10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Depth-First Search in Directed Graphs, Revisited

Eric Allender

Rutgers University, USA
http://www.cs.rutgers.edu/~allender
allender@cs.rutgers.edu

Archit Chauhan

Chennai Mathematical Institute, India
https://www.cmi.ac.in/people/fac-profile.php?id=archit
archit.chauhan@gmail.com

Samir Datta

Chennai Mathematical Institute, India
https://www.cmi.ac.in/~sdatta/
sdatta@cmi.ac.in

—— Abstract

We present an algorithm for constructing a depth-first search tree in planar digraphs; the algorithm

can be implemented in the complexity class UL, which is contained in nondeterministic logspace
NL, which in turn lies in NC?. Prior to this (for more than a quarter-century), the fastest uniform
deterministic parallel algorithm for this problem was O(log'®n) (corresponding to the complexity
class AC'® C NC).

We also consider the problem of computing depth-first search trees in other classes of graphs,
and obtain additional new upper bounds.

2012 ACM Subject Classification Complexity Classes, Parallel Algorithms

Keywords and phrases Depth-First Search, Planar Digraphs, Parallel Algorithms, Space-Bounded
Complexity Classes

Funding FEric Allender: Supported in part by NSF Grant CCF-1909216.

Archit Chauhan: Partially supported by a grant from Infosys foundation and TCS PhD fellowship.
Samir Datta: Partially supported by a grant from Infosys foundation and SERB-MATRICS grant
MTR,/2017,/000480.

1 Introduction

Depth-first search trees (DFS trees) constitute one of the most useful items in the algorithm
designer’s toolkit, and for this reason they are a standard part of the undergraduate al-
gorithmic curriculum around the world. When attention shifted to parallel algorithms in
the 1980’s, the question arose of whether NC algorithms for DFS trees exist. An early
negative result was that the problem of constructing the lexicographically least DFS tree
in a given digraph is complete for P [19]. But soon thereafter significant advances were
made in developing parallel algorithms for DFS trees, culminating in the RNC” algorithm of
Aggarwal, Anderson, and Kao [1]. This remains the fastest parallel algorithm for the problem
of constructing DFS trees in general graphs, in the probabilistic setting, or in the setting of
nonuniform circuit complexity. It remains unknown if this problem lies in (deterministic) NC
(and we do not solve that problem here).

More is known for various restricted classes of graphs. For directed acyclic graphs (DAGs),
the lexicographically-least DFS tree from a given vertex can be computed in AC* [9]. (See
also [10, 7, 12, 18, 15, 14].) For undirected planar graphs, an AC! algorithm for DFS trees
was presented by Hagerup [13]. For more general planar directed graphs Kao and Klein
presented an AC'® algorithm. Kao subsequently presented an AC® algorithm for DFS in

https://orcid.org/0000-0002-0650-028X
http://www.cs.rutgers.edu/~allender
mailto:allender@cs.rutgers.edu
https://www.cmi.ac.in/people/fac-profile.php?id=archit
mailto:archit.chauhan@gmail.com
https://www.cmi.ac.in/~sdatta/
mailto:sdatta@cmi.ac.in

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

Depth-First Search in Directed Graphs, Revisited

strongly connected planar digraphs. In stating the complexity results for this prior work
in terms of complexity classes (such as AC', AC™, etc.), we are ignoring an aspect of this
earlier work that was of particular interest to the authors of this earlier work: minimizing
the number of processors. This is because our focus is on classifying the complexity of
constructing DFS trees in terms of complexity classes. Thus, if we reduce the complexity
of a problem from AC'® to NC?, then we view this as a significant advance, even if the NC?
algorithm uses many more processors (so long as the number of processors remains bounded
by a polynomial). Indeed, our algorithms rely on the logspace algorithm for undirected
reachability [20], which does not directly translate into a processor-efficient algorithm. We
suspect that our approach can be modified to yield a more processor-efficient AC! algorithm,
but we leave that for others to investigate.

1.1 Qur Contributions

First, we observe that, given a DAG G, computation of a DFS tree in G logspace reduces to
the problem of reachability in G. Thus, for general DAGs, computation of a DF'S tree lies in
NL, and for planar DAGs, the problem lies in UL N co-UL [8, 22]. For classes of graphs where
the reachability problem lies in L, so does the computation of DFS trees. One such class
of graphs is planar DAGs with a single source (see [2], where this class of graphs is called
SMPDs, for Single-source, Multiple-sink, Planar DAGs).

For undirected planar graphs, it was shown in [3] that the approach of Hagerup’s AC?
DFS algorithm [13] can be adapted in order to show that construction of a DFS tree in a
planar undirected graph logspace-reduces to computing the distance between two nodes in
a planar digraph. Since this latter problem lies in UL N co-UL [23], so does the problem of
DEFS for planar undirected graphs.

Our main contribution in the current paper is to show that a more sophisticated application
of the ideas in [13] leads to a UL N co-UL algorithm for construction of DFS trees in planar
directed graphs. Since UL C NL C AC! - NC2, this is a significant improvement over the best
previous parallel algorithm for this problem: the AC'® algorithm of [17], which has stood for
27 years.

2 Preliminaries

We assume that the reader is familiar with depth-first search trees (DFS trees).

We further assume that the reader is familiar with the standard complexity classes L, NL
and P (see e.g. the text [6]). We will also make frequent reference to the logspace-uniform
circuit complexity classes NC* and AC*. NCF is the class of problems for which there is
a logspace-uniform family of circuits {C,,} consisting AND, OR, and NOT gates, where
the AND and OR gates have fan-in two and each circuit C,, has depth O(log"n). (The
logspace-uniformity condition implies that each C, has only n®) gates.) ACF is defined
similarly, although the AND and OR gates are allowed unbounded fan-in. An equivalent
characterization of AC* is in terms of concurrent-read concurrent-write PRAMs with running
time O(logk n). For more background on these circuit complexity classes, see, e.g., the text
[24].

A nondeterministic Turing machine is said to be unambiguous if, on every input z, there is
at most one accepting computation path. If we consider logspace-bounded nondeterministic
Turing machines, then unambiguous machines yield the class UL. A set A is in co-UL if and
only if its complement lies in UL.

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

E. Allender, A. Chauhan, and S. Datta

The construction of DFS trees is most naturally viewed as a function that takes a graph
G and a vertex v as input, and produces as output an encoding of a DFS tree in G rooted at
v. But the complexity classes mentioned above are all defined as sets of languages, instead of
as sets of functions. Since our goal is to place DFS tree construction into the appropriate
complexity classes, it is necessary to discuss how the complexity of functions fits into the
framework of complexity classes.

When C is one of {L, P}, it is fairly obvious what is meant by “f is computable in C”; the
classes of logspace-computable functions and polynomial-time-computable functions should
be familiar to the reader. However, the reader might be less clear as to what is meant by
“f is computable in NL”. As it turns out, essentially all of the reasonable possibilities are
equivalent. Let us denote by FNL the class of functions that are computable in NL; it is
shown in [16] each of the three following conditions is equivalent to “f € FNL”.

1. f is computed by a logspace machine with an oracle from NL.

2. f is computed by a logspace-uniform NC! circuit family with oracle gates for a language
in NL.

3. f(z) has length bounded by a polynomial in |z|, and the set {(x,,b) : the i*® bit of f()
is b} is in NL.

Rather than use the unfamiliar notation “FNL”, we will abuse notation slightly and refer to

certain functions as being “computable in NL”.

The proof of the equivalence above relies on the fact that NL is closed under complement.
Thus it is far less clear what it should mean to say that a function is “computable in UL”
since it remains an open question if UL is closed under complement (although it is widely
conjectured that UL = NL) [21, 5]). However the proof from [16] carries over immediately to
the class UL N co-UL. That is, the following conditions are equivalent:

1. f is computed by a logspace machine with an oracle from UL N co-UL.

2. f is computed by a logspace-uniform NC! circuit family with oracle gates for a language
in UL N co-UL.

3. f(z) has length bounded by a polynomial in |z|, and the set {(x,7,b) : the i*® bit of f(x)
is b} is in UL N co-UL.

Thus, if any of those conditions hold, we will say that “f is computable in UL N co-UL”".

The important fact that the composition of two logspace-computable functions is also
logspace-computable (see, e.g., [6]) carries over with an identical proof to the functions
computable in LE for any oracle C. Thus the class of functions computable in UL N co-UL is
also closed under composition. We make implicit use of this fact frequently when presenting
our algorithms. For example, we may say that a colored labeling of a graph G is computable
in UL N co-UL, and that, given such a colored labeling, a decomposition of the graph into
layers is also computable in logspace, and furthermore, that — given such a decomposition of
G into layers — an additional coloring of the smaller graphs is computable in UL N co-UL, etc.
The reader need not worry that a logspace-bounded machine does not have adequate space
to store these intermediate representations; the fact that the final result is also computable in
UL N co-UL follows from closure under composition. In effect, the bits of these intermediate
representations are re-computed each time we need to refer to them.

3 DFS in DAGs logspace reduces to Reachability

In this section, we observe that constructing the lexicographically-least DFS tree in a DAG
G can be done in logspace given an oracle for reachability in G. But first, let us define what
we mean by the lexicographically-first DFS tree in G:

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

Depth-First Search in Directed Graphs, Revisited

» Definition 1. Let G be a DAG, with the neighbours of the vertices given in some order
in the input. (For example, with adjacency lists, we can consider the ordering in which the
neighbors are presented in the list). Then the lexicographic first DES traversal of G is the
traversal done by the following procedure:

Input: (G,v)
Output: Sequence of edges in DFS tree
visited[v] + 1
for every out neighbour w of v, in the given order do
if wvisited/w] = 0 then
print (v, w)
DFS(G,w)
end
end
Algorithm 1 Static DFS routine

That is, the lexicographically-first DFS tree is merely a DFS tree, but with the (very
natural) condition that the children of every vertex are explored in the order given in the
input.

When we apply this procedure as part of our algorithm for DFS in planar graphs, we will
need to to apply it to directed acyclic multigraphs (i.e., graphs with parallel edges between
vertices) where there is a logspace-computable function f(v,e) that computes the ordering
of the neighbors of vertex v, assuming that v is entered using edge e. (That is, if the DFS
tree visits vertex v from vertex x, and there are several parallel edges from x to v, then the
ordering of the neighbors of v may be different, depending on which edge is followed from z
to v.)

As is observed in [9], the unique path from s to another vertex v in the lexicographically-
least DF'S tree in G rooted at s is the lexicographically-least path in G from s to ¢.

Now consider the following simple algorithm for constructing the lexicographically-least
path in a DAG G from s to v, where:

Input: (G,s,v, f)
Output: Lex least path from s to v under f
current < s; e < null;
while (current # v) do
child + first child of current (in the order given by f(current,e))
while (REACH (child,v) # TRUE) do
‘ child < next child of current (in the order given by f(current,e))
end
e < (current, child); current = child,
end
Algorithm 2 DAG DFS routine

The correctness of this algorithm is essentially shown by the proof of Theorem 11 of [9].
The algorithm for computing the lexicographically-least DFS tree rooted at s can thus be
presented as the composition of two functions g and h, where g(G, s) = (G, s, L), where L is
a list of all of the lexicographically-least paths from s to each vertex v. Note that the set of
edges in the DFS tree in G rooted at s is exactly the set of edges that occur in the list L

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

E. Allender, A. Chauhan, and S. Datta

in g(G, s) = (G, s,L). Then h(G, s, L) is just the result of removing from G each edge that
does not appear in L. The function h is computable in logspace, whereas g is computable in
logspace with an oracle for reachability in G.

Since reachability in DAGs is a canonical complete problem for NL, we obtain the following
corollary:

» Corollary 2. Construction of lexicographically-first DFS trees for DAGSs lies in NL.

Similarly, since reachability in planar directed (not-necessarily acyclic) graphs lies in
UL N co-UL [8, 22], we obtain:

» Corollary 3. Construction of lexicographically-first DFS trees for planar DAGSs lies in
UL N co-UL.

A DAG G is said to be a SMPD if it contains at most one vertex of indegree zero.
Reachability in SMPDs is known to lie in L [2].

» Corollary 4. Construction of lexicographically-first DFS trees for SMPDs lies in L.

3.1 DFS in a planar digraph with a single cycle

We now consider a special case that will form a useful subroutine for us: graphs in which
there is a single cycle, forming the external face of the embedding. That is, let G be a
planar digraph such that the external face is a directed cycle C' and G — V(C) is a DAG
(or, alternatively, a directed acyclic multigraph). Then we can do DFS in G starting from
an arbitrary vertex in C' in UL N co-UL. The DFS completes the cycle first and then, while
backtracking, performs DFS in the reachable but as yet untraversed part of the digraph.
We now provide more details: Let the the vertices in the directed cycle C be vy, ..., vg,
in this order, where the entry point in the cycle is vg. Let R(v;) C V(G) \ V(C) be

the set of vertices reachable from v; in the graph excluding the cycle. We let R'(v;) =
R(v:) \ Uj_is1 R(vj).

A logspace routine with an oracle for the UL N co-UL problem of reachability in planar
graphs can construct each of the sets R'(v;). It is clear that each R'(v;) induces a DAG
which (if non-empty) consists of vertices reachable from v; but not from subsequent v;’s.
Moreover, the R’'(v;)’s are all pairwise disjoint. Thus a DFS of G can be performed by doing
DFS on the graph induced by each R’'(v;) (using Corollary 3) and unioning with the aforesaid
DEFS of the cycle C.

Note that a graph with a single cycle is a special case of a planar graph in which all
cycles are clockwise (or all cycles are counterclockwise). By analogy with the Coriolis effect,
we call such graphs Coriolis graphs. It turns out that Coriolis graphs play an important role
in our main algorithm.

4 Layering the graph

The main algorithmic insight that led us to the current algorithm was an approach for finding
DEFS trees in Coriolis graphs. In the exposition below, we first layer the graph in terms of
clockwise cycles (which we will henceforth call red cycles), and obtain a decomposition of the
original graph into (essentially) Coriolis graphs. We then apply a nested layering in terms of
counterclockwise cycles (which we will henceforth call blue cycles); ultimately we decompose
the graph into units that are structured as a DAG, which we can then process using the
tools from the earlier sections of the paper. The more detailed presentation follows.

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

Depth-First Search in Directed Graphs, Revisited

4.1 Degree Reduction and Expansion

» Definition 5. (of Exp®(G) and Exp®(G)) Let G be a planar digraph. The “expanded”
digraph Exp®(G) (respectively, Exp®(G) is formed by replacing each vertez v of total degree
d(v) > 3 by a clockwise (respectively, counterclockwise) cycle C,, on d(v) vertices such that
the endpoint of the the i-th edge incident on v is now incident on the the i-th vertex of the
cycle.

Exp®(G) and Exp®(G) each have maximum degree bounded by 3; i.e., they are subcubic.
Next we define the clockwise (and counterclockwise) dual for such a graph and also a notion
of distance.

Recall that for an undirected plane graph H, the dual (multigraph) H* is formed by
placing, for every edge e € E(H), a dual edge e* between the face(s) on either side of e (see
Section 4.6 from [11] for more details). Faces f of H and the vertices f* of H* correspond
to each other as do vertices v of H and faces v* of H*.

» Definition 6. (of Duals G© and G°) Let G be a plane digraph, then the clockwise dual
G© (respectively, counterclockwise dual G°) is a weighted bidirected version of the undirected
dual of the underlying undirected graph of G in a way so that the orientation formed by
rotating the corresponding directed edge of G in a clockwise (respectively, counterclockwise)
way gets a weight of 1 and the other orientation gets weight 0. We inherit the definition of
dual vertices and faces from the underlying undirected dual.

» Definition 7. For a plane subcubic digraph G, let fy be the external face. Define the type
type®(f) (respectively, type®(f)) of a face to be the singleton set consisting of the distance
at which f lies from fo in GO: {d°(fo, f)} (respectively, {d°(fo, f)}). Generalise this to
edges e by defining type® (e) (respectively type©(e)) as the set consisting of the union of the
type® (respectively, typeo) of the two faces adjacent to e, and to vertices v by defining as
the type® (v) (respectively type® (v)) union of the type® (respectively, type®) of the faces
incident on the vertex v.

The following is a direct consequence of subcubicity and the triangle inequality:

» Lemma 8. In every subcubic graph G, the cardinality [type® (z), [type®(z)| where x
s a face, edge or a vertex is at least one and at most 2 and in the latter case consists of
consecutive non-negative integers.

Further, if v € V(G) is such that |type® (v)| = 2, then there exist unique u,w € V(G),
such that (u,v), (v,w) € E(G) and |type® (u,v)| = |type® (v, w)| = 2.

We first need a simple lemma:

» Lemma 9. Suppose (f1, f2) is a dual edge with weight 1 (and (f2, f1) is of weight 0) then,
d®(fo, f1) < d°(fo, f2) < d°(fo, f1) + 1.

Proof. From the triangle inequality d©(fo, f1) < d°(fo, f2) +d°(fa, f1) = d°(fo, f2). Simil-
arly, d°(fo, f2) < d®(fo, f1) +d°(f1, f2) < d°(fo, fr) + 1.)

Proof. (of Lemma 8) Since each vertex v € V(G) of a subcubic graph is incident on at most
3 faces the only case is which |type®(v)| > 2 corresponds to three distinct faces fi, fa, f3
being incident on a vertex. But here the undirected dual edges form a triangle such that
in the directed dual the 1 edges are oriented either as a cycle or acyclically. In the former
case by three applications of the first half of Lemma 9 we get that d°(fo, f1) < d°(fo, f2) <
d°(fo, f3) < d°(fo, f1), hence all 3 distances are the same. Therefore [type®(v)| = 1.

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

E. Allender, A. Chauhan, and S. Datta

In the latter case, suppose the edges of weight 1 are (f1, f2), (fe, f3), (f1, f3), then
by Lemma 9 we get: d°(fo, f1) < d°(fo, f2),d®(fo, fs) < d®(fo, f1) + 1. Thus, both
d®(fo, f2),d°(fo, f3) are sandwiched between two consecutive values d°(fo, f1),d°(fo, f1)+1.
Hence d°(fo, f1), d°(fo, f2), d°(fo, f3) must take at most two distinct values, and thus
type®(v)| < 2. Moreover cither type®(f1) # type®(f2) = type®(fs) or type”(f1) =
type®(fa2) # type®(fs). Let e1,eq,e3 be such that, e1© = (fa, f3), 20 = (f1, f3),e3° =
(f1, f2). Then the two cases correspond to [type®(e1)| = |type® (e2)| = 2, [type®(e3)] =1
and to [type®(e1)| = 1, [type®(e2)| = [type®(e3)| = 2 respectively. Noticing that e;,e3 are
both incoming or both outgoing edges of v completes the proof for the clockwise case. The
proof for the counterclockwise case is formally identical. |

» Definition 10. For a plane subcubic graph G as above, we refer to vertices and edges with
a type of cardinality two in GO (respectively, in G©) as red (respectively, blue) while the
ones with a cardinality of one as white. The resulting colored graphs are called red(G) and
blue(G) respectively.

We will see later how to apply both the duals in G to get red and blue layerings of a
given input graph.

Also note that a red (respectively blue) edge must have red (respectively blue) end point
vertices, as they are adjacent to the same faces as the edge between is.

We enumerate some properties of red(G), blue(G) (G is subcubic):

» Lemma 11. 1. Red vertices and edges in red(G) form disjoint clockwise cycles.
2. No clockwise cycle in red(G) consists of only white edges(and hence white vertices).
Similar properties hold for blue(G).

Proof. 1. Firstly, note that a red edge must have red end point vertices, as they are adjacent
to the same faces that the edge between them is adjacent to. It is immediate from
Lemma 8 that if v is a red vertex, it has exactly one red incoming edge and one red
outgoing edge, proving this part.

2. Suppose C is a clockwise cycle. Consider the shortest path in G© from the external face
to a face enclosed by C. From the Jordan curve theorem (Theorem 4.1.1 [11]), it must
cross the cycle C. The edge dual to the crossing must be red.

<4

The definitions above, which apply only to subcubic plane graphs, can now be extended
to a general plane graph G, by considering the subcubic graphs Exp®(G) (and Exp®(G)).
But first, we must make a simple observaion about red(Exp®(G)) (and dually about
blue(Exp®(Q))).

» Lemma 12. Let v € V(G) be a vertex of degree more than 3. Let C,, be the corresponding
expanded cycle in Exp®(Q). Suppose at least one edge of C,, is white in red(Exp®(Q)) then
there is a unique red cycle C that shares edges with C,,.

Proof. First we note that C, does not contain anything inside it since it is an expanded
cycle. By lemma 11 we know that C, has at least one red edge. Suppose it shares one or
more edges with a red cycle R;. Since both cycles are clockwise and C, has nothing inside,
the cycle Ry must enclose C,,. Now suppose there is another red cycle R, that shares one or
more edges with C,. Then Ry must also enclose C),. But two cycles cannot enclose a cycle
whilst sharing edges with it without touching each other, which contradicts the above lemma
that all red cycles in a subcubic graph are vertex disjoint. <

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Depth-First Search in Directed Graphs, Revisited

The last two lemmas allow us to consistently contract the red cycles in red(Exp®(G)):

» Definition 13. The colored graph Col®(G) (respectively, Col®(QG)) is obtained by labeling
a degree more than 3 vertex v € V(G) as red iff the cycle C,, in red(Exp®(G)) has at least
one red edge and at least one white edge. FElse the color of v is white. All the low degree
vertices and edges of G inherit their colors from red(Exp®(QG)). The coloring of Col®(G)
is similar.

U1

Cs

Cy

Us Us

Vg Vg

Figure 1 An example of contracting expanded cycles. The figure on right shows the graph after
contracting the expanded cycles C1, C2, C3 according to definition 13

We can now characterize the colorings in the graph Col®(G):

» Lemma 14. The following hold:
1. A red cycle in ColO(G) is vertex disjoint from every red cycle contained in its interior.
2. FEvery 2-connected component of the red subgraph of ColO(G) is a simple clockwise cycle.

Proof. For v € V(G), let C,, € Exp®(G) be the expanded cycle. If it has a red vertex it is
immediately enclosed by a unique red cycle R in Exp® (@) by Lemma 12. Assuming C, is
not all red, it consists of alternating red subpaths and white subpaths. On contracting C, we
get a collection of clockwise red cycles outside sharing a common cut-vertex v. Notice that
the new collection of red cycles consists of edges that R did not share with C,,. Also notice
that (as a thought experiment) if we contracted the C,’s that share a vertex with R, one at
a time we would get an edge-disjoint set of red cycles with distinct cut vertices. Therefore, in
CO]O(G), the red subgraph consists of a collection of connected components, each of which
is a remnant of exactly one red cycle in Exp®(Q); these connected components consist of
red cycles that touch externally at cut vertices. Hence both parts of the lemma follow. <«

Although the above lemmas have been proved for the clockwise dual, they also hold for
counter clockwise dual with red replaced by blue mutatis mutandis.
4.2 Layering the colored graphs

» Definition 15. Let = € V(Col®(G@)) U E(Col®(G)). Let (°(x) be one more than the
minimum integer that occurs in type®(z'), for each x' € V(Exp®(G)) U E(Exp®(G)) that

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

E. Allender, A. Chauhan, and S. Datta

is contracted to z. Further let £¥(Col®(G)) = {z € V(Col®(G))UE(Col®(Q)) : °(x) = k}.
Similarly define, (°(z), LF(Col®(Q)).

We call £¥(Col®(@)) the k' layer of the graph.
It is easy to see the following from Lemma 14:

» Proposition 16. For every x € V(Col®(G))UE(Col®(Q)) the quantity (©(x) is one more
than the number of red cycles that strictly enclose x in Col® (G). All the vertices and edges
of a red cycle of Col®(Q) lie in the same layer EkH(ColO(G)) for the enclosure depth k of
the cycles.

We had already noted above that the red subgraph of G had simple clockwise cycles as
its biconnected components. We note a few more lemmas about the structure of a layer of G:

» Lemma 17. We have:

1. A red cycle in a layer L5T1(Col®(Q)) does not contain any vertez/edge of the same layer
inside it.

2. Any clockwise cycle in a layer consists of all red vertices and edges.

Dually, a blue cycle in a layer does not contain any vertex or edge of the same layer inside it.

» Remark 18. Notice that the conclusion in the second part of the Lemma fails to hold if we
allow cycles spanning more than one layer.

Proof. The first part is a direct consequence of proposition 16. For the second part we mimic
the proof of the second part of Lemma 11. Consider a clockwise cycle ¢ C £F1Col°G
that passes through a white edge e. Every face adjacent to C' from the outside must have
type® = k because C' is contained in layer k + 1. Then the type® of the faces on either
side of e is the same and therefore must be k. Let f be a face enclosed by C that has
typeo(f) = k. Thus it must be adjacent to a face of type® = k — 1. But this contradicts
that every face inside and adjacent to C' must have type® at least k. |

The above lemmas show that the strongly connected components of the red subgraph of a
layer consist of red cycles touching each other without nesting, in a tree like structure. This
prompts the following definition:

» Definition 19. For a red cycle R C Ek(ColO(G)) we denote by Gr, the graph induced by
vertices of LFT1(Col®(Q)) enclosed by R.

The strongly connected components of the red subgraph of Gr are called the red clusters
Of GR.

The cluster graph CI° (GR) is formed from Gr by contracting the red clusters of Ggr to
single nodes along with all the white vertices of Ggr and adding a directed edge between two
nodes iff there was a directed edge between corresponding vertices in Gg.

We get:

» Lemma 20. For cach red cycle R C L*(Col®(G)), the cluster graph C1°(Gg) does not
contain any clockwise cycle. That is, it is a Coriolis graph.

Proof. If there is a clockwise cycle C' C CI®(GR) then there must be a corresponding
clockwise cycle C' C Gg as well. It cannot be all red since otherwise it would map to a
single vertex in C1°(Gg). But this contradicts Lemma 17. <

10

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

Depth-First Search in Directed Graphs, Revisited

Next we aim to remove all the counterclockwise cycles in order to construct a DAG in which
we can do DFS. For this we apply another layering on every layer Ek(Colo(G)) of the graph
G again with the help of Definitions 13, 15, but this time using counterclockwise i.e. blue
cycles. Thus for every red cycle R in G, we consider the graph H = CO]O(G r) and its
layers L!(H)(w.r.t the counterclockwise dual) for non-negative integers {. Consider a blue
cycle B C £'(H) and consider the corresponding blue graph Hp. By Lemma 20 applied in a
counterclockwise sense, there is no counterclockwise cycle in the cluster graph C1°(Hp).

The lemmas above about the structure of a red layer also hold for a blue layer with
suitable changes.

It turns out that if we compress the strongly connected components of the colored
subgraph (both red and blue) of a blue layer, we get a DAG.

Formally, we start with the combined analog of Definitions 13, 15:

» Definition 21. Each vertex or edge x € V(G) U E(G) gets a red layer number k + 1 if it
belongs to L¥F1(Col®(G)) and a blue layer number 1 + 1, if it belongs to L1 (Col®(Gr))
where R C L¥(Col®(Q)) is the red cycle immediately enclosing x.

Moreover this defines the colored graph Col(G) by giving x the color red if it is red in
Col®(G) and/or blue in Col®(Gr) (notice it could be both red and blue) and lastly white if it
is white in both the graphs. In this case, we say that x belongs to sublayer LFTHH1(Col(G)).

By proposition 16, we can also say that a sublayer £¥+1+1(Col(G)) thus consists of
edges/vertices that are strictly enclosed inside k red cycles and inside [blue cycles that are
contained inside the first enclosing red cycle.

We'll see some observations and lemmas regarding the structure of a sublayer now.

Since every edge/vertex in L¥*11+1(Col(G)) has the same red AND blue layer number,
it is clear that there can be no nesting of colored cycles. Also we have:

» Lemma 22. Every clockwise cycle in a sublayer LEF11H1(Col(Q)) consists of all red edges
and vertices and any every counterclockwise cycle in the sublayer consists of all blue vertices
and edges. (Some edges/vertices of the cycle can be both red as well as blue)

Proof. This is a direct consequence of Lemma 17 applied to the sublayer £F+1!+1(Col(G)),
which is a (counterclockwise) layer in graph G for some red cycle R. |

Thus we can refer to clockwise cycles and counterclockwise cycles as red and blue cycles
respectively.

» Definition 23. For a red or blue colored cycle C of layer L¥!(Col(G)), we denote by G¢
the graph induced by vertices of L¥ V' (Col(G)) enclosed by C, where {k',1'} is {k+ 1,1} or
{k,l + 1} according to whether C is red or blue cycle respectively.

Note that two cycles of the same color in L¥+1LI+1(G) cannot share an edge since neither
is enclosed by the other — since they belong to the same layer, and they also have the same
orientation. Cycles of different colors can share edges but we note:

» Lemma 24. Two cycles of a sublayer LKY11H1(Col(G)) can only share one contiguous
segment of edges.

Proof. Let a red cycle R and a blue cycle B in a sublayer sublayer share two vertices
u,v but let the paths R(u,v), B(u,v) in the two cycles be disjoint. Notice that the graph
(R\ R(u,v))UB(u,v) is also a clockwise cycle that encloses the edges of R(u,v) contradicting
the first part of Lemma 17. <

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

428

429

430

431

432

433

434

435

436

437

438

439

440

E. Allender, A. Chauhan, and S. Datta

We consider the strongly connected components of a sublayer and note the following
lemmas regarding them:

» Lemma 25. The strongly connected components of a sublayer, which we call clusters, have
the following properties:

1. Every vertex/edge in them is either blue or red (or possibly both).

2. Every face is a directed cycle(red or blue).

Proof. 1. In a strongly connected graph every vertex and edge lies on a cycle and therefore
by Lemma 22 must be colored red or blue (or both).

2. Suppose there is a face f the boundary of which is not a directed cycle. Look at a
directed dual (say clockwise) of the strongly connected component (just the component
independently). This dual must be a DAG since the primal is strongly connected. The
vertex f* in the dual corresponding to face f of the strongly connected component has
in degree at least one and out degree at least one since it has boundary edges of both
orientations. Consider a vertex u* of the dual which has an edge (u*, f*) to f*. If we
contract this edge, merging v* and f* to f*, the modified dual is still a DAG clearly,
with one less vertex. If we keep merging the vertices incident to f* into it, eventually we
must reach a stage when no vertex is incident to f*. This merged f* is a source since its
in-degree is 0, and hence its outgoing edges form a directed cut for this modified dual.
But this also clearly corresponds to a directed cut in the original dual, with one partition
containing the dual vertex f* and all other dual vertices that were merged with f*. In
the primal, by cut cycle duality this corresponds to a directed cycle that contains the
face f and the faces corresponding to the dual vertices merged with f*. Thus cycle thus
contains more than one face inside it along with f, which violates lemma 22 since directed
cycles are empty for that sublayer.

<

The strongly connected components or clusters of a sublayer hence consist of intersecting
red and blue cycles. However they can only intersect in a tree like manner as we will see
from following definition and lemma.

We now construct the incidence graph of these strongly connected components. In other
words,

» Definition 26. The nodes of the graph S*+L4L(Q) are the directed cycles of each of
the two colors (viz. red and blue) in the layer LFY11H1(Col(G)). Two nodes support an
undirected edge if the corresponding strongly connected components intersect.

We have the following;:

» Lemma 27. S*+LIHL(Q) is a forest. Given an entry point into a component of SFTLIHL(@)
we can, in L, compute the DFS of such a tree.

Proof. For any two cycles C7,Cs that are adjacent and any v; € Cy,vy € Cs it is the
case that there is a directed path in the sublayer from vy to vy (via V(Cy) N V(Cs)); thus
inductively the same property holds for any two C7, C5 in the same connected component of
Sk+LIFL(@). Since S¥+1L+1(Q) is a planar (undirected) graph, it follows that if it is not a
forest, then it must enclose a facial cycle f. This facial cycle f corresponds to a face f’ in
the sublayer £¥+1!+1(Col(G)). Each node on the boundary of f corresponds to a directed
cycle in LF1LI+1(Col(G)), and the face f’ must be incident on each of these cycles. By
Lemma 25, f/ must be a red cycle or a blue cycle. Without loss of generality, suppose it
is red. But this means that it cannot intersect a red cycle corresponding to a node on the

11

12

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

Depth-First Search in Directed Graphs, Revisited

boundary of f in more than a vertex. Thus it consists exclusively of edges from some blue
cycles, call them By, ..., By, on the boundary of f. Thus f’ is entirely enclosed by the edges
of UF_ E(B;) \ E(f’), which form a blue cycle. This contradicts Lemma 17. <

Next,we extend the definition of cluster graphs (Definition 19) by contracting the clusters,
which are maximal trees of the forest S¥+1!+1(G) to single vertices:

» Definition 28. Consider the multigraph C1*T'1(Q) on the vertex set V(CI(G)) = {vy :
Tis a maximal tree in SETHHL(G)} U {v : v € V(H)is colored white in Col(G)}; each edge
in G is carried over to Clk+1’l+1(G), resulting in parallel edges when vertices in G are merged
into a single vertex in CI*¥THH1(Q).

Thus, we obtain the following:
» Lemma 29. CI""VY(@Q) is a directed acyclic multigraph for every k,1 > 0.

Proof. Trivial since clusters are the strongly connected components of the sublayer. |

5 The Algorithm for DFS in a Planar Graph

Now we will use the layering and lemmas from the previous section to give the final algorithm
for DFS in a general planar digraph H, from a root r. Our output will consist of the edges
that are included in the DFS tree, along with an ordering on the outgoing tree edges for
every vertex in the graph, since — in contrast to the case for undirected DFS trees — a
directed spanning tree may or may not be a DFS tree for different traversals. The ordering
on outgoing edges for every vertex fixes the traversal.

The first step is to build the graph G C H consisting of all vertices that are reachable
from r, which can be done in UL N co-UL. A planar embedding of G with r on the external
face fo can then be constructed, using logarithmic space [4, 20].

To help make the indexing of our layers simpler, create a “dummy” red cycle (essentially
just a self loop on a “pseudo-root vertex” r(, with an edge from ry to r, where the self loop
completely encloses G; this has the effect of placing the root r in layer 1.

Note that the labeling of G (described in the previous section) can be computed in
logspace with an oracle for computing distance in planar graphs. This is because the type of
each face, edge, and vertex is given by computing distances in the dual graph. Computing
distance in planar graphs lies in UL N co-UL [23, Section 4], and thus computing Col(G) can
be done in UL N co-UL.

With Col(G) in hand, we define a meta tree of the laminar family of colored cycles of G.

» Definition 30. For a planar digraph G, with red and blue cycles given by Col(G), the
meta tree Tg is an undirected tree with nodes representing the colored cycles of G. The
root node of Tg is the self-loop on ro belonging to sublayer L%1(Col(Q)). For a node in Tg
representing cycle C of a sublayer LFY1IH1(Col(Q)), its children are the cycles of the newt
sublayer that are contained inside C.

Note that every node of G' appears in some subgraph S¥+1L{*1 inside some colored cycle
C of Col(G)). First, we describe how to process the subgraph C' U S¥T1+1 and then we
describe the order in which we process the colored cycles (which will also determine the
vertex v in which we first enter the cycle C).

Note that the multigraph consisting of C' along with the directed acyclic multigraph
CIFTH (@) contained in C is precisely the sort of graph that we showed how to search in

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

E. Allender, A. Chauhan, and S. Datta

Section 3.1. A DFS of this graph can be performed in UL N co-UL. But many of the nodes of
SkFLI+1 are not simply nodes of G, but are clusters of cycles in G. Thus we must output a
DFS not of CI*"*1(@) but a DFS of the corresponding nodes in G.

1. Start the DFS of CU the multigraph C1***'*1(G) that lies within C, as described in
Section 3.1, by following the edges of C' until we come back to the entry vertex v.

2. Then start backtracking along C' and performing a DFS of the directed acyclic multigraph
CI*1H1(@). Each time we follow an edge to a new vertex D of CI*"1*1(@) that
represents a cluster of GG, this edge corresponds to an edge e of G to a node x on one of
the cycles of the undirected tree of cycles that constitutes the cluster D. The ordering
of the neighbors of D (that is used in constructing the lexicographic-least DFS tree
of CI*1(@)) consists of the order in which edges out of D are encountered while
searching the tree of cycles that constitutes D, when starting at vertex x; this ordering
can be computed in logspace.

3. Each vertex of D of ClkH’lH(G’) represents a tree of cycles. Each cycle in the cluster is
explored by going from its entry vertex directly around the cycle, and then backtracking
to explore its neighbor cycles in the cluster. This is easy to perform in logspace. (This
sequence of exploring the cycles in D imposes the order on the edges that leave D to other
clusters in C1F+HIH (@), which gives us the ordering that determines the lexicographically-
least DFS tree of C1I"™1171(@).)

4. The lexicographically-least DFS tree of C1*"1*1(3) identifies the edge that should be
used to visit each neighbor of D. Explore each vertex of C1"™'1(G) in turn in this way.

And now we describe the algorithm that determines the order in which we process the
colored cycles. For each node C in the meta tree T¢, (and recall that each node in Tg
corresponds to a colored cycle), find the unique path in Tg from the root to C. Then start
following that path; for each edge C; — Cs in that path, we start by knowing the vertex v
in Cy where the tree constructed thus far entered C;. (Initially, C' is the self loop on r¢, and
v =r70.)

Follow the procedure outlined above for processing the DFS tree inside of C7, but do not
produce any output. Instead, wait for the moment when Cs is encountered in that process.
(It will be encountered, because otherwise there would not be an edge C; — Cs in the meta
tree.) At that point, remember the vertex z where cycle Cy is first entered, and then start
processing the next edge in the path from the root to C.

When C is finally reached, we remember the vertex where C' was entered, and start
outputting the DFS tree for the subgraph inside C, as above.

We must also give the orderings of outgoing tree edges around every vertex. For a white
vertex of any sublayer, the outgoing edges belong to the same sublayer and their ordering is
already defined by the algorithm in section 3.1. For the other case, we analyze:

Suppose v is a vertex on a colored cycle C' of some sublayer. Let the outgoing tree edges
be e, €], e5...€}, €], e5...e/, where e is the outgoing edge that belongs to cycle C, €], e5...e},
are the outgoing edges other than e that belong to the same layer as v (they consist of edges
going out of C, either white edges going out from the cluster or colored edges of the same
cluster), and e, e5...e] are the outgoing edges of the next layer (edges going inside of C').

Then the order of these edges for DFS is:

First we take the white edges among ¢]...€},.

Then we take e(finish the cycle).

Then we take the colored outgoing edges among éj...€}.

Then we take the edges of the next layer, ef...e] .

13

14

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

569

570

571

572

573

574

575

Depth-First Search in Directed Graphs, Revisited

The order of edges within each of these steps is already defined in section 3.1 or in steps
2 and 3 of the algorithm above. This gives an ordering of all outgoing tree edges for any
vertex v.

We could interchange between last two points of the ordering, and still the algorithm
would give DFS trees albeit different ones. However it is crucial that e is taken before ef...e}
for all vertices, i.e. we finish the cycle before going inside to higher sublayers.

The algorithm clearly can be implemented in logspace with an oracle for UL N co-UL, and
it clearly outputs a tree that spans G.

Now we must show that the tree that is produced is a DFS tree.

Our algorithm definitely produces a spanning tree of the set of all vertices in G that are
reachable from the start vertex r. In order to show that the tree is a DFS tree, it suffices to
show that, for any edge (u,v) of G that is not in the tree, in our depth-first traversal of the
tree the vertex v is visited before u, or else v is visited from a descendent of u in the tree.

Either u and v are in the same level, or else u and v are at different levels.

Case 1: u and v are in the same sublayer:
Then either u and v are in the same cluster, or they are not. If they are not in the same
cluster, then the cluster that v is in is visited by some lexicographically-earlier edge from
the cluster in which u resides. Thus v is visited before u in the depth-first traversal of
the tree.
If w and v are in the same cluster, then either they in the same colored cycle, or they are
not. If they are in the same colored cycle, and the edge (u,v) is not in the tree, it can
either be because v is the first vertex visited in the cycle, and thus v is visited before w,
or else edge (u,v) is a chord of the cycle containing u,v (but the chord itself is in the
next sublayer by definition). Since we traverse the cycle first and then branch inside,
edge (u,v) is either a forward edge or a back edge depending on whether u comes first in
cycle or v.
If v and v are in different colored cycles in the same cluster, then there is not an edge
(u,v).
Case 2: v is in a higher sublayer than u
In this case v must be on a colored cycle C and v lies inside C', in the next sublayer.
Since in our algorithm we complete the traversal of cycle C first and then explore the
clusters inside, the only way (u,v) can be a non tree edge is when v has been explored in
the subtree of a vertex u’ that occurs after u in traversal of C, while backtracking. The
edge (u,v) is therefore a forward edge.
Case 3: u is in a higher sublayer than v
This case is similar to previous one and the same argument shows that v must be on a
colored cycle and the edge (u,v) is a back edge.

Thus our tree is a DFS tree.

—— References

1 Alok Aggarwal, Richard J. Anderson, and Ming-Yang Kao. Parallel depth-first search in
general directed graphs. SIAM J. Comput., 19(2):397-409, 1990. doi:10.1137/0219025.

2 Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambuddha
Roy. Planar and grid graph reachability problems. Theory of Computing Systems, 45(4):675—
723, 2009. doi:10.1007/s00224-009-9172-z.

3 Eric Allender, Archit Chauhan, Samir Datta, and Anish Mukherjee. Planarity, exclusivity,
and unambiguity. Electronic Colloquium on Computational Complezity (ECCC), 26:39, 2019.

http://dx.doi.org/10.1137/0219025
http://dx.doi.org/10.1007/s00224-009-9172-z

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

E. Allender, A. Chauhan, and S. Datta

10

11

12

13

14

15

16

17

18

19

20
21

Eric Allender and Meena Mahajan. The complexity of planarity testing. Inf. Comput.,
189:117-134, 2004.

Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting: Uniform
and nonuniform upper bounds. Journal of Computer and System Sciences, 59(2):164-181,
1999.

Sanjeev Arora and Boaz Barak. Computational Complezity, a modern approach. Cambridge
University Press, 2009.

Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya, Hirotaka Ono, Yota Otachi,
Pascal Schweitzer, Jun Tarui, and Ryuhei Uehara. Depth-first search using O(n) bits. In
Hee-Kap Ahn and Chan-Su Shin, editors, Proc. 25th International Symposium on Algorithms
and Computation (ISAAC), volume 8889 of Lecture Notes in Computer Science, pages 553-564.
Springer, 2014. doi:10.1007/978-3-319-13075-0_44.

Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reachability is
in unambiguous log-space. TOCT, 1(1):4:1-4:17, 2009. URL: http://doi.acm.org/10.1145/
1490270.1490274, doi:10.1145/1490270.1490274.

Pilar de la Torre and Clyde P. Kruskal. Fast parallel algorithms for all-sources lexicographic

search and path-algebra problems. J. Algorithms, 19(1):1-24, 1995. doi:10.1006/jagm.1995.

1025.

Pilar de la Torre and Clyde P. Kruskal. Polynomially improved efficiency for fast parallel
single-source lexicographic depth-first search, breadth-first search, and topological-first search.
Theory Comput. Syst., 34(4):275-298, 2001. doi:10.1007/s00224-001-1008-4.

Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer,
2016.

Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient basic graph algorithms.
In Proc. 82nd International Symposium on Theoretical Aspects of Computer Science (STACS),
volume 30 of LIPIcs, pages 288-301. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2015.
doi:10.4230/LIPIcs.STACS.2015.288.

Torben Hagerup. Planar depth-first search in O(log n) parallel time. SIAM J. Com-
put., 19(4):678-704, June 1990. URL: http://dx.doi.org/10.1137/0219047, doi:10.1137/
0219047.

Torben Hagerup. Space-efficient DFS and applications to connectivity problems: Simpler,
leaner, faster. Algorithmica, 82(4):1033-1056, 2020. doi:10.1007/s00453-019-00629-x.
Taisuke Izumi and Yota Otachi. Sublinear-space lexicographic depth-first search for bounded
treewidth graphs and planar graphs. In Proc. 47th International Colloguium on Automata, Lan-
guages and Programming (ICALP), LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2020. to appear.

B. Jenner and B. Kirsig. Alternierung und Logarithmischer Platz. Dissertation, Universitét
Hamburg, 1989.

Ming-Yang Kao and Philip N. Klein. Towards overcoming the transitive-closure bottleneck:
Efficient parallel algorithms for planar digraphs. Journal of Computer and System Sciences,
47(3):459-500, 1993. doi:10.1016/0022-0000(93)90042-U.

Maxim Naumov, Alysson Vrielink, and Michael Garland. Parallel depth-first search for directed
acyclic graphs. In Proc. 7th Workshop on Irreqular Applications: Architectures and Algorithms,
pages 4:1-4:8, 2017. doi:10.1145/3149704.3149764.

John H. Reif. Depth-first search is inherently sequential. Inf. Process. Lett., 20(5):229-234,
1985. doi:10.1016/0020-0190(85)90024-9.

Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM J. Comput.,
29(4):1118-1131, 2000. URL: https://doi.org/10.1137/50097539798339041, doi:10.1137/
S0097539798339041.

15

http://dx.doi.org/10.1007/978-3-319-13075-0_44
http://doi.acm.org/10.1145/1490270.1490274
http://doi.acm.org/10.1145/1490270.1490274
http://doi.acm.org/10.1145/1490270.1490274
http://dx.doi.org/10.1145/1490270.1490274
http://dx.doi.org/10.1006/jagm.1995.1025
http://dx.doi.org/10.1006/jagm.1995.1025
http://dx.doi.org/10.1006/jagm.1995.1025
http://dx.doi.org/10.1007/s00224-001-1008-4
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.288
http://dx.doi.org/10.1137/0219047
http://dx.doi.org/10.1137/0219047
http://dx.doi.org/10.1137/0219047
http://dx.doi.org/10.1137/0219047
http://dx.doi.org/10.1007/s00453-019-00629-x
http://dx.doi.org/10.1016/0022-0000(93)90042-U
http://dx.doi.org/10.1145/3149704.3149764
http://dx.doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1137/S0097539798339041

16

626

627

628

629

630

631

632

633

Depth-First Search in Directed Graphs, Revisited

22

23

24

Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in planar
graphs. Inf. Comput., 215:1-7, 2012. URL: https://doi.org/10.1016/j.ic.2012.03.002,
doi:10.1016/j.ic.2012.03.002.

Thomas Thierauf and Fabian Wagner. The isomorphism problem for planar 3-connected
graphs is in unambiguous logspace. Theory Comput. Syst., 47(3):655-673, 2010. doi:10.1007/
s00224-009-9188-4.

H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New
York Inc., 1999. doi:10.1007/978-3-662-03927-4.

https://doi.org/10.1016/j.ic.2012.03.002
http://dx.doi.org/10.1016/j.ic.2012.03.002
http://dx.doi.org/10.1007/s00224-009-9188-4
http://dx.doi.org/10.1007/s00224-009-9188-4
http://dx.doi.org/10.1007/s00224-009-9188-4
http://dx.doi.org/10.1007/978-3-662-03927-4

E. Allender, A. Chauhan, and S. Datta

& (b)

Figure 2 Figure (a) is a graph G. Figure (b) is the graph in (a) after labelling red edges using
clockwise dual. We omit the cycle expansion and contraction procedure here.

17

18 Depth-First Search in Directed Graphs, Revisited

Figure 3 This figure shows G after applying blue labellings to each red layer we obtained in the
previous figure. The vertices and edges colored purple are those that are red as well as blue.

Figure 4 This figure represents the sublayer (1,1). The dashed edges and empty vertices are not
part of the layer.

E. Allender, A. Chauhan, and S. Datta

Figure 6 This figure represents the sublayer (3,1)

19

	Introduction
	Our Contributions

	Preliminaries
	DFS in DAGs logspace reduces to Reachability
	DFS in a planar digraph with a single cycle

	Layering the graph
	Degree Reduction and Expansion
	Layering the colored graphs

	The Algorithm for DFS in a Planar Graph

