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Abstract: We propose a joint simulation and real-world learning framework for
mapping navigation instructions and raw first-person observations to continuous
control. Our model estimates the need for environment exploration, predicts the
likelihood of visiting environment positions during execution, and controls the
agent to both explore and visit high-likelihood positions. We introduce Super-
vised Reinforcement Asynchronous Learning (SuReAL). Learning uses both sim-
ulation and real environments without requiring autonomous flight in the physical
environment during training, and combines supervised learning for predicting po-
sitions to visit and reinforcement learning for continuous control. We evaluate our
approach on a natural language instruction-following task with a physical quad-
copter, and demonstrate effective execution and exploration behavior.

Keywords: Natural language understanding; quadcopter; uav; reinforcement
learning; instruction following; observability; simulation; exploration;

1 Introduction

Controlling robotic agents to execute natural language instructions requires addressing perception,
language, planning, and control challenges. The majority of methods addressing this problem fol-
low such a decomposition, where separate components are developed independently and are then
combined together [e.g., 1, 2, 3, 4, 5, 6]. This requires a hard-to-scale engineering intensive process
of designing and working with intermediate representations, including a formal language to repre-
sent natural language meaning. Recent work instead learns intermediate representations, and uses
a single model to address all reasoning challenges [e.g., 7, 8, 9, 10]. So far, this line of work has
mostly focused on pre-specified low-level tasks. In contrast, executing natural language instructions
requires understanding sentence structure, grounding words and phrases to observations, reasoning
about previously unseen tasks, and handling ambiguity and uncertainty.

In this paper, we address the problem of mapping natural language navigation instructions to con-
tinuous control of a quadcopter drone using representation learning. We present a neural network
model to jointly reason about observations, natural language, and robot control, with explicit mod-
eling of the agent’s plan and exploration of the environment. For learning, we introduce Supervised
and Reinforcement Asynchronous Learning (SUREAL), a method for joint training in simulated
and physical environments. Figure 1 illustrates our task and model.

We design our model to reason about partial observability and incomplete knowledge of the environ-
ment in instruction following. We explicitly model observed and unobserved areas, and the agent’s
belief that the goal location implied by the instruction has been observed. During learning, we use
an intrinsic reward to encourage behaviors that increase this belief, and penalize for indicating task
completion while still believing the goal is unobserved.

SUREAL addresses two key learning challenges. First, flying in a physical environment at the scale
needed for our complex learning task is both time-consuming and costly. We mitigate this problem
using a simulated environment. However, in contrast to the common approach of domain transfer
from simulated to physical environments [11, 12], we simultaneously train in both, while not re-
quiring autonomous flight in the physical environment during training. Second, as each example
requires a human instruction, it is prohibitively expensive to collect language data at the scale re-
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Figure 1: An illustration of our task and model. Correct execution of the instruction requires rec-
ognizing objects (e.g., blue bale), inferring a path (e.g., to turn to the right after the blue bale), and
generating the commands to steer the quadcopter and stop at the goal location. The model input at
time t is the instruction u, a first-person RGB observation It, and a pose estimate Pt. The model has
two stages: predicting the probability of visiting positions during execution and generating actions.
Overhead View
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Figure 2: Predicted visitation distributions as the instruction execution progresses (left-to-right),
trajectory in red and goal in green, for the example from Figure 1. The green bar shows the agent’s
belief the goal has not been observed yet. A video of the execution and intermediate representations
is available at https://youtu.be/PLdsNPE4Gz4.

quired for representation learning [13, 14]. This is unlike tasks where data can be collected without
human interaction. We combine supervised and reinforcement learning (RL); the first to best use the
limited language data, and the second to effectively leverage experience.

We evaluate our approach with a navigation task, where a quadcopter drone flies between landmarks
following natural language instructions. We modify an existing natural language dataset [15] to
create a new benchmark with long instructions, complex trajectories, and observability challenges.
We evaluate using both automated metrics and human judgements of semantic correctness. To the
best of our knowledge, this is the first demonstration of a physical quadcopter system that follows
natural language instructions by mapping raw first-person images and pose estimates to continuous
control. Our code, data, and demo videos are available at https://github.com/lil-lab/drif.

2 Technical Overview

Task Our goal is to map natural language navigation instructions to continuous control of a quad-
copter drone. The agent behavior is determined by a velocity controller setpoint ρ = (v, ω), where
v ∈ R is a forward velocity and ω ∈ R is a yaw rate. The model generates actions at fixed inter-
vals. An action is either the task completion action STOP or a setpoint update (v, ω) ∈ R2. Given
a setpoint update at = (vt, ωt) at time t, we fix the controller setpoint ρ = (vt, ωt) that is main-
tained between actions. Given a start state s1 and an instruction u, an execution Ξ of length T is a
sequence ⟨(s1, a1), . . . , (sT , aT )⟩, where st is the state at time t, at<T ∈ R2 are setpoint updates,
and aT = STOP. The state includes the quadcopter pose, internal state, and all landmark locations.

Model We assume access to raw first-person monocular observations and pose estimates. The agent
does not have access to the world state. At time t, the agent observes the agent context ct =
(u, I1, · · · , It, P1, · · ·Pt), where u is the instruction and Ii and Pi are monocular first-person RGB
images and 6-DOF agent poses observed at time i. We base our model on the Position Visitation
Network [PVN; 16] architecture, and introduce mechanisms for reasoning about observability and
exploration and learning across simulated and real environments. The model operates in two stages:
casting planning as predicting distributions over world positions indicating the probability of visiting
a position during execution, and generating actions to visit high probability positions.

Learning We train jointly in simulated and physical environments. We assume access to a simulator
and demonstration sets in both environments, DR in the physical environment and DS in the simula-
tion. We do not interact with the physical environment during training. Each dataset includes ND

examples {(u(i),Ξ(i))}ND

i=1 , where D ∈ {R, S}, u(i) is an instruction, and Ξ(i) is a demonstration
execution. We do not require the datasets to be aligned or provide demonstrations for the same set
of instructions. We propose SUREAL, a learning approach that concurrently trains the two model
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stages in two separate processes. The planning stage is trained with supervised learning, while the
action generation stage is trained with RL. The two processes exchange data and parameters. The
trajectories collected during RL are added to the dataset used for supervised learning, and the plan-
ning stage parameters are periodically transferred to the RL process training the action generation
stage. This allows the action generator to learn to execute the plans predicted by the planning stage,
which itself is trained using on-policy observations collected from the action generator.

Evaluation We evaluate on a test set of M examples {(u(i), s(i)1 ,Ξ(i))}Mi=1, where u(i) is an in-
struction, s(i)1 is a start state, and Ξ(i) is a human demonstration. We use human evaluation to verify
the generated trajectories are semantically correct with regard to the instruction. We also use au-
tomated metrics. We consider the task successful if the agent stops within a predefined Euclidean
distance of the final position in Ξ(i). We evaluate the quality of generating the trajectory following
the instruction using earth mover’s distance between Ξ(i) and executed trajectories.

3 Related Work

Natural language instruction following has been extensively studied using hand-engineered sym-
bolic intermediate representations of world state or instruction semantics with physical robots [1, 2,
3, 4, 17, 5, 18, 6, 19] and simulated agents [20, 21, 22, 23, 24, 25]. In contrast, we study trading off
the symbolic representation design with representation learning from demonstrations.

Representation learning has been studied for executing specific tasks such as grasping [7, 8, 10],
dexterous manipulation [26, 27], or continuous flight [9]. Our aim is to execute navigation tasks
specified in natural language, including new tasks at test time. This problem was addressed with
representation learning in discrete simulated environments [28, 29, 30, 15, 31, 32], and more re-
cently with continuous simulations [16]. However, these methods were not demonstrated on phys-
ical robots. A host of problems combine to make this challenging, including grounding natural
language to constantly changing observations, robustly bridging the gap between relatively high-
level instructions to continuous control, and learning with limited language data and the high costs
of robot usage.

Our model is based on the Position Visitation Network [16] architecture that incorporates geometric
computation to represent language and observations in learned spatial maps. This approach is related
to neural network models that construct maps [33, 34, 35, 36] or perform planning [37].

Our approach is aimed at a partial observability scenario and does not assume access to the complete
system state. Understanding the instruction often requires identifying mentioned entities that are not
initially visible. This requires exploration during task execution. Nyga et al. [38] studied modeling
incomplete information in instructions with a modular approach. In contrast, we jointly learn to
infer the absence of necessary information and to remedy it via exploration.

4 Model

We model the policy π with a neural network. At time t, given the agent context ct, the policy outputs
a stopping probability pSTOPt , a forward velocity vt, and an angular velocity ωt. We decompose the
architecture to two stages π(ct) = g(f(ct)), where f predicts the probability of visiting positions
in the environment and g generates the actions to visit high probability positions. The position
visitation probabilities are continuously updated during execution to incorporate the most recent
observations, and past actions directly affect the information available for future decisions. Our
model is based on the PVN architecture [16]. We introduce several improvements, including explicit
modeling of observability in both stages. Appendix B contains further model implementation details,
including a detailed list of our improvements. Figure 3 illustrates our model for an example input.

Stage 1: Visitation Distribution Prediction At time t, the first stage f(·) generates two probabil-
ity distributions: a trajectory-visitation distribution dpt and a goal-visitation distribution dgt . Both
distributions assign probabilities to positions Pobs ∪ {poob}, where Pobs is the set of positions ob-
served up to time t and poob represents all yet-unobserved positions. The set Pobs is a discretized
approximation of the continuous environment. This approximation enables efficient computation
of the visitation distributions [16]. The trajectory-visitation distribution dp assigns high probability
to positions the agent should go through during execution, and the goal-visitation distribution dg
puts high probability on positions where the agent should STOP to complete its execution. We add
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Figure 3: Model architecture illustration. The first stage generates a semantic map SW , a grounding
map RW , observability masks MW

t and BW
t , and visitation distributions dpt and dgt . The red and

yellow arrows indicate the rock and banana locations. We show all intermediate representations
at timestep 17 out of 37, after most of the environment has been observed. Figure 2 shows the
visitation distributions for other timesteps, and Figure 8 in the appendix shows all timesteps. An
animated version of this figure is available at https://youtu.be/UuZtSl6ckTk.

the special position poob to PVN to capture probability mass that should otherwise be assigned to
positions not yet observed, for example when the goal position has not been observed yet.

The first stage combines a learned neural network and differentiable deterministic computations.
The input instruction u is mapped to a vector u using a recurrent neural network (RNN). The in-
put image It is mapped to a feature map FCt that captures spatial and semantic information using a
convolutional neural network (CNN). The feature map FCt is processed using a deterministic seman-
tic mapping process [34] using a pinhole camera model and the agent pose Pt to project FCt onto
the environment ground at zero elevation. The projected features are deterministically accumulated
from previous timesteps to create a semantic map SWt . SWt represents each position with a learned
feature vector aggregated from all past observations of that position. For example, in Figure 3, the
banana and the white bush can be identified in the raw image features FCt and the projected semantic
map SWt , where their representations are identical. We generate a language-conditioned grounding
map RW

t by creating convolutional filters using the text representation u and filtering SWt . The
two maps aim to provide different representation: SWt aims for a language-agnostic environment
representation and RW

t is intended to focus on the objects mentioned in the instruction. We use
auxiliary objectives (Appendix C.4) to optimize each map to contain the intended information. We
predict the two distributions using LINGUNET [15], a language-conditioned variant of the UNET
image reconstruction architecture [39], which takes as input the learned maps, SWt and RW

t , and the
instruction representation u. Appendix B.1 provides a detailed description of this architecture.

We add two outputs to the original PVN design: an observability mask MW
t and a boundary mask

BW
t . Both are computed deterministically given the agent pose estimate and the camera parameters,

and are intended to aid exploration of the environment during instruction execution. MW
t assigns

1 to each position p ∈ P in the environment if p has been observed by the agent’s first-person
camera by time t, or 0 otherwise. BW

t assigns 1 to environment boundaries and 0 to other positions.
Together, the masks provide information about what parts of the environment remain to be explored.

Stage 2: Action Generation The second stage g(·) is a control network that receives four inputs: a
trajectory-visitation distribution dpt , a goal-visitation visitation distribution dgt , an observability mask
MW

t , and a boundary mask BW
t . The four inputs are rotated to the current egocentric agent reference

frame, and used to generate the output velocities using a learned neural network. Appendix B.2
describes the network architecture. The velocities are generated to visit high probability positions
according to dp, and the STOP probability is predicted to stop in a likely position according to
dg . In the figure, dpt shows the curved flight path, and dgt identifies the goal right of the banana.
Our addition of the two masks and the special position poob enables generating actions to explore
the environment to reduce dp(poob) and dg(poob). Figure 2 visualizes dg(poob) with a green bar,
showing how it starts high, and decreases once the goal is observed at step t = 15.

5 Learning

We learn two sets of parameters: θ for the first stage f(·) and ϕ for the second stage g(·). We use a
simulation for all autonomous flight during learning, and jointly train for both the simulation and the
physical environment. This includes training a simulation-specific first stage fS(·) with additional
parameters θS. The second stage model g(·) is used in both environments. We assume access to
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Figure 4: Learning architecture. Stages 1 and 2 of our model are concurrently trained in processes
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functions during training only. The white blocks form the final learned policy. We learn from inputs
from simulation and real world environments, by switching between the two CNN modules.

sets of training examples DS = {(u(i),Ξ(i))}NS

i=1 for the simulation and DR = {(u(i),Ξ(i))}NR

i=1 for
the physical environment, where u(i) are instructions and Ξ(i) are demonstration executions. The
training examples are not spatially or temporally aligned between domains.

Our learning algorithm, Supervised and Reinforcement Asynchronous Learning (SUREAL), uses
two concurrent asynchronous processes. Each process only updates the parameters of one stage.
Process A uses supervised learning to estimate Stage 1 parameters for both environments: θ for the
physical environment model f(·) and θS for fS(·). We use both DR and DS to update the model
parameters. We use RL in Process B to learn the parameters ϕ of the second stage g(·) using an
intrinsic reward function. We start learning using the provided demonstrations in DS and period-
ically replace execution trajectories with RL rollouts from Process B, keeping a single execution
per instruction at any time. We warm-start by running Process A for KB

iter iterations before launch-
ing Process B to make sure that Process B always receives as input sensible visitation predictions
instead of noise. The model parameters are periodically synchronized by copying the simulation
parameters of Stage 1 from Process A to B. For learning, we use a learning architecture (Figure 4)
that extends our model to process simulation observations and adds a discriminator that encourages
learning representations that are invariant to the type of visual input.

Process A: Supervised Learning for Visitation Prediction We train f(·) and fS(·) to: (a) min-
imize the KL-divergence between the predicted visitation distributions and reference distributions
generated from the demonstrations, and (b) learn domain invariant visual representations that allow
sharing of instruction grounding and execution between the two environments. We use demon-
stration executions in the real environment DR and in the simulated environment DS. The loss for
executions from the physical environment ΞR and the simulation ΞS is:

LSL(Ξ
R,ΞS) =

1

|ΞR|
∑

c∈C(ΞR)

DKL(f(c)∥f∗(c)) +
1

|ΞS|
∑

c∈C(ΞS)

DKL(fS(c)∥f∗(c)) + LW (ΞR,ΞS) , (1)

where C(Ξ) is the sequence of contexts observed by the agent during an execution Ξ and f∗(c) cre-
ates the gold-standard visitation distribution examples (i.e., Stage 1 outputs) for a context c from the
training data. The term LW (ΞR,ΞS) aims to make the feature representation FC indistinguishable
between real and simulated images. This allows the rest of the model to use either simulated or
real observations interchangeably. LW (ΞR,ΞS) is the approximated empirical Wasserstein distance
between the visual feature distributions extracted from simulated and real agent contexts:

LW (ΞR,ΞS) =
1

|ΞS|
∑
ct∈ΞS

h(CNNS(It))−
1

|ΞR|
∑
ct∈ΞR

h(CNN(It)) ,

where h is a Lipschitz continuous neural network discriminator with parameters ψ that we train to
output high values for simulated features and low values for real features [40, 41]. It is the t-th
image in the agent context ct. The discriminator architecture is described in Appendix C.1.

Algorithm 1 shows the supervised optimization procedure. We alternate between updating the dis-
criminator parameters ψ, and the first stage model parameters θ and θS. At every iteration, we
perform KSL

discr gradient updates of ψ to maximize the Wasserstein loss LW (lines 3–7), and then
perform a single gradient update to θ and θS to minimize supervised learning loss LSL (lines 8–10).
We send the simulation-specific parameters θS to the RL process every KSL

iter iterations (line 12).

Process B: Reinforcement Learning for Action Generation We train the action generator g(·)
using RL with an intrinsic reward. We use Proximal Policy Optimization [PPO; 42] to maximize the
expected return. The learner has no access to an external task reward, but instead computes a reward
r(·) from how well the agent follows the visitation distributions generated by the first stage:

r(ct, at) = λvrv(ct, at) + λsrs(ct, at) + λere(ct, at)− λara(at)− λstep ,
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Algorithm 1 Process A: Supervised Learning
Input: First stage models f and fS with parameters

θ and θS, discriminator h with parameters ψ,
datasets of simulated and physical environment
trajectories DS and DR.

Definitions: DS and fBS are shared with Process B.
1: while Process B has not finished do
2: for i = 1, . . . ,KSL

iter do
3: for j = 1, . . . ,KSL

discr do
4: » Sample trajectories
5: ΞR ∼ DR and ΞS ∼ DS

6: » Update discriminator to maximize
Wasserstein distance

7: ψ ← ADAM(∇ψ − LW (ΞR,ΞS))

8: ΞR ∼ DR and ΞS ∼ DS

9: » Update first stage parameters
10: (θS, θ)← ADAM(∇θS,θLSL(Ξ

R,ΞS))

11: » Send fS to Process B if it is running
12: fBS ← fS
13: if i = KB

iter then
14: Launch Process B (Algorithm 2)
15: return f

Algorithm 2 Process B: Reinforcement Learning

Input: Simulation dataset DS, second-stage model g with
parameters ϕ, value function V with parameters υ,
first-stage simulation model fS.

Definitions: MERGE(D, E) is a set of sentence-execution
pairs including all instructions from D, where each
instruction is paired with an execution from E, or D
if not in E. DS and fBS are shared with Process A.

1: for e = 1, . . . ,KRL
epoch do

2: » Get the most recent update from Process A
3: fS ← fBS
4: for i = 1, . . . ,KRL

iter do
5: » Sample simulator executions of N instructions
6: Ξ̂(1), ..., Ξ̂(N) ∼ g(fS(·))
7: for j = 1, . . . ,KRL

steps do
8: » Sample state-action-return tuples and update
9: X ∼ Ξ̂1, ..., Ξ̂N

10: ϕ, υ ← ADAM(∇ϕ,υLPPO(X,V ))

11: » Update executions to share with Process A
12: DS ← MERGE(DS, {Ξ̂1, . . . , Ξ̂N})
13: return g

where ct is the agent context at time t and at is the action. The reward r(·) is a weighted combination
of five terms. The visitation reward rv(·) is the per-timestep reduction in earth mover’s distance
between the predicted distribution dpt and an empirical distribution that assigns equal probability
to every position visited until time t. This smooth and dense reward encourages g(·) to follow the
visitation distributions predicted by f(·). The stop reward rs(·) is only non-zero for STOP, when it
is the earth mover’s distance between the predicted goal distribution dgt and an empirical stopping
distribution that assigns the full probability mass to the stop position in the policy execution. The
exploration reward re(·) combines a positive reward for reducing the belief that the goal has not been
observed yet (i.e., reducing dgt (p

oob)) and a negative reward proportional to the probability that the
goal position is unobserved according to dgt (p

oob). The action reward ra(·) penalizes actions outside
of the controller range. Finally, λstep is negative per-step reward to encourage efficient execution.
We provide the reward implementation details in Appendix C.3.

Algorithm 2 shows the RL procedure. At every iteration, we collect N simulation executions
Ξ̂(1), ..., Ξ̂(N) using the policy g(fS(·)) (line 6). To sample setpoint updates we treat the existing
output as the mean of a normal distribution, add variance prediction, and sample the two velocities
from the predicted normal distributions. We perform KRL

steps PPO updates using the return and value
estimates (lines 7–10). For every update, we sample state-action-return triplets from the collected
trajectories, compute the PPO loss LPPO(X,V ), update parameters ϕ, and update the parameters υ
of the value function V . We pass the sampled executions to Process A to allow the model to learn
to predict the visitation distributions in a way that is robust to the agent actions (line 12).

6 Experimental Setup

We provide the complete implementation and experimental setup details in Appendix E.

Environment and Data We use an Intel Aero quadcopter with a PX4 flight controller, and a Vicon
motion capture system for pose estimates. For simulation, we use the quadcopter simulator from
Blukis et al. [34] that is based on Microsoft AirSim [43]. The environment size is 4.7x4.7m. We
randomly create environments with 5–8 landmarks, selected randomly out of a set of 15. Figure 1
shows the real environment. We follow the crowdsourcing setup of Misra et al. [15] to collect 997
paragraphs with 4,557 segments. We use 3,245/640/672 for training, development, and testing. We
expand this data by concatenating consecutive segments to create more challenging instructions,
including with exploration challenges [32]. Figure 1 shows an instruction made of two consecu-
tive segments. The simulator dataset DS includes oracle demonstrations of all instructions, while
the real-world dataset DR includes only 402 single-segment demonstrations. For evaluation in the
physical environment, we sample 20 test paragraphs consisting of 93 single-segment and 73 two-
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Figure 5: Human evaluation results on the physical quadcopter on two-segment data. We plot the
Likert scores using Gantt charts of score frequencies. The black numbers indicate average scores.
segment instructions. We use both single and concatenated instructions for training, and test on each
set separately. We also use the original Misra et al. [15] data as additional simulation training data.
Appendix D provides data statistics and further details.

Evaluation We use human judgements to evaluate if the agent’s final position is correct with regard
to the instruction (goal score) and how well the agent followed the path described by the instruction
(path score). We present MTurk workers with an instruction and a top-down animation of the agent
behavior, and ask for a 5-point Likert-scale score for the final position and trajectory correctness.
We obtain five judgements per example per system. We also automatically measure (a) SR: success
rate of stopping within 47cm of the correct position; and (b) EMD: earth mover’s distance in meters
between the agent and demonstration trajectories. Appendix F provides more evaluation details.

Systems We compare our approach, PVN2-SUREAL, with three non-learning and two learning
baselines: (1) STOP: output the STOP action without movement; (2) AVERAGE: take the average
action for the average number of steps; (3) ORACLE: a hand-crafted upper-bound expert policy that
has access to the ground truth human demonstration; (4) PVN-BC the Blukis et al. [16] PVN model
trained with behavior cloning; and (5) PVN2-BC: our model trained with behavior cloning. The
two behavior cloning systems require access to an oracle that provides velocity command output
labels, in addition to demonstration data. SUREAL uses demonstrations, but does not require the
oracle during learning. None of the learned systems use any oracle data at test time. All learned
systems use the same training data DS and DR, and include the domain-adaptation loss (Equation 1).

7 Results

Figure 5 shows human evaluation Likert scores. Our model receives five-point scores 39.72% of
the time for getting the goal right, and 37.8% of the time for the path. This is a 34.9% and 24.8%
relative improvement compared to PVN2-BC, the next best system. This demonstrates the benefits
of modeling observability, using SUREAL for training-time exploration, and using a reward function
that trades-off task performance and test-time exploration. The AVERAGE baseline received only
15.8% 5-point ratings in both path score and goal score, demonstrating the task difficulty.

We study how well our model addresses observability and exploration challenges. Figure 6 shows
human path score judgements split to tasks where the goal is visible from the agent’s first-person
view at start position (34 examples) and those where it is not and exploration is required (38 ex-
amples). Our approach outperforms the baselines in cases requiring exploration, but it is slightly
outperformed by PVN2-BC in simple examples. This could be explained by our agent attempting
to explore the environment in cases where it is not necessary.

Table 1 shows the automated metrics for both environments. We observe that the success rate (SR)
measure is sensitive to the threshold selection, and correct executions are often considered as wrong;
PVN2-SUREAL gets 30.6% SR compared to a perfect human score 39.72% of the time. This
highlights the need for human evaluation, and must be considered when interpreting the SR results.
We generally find EMD more reliable, although it also does not account for semantic correctness.

Comparing to PVN2-BC, our approach performs better on the real environment demonstrating the
benefit of SUREAL. In simulation, we observe better EMD, but worse SR. Qualitatively, we observe
our approach often recovers the correct overall trajectory, with a slightly imprecise stopping location
due to instruction ambiguity or control challenges. Such partial correctness is not captured by SR.
Comparing PVN2-BC and PVN-BC, we see the benefit of modeling observability. SUREAL
further improves upon PVN2-BC, by learning to explore unobserved locations at test-time.

Comparing our approach between simulated and real environments, we see an absolute performance
degradation of 2.7% SR and 0.1 EMD from simulation to the real environment. This highlights the
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Method 1-segment 2-segment
SR EMD SR EMD

Test Results

R
ea

l
AVERAGE 37.0 0.42 16.7 0.71
PVN-BC 48.9 0.42 20.8 0.61
PVN2-BC 52.2 0.37 29.2 0.59
PVN2-SUREAL 56.5 0.34 30.6 0.52
ORACLE 100.0 0.17 91.7 0.23

Si
m

AVERAGE 29.5 0.53 8.7 0.80
PVN-BC 64.1 0.31 37.5 0.59
PVN2-BC 55.4 0.34 34.7 0.58
PVN2-SUREAL 53.3 0.30 33.3 0.42
ORACLE 100.0 0.13 98.6 0.17

Development Results

R
ea

l

PVN2-SUREAL 54.8 0.32 31.0 0.50
PVN2-SUREAL-NOU 53.8 0.30 14.3 0.56
PVN2-SUREAL50real 60.6 0.29 34.5 0.44
PVN2-SUREAL10real 46.2 0.33 17.9 0.56

Si
m PVN2-SUREAL 48.1 0.29 39.3 0.40

PVN2-SUREAL-NOU 53.8 0.28 27.4 0.50
PVN2-SUREAL-NOI 56.2 0.28 25.9 0.45

Table 1: Automated evaluation test and development results.
SR: success rate (%) and EMD: earth-mover’s distance in
meters between agent and demonstration trajectories.

Figure 6: Human evaluation path
score frequencies (Figure 5) decom-
posed by initially unobservable (top)
or observable (bottom) goal location.

remaining challenges of visual domain transfer and complex flight dynamics. The flight dynamics
challenges are also visible in the ORACLE performance degradation between the two environments.

We study several ablations. First, we quantify the effect of using a smaller number of real-world
training demonstrations. We randomly select subsets of demonstrations, with the constraint that
all objects are visually represented. We find that using only half (200) of the physical demon-
strations does not appear to reduce performance (PVN2-SUREAL50real), while using only 10%
(40), drastically hurts real-world performance (PVN2-SUREAL10real). This shows that the learn-
ing method is successfully leveraging real-world data to improve performance, while requiring
relatively modest amounts of data. We also study performance without access to the instruction
(PVN2-SUREAL-NOU), and with using a blank input image (PVN2-SUREAL-NOI). The rela-
tively high SR of these ablations on 1-segment instructions highlights the inherent bias in simple
trajectories. The 2-segment data, which is our main focus, is much more robust to such biases. Ap-
pendix G provides more automatic evaluation results, including additional ablations and results on
the original data of Misra et al. [15].

8 Discussion
We study the problem of mapping natural language instructions to continuous control of a physical
quadcopter drone. Our two-stage model decomposition allows some level of re-use and modularity.
For example, a trained Stage 1 can be re-used with different robot types. This decomposition and the
interpretability it enables also create limitations, including limited sensory input for deciding about
control actions given the visitation distributions. These are both important topics for future study.

Our learning method, SUREAL, uses both annotated demonstration trajectories and a reward func-
tion. In this work, we assume demonstration trajectories were generated with an expert policy.
However, SUREAL does not necessarily require the initial demonstrations to come from a reason-
able policy, as long as we have access to the gold visitation distributions, which are easier to get
compared to oracle actions. For example, given an initial policy that immediately stops instead of
demonstrations, we will train Stage 1 to predict the given visitation distributions and Stage 2 using
the intrinsic reward. Studying this empirically is an important direction for future work.

Finally, our environment provides a strong testbed for our system-building effort and the transition
from the simulation to the real world. However, various problems are not well represented, such as
reasoning about obstacles, raising important directions for future work. While we do not require the
simulation to accurately reflect the real world, studying scenarios with stronger difference between
the two is another important future direction. Our work also points towards the need for better
automatic evaluation for instruction following, or, alternatively, wide adoption of human evaluation.
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once near the rear of the 

gorilla turn right and 

head towards the rock 

stopping once near it

fly forward past the 

airplane to your left 

continue flying forward 

towards a mushroom

and then move slight left 

to reach the front of the 

plant

and then turn slight 

right to travel towards 

the stone but

fly forward to the cone 

and then turn right and 

fly down towards the 

stump

and fly towards the 

gorilla and pass the 

gorilla on the left side

at the stump turn right 

face the plant and fly 

forward towards it

Figure 7: Instruction executions from the development set on the physical quadcopter. For each
example, the figure shows (from the left) the input instruction, the initial image that the agent ob-
serves, the initial visitation distributions overlaid on the top-down view, visitation distributions at
the midpoint of the trajectory, and the final visitation distributions when outputting the STOP action.
The green bar on the lower-right corner of each distribution plot shows the predicted probability that
the goal is not yet observed. The blue arrow indicates the agent pose.

A Execution Examples on Real Quadcopter

Examples of Different Instruction Executions Figure 7 shows a number of instruction-following
executions collected on the real drone, showing successes and some typical failures.

Visualization of Intermediate Representations Figure 8 shows the intermediate representations
and visitation predictions over time during instruction execution for the examples used in Figures 1-
3, illustrating the model reasoning. The model is able to output the STOP action to stop on the right
side of the banana, even after the banana has disappeared from the first-person view. This demon-
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Figure 8: Illustration of changes in the intermediate representations during an instruction execution,
showing how information is accumulated in the semantic maps over time, and how that affects the
predicted visitation distributions. We show the instruction from Figures 1-3. From top to bottom,
representations are shown for timesteps 0, 10, 15, 20, 25, 30, and 37 (the final timestep). From left
to right, we show the input image It, first-person features FCt , semantic map SWt , grounding map
RW
t , goal and position visitation distributions dgt and dpt , observability mask MW

t and boundary
mask BW

t , and the overhead view of the environment. The agent position is indicated with a blue
arrow in the overhead view. The agent does not have access to the overhead view, which is provided
for illustration purposes only.

strates the advantages of using an explicit spatial map aggregated over time instead, for example, a
learned hidden state vector representing the agent state.

B Model Details

B.1 Stage 1: Visitation Distribution Prediction

The first-stage model is largely based on the Position Visitation Network, except for several im-
provements we introduce:

• Computing observability and boundary masks MW and BW that are used to track unex-
plored space and environment boundaries.
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Figure 9: The 13-layer ResNet architecture used in PVN and PVN2 networks (figure adapted
from Blukis et al. [34]).

• Introducing a placeholder position poob that represents all unobserved positions in the en-
vironment for use in the visitation distributions.

• Modification to the LINGUNET architecture to support outputting a probability score for
the unobserved placeholder position, in addition to the 2D distributions over environment
positions.

• Predicting 2D probability distributions only over observed locations in the environment.

• Minor hyperparameter changes to better support the longer instructions.

The description in Section B.1 has been taken from Blukis et al. [16]. We present it here for
reference and completeness, with minor modifications to highlight technical differences.

B.1.1 Instruction Representation

We represent the instruction u = ⟨u1, · · ·ul⟩ as an embedded vector u. We generate a series of
hidden states hi = LSTM(ϕ(ui),hi−1), i = 1 . . . l, where LSTM is a Long-Short Term Mem-
ory recurrent neural network (RNN) and ϕ is a learned word-embedding function. The instruction
embedding is the last hidden state u = hl. This part is replicated as is from Blukis et al. [16].

B.1.2 Semantic Mapping

We construct the semantic map using the method of Blukis et al. [34]. The full details of the process
are specified in the original paper. Roughly speaking, the semantic mapping process includes three
steps: feature extraction, projection, and accumulation. At timestep t, we process the currently
observed image It using a 13-layer residual neural network CNN (Figure 9) to generate a feature
map FCt = CNN(It) of size Wf × Hf × C. We compute a feature map in the world coordinate
frame FWt by projecting FCt with a pinhole camera model onto the ground plane at elevation zero.

The semantic map of the environment SWt at time t is an integration of FWt and SWt−1, the map from
the previous timestep. The integration equation is given in Section 4c in Blukis et al. [34]. This
process generates a tensor SWt of size Ww × Hw × C that represents a map, where each location
[SWt ](x,y) is aC-dimensional feature vector computed from all past observations I<t, each processed
to learned features FC<t and projected onto the environment ground in the world frame at coordinates
(x, y). This map maintains a learned high-level representation for every world location (x, y) that
has been visible in any of the previously observed images. We define the world coordinate frame
using the agent starting pose P1; the agent start position is the coordinates (0, 0), and the positive
direction of the x-axis is along the agent heading. This gives consistent meaning to spatial language,
such as turn left or pass on the left side of.

B.1.3 Grounding

We create the grounding map RW
t with a 1×1 convolution RW

t = SWt ⊛ KG. The kernel KG

is computed using a learned linear transformation KG = WGu + bG, where u is the instruction
embedding. The grounding map RW

t has the same height and width as SWt , and during training we
optimize the parameters so it captures the objects mentioned in the instruction u (Section C.4).
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Figure 10: The LINGUNET architecture, showing the additional output head that was added as part
of the PVN2 model. LINGUNET outputs raw scores, which we normalize over the domain of each
distribution. This figure is adapted from Blukis et al. [16].

B.1.4 LINGUNET and Visitation Distributions

The following paragraphs are adapted from Blukis et al. [16] and formally define the LINGUNET
architecture with our modifications. Figure 10 illustrates the architecture.

LINGUNET uses a series of convolution and scaling operations. The input map F0 = [SWt ,R
W
t ]

is processed through L cascaded convolutional layers to generate a sequence of feature maps Fk =
CNND

k (Fk−1), k = 1 . . . L.1 Each Fk is filtered with a 1×1 convolution with weights Kk. The
kernels Kk are computed from the instruction embedding u using a learned linear transformation
Kk = Wu

ku+buk . This generates l language-conditioned feature maps Gk = Fk⊛Kk, k = 1 . . . L.
A series of L upscale and convolution operations computes L feature maps of increasing size:

Hk =

{
UPSCALE(CNNU

k ([Hk+1,Gk])), if 1 ≤ k ≤ L− 1
UPSCALE(CNNU

k (Gk)), if k = L
,

We modify the original LINGUNET design by adding an output head that outputs a vector h:
h = AVGPOOL(CNNh(H2)) ,

where AVGPOOL takes averages across the dimensions.

The output of LINGUNET is a tuple (H1, h), where H1 is of size Ww ×Hw × 2 and h is a vector of
length 2. This output is used to compute two distributions, and can be increased if more distribution
are predicted, such as in Suhr et al. [44]. We use an additional normalization step to produce the
position visitation and goal visitation distributions given (H1, h).

B.2 Control Network: Action Generation and Value Function

Figure 11 shows the architecture of the control network for the second action generation stage of the
model. The value function architecture is identical to the action generator and also uses the control
network, except that it has only a single output. The value function does not share the parameters
with the action generator.

The control network takes as input the trajectory and stopping visitation distributions dpt and dgt ,
as well as the observability and boundary masks MW

t and BW
t . The distributions dpt and dgt are

represented as 2D square-shaped images over environment locations, where unobserved locations
have a probability of zero. Additional scalars dp(poob) and dg(poob) define the probability mass
outside of any observed environment location.

The visitation distributions dpt and dgt are first rotated to the agent’s current ego-centric reference
frame, concatenated along the channel dimension, and then processed with a convolutional neural
network. The output is flattened into a vector. The masks BW

t and MW
t are processed in an analo-

gous way to the visitation distributions dpt and dgt , and the output is also flattened into a vector. The
scalars dp(poob) and dg(poob) are embedded into fixed-length vectors:

1[·, ·] denotes concatenation along the channel dimension.
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Figure 11: Control network architecture.
EMBEDdg(poob) = q1 · d

g(poob)− q1 · (1− d
g(poob))

EMBEDdp(poob) = q2 · d
p(poob)− q2 · (1− d

p(poob)) ,

where q(·) are random fixed-length vectors. We do not tune q(·).

The resulting vector representations for the visitation distributions, out-of-bounds probabilities, and
masks are concatenated and processed with a three-layer multi-layer perceptron (MLP). The output
are five scalars. Two of the scalars are predicted forward and angular velocities vt and ωt, one scalar
is the logit of the stopping probability, and two scalars are standard deviations used during PPO
training to define a Gaussian probability distribution over actions.

B.3 Coordinate Frames of Reference

At the start of each task, we define the world reference frame according to the agent’s starting po-
sition, with x and y axis pointing forward and left respectively, according to the agent’s position.
The maps are represented with the origin at the center. Throughout the instruction execution, this
reference frame remains fixed. Within the first model stage, the semantic and grounding maps,
observability and boundary masks, and visitation distributions are all represented in the world refer-
ence frame. At the input to second stage, we transform the visitation distributions, and observability
and boundary masks to the agent’s current egocentric frame of reference. This allows the model to
focus on generating velocities to follow the high probability regions, without having to reason about
coordinate transformations.

C Additional Learning Details

C.1 Discriminator Architecture and Training

Figure 12 shows the neural network architecture of our discriminator h. The Wasserstein distance
estimation procedure from Shen et al. [40] requires a discriminator that is K-Lipschitz continuous.
We guarantee that our discriminator meets this requirement by clamping the discriminator parame-
ters ψ to a range of [−Tψ;Tψ] after every gradient update [40].

C.2 Return Definition

The expected return Rt(Ξ̂) is defined as:
Rt(Ξ̂) =

∑
i≥t,(si,ai)∈Ξ̂,
ci=C(si)

γi−tr(ci, ai) ,

where Ξ̂ is a policy execution, C(si) is the agent context observed at state si, γ is a discount factor,
and r(·) is the intrinsic reward. The reward does not depend on any external state information, but
only on the agent context and visitation predictions.

C.3 Reward Function

Section 5 provides the high level description and motivation of the intrinsic reward function.

Visitation Reward We design the visitation reward to reward policy executions Ξ̂ that closely
match the predicted visitation distribution dp. An obvious choice would be the probability of the
trajectory under independence assumptions P (Ξ̂) ≈

∏
p∈Ξ̂ d

p
t (p). According to this measurement,

if dpt (p) = 0 for any p ∈ Ξ̂, then P (Ξ̂) = 0. This would lead to a reward of zero as soon as the pol-
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CONV2D + LEAKYRELU
Real Features    or    Sim Features

CONV2D + LEAKYRELUCONV2D + LEAKYRELUCONV2D + LEAKYRELU
FLATTENLINEAR

Domain Score
Figure 12: Our discriminator architecture. The discriminator takes as input a 3D feature map with
two spatial dimensions and one feature dimension. It processes the feature map with a cascade of
four convolutional neural networks with LeakyReLU non-linearities, before processing the output
with a linear neural network layer. The discriminator is trained to output a scalar score that assigns
high values to feature maps from the simulated domain, and low values from the real domain. The
discriminator is used as component in our Wasserstein domain loss LW .

icy makes a mistake, resulting in sparse rewards and slow learning. Instead, we define the visitation
reward in terms of earth mover’s distance that provides a smooth and dense reward. The visitation
reward rv is:

rv(ct, at) = ϕv(ct, at)− ϕv(ct−1, at−1) ,

where ϕv is a reward shaping potential:
ϕv(ct, at) = −EMD(1p∈Ξ, d

p
t (pt | pt ∈ P

obs)) .

EMD is the earth mover’s distance in Euclidean R2 space, 1p∈Ξ is a probability distribution that
assigns equal probability to all positions visited thus far, Pobs is the set of positions the agent has
observed so far,2 and dpt (pt | pt ∈ Pobs) is the position visitation distribution over all observed posi-
tions. Intuitively, rv rewards per-timestep reduction in earth mover’s distance between the predicted
visitation distribution and the empirical distribution derived from the agent’s trajectory.

Stop Reward Similar to rv , the stop reward rs is the negative earth mover’s distance between the
conditional predicted goal distribution over all observed environment locations, and the empirical
stop distribution 1p=Ξ̂−1

that assigns unit probability to the agent’s final stopping position.
rs(ct, at) = −1at=STOP · EMD(1p=Ξ̂−1

, dgt (pt | pt ∈ P
obs)) .

Exploration Reward The exploration reward re is:
re(ct, at) = (ϕe(ct, at)− ϕe(ct−1, at−1))− 1at=STOP · dgt (p

oob) , (2)

where:
ϕe(ct, at) = max

t′<t
[1− dgt′(p

oob)] .

The term ϕe reflects the agent’s belief that it has observed the goal location pg . 1− dgt′(p
oob) is the

probability that the goal has been observed before time t′. We take the maximum over past timesteps
to reduce effects of noise from the model output. The second term in Equation 2 penalizes the agent
for stopping while it predicts that the goal is not yet observed.

2We restrict the metric to observed locations on the map, because as discussed in Section 4, all unobserved
locations are represented by a dummy location poob /∈ R2.
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C.4 Auxiliary Objectives

During training, we add an additional auxiliary loss Laux to the supervised learning loss LSL to
ensure that the different modules in the PVN model specialize according to their function. The
auxiliary loss is:

Laux(ct) = Lpercept(ct) + Lground(ct) + Llang(ct) . (3)

The text in the remainder of Section C.4 has been taken from Blukis et al. [16]. We present
it here for reference and completeness.

Object Recognition Loss The object-recognition loss Lpercept ensures the semantic map SWt stores
information about locations and identities of objects. At timestep t, for every object o that is visible
in the first person image It, we classify the feature vector in the position in the semantic map SWt
corresponding to the object location in the world. We use a linear softmax classifier to predict the
object identity given the feature vector. At a given timestep t the classifier loss is:

Lpercept(θ1) =
−1
|OFPV|

∑
o∈OFPV

[ŷolog(yo)] ,

where ŷo is the true class label of the object o and yo is the predicted probability. OFPV is the set of
objects visible in the image It.

Grounding Loss For every object o visible in the first-person image It, we use the feature vector
from the grounding map RW

t corresponding to the object location in the world with a linear softmax
classifier to predict whether the object was mentioned in the instruction u. The objective is:

Lground(θ1) =
−1
|OFPV|

∑
o∈OFPV

[ŷolog(yo) + (1− ŷo)log(1− yo)] ,

where ŷo is a 0/1-valued label indicating whether the object o was mentioned in the instruction and
yo is the corresponding model prediction. OFPV is the set of objects visible in the image It.

Language Loss The instruction-mention auxiliary objective uses a similar classifier to the ground-
ing loss. Given the instruction embedding u, we predict for each of the possible objects whether it
was mentioned in the instruction u. The objective is:

Llang(θ1) =
−1
|O|

∑
o∈OFPV

[ŷolog(yo) + (1− ŷo)log(1− yo)] ,

where ŷo is a 0/1-valued label, same as above.

Automatic Word-object Alignment Extraction In order to infer whether an object o was men-
tioned in the instruction u, we use automatically extracted word-object alignments from the dataset.
Let E(o) be the event that an object o occurs within 15 meters of the human-demonstration trajec-
tory Ξ, let E(τ) be the event that a word type τ occurs in the instruction u, and let E(o, τ) be the
event that both E(o) and E(τ) occur simultaneously. The pointwise mutual information between
events E(o) and E(τ) over the training set is:

PMI(o, τ) = P (E(o, τ)) log
P (E(o, τ))

P (E(o))P (E(τ))
,

where the probabilities are estimated from counts over training examples {(u(i), s(i)1 ,Ξ(i))}Ni=1. The
output set of word-object alignments is:

{(o, τ) | PMI(o, τ) > TPMI ∧ P (τ) < Tτ} ,

where TPMI = 0.008 and Tτ = 0.1 are threshold hyperparameters.

D Dataset Details

Natural Language and Demonstration Data Table 2 provides statistics on the natural language
instruction datasets.

LANI Dataset Collection Details The crowdsourcing process includes two stages. First, a Mechan-
ical Turk worker is shown a long, random trajectory in the overhead view and writes an instruction
paragraph for a first-person agent. The trajectories were generated with a sampling process biased
towards moving around the landmarks. Given the instruction paragraph, a second worker follows
the instructions by controlling a discrete simple agent, simultaneously segmenting the instruction
and trajectory into shorter segments. The output are pairs of instruction segments and discrete
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Dataset Type Split # Paragraphs # Instr. Avg. Instr. Len. (tokens) Avg. Path Len. (m)

LANI

1-segment
Train 4200 19762 11.04 1.53
Dev 898 4182 10.94 1.54
Test 902 4260 11.23 1.53

2-segment
Train 4200 15919 21.84 3.07
Dev 898 3366 21.65 3.10
Test 902 3432 22.26 3.07

REAL

1-segment
Train 698 3245 11.10 1.00
Dev 150 640 11.47 1.06
Test 149 672 11.31 1.06

2-segment
Train 698 2582 20.97 1.91
Dev 150 501 21.42 2.01
Test 149 531 21.28 1.99

Table 2: Dataset and split sizes. LANI was introduced by Misra et al. [15]. Each layout in LANI
consists of 6–13 landmarks out of a total of 64. REAL is the additional data we collected for use on
the physical drone. In REAL, each layout has 5–8 landmarks from a set of 15 that is a subset of the
landmarks in LANI.

ground-truth trajectories. We restrict to a pool of workers who had previously qualified for our other
instruction-writing tasks.

Demonstration Data We collect the demonstration datasets DR and DS by executing a hand-
engineered oracle policy that has access to the ground truth human demonstrations, and collect
observation data. The oracle is described in Appendix E.2. DS includes all instructions from origi-
nal LANI data, as well as the additional instructions we collect for our smaller environment. Due to
the high cost of data collection on the physical quadcopter, DR includes demonstrations on only 100
paragraphs of single-segment instructions, approximately 1.5% of the data available in simulation.

Data Augmentation To improve generalization, we perform two types of data augmentation. First,
we train on the combined dataset that includes both single-segment and two-segment instructions.
Two-segment data consists of instructions and executions that combine two consecutive segments.
This increases the mean instruction length from 11.10 tokens to 20.97, and the mean trajectory
length by a factor of 1.91. Second, we randomly rotate the semantic map SW and the gold visitation
distributions by a random angle α ∼ N(0, 0.5rad) to counter the bias of always flying forward,
which is especially present in the single-segment data because of how humans segmented the origi-
nal paragraphs.

E Additional Experimental Setup Details

E.1 Computing hardware and training time

Training took approximately three days on an Intel i9 7980X CPU with three Nvidia 1080Ti GPUs.
We used one GPU for the supervised learning process, one GPU for the RL process for both gradient
updates and roll-outs, and one GPU for rendering simulator visuals. We ran five simulator processes
in parallel, each at 7x real-time speed. We used a total of 400k RL simulation rollouts.

E.2 Oracle implementation

The oracle uses the ground truth trajectory, and follows it with a control rule. It adjusts its angular
velocity with a P-control rule to fly towards a dynamic goal on the ground truth trajectory. The
dynamic goal is always 0.5m in front of the quadcopter’s current position on the trajectory, until it
overlaps the goal position. The forward speed is a constant maximum minus a multiple of angular
velocity.

E.3 Environment and Quadcopter Parameters

Environment Scaling The original LANI dataset includes a unique 50x50m environment for each
paragraph. Each environment includes 6–13 landmarks. Because the original data is for a larger
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environment, we scale it down to the same dimension as ours. We use the original data split, where
environments are not shared between the splits.

Action Range We clip the forward velocity to the range [0, 0.7]m/s and the yaw rate to
[−1.0, 1.0]rad/s. During training, we give a small negative reward for sampling an action outside
the intervals [−0.5, 1.7]m/s for forward velocity and [−2.0, 2.0]rad/s for yaw-rate. This reduces the
chance of action predictions diverging, and empirically ensures they stay mostly within the permitted
range.

Quadcopter Safety We prevent the quadcopter from crashing into environment bounds through a
safety interface that modifies the controller setpoint ρ. The safety mechanism performs a forward-
simulation for one second and checks whether setting ρ as the setpoint would cause a collision. If it
would, the forward velocity is reduced, possibly to standstill, until it would no longer pose a threat.
Angular velocity is left unmodified. This mechanism is only used when collecting demonstration
trajectories and during test-time. No autonomous flight in the physical environment is done during
learning.

First-person Camera We use a front-facing camera on the Intel Aero drone, tilted at a 15 degree
pitch. The camera has a horizontal field-of-view of 84 degrees, which is less than the 90-degree
horizontal FOV of the camera used in simulated experiments of Blukis et al. [16].

F Evaluation Details

F.1 Automated Evaluation Details

We report two automated metrics: success rate and earth mover’s distance (EMD). The success
rate is the frequency of executions in which the quadcopter stopped within 0.47m of the human
demonstration stopping location. To compute EMD, we convert the trajectories executed by the
quadcopter and the human demonstration trajectories to probability distributions with uniformly
distributed mass across all positions on the trajectory. EMD is then the earth mover’s distance
between these two distributions, using Euclidean distance as the distance metric. EMD has a number
of favorable properties, including: (a) taking into account the entire trajectory and not only the goal
location, (b) giving partial credit for trajectories that are very close but do not overlap the human
demonstrations, and (c) is smooth in that a slight change in the executed trajectory corresponds to at
most a slight change in the metric.

F.2 Human Evaluation Details

Navigation Instruction Quality One out of 73 navigation instructions that the majority of workers
identified as unclear is excluded from the human evaluation analysis. The remaining instructions
were judged by majority of workers not to contain mistakes, or issues with clarity or feasibility.

Mechanical Turk Evaluation Task Figure 13 shows the instructions given to workers for the hu-
man evaluation task. Figure 14 shows an example human evaluation task. We use the simulated
environment to visualize the quadcopter behavior to the workers because it is usually simpler to
observe. However, we use this interface to evaluate performance on the physical environment, and
use trajectories generated in the physical environment. We avoid using language descriptions to
describe objects to avoid biasing the workers, and allowing them to judge for themselves how well
the instruction matches the objects. We observed that a large number of workers were not able to
reliably judge the efficiency of agent behavior, since they generally considered correct behavior ef-
ficient and incorrect behavior inefficient. Therefore, we do not report efficiency scores. Figure 15
shows examples of human judgements for different instruction executions.
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We need your help to understand how well our drone follows instructions.

Your task: Read the navigation instruction below, and watch the animation of the drone trying to
follow the instruction. Then answer three questions. Consider the guidelines below:

• Looking around: The drone can only see what’s directly in front of it as indicated by the
highlighted region. Depending on the instruction, it may have to look for certain objects
to understand where to go, and looking around for them is the right way to go and is
efficient.

• Bad instructions: If the instruction is unclear, impossible, or full of confusing mistakes,
please indicate it by checking the checkbox. You must still answer all the questions -
consider if the drone’s behavior was reasonable given the bad instruction.

• Objects: The drone observes the environment from a first-person view. The numbered
images illustrate how each object would look like to the drone. Consider the appearance
of objects from the first-person perspective in relation to the instructions.

• Note: Try to answer each question in isolation, focusing on the specific behavior. For
example, if the drone reached the goal correctly, but took the wrong path, you should
answer "Yes, perfectly" for question 2, while giving a worse score for question 1. Simi-
larly, if the drone went straight for the goal, that would be considered "efficient" behav-
ior, even though it may have taken the wrong path to get there

• The drone might sometimes decide not to do anything at all, maybe because it thinks it’s
already where it was instructed to go. If that happens you won’t see any movement in
the animation.

• The drone always "stops" at the end, even if the motion appears to end abruptly.
• The field is surrounded by a red fence on top, white fence on the right, blue fence on the

bottom, and yellow fence on the left. The colorful borders are there to help you better
distinguish between these colors.

Figure 13: The instructions given to the crowdsourcing workers during human evaluation.
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Figure 14: Human evaluation task. The images on top show the various objects in the environment
from a reasonable agent point of view, and numbers indicate correspondence to objects in the top-
down view animation. The animation shows the trajectory that the agent took to complete the
instruction. Because efficiency scores are unreliable, we do not report them.
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Instruction Execution Scores

then take sharp right and fly 
towards the palm and st op 
when it is at your 4 o clock 
then take slight left and fly 
towards the airplane and stop 
when its left side is in front of 
you   then pass the airplane on 
the left side

go forward slightly and then 
turn left facing the gorilla fly to 
the head of the gorilla and 
stop

take sharp right and fly 
towards the blue fence
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Figure 15: Human evaluation scores for three instructions of different difficulty, for our model
PVN2-SUREAL and the ORACLE. Horizontal axis represents Likert scores and bar heights rep-
resent score frequencies across five MTurk workers. Goal, Path, and Efficiency scores represent
answers to the corresponding questions in Figure 14.
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Method 1-segment 2-segment
SR EMD SR EMD

Test Results On Full LANI Test Set
STOP 7.7 0.76 0.7 1.29

AVERAGE 13.0 0.62 5.8 0.94
PVN-BC 37.8 0.47 19.6 0.76

PVN2-BC 39.0 0.43 21.0 0.72
PVN2-SUREAL 37.2 0.43 21.5 0.67

ORACLE 98.6 0.15 93.9 0.20
Dev Results On Full LANI Test Set

PVN2-SUREAL 35.8 0.44 19.8 0.68
PVN2-SUREAL-NOEXP 38.5 0.43 15.8 0.79

PVN2-SUREAL-NOU 26.1 0.48 7.0 0.90
Table 3: Additional automated evaluation results on the full LANI test and development sets of
50m × 50m environments, including the additional 4.7m × 4.7m examples we added to support
experiments on the real quadcopter. The 1-segment numbers in these tables are loosely comparable
to prior work that used LANI [16, 15], except in that we used additional data during training, and
trained in a joint two-dataset domain-adversarial setting, which may have unpredictable effects on
simulation performance. We also have reduced the camera horizontal FOV from 90 degrees to 84,
which exacerbates observability challenges.

G Additional Results

Table 3 shows simulation results on the full LANI test and development data.

H Common Questions

Do you assume any alignment between simulated and real environments? Our learning ap-
proach does not assume that simulated and real data is aligned.

What is the benefit of SUREAL over reinforcement learning with an auxiliary loss as a means
of utilizing annotated data? There are a number of reasons to prefer SUREAL:

• The 2-stage decomposition means that there is no gradient flow from second to first stage,
and so the policy gradient loss will not update Stage 1 parameters anyway.

• With SUREAL, only the second stage needs to be computed during the PPO updates, which
drastically improves training speed.

• In SUREAL, we do not need to send new Stage 1 parameters to actor processes at every
iteration, since these parameters are not optimized with reinforcement learning.

Why did you select this particular set of baselines? The baselines have been developed for in-
struction following in a very similar environment to ours, allowing us to focus on evaluating domain
transfer performance, exploration performance, and the effect of our learning method. Instruction-
following tasks have unique requirements for sample complexity and utilizing limited annotated
data. Comparisons against general sim-to-real models may not yield useful insights, or yield in-
sights that have already been demonstrated in prior work [34].

Why do you learn control, rather than using deterministic control? The predicted visitation
distributions often have complex and unpredictable shapes, depending on the instruction and en-
vironment layout. Designing a hand-engineered controller that effectively follows the predicted
distributions reduces to either (a) a challenging optimal control problem at test time or (b) a diffi-
cult engineering and testing challenge. We instead opt to learn a solution at training time. We find
that learning Stage 2 behavior is more straightforward, and is in line with our general strategy of
reducing engineering effort and use of hand-crafted representations.

How noisy are your pose estimates? We use a Vicon motion capture system to obtain pose esti-
mates. The poses have sub-centimeter positional accuracy, but often arrive at the drone with delay
due to network latency.
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Hyperparameter Value
Environment Settings

Maximum yaw rate ωmax = 1m/s
Maximum forward velocity vmax = 0.7m/s

Image and Feature Dimensions
Camera horizontal FOV 84◦

Input image dimensions 128× 72× 3
Feature map FC dimensions 32× 18× 32

Semantic map SW dimensions 64× 64× 32
Visitation distributions dg and dp dimensions 64× 64× 1

Environment edge length in meters 4.7m
Environment edge length in pixels on SW 32

Model
Visitation prediction interval timesteps Td = 1

STOP action threshold κ = 0.5
General Learning

Deep Learning library PyTorch 1.0.1
Classification auxiliary weight λpercept = 1.0

Grounding auxiliary weight λground = 1.0
Language auxiliary weight λlang = 1.0

Supervised Learning
Optimizer ADAM

Learning Rate 0.001
Weight Decay 10−6

Batch Size 1
Reinforcement Learning (PPO)

Num supervised epochs before starting RL (KB
iter) 25

Num epochs (KRL
epoch) 400

Iterations per epoch (KRL
iter) 50

Number of parallel actors 4
Number of rollouts per iteration N 20

PPO clipping parameter 0.1
PPO gradient updates per iter (KRL

steps) 8
Minibatch size 2

Value loss weight 1.0
Learning rate 0.00025

Epsilon 1e-5
Max gradient norm 1.0

Use generalized advantage estimation False
Discount factor (γ) 0.99
Entropy coefficient 0.001
Entropy schedule multiply entropy coefficient by 0.1 after 200 epochs

Reward Weights
Stop reward weight (λs) 0.5

Visitation reward weight(λv) 0.3
Exploration reward weight (λe) 1.0
Negative per-step reward (λstep) -0.04

Table 4: Hyperparameter values.
Is the model tolerant to noise? Prior work has tested the semantic mapping module that we use
against noisy poses and found that it can tolerate moderate amounts of noise [34] even without
explicit probabilistic modelling. This is not the focus of this paper, but we find that our model is able
to recover from erroneous pose-image pairs caused by network latency. Evaluating the robustness
of the model to more types of noise, including in pose estimates, is an important direction for future
work.

I Hyperparameters

Table 4 shows the hyperparameter assignments. The hyperparameters were manually tuned on the
development set to trade off use of computational resources and development time. We do not
claim the selected hyperparameters are optimal, but we did observe that they consistently resulted
in learning convergence and stable test-time behavior.
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