := minEV-dimD(H;λ). That is, we have hypotheses Ht = {h1, . . . , ht} with
λmin(GDHt

) ≥ λ. Let d := dc
D,`sq
ε (H), that is, there exists a distribution P over pairs of embeddings

(ϕ : X → Rd, w : H → Rd)3 such that for all h ∈ H,

E
(ϕ,w)∼P

[
L`sqD,h(〈w(h), ϕ(·)〉)

]
≤ ε .

In particular, if we average over h ∈ Ht,

E
(ϕ,w)∼P

E
h∼Ht
x∼D

`sq(〈w(h), ϕ(x)〉 , h(x)) ≤ ε .

Thus, we can fix a deterministic pair of embeddings (ϕ∗ : X → Rd, w∗ : H → Rd) in the support
of P for which,

E
h∼Ht
x∼D

`sq(〈w∗(h), ϕ∗(x)〉 , h(x)) ≤ ε . (20)

3. by choosing w : h 7→ arg infw∈Rd L`sq
D,h(〈w,ϕ(·)〉)
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We have G := GDHt
= MM> where M ∈ Rt×X is given by M(h, x) :=

√
D(x) · h(x) for all

h ∈ Ht and x ∈ X . Since λmin(G) ≥ λ we have for all v ∈ Rt that v>Gv ≥ λ‖v‖22. In particular,
we have

∀v ∈ Rt : ‖M>v‖2 ≥
√
λ‖v‖2 . (21)

On the other hand, the embedding pair (ϕ∗, w∗) defines a rank-d matrix A ∈ Rt×X given by
A(h, x) :=

√
D(x) 〈w∗(h), ϕ∗(x)〉 for each h ∈ Ht and x ∈ X .

We define E ∈ Rt×X as E(h, x) := M(h, x)−A(h, x). We have from (20)

‖E‖2F =
∑
h∈Ht

E
x∼D

(〈w∗(h), ϕ∗(x)〉 − h(x))2 ≤ 2εt

In particular, we get
t∑
i=1

σi(E)2 ≤ 2εt . (22)

On the other hand, since rank(A) ≤ d, there exists a subspace S ⊆ Rt of dimension t−d, such that
‖A>v‖2 = 0 for all v ∈ S. By triangle inequality, we get 0 = ‖A>v‖2 ≥ ‖M>v‖2 − ‖E>v‖2.
From (21) we have ‖M>v‖2 ≥

√
λ. Thus, ‖E>v‖2 ≥

√
λ for all v ∈ S. From the Courant-

Fischer-Weyl min-max theorem, we get σt(E) ≥ . . . ≥ σd+1(E) ≥
√
λ. Combining this with (22)

implies (t− d)λ ≤ 2εt. Finally this implies dcD,`sqε (H) ≥ dc
D,`sq
ε (Ht) ≥

(
1− 2ε

λ

)
t as desired.

D.2. Case of 0-1 loss : Proof of Theorem 22

In order to prove Theorem 22, we use a key fact from Srebro et al. (2004) that provides an upper
bound on the number of sign-matrices with sign-rank below a given bound. Namely, let SM(n, d)
be the number of sign-matrices M ∈ {1,−1}n×n with sign-rank(M) ≤ d.

Lemma 26 (Srebro et al. (2004)) For all n ≥ k ≥ 1, it holds that SM(n, d) ≤
(

8en
d

)2dn.

Proof of Theorem 22 Let P be the distribution over pair of embeddings (ϕ : Xn → Rd, w :
H1-sp
n → Rd)4 that realizes the definition of dcDε (H1-sp

n ) =: d. If we sample h uniformly in H1-sp
n ,

we have
Pr
x∼D

h∼H1-sp
n

[sign(〈w(h), ϕ(x)〉) 6= h(x)] ≤ ε . (23)

On the other hand, consider a random subset S ⊆ Xn of size |S| = n and the hypothesis classH1-sp
n

evaluated only on inputs x ∈ S. A key step in this proof is to show that for γ < 1/2 and c := d/n,

Pr
S

 Pr
x∼S

h∼H1-sp
n

[sign(〈w(h), ϕ(x)〉) 6= h(x)] ≤ γ

 ≤ 2−n
2(1−h(γ)−2c log( 8e

c )−o(1)) . (24)

This follows by a simple counting argument. For any n × n sign-matrix M and γ < 1/2, the
number of sign-matrices A such that Pr(i,j)∼[n]×[n][M(i, j) 6= A(i, j)] ≤ γ is at most

∑γn2

r=0

(
n2

r

)
≤

4. by choosing w : h 7→ arg infw∈Rd L`0-1
D,h(〈w,ϕ(·)〉)
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2(h(γ)+o(1))n2
. From Lemma 26, we have that SM(n, d) ≤

(
8en
d

)2dn
= 22c log( 8e

c )n2
where c :=

d/n. Thus, the number of n × n sign-matrices that agree with some sign-matrix of sign-rank ≤ d

on at least (1− γ) fraction of the entries is at most 2(h(γ)+2c log( 8e
c )+o(1))n2

.
On the other hand, the number of distinct n × n sign-matrices obtainable by sampling S is at

least (2n − n)n ≥ 2(1−o(1))n2
. Thus, (24) follows.

By linearity of expectation, if we partition Xn into subsets S1, . . . , S2n/n each of size n, then in
expectation, the fraction of Si’s for which

Pr
x∼Si

h∼H1-sp
n

[sign(〈w(h), ϕ(x)〉) 6= h(x)] > γ

holds is at least 1−2−n
2(1−h(γ)−2c log( 8e

c )−o(1)). In particular, we can fix such a partition for which
this happens. And for such a partition, we get that,

Pr
x∼D

h∼H1-sp
n

[sign(〈w(h), ϕ(x)〉) 6= h(x)] = Pr
i

Pr
x∼Si

h∼H1-sp
n

[sign(〈w(h), ϕ(x)〉) 6= h(x)]

> γ ·
(

1− 2−n
2(1−h(γ)−2c log( 8e

c )−o(1))
)
.

Combining this with (23), we get for any choice of γ that

γ ·
(

1− 2−n
2(1−h(γ)−2c log( 8e

c )−o(1))
)
≤ ε

In particular, if we choose γ = ε/(1− 2−n), we get

2−n
2(1−h(γ)−2c log( 8e

c )−o(1)) ≥ 2−n .

And hence,

2c log

(
8e

c

)
≥ 1− h

(
ε

1− 2−n

)
− 1

n
− on(1) ≥ 1− h(ε)− on(1) .

Thus,

c ≥ 1− h(ε)

4 log(16e/(1− h(ε)))
− on(1) .

This concludes the proof.

Appendix E. Lower Bounds for ReLU Functions : Proof of Theorem 21

Our proof proceeds in a modular fashion: Instead of directly lower bounding minEV-dim for
Hrelu
n,W,B , we prove a lower bound for the class obtained as linear combination of a poly(n) number

of functions inHrelu
n,W,B . Towards this goal, for any classH ⊆ RX , define

κ · H := {κh : h ∈ H} and Hk,A :=

{
k∑
i=1

aihi :
∑
i

a2
i ≤ A and hi ∈ H

}
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Proposition 27 For allH ⊆ RX , all distribution D over X , and parameters κ, k,A,

(i) dc
D,`sq
ε/κ (H) = dc

D,`sq
ε (

√
κ · H) for all t ∈ R

(ii) dc
D,`sq
ε (Hk,A) ≤ dc

D,`sq
ε/kA(H) for all k ∈ N and A ∈ R

Thus, combining the two parts,

dc
D,`sq
ε (Hk,A) ≤ dc

D,`sq
ε (

√
kA · H) (25)

Proof Part (i) follows easily by observing that square loss is quadratic in the scaling of H (and
w ∈ Rd). To establish Part (ii): Let P be the distribution over embeddings ϕ : X → Rd that
realizes the definition of dcD,`sqε/kA(H) =: d. For any ϕ and any g =

∑k
i=1 aihi ∈ Hk,A, we have,

inf
w∈Rd

L`sqD,g(〈w,ϕ(·)〉) =
1

2
inf
w∈Rd

E
x∼D

(
k∑
i=1

aihi(x)− 〈w,ϕ(x)〉

)2

=
1

2
inf

w1,...,wk∈Rd
E
x∼D

(
k∑
i=1

aihi(x)−

〈∑
i

aiwi, ϕ(x)

〉)2

. . . (setting w =
∑
i

aiwi)

≤ k

2
·
k∑
i=1

a2
i · inf

wi∈Rd
E
x∼D

(hi(x)− 〈wi, ϕ(x)〉)2

= k ·
k∑
i=1

a2
i · inf

wi∈Rd
L`sqD,hi(〈wi, ϕ(·)〉)

The proof concludes by taking an expectation over ϕ ∼ P ,

E
ϕ∼P

[
inf
w∈Rd

LD,`sqg (〈w,ϕ(·)〉)
]
≤ k

∑
i

a2
i ·

ε

kA
≤ ε .

Proof of Theorem 21 We will show a lower bound on the SQ-dimension of a class of linear
combinations of ReLU neurons. In order to do, we consider for any odd a, the univariate function

ψa(z) := −1 + [z + a]+ +

a−1∑
i=1

2 · (−1)i · [z + a− 2i]+ − [z − a]+

See Figure 2 for an illustration of this function. We now consider the class

Hzig
n :=

{
ψa(〈w, x〉) : w ∈ Rn, ‖w‖2 = n for a = 6n2 + 1

}
.

The key idea for showing a lower bound on SQ-dimD(Hzig
n ) is the following proposition that can

be inferred5 from Proposition 4.2 in Yehudai and Shamir (2019); we skip the details.

5. Part (i) is verbatim. For Part (ii), we can first infer the desired claim for a fixed u and a random v, and then take an
expectation over u.
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Figure 2: Plot of ψ5 : R→ R

Proposition 28 (Prop 4.2 in Yehudai and Shamir (2019)) There exist constants c, c′ > 0 such
that, for a = 6n2 + 1 and D being the standard n-variate Gaussian distribution,

(i) For all w ∈ Rn with ‖w‖ = n, it holds that ‖ψa(〈w, x〉)‖D ≥ c′.

(ii) For u, v sampled uniformly at random from {w : ‖w‖ = n},

E
u,v

(
E
x∼D

ψa(〈u, x〉)ψa(〈v, x〉)
)2

≤ exp(−cn) .

Thus, if we sample u1, . . . , ut randomly from {w : ‖w‖ = n}, then (via Markov’s inequality and a
union bound) we will have with probability at least 1/2 that,

for all i 6= j :
∣∣Ex∼D ψa(〈ui, x〉)ψa(〈uj , x〉)

∣∣ ≤ t2 · exp(−cn) .

In particular, for t := exp(cn/3)/2 there exist u1, . . . , ut ∈ Rn such that ‖ui‖ = n and all pair-
wise correlations | 〈ψa(〈ui, x〉), ψa(〈uj , x〉)〉D | ≤ exp(−cn/3)/4 ≤ 1/2t. Thus, we get that,
SQ-dimD(Hzig

n ) ≥ exp(Ω(n)). Note however that there is a slight technicality here in that Hzig
n is

not a normalized hypothesis class. But observe that all hypotheses inHzig
n have the same norm ‖·‖D

which is at least c′. Thus, we can make Hzig
n normalized by scaling it by ‖ψa(〈u, ·〉)‖−1

D ≤ 1/c′.
This would increase the correlations by a factor of at most (1/c′)2. Thus, from Corollary 20, we
have that dcD,`sqε (Hzig

n ) ≥ (1− 4ε) exp(Ω(n)).
Observe that every g ∈ Hzig

n can be written as a linear combination of 6n2 + 3 ReLU neurons
of the form [〈w, x〉 + b]+, where ‖w‖ ≤ n and |b| ≤ 6n2 + 1 < 7n2 (where we can simulate the
constant term with w = 0), where each coefficient in the linear combination is at most 2. Thus, in
our notation,Hzig

n ⊆ (Hrelu
n,n,7n2)k,A for k = 6n2 + 3 and A = 4(6n2 + 3). Thus, we get,

exp(Ω(n)) ≤ dc
D,`sq
ε (Hzig

n )

≤ dc
D,`sq
ε ((Hrelu

n,n,7n2)k,A)

≤ dc
D,`sq
ε (

√
kA · Hrelu

n,n,7n2) . . . (from Proposition 27)

≤ dc
D,`sq
ε (Hrelu

n,14n3,98n4)

where the last step uses that κ · Hrelu
n,W,B = Hrelu

n,κW,κB (which follows from the homogeneity of
ReLU). This completes the proof.
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