Joint Training Capsule Network for Cold Start Recommendation

Tingting Liang Congying Xia
Hangzhou Dianzi University of Illinois at
University Chicago
Hangzhou, China Chicago, US
liangtt@hdu.edu.cn cxia8@uic.edu
ABSTRACT

This paper proposes a novel neural network, joint training cap-
sule network (JTCN), for the cold start recommendation task. We
propose to mimic the high-level user preference other than the
raw interaction history based on the side information for the fresh
users. Specifically, an attentive capsule layer is proposed to ag-
gregate high-level user preference from the low-level interaction
history via a dynamic routing-by-agreement mechanism. Moreover,
JTCN jointly trains the loss for mimicking the user preference and
the softmax loss for the recommendation together in an end-to-end
manner. Experiments on two publicly available datasets demon-
strate the effectiveness of the proposed model. JTCN improves other
state-of-the-art methods at least 7.07% for CiteULike and 16.85%
for Amazon in terms of Recall@100 in cold start recommendation.

CCS CONCEPTS

« Information systems — Recommender systems; - Comput-
ing methodologies — Neural networks.

KEYWORDS

Recommender systems, Cold start, User preference estimation

ACM Reference Format:

Tingting Liang, Congying Xia, Yuyu Yin, and Philip S. Yu. 2020. Joint Train-
ing Capsule Network for Cold Start Recommendation. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR °20), July 25-30, 2020, Virtual Event, China.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3397271.3401243

1 INTRODUCTION

The effectiveness of current recommender systems highly relies on
the interactions between users and items. These systems usually
do not perform well when new users or new items arrive. This
challenge is widely known as cold start recommendation [7]. To
alleviate this problem, models have been proposed to leverage side
information such as user attributes [1] or user social network data
[7, 12] to generate recommendations for new users. These mod-
els can be grouped into three categories based on how they use
the side information: similarity-based models [11] which calculate
similarities between items based on the side information; matrix
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factorization methods with regularization [3] that regularize the
latent features based on auxiliary relations; matrix factorization
methods with feature mapping [2] which learn a mapping between
the side information and latent features. According to [6], these cold
start models can be viewed within a simple unified linear frame-
work which learns a mapping between the side information and
the interaction history.

Recently, deep learning models (DNNs) have emerged to tackle
the cold start problem by providing a larger model capacity. Volkovs
et al. [13] regard cold start recommendation as a data missing prob-
lem and modifies the learning procedure by applying dropout to
input mini-batches. It highly depends on the generalization ability
of the dropout technique to generalize the model from warm start
to cold start. [6] is the first work that proposes to solve the cold start
problem in the Zero-shot Learning (ZSL) perspective. It leverages
a low-rank auto-encoder to reconstruct interaction history from
the user attributes. However, it is a two-step method which firstly
learns the reconstruction and then solves the recommendation for
the cold start users or items in the second step. A two-step method
might suffer from the error propagation problem.

To avoid the aforementioned problems and fully understand the
content in the side information, we propose an end-to-end joint
training capsule network (JTCN) for cold start recommendation. In
JTCN, a user is represented explicitly in two folds: the high-level
user preference and the content contained in the side information.
The high-level user preference is aggregated from the low-level in-
teraction history through the attentive capsule layer with a dynamic
routing-by-agreement mechanism [10, 15].

A mimic loss is proposed to mimic the high-level user preference
for cold start users or items from the side information. We argue
that it is more explainable to mimic the high-level user preference
than the low-level interaction history. It would be natural to infer
user preference from the side information other than non-existent
interaction history. Another softmax loss is used to train the regular
recommendation process. Our goal is to not only mimic the high-
level user preference for the cold start users or items, but also
effectively do recommendations for them. We propose to achieve
our goals by jointly training these two losses together in an end-to-
end manner. In summary, the contributions of this paper are:

¢ Joint Training: A joint training framework is proposed for the
cold start recommendation by training the mimic loss for the
cold start and the softmax loss for the recommendation together.

e Capsule Network: An attentive capsule layer is proposed to ag-
gregate high-level user preference from the low-level interaction
history via a dynamic routing-by-agreement mechanism.

e Demonstrated Effectiveness: Experiments on two real-world
datasets show that our proposed model outperforms baselines
consistently for the cold start recommendation task.
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Figure 1: The architecture of JTCN. Id features of items are transformed into embeddings through the embedding layer. The em-
beddings of historical items are fed into the attentive multi-preference extraction layer, which consists of one multi-preference
extraction layer and one attention layer, to obtain the user preference representation. The content representation produced by
network f. is fused with the preference embedding to form the softmax loss. The output of network f}, is used to approximate
user preference through a mimic loss. When making predictions for a new user, f: and f}, is able to generate a comprehensive
representation for the user based on the side information, including both preference and content information.

2 PROPOSED MODEL

2.1 Problem Statement

We consider a recommender system with auser set U = {u1,...,un}
and an item set V = {v1,...,vp}, where N is the number of
users and M is the number of items. The user-item feedback can
be represented by a matrix R € RN*M where Rij = lifuseri
gives a positive feedback on item j, and R;; = 0 otherwise. Let
U(j) = {i € U|R;j # 0} be the set of users that had shown prefer-
ence to item j, and V(i) = {j € V|R;; # 0} be the set of items that
user i gave positive feedback. This paper focuses on the cold start
scenario in which no preference clue is available, namely, V(i) = @
or U(j) = @ for a given user i or given item j. Our objective is to
generate personalized recommendation results for each fresh user
or item based on its corresponding side information.

2.2 User Multi-Preference Extraction

The framework of our proposed model is illustrated in Figure 1. The
framework here is mainly for cold start users, and the framework
for cold start items can be modeled in the same manner. As shown
in Figure 1, the input of JTCN consists of user documents which
contain the side information (labeled as User Doc in the figure),
historical items, and the target item. The former two can be re-
spectively used for extracting user properties and preferences. The
target item is the one that we use to make a prediction for the user
during the training process. The usage of user documents will be
discussed in Section 2.3. This section focuses on the extraction of
high-level user preferences.

2.2.1 Embedding Layer. The user preference extraction part starts
with the item embedding layer which embeds the id features of
items into low-dimensional dense vectors. For the target item, the
embedding is denoted as e; € R?. For the historical items of user i
(i.e., V(i)), corresponding item embeddings are gathered to form
the set of user preference embeddings E; = {e;,j € V(i)}.

2.2.2 Attentive Capsule Layer for Multi-preference Extraction. An
important task of our JTCN is to learn a network for mimicking
high-level preference representations for cold start users from their

side information. Therefore, it is crucial to construct a representa-
tive user preference embedding during the training process. Repre-
senting user preference by a simple combination (e.g., averaging,
concatenation) of vectors e; € E; is not conducive to extracting
diverse interests of users. Inspired by [5], we propose to apply the
recently proposed dynamic routing in capsule network [10] to cap-
ture multiple preferences for users. Considering that not all the
preference capsules contribute equally to aggregate the high-level
user preference representation. We further propose to adopt the
attention mechanism to discriminate the informative capsules.

We consider two layers of capsules, which we name as behavior
capsules and preference capsules, to represent the user behavior
(historical items) and multiple user preferences respectively. Dy-
namic routing is adopted to compute the vectors of preference
capsules based on the vectors of behavior capsules in an iterative
way. In each step, given the embedding e; € R4 of behavior capsule
Jj and vector py € R? of preference capsule k, the routing logit is
calculated b
Y bjk = pj.Sej, 1)
where § € R4? denotes the bilinear mapping matrix parameter
shared across each pair of behavior and preference capsules.

The coupling coefficients between behavior capsule j and all the
preference capsules sum to 1 and are determined by performing
the “routing softmax” on logits as:

o = exp(bjx) @
e S explbie)”
With the coupling coefficients calculated, the candidate vector for
preference capsule k is computed by the weighted sum of all be-

havior capsules:
Zy = chkSej. (3)

J
The embedding of preference capsule k is obtained by a non-linear
“squash” function as:

llz|1* 2
— oz 4)

Pr = squash(zy) = .
1+ [z ? ||z ||



Suppose we have K preference capsules, which means there are
K distinct preferences of users extracted from the historical items
on which the users gave positive feedback. We apply an attention
layer to emphasize the informative capsules. There exist several
effective ways to calculate the attention score and this paper adopts
the multi-layer perceptron (MLP) as

ar = hTReLUWpg +ba),  ap = Kexp¢,

2y exp(ag)
where W, € RdXd“, b, € Rd“, and h € R% are the attention layer
parameters. The final attentive weight is normalized by the softmax
function.

With the attentive weights assigned to the preference capsules,
the high-level user preference can be formed as the weighted sum:

K
u? = Z kP (6)
k=1

2.3 Joint Training

A joint training framework is proposed here by optimizing two
losses together: a softmax loss for recommendation and a mimic
loss for generating user preferences for cold start users without in-
teraction history. The user representation in JTCN is represented in
two folds, the user preferences and the content. Two MLP networks,
namely fc and f}, are used to map the user document into one con-
tent space and one preference space for the cold start users. Those
two representations are fused together for the the final prediction.

®)

2.3.1 Softmax Loss. The output of f. denoted by u€ is fused to-
gether with the high-level user preference embedding defined by
(6) to form the user embedding. The representation of user i can be
generated by

ui = ReLU(W [ fe(Xq), u]] + by). )
where X; denotes the input user document, W, € R9%2d and b, €
R are the parameters. [-, -] denotes the concatenation operation
and ReLU(+) is the Rectified Linear Unit. With the user vector u; and
the target item embedding e;, the probability of the user interacting
with the target item can be predicted by

T
Prterun) = — b ®
Zjev(i) exp(u; €j)

We use the softmax loss as the objective function to minimize for
the recommendation training:

> logPr(e|uy), ©)
(i,1)eD
where D is the collection of training data containing user-item
interactions.

Lsoftmax ==

2.3.2  Mimic Loss. In order to learn preference information from
the document of a new user, we propose to use the output of f;, to
approximate the high-level user preference representation defined

by (6). We define the mirrllic loss as the mean square difference as:
Lmimic = 50 2, 2] = fpXi)’. (10)

(i,DeD d

Jointly training the following combination of softmax loss and
mimic loss enables the network to better imitate the high-level pref-
erence and capture content from the side information of new users,
which greatly improve the cold start recommendation performance:

Ljoint = Lsoftmax + Lmimic- (11)

2.4 Cold Start Prediction

Once training is completed, as shown in the right side of Figure 1,

we fix the model and make a forward pass through f; and f, to get

the representation for a new user based on its side information as:
Upew = ReLU(W,[6°, ﬁp] +bu), (12)

where G¢ = f;(X;ew) and 0 = fp(Xnew). At last, the preference
score of the new user on item j is decided by the inner product of
the corresponding embeddings:

~ T
Tnew,j = Upew€j- (13)

3 EXPERIMENTS

3.1 Datasets

We choose two public datasets for evaluating cold start recommen-
dation performance. 1) CiteULike! with 5,551 users, 16,980 articles,
and 204,986 implicit user-article feedbacks. CiteULike contains ar-
ticle content formation in the form of title and abstract. We use a
vocabulary of the top 8,000 words selected by tf-idf [14]. 2) Amazon
Movies and TV? [8]. We convert the explicit feedbacks with rating 5
to implicit feedbacks. We filter the user and items with interactions
less than 10 and finally get 14,850 users, 23,232 items, and 548,296
interactions. The vocabulary size of words selected by tf-idf from
item titles and descriptions is 10,000.

Since only item side information is available, we recommend
users for the cold start items. For both datasets, we randomly select
20% of items as the cold start items which will be recommended
users at test time. We use Recall and NDCG as evaluation metrics.

3.2 Baselines

We compare the proposed JTCN with several representative recom-
mendation models including three content-based methods KNN [11],
FM [9], and VBPR [3], two deep learning methods LLAE [6] and
DropoutNet [13]. KNN uses content information to compute the
cosine similarity between items. DropoutNet uses WMF [4] as the
pre-trained model for input preference. Except for KNN and LLAE
which do not have the parameter of latent factor, we set the number
of latent factors d = 256 for all methods. The other hyperparam-
eters of all the compared methods are tuned to find an optimal
result. For JTCN, the number of preference capsules is set K = 5,
the dimension of attention layer is set d, = 128, and the Adam
optimizer with the learning rate of 0.0005 is adopted. For all the
methods except KNN, we use the early stopping strategy with a
patience of 10.

3.3 Results

3.3.1 Model Comparison. The experimental results of our JTCN as
well as baselines on two datasets are reported in Table 1 in terms
of Recall@100 and NDCG@100 (with d = 256). The best results are
listed in bold, and the second best results are marked with star (*).
Clearly, JTCN remarkably outperforms baseline models on both
datasets. KNN shows poor performance in the cold start scenario,
which led by the rough estimation of content-based similarity with-
out any historical interaction. The improvement obtained by FM
compared with KNN indicates the advantage of feature interaction.
VBPR performs slightly better as it is proposed to alleviate the cold

!http://www.citeulike.org.
2http://jmcauley.ucsd.edu/data/amazon/



Table 1: Performance Comparison on two datasets in terms
of Recall@100 and NDCG@ 100.

CiteULike ‘ Amazon

Meth

ethods ‘ Recall NDCG ‘ Recall NDCG
KNN 0.2981  0.3453 | 0.0564  0.2358
M 0.5100  0.4583 | 0.0924  0.2260
VBPR 0.5426  0.4825 | 0.0891  0.2215
LLAE 0.5816  0.5286* | 0.1264*  0.2439
DropoutNet | 0.6011*  0.5226 | 0.1013  0.2815"
JTCN 0.6436 0.5432 | 0.1477 0.3364
Improve 7.07% 2.76% | 16.85% 19.50%

start problem by using both latent factors and content factors that
are extracted from auxiliary information [3]. It can be easily ob-
served that deep learning based methods, LLAE and DropoutNet,
which are dedicated to cold start problem, perform better than the
traditional content-based baselines. However, all the baselines only
reconstruct or extract content factors from the input side informa-
tion in the test stage. JTCN outperforms all baselines improving
Recall@100 by 7.07% and 16.85% on two datasets over the best base-
line. This indicates that combining the content information with
preference information generated based on the raw input of new
users or items can effectively improve the performance of cold start
recommendation.

In addition, DropoutNet has a need for the pre-trained model
to generate preference input for the main DNN, which may limit
its generalization on different datasets. In contrast, the proposed
JTCN doesn’t need such a pre-trained model to handle the input by
learning directly from the input raw features.

3.3.2  Impact of Latent Factors. To analyze the importance of latent
factors, we compare the performance of FM, VBPR, and Dropout-
Net with the proposed JTCN with respect to the number of latent
factors. As Figure 2 shows, JTCN consistently outperforms the
baselines. With the increase of the number of latent factors, the
performance improvement compared with the best baseline method
generally increases. It may be because the combination of content
and preference representations is more informative, which requires
a relatively larger hidden dimension to incorporate.

4 CONCLUSION

In this paper, a novel neural network model, namely joint training
capsule network (JTCN) is first introduced to harness the advan-
tages of capsule model for extracting high-level user preference
in the cold start recommendation task. JTCN optimizes the mimic
loss and softmax loss together in an end-to-end manner: the mimic
loss is used to mimic the preference for cold start users or items;
the softmax loss is trained for recommendation. An attentive cap-
sule layer is proposed to aggregate high-level preference from the
low-level interaction history via a dynamic routing-by-agreement
mechanism. Experiments on two real-world datasets show that our
JTCN consistently outperforms baselines.
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