1909.06872v2 [cs.LG] 19 Mar 2020

arxiv

Detecting Adversarial Samples Using Influence Functions and Nearest Neighbors

Gilad Cohen
Tel Aviv University
Tel Aviv, 69978

giladcol@mail.tau.ac.il

Abstract

Deep neural networks (DNNs) are notorious for their vul-
nerability to adversarial attacks, which are small perturba-
tions added to their input images to mislead their prediction.
Detection of adversarial examples is, therefore, a fundamen-
tal requirement for robust classification frameworks. In this
work, we present a method for detecting such adversarial
attacks, which is suitable for any pre-trained neural network
classifier. We use influence functions to measure the impact
of every training sample on the validation set data. From the
influence scores, we find the most supportive training sam-
ples for any given validation example. A k-nearest neighbor
(k-NN) model fitted on the DNN’s activation layers is em-
ployed to search for the ranking of these supporting training
samples. We observe that these samples are highly corre-
lated with the nearest neighbors of the normal inputs, while
this correlation is much weaker for adversarial inputs. We
train an adversarial detector using the k-NN ranks and dis-
tances and show that it successfully distinguishes adversarial
examples, getting state-of-the-art results on six attack meth-
ods with three datasets. Code is available at https://
github.com/giladcohen/NNIF_adv_defense.

1. Introduction

Deep Neural Networks (DNNs) are vastly employed in
both the academy and industry, achieving state-of-the-art
(SOTA) results in many domains such as computer vision
[21, 41, 49], natural language processing [1, 18], and speech
recognition [15, 51]. However, studies have shown that
DNNs are vulnerable to adversarial examples [12, 46], which
are specially crafted perturbations on their input. Adversarial
attacks generate such examples that fool machine learning
models, inducing them to predict erroneously with high con-
fidence, while being imperceptible to humans. Adversarial
subspaces of different DNN classifiers tend to overlap, which
makes some adversarial examples generated for a surrogate
model fool also other different unseen DNNs [47]. This
makes adversarial attacks a real threat to any machine learn-

Guillermo Sapiro
Duke University
North Carolina, 27708

guillermo.sapiro@duke.edu

Raja Giryes
Tel Aviv University
Tel Aviv, 69978

raja@tauex.tau.ac.il

3.5

Y normal "
.
% = R N L
3.04 e normal k-NN o owH, E g g
v adv k-NN * o 2w "
= normal most helpful ° B .
259 4 adv most helpful v
2.0 "x"
v . v
1.5
1.0
N
0.5 A
a4
ab
AA‘ A
00{ * mad
-0.5 0.0 0.5 1.0 15

Figure 1. The correspondence between the helpful examples based
on influence functions and the k-nearest neighbours (k-NN) in the
embedding space of a DNN can help to distinguish adversarial
examples from normal ones. We present (using PCA) the embed-
ding space of a DNN for a normal example (black star) with its
adversarial version (brown X) along with their k-NN (k=25) and 25
most helpful samples. Note that for the normal example, the helpful
samples highly correlate with the k-NN in the embedding space.
Yet, in the adversarial case, these samples are far from each other.
This observation leads us to a technique for detecting adversarial
attacks.

ing model and thus should be kept in mind while deploying
a DNN.

The vulnerability of neural networks puts into question
their usage in sensitive applications, where an opponent may
provide modified inputs to cause misidentifications. For
this reason, many methods have been developed to face this
challenge. They can be mainly divided into two groups:
1) proactive defense methods, which aim at improving the
robustness of DNNSs to adversarial examples, and 2) reactive
detection techniques that do not change the DNN but rather
try to find whether an attack is associated with a certain input
or not.

Contribution. In this work, we focus on the reactive
detection problem. We propose a novel strategy for detecting

https://github.com/giladcohen/NNIF_adv_defense
https://github.com/giladcohen/NNIF_adv_defense

adversarial attacks that can be applied to any pre-trained
neural network. The core idea of the algorithm is that there
should be a correspondence between the training data and
the classification of the network. If this relationship breaks
then it is very likely that we are in the case of an adversarial
input.

To this end, we use two “metrics” to check the impact
of the training data on the network decision. The first is
influence functions [19], which determines how data points
in the training set influence the decision of the network for a
given test sample. This metric measures how much a small
upweighting of a specific training point in the model’s loss
function affects the loss of a testing point. Thus, it provides
us with a measure of how much a test sample classification
is affected by each training sample.

Second, we apply a k-nearest neighbor (k-NN) classifier
at the embedding space of the network. Various recent works
[36, 8, 17, 7] demonstrate a high correlation between the net-
work softmax output and the decision of a k-NN applied at
the embedding space of this network (where the neighbors
are chosen from the training set). They basically show that
the network’s decision relies on the nearest neighbors resem-
blance in the embedding space. Thus, the distance in that
space may serve as a measure for the effect of an example
on the network output.

Given the influence function and k-NN based measures,
we turn to combine them together to generate a novel strat-
egy to detect adversarial examples. The rationale behind
our approach is that for a normal input, its k-NN training
samples (nearest neighbors in the embedding space) and the
most helpful training samples (found using the influence
function) should correlate. Yet, for adversarial examples
this correlation should break and thus, it will serve as an
indication that an attack is happening.

Figure 1 illustrates this relationship between the k-NN
and the most helpful training samples. The black star and
brown X denote a normal and its corresponding adversar-
ial image from CIFAR-10 validation set; the plot is of the
embedding space projected using PCA fitted on the training
set. For each sample (normal/adv), we find its 25 nearest
neighbors (blue circles/red downward triangles) in the DNN
embedding space; in addition, we find its 25 most help-
ful training examples from the training set (marked as blue
squares and red upward triangles, respectively). Note that the
nearest neighbors and the top most helpful training samples
of the normal image are very close in the PCA embedding
space, whereas the adversarial image does not exhibit the
same correspondence between the training samples.

To check the correlation between the two, we pursue the
following strategy: For an unseen input sample, we take the
most influential examples from the training set chosen by the
influence functions. Then, we check their distance ranking in
the embedding space of the network (i.e., what value of & will

cause k-NN to take them into account) and their Lo distance
from the input sample’s embedding vector. Finally, we use
these k-NN features to train a simple Logistic Regression
(LR) for detecting whether the input is adversarial or not.

We evaluate our detection strategy on various attack meth-
ods and datasets showing its advantage over other leading
detection techniques. The results confirm the hypothesis
claimed in previous works on the resemblance between k-
NN applied on the embedding space and the DNN decision,
and show how it can be used for detecting adversarial exam-
ples.

2. Related work

In this section, we briefly review existing papers on ad-
versarial attacks and defenses, and related theory.

Theory: Madry et al. used the framework of robust op-
timization and showed results of adversarial training [26].
They found that projected gradient descent (PGD) is an op-
timal first order adversary, and employing it in the DNN
training leads to optimal robustness against any first order
attack. Simon-Gabriel et al. demonstrated that DNNs’ vul-
nerability to adversarial attacks is increased with the gradient
of the training loss as a function of the inputs [43]. They also
found that this vulnerability does not depend on the DNN
model.

Fawzi et al. studied the geometry and complexity of the
functions learned by DNNs and provided empirical analy-
sis of the curvatures of their decision boundaries [10]. They
showed that a DNN classifier is most vulnerable where its de-
cision boundary is positively curved and that natural images
are usually located in the vicinity of flat decision boundaries.
These findings are also supported by Moosavi-Dezfooli et al.
[31], who found that positively curved decision boundaries
increase the likelihood that a small universal perturbation
would fool a DNN classifier.

Some works provided guarantees to certify robustness
of the network. Hein and Andriushchenko formalized a
formal upper bound for the noise required to flip a network
prediction [14], while Sinha et al. provided an efficient and
fast guarantee of robustness for the worst-case population
performance, with high probability [44].

Adversarial attacks: One of the simplest and fastest
attack methods is the fast gradient sign method (FGSM) [12];
in this method the attacker linearly fits the cross entropy loss
around the attacked sample and lightly perturbs the image
pixels in the direction of the gradient loss. This is a fast
one-step attack, which is very easy to deploy on raw input
images.

The Jacobian-based saliency map attack (JSMA) [37]
takes a different approach. Instead of mildly changing all
image pixels, this attack is crafted on the Ly norm, finding
one or two pixels which induce the largest change in the loss
and modify only them. This is a strong attack, achieving 97%

success rate by modifying only 4.02% of the input features
on average. Yet, it is iterative and costly.

Deepfool [32] proposed by Moosavi-Dezfooli et al. is
a non-targeted attack! that creates an adversarial example
by moving the attacked input sample to its closest deci-
sion boundary, assuming an affine classifier. In reality most
DNNs are very non linear, however, the authors used an
iterative method, linearizing the classifier around the test
sample at every iteration. Compared to FGSM and JSMA,
Deepfool performs less perturbations to the input. It was also
employed in the Universal Perturbations attack [30], which
is an iterative attack that aims at fooling a group of images
using the same minimal, universal perturbation applied on
all of them.

Carlini and Wagner [4] proposed a targeted attack?® (de-
noted as CW) to impact the defensive distillation method
[35]. The CW attack is resilient against most adversar-
ial detection methods. In another work Carlini and Wag-
ner provided an optimization framework [3], which in-
cludes a defense-specific loss as a regularization term. This
optimization-based attack is argued to be the most effective
to date for a white-box threat model where the adversary
knows everything related to the trained DNN: training data,
architecture, hyper-parameters, weights, etc. Chen et al. [5]
included a L; regularization to the CW attack, forming the
Elastic-net Attack to DNNs (EAD).

Adversarial defenses: A wide range of proactive de-
fense approaches have been proposed, including adversarial
(re)training [12, 22, 48, 42, 29], distillation networks [35],
gradient masking [48], feature squeezing [50], network input
regularization [38, 16], output regularization [14], adjusting
weights of correctly predicted labels [40], Parseval networks
[6], and k-NN search [9, 45].

However, those defenses can be evaded by the
optimization-based attack [3], either wholly or partially.
Since there are no known intrinsic properties that differ-
entiate adversarial samples from regular images, proactive
adversarial defense is extremely challenging. Instead, recent
works have focused on reactive adversarial detection meth-
ods, which aim at distinguishing adversarial images from
natural images, based on features extracted from DNN layers
[28, 24, 39] or from a learned encoder [27]. Feinman et al.
[11] proposed a LR detector based on Kernel density (KD)
and Bayesian uncertainty features.

Ma et al. [25] characterized the dimensional properties
of the adversarial subspaces regions and proposed to use a
property called Local Intrinsic Dimentionaloty (LID) . LID
describes the rate of expansion in the number of data objects
as the distance from the reference sample increases. The

'Non-targeted attacks are adversarial attacks which aim to make the
prediction incorrect regardless of the spricifc erroneous class.

2Targeted attacks are adversarial attacks which aim to make the predic-
tion classified to a particular erroneous class.

authors estimated the LID score at every DNN layer using
extreme value theory, where the smallest NN distances are
considered as extreme events associated with the lower tail
of the data samples’ underlying distance distribution. Given
a pretrained network and a dataset of normal examples, the
authors applied on every sample: 1) Adversarial attack. 2)
Addition of Gaussian Noise. The natural and noisy images
were considered as negative (non-adversarial) class and the
adversarial images were considered as positive class. For
each image (natural/noisy/adversarial) they calculated a LID
score at every DNN layer. Lastly, a LR model was fitted on
the LID features for the adversarial detection task.

Papernot and McDaniel [36] proposed the Deep k-
Nearest Neighbors (DENN) algorithm to estimate better the
prediction, confidence, and credibility for a given test sam-
ple. Using a pretrained network, they fitted a k-NN model
at every layer. Next, they used a left-out calibration set to
estimate the nonconformity of every test sample for label j,
counting the number of nearest neighbors along the DNN
layer which differs from j. They showed that when an adver-
sarial attack is made on a test sample, the real label displays
less correspondence with the k-NN labels from the DNN
activations along the layers.

Lee et al. [23] trained generative classifiers using the
DNN activations of the training set on every layer to detect
adversarial examples by applying a Mahalanobis distance-
based confidence score. First, for every class and every
layer, they computed the empirical mean and covariance
of the activations induced by the training samples. Next,
using the above class-conditional Gaussian distributions,
they calculated the Mahalanobis distance between a test
sample and its nearest class-conditional Gaussian. These
distances are used as features to train a LR classifier for the
adversarial detection task. The authors claimed that using the
Mahalanobis distance is significantly more effective than the
Euclidean distance employed in [25] and showed improved
detection results.

3. Method

We hypothesize that the DNN predictions are influenced
by the k-NN of the training data in their hidden layers, es-
pecially in the embedding layer. If so, in order to fool the
network, an adversarial attack must move the test sample
towards a "bad” subspace in the embedding space, where
harmful training data can cause the network to misclassify
the correct label. To inspect our hypothesis, we fitted a £-NN
model on the DNN’s activation layers, and also employed
the influence functions as used in [19].

Influence functions can interpret a DNN by pointing out
which of the training samples helped the DNN to make its
prediction, and which training samples were harmful, i.e.,
inhibited the network from its prediction. Koh and Liang
[19] suggested to measure the influence a train image z has

on the loss of a specific test image z;s;, by the term:
Iup,loss(z7 Ztest) = _VOL(ztestv 0)TH971V(9L(Za 9)7 (l)

where H is the Hessian of the machine learning model, L is
its loss, and 6 are the model parameters. In the definition of
Eq. (1) z and 2.5+ are images.

For each test example 2.5, we calculate Eq. (1) per each
training example z in the training set. Then, we sort all
Lup ioss (%, Ztest) scores, determining the top M helpful and
harmful training examples for a specific z;.s;. Next, for each
of the 2xM selected training points we find its rank and
distance from the testing example by fitting a k-NN model
on the embedding space using all the training examples’
embedding vectors. We feed the embedding vector of each
test sample z;.s¢ to the k-NN model to extract all the nearest
neighbors’ ranks (denoted as R) and distances (denoted D)
of the examples in the training set. The R and D features
can also be extracted from any other hidden activation layer
within the DNN, and not solely from the embedding vector.
RMT DMT and RML DM are all the ranks and distances
of the helpful and harmful training examples, respectively.

We apply an adversarial attack on z;.; and repeat the
aforementioned process on the new, crafted image. Both the
normal and adversarial features (RM*T, DMT RMI DMLy
are used to train a LR classifier for the adversarial detection
task. The detector training scheme is described in Alg. 1.

We name our adversarial detection method Nearest Neigh-
bor Influence Functions (NNIF). We assume that the train-
ing, validation, and testing sets are not contaminated with
adversarial examples, as in [3]. We start by generating an
adversarial validation set from the normal validation set (step
4). The M most helpful and harmful training examples as-
sociated with the validation image prediction (either normal
or adversarial) are found using the influence function in step
22 (see supp. material for the INFLUENCEFUNCTION pro-
cedure). The NNIF features are then evaluated by the k-NN
model, extracting the ranks and distances (from R and D)
of the most influential training points found above. This is
done for both the normal validation images (step 8) and for
the adversarial images (step 12). This scheme can be carried
out on the embedding layer alone, or employed for all L
activation layers within the DNN.

Finally, a LR classifier is trained using the NNIF features.
Images from the test set are classified to either adversarial
(positive) or normal (negative) based on the NNIF features
extracted from the M most helpful/harmful training exam-
ples, (RMT, DMT RML DMLy

Training our NNIF detector is very time consuming, re-
quiring us to calculate Eq. (1) on the entire training set
for every validation image, having a time complexity of
O(Ntrain + Nyal), where Nipqin and N, are the size of
the training and validation sets, respectively. For an adver-
sarial detection the complexity time is O(Ngrqin), since we

need to find the top M helpful/harmful training examples
for every new incoming test image.

Papernot and McDaniel [36] focused on improving credi-
bility and robustness in DNN. They used the nearest neigh-
bors in the activation layers for interpretability. As an addi-
tional competing strategy, we convert their original DENN
algorithm [36] to an adversarial detection method. This
is done by collecting the empirical p-values calculated in
the DENN strategy and formulating a reactive adversarial
detector by training a LR model on these features. While
NNIF also uses nearest neighbors, instead of inspecting the
labels of the nearest neighbors, we examine the correlation
between them and the image’s most helpful/harmful training
examples using the influence functions.

4. Results

This section shows the power of our NNIF adversarial
detector against six adversarial attack strategies (norms in
parentheses): FGSM (L), JSMA (Lg), DeepFool (L-),
CW (Ls), PGD (L), and EAD (L+), as introduced in Sec-
tion 2. The PGD attack was used with input perturbation as
implemented by [26]. We selected these attacks for our ex-
periments due to their effectiveness, diversity, and popularity.
For versatility, we used Deepfool and EAD as non-targeted
attacks. PGD was We applied these attacks on three datasets:
CIFAR-10, CIFAR-100 [20], and SVHN [33]. NNIF per-
formance is compared to the SOTA LID and Mahalanobis
detectors (Section 2) and also to the DXNN adversarial detec-
tor (Section 3). Lastly, we analyzed the robustness of NNIF
against a white-box setting. Before presenting our results,
we first describe the experimental setup used in our analysis.

4.1. Experimental setup

Training and Testing: Each of the three image datasets
was divided into three subsets: training set, validation set,
and festing set, containing 49k, 1k, and 10k images respec-
tively. Since our NNIF method is time consuming (espe-
cially the procedure INFLUENCEFUNCTION in Alg. 1), we
randomly selected 49k and 1k training and validation sam-
ples, respectively, from the official SVHN training set and
10k testing samples from the official SVHN testing set. Any
validation or testing image not correctly classified by the
DNN was discarded. For every image in the validation and
testing sets, we generated adversarial examples using all six
attack methods, as describe in Step 4 in Alg. 1. Then, an
equal number of normal and adversarial validation images
were used to train a LR classifier, which was later applied
on the remaining festing images for calculating the detectors
metrics. We used the cleverhans library [34] to carry out all
the adversarial attacks.

Since the DENN method requires a calibration set, we
randomly selected 33% of the validation set examples (after
discarding the misclassifications) for calibrating it. Note

Algorithm 1 Adversarial detection using Nearest Neighbors Influence Functions (NNIF)

Input: Training set (X¢yqin, Yirain) and validation set (X4, Yyar)
Input: Pre-trained DNN with L activation layers and parameters 6

Input: M: Number of top influence samples to collect
Output: Detector(RMT, DMT RML DMLy

Ntr(nn — |Xtra1n| Nval ‘Xval|
Initialize: R} . =[], Dt 1, D,

norm norm [] R;orm [norm []

Initialize: R}, =[1, D}, =[1, R, =[1, D, ;=[]

val ’» “val

for /in [1,L] do
Fit k-NN[/] model on layer [. k = N¢rgin
for (xiv yz) in (Xval’ Yval) do

R e AN A R i

Rt

norm:*
end for

for (z;, ;) in (X 2%, Y.24) do

val > “val

append(RM M, Dt

norm:*

— = =
M e

append(RM N, Dt .append(DMT), R~

—_
[95]

Radv
end for
: end for
: NNIFpos (Radv’ adv’ R;dv’ ;dv)
. NNIF,, = (R} R orm» D,

norm? 71 orm? norm? nor m)

adv* adv*

_ = = =

19: procedure NNFEATURES(z;, k-NN[/])

RMT pMT RML DML .= NNFEATURES(z;, k-NN[!])
.append(RM+), D~

> An adversarial example detector

> Number of examples in train- and validation-set
> Normal image features
> Adversarial image features

(Xedv yadvy . adversarial attack on (X,q;, Yua:) > Generate a new adversarial dataset by attacking the validation set

RMT DMT RML DML .= NNFEATURES(z;, k-NN[/]) > Get NNIF helpful/harmful features for normal images
.append(DMh), R~

append(RM4Y), D~ append(DMY)

norm:*

> Get NNIF helpful/harmful features for adv images
.append(DMV)

adv*

: Detector(RMT, DMt RML DMLy = train a classifier on (NNIFys, NNIF,q)

> Collecting nearest neighbors features

20: Initialize: RT=[], DT =[], R~ =[], D~ =[] > image’s nearest neighbors features
21: R, D := Apply k-NN on activation layer /, get training examples’ ranks & Lo distances out of activations of sample z;
22: H;Lds, H;, .. = INFLUENCEFUNCTION((%i, ¥:), (X¢rains Yirain)) > get indices of the 2x M most influencing

training samples This procedure is presented in the supp. material.

23: for j in HmdS do

24: R™.append(R[j])
25: D™ .append(D[4])
26: end for

27: forjin H, , do

28: R~ .append(R[j])
29: D~ .append(D][j])
30: end for

31: return R, Dt, R—, D~
32: end procedure

> Collect M helpful ranks and distances

> Collect M harmful ranks and distances

that although Papernot and McDaniel [36] showed that the
nearest neighbors can qualitatively detect adversarial attacks
(see Fig. 7 in [36]), they did not formalize an adversarial
detector. We employ their empirical p-values as features for
the adversarial detection task.

Training DNNs: We trained all DNNs on the training
set while decaying the learning rate using the validation set’s
accuracy score. All the DNNs used in our experiments are
Resnet-34 [13] with global average pooling layer prior to the
embedding space. The embedding vector was multiplied by
a fully-connected layer for the logits calculation. We trained

all three datasets for 200 epochs, with Ly weight regulariza-
tion of 0.0004, using a Stochastic Gradient Decent optimizer
with momentum 0.9 and Nesterov updates. For evaluation
we used the model checkpoint with the best (highest) vali-
dation accuracy on the image classification task. We follow
the checklist in [2] and report the full DNN validation/test
accuracies for the clean models when not under attack and
the attacks success rates (see supp. material). These DNNs
perform close to the SOTA and thus are sufficient for being
used in an adversarial study without fine tuning [11].

Parameter tuning: The number of neighbors (k) for LID

(a) CIFAR-10 (b) CIFAR-100 (c) SVHN
[DKNN [0 Mahanalobis =2 all layers I DkNN [Mahanalobis [Z3 all layers [DKNN [Mahanalobis [ZA all layers
3 uD [0 NNIF (ours) = up 3 NNIF (ours) Lo [0 NNIF (ours)
1.0 - ~ - 1.0 571 1.04 e i
By - 7 - - 14 A
0984 [- Pl - = 0 vd -
4 H 9 0.96 1 M 7
d 4 . 0.0 4 3 = .
0.96 _ -) v 4 | -
o | ” g - Vi YA
g 0.94 4 g M m g 0.92 L m
9 7H 3 0.8 B | | i 3 N 4
O 0.92 8] Y 4
2 { 2 4 2 088 |
0.9 1 M ! 4
7l 0.7
0.88 4 u 0.84
0.86 0.6 1
4 0.8
0.84 ’_E
0.82 0.5 T 0.76

FGSM JSMA DeepFool CW

Attack methods

PGD EAD FGSM

JSMA DeepFool
Attack methods

cw PGD EAD FGSM JSMA DeepFool CW PGD EAD

Attack methods

Figure 2. Comparison of AUC scores for detection of FGSM, JSMA, Deepfool, CW, PGD, and EAD attacks on three datasets: (a) CIFAR-10,
(b) CIFAR-100, and (c) SVHN. The black, blue, green, and red bars correspond to the DENN, LID, Mahalanobis, and NNIF defense
methods, respectively. The hatched pattern bars correspond to AUC scores increase where taking into consideration all the DNN activation
layers instead of just the penultimate activation layer. Each attack cluster of bars is divided to four columns which correspond to the methods
(from left to right): DENN, LID, Mahalanobis, and NNIF. Our NNIF detector surpasses previous SOTA methods by a large margin for most

of the attacks.

and DKNN, the noise magnitude (¢) for the Mahalanobis
method, and the number of top influence samples to collect
(M) for NNIF were chosen using nested cross validation
within the validation set, based on the AUC values of the
detection ROC curve. We tuned £ for DkNN using an ex-
haustive grid search between [10, N/#classes], where N is
the dataset size and #classes is the number of classes. For
LID the number of nearest neighbors was tuned using a grid
search over the range [10, 40) while using a minibatch size
of 100 (as in [25]). For the Mahalanobis method we tuned €
using an exhaustive grid search in log-space between [1E 5,
1E~2], and M was tuned using a grid search over [10, 500].
The selected parameters are presented in the supp. material.

Running INFLUENCEFUNCTION in Alg. 1 for an entire
training set is very slow. Thus, for every testing set we
randomly selected only 10k out of the 49k samples in the
training set and calculated I, ;055 (Eq. (1)) just for them.
Although this is a coarse approximation of the real nearest
neighbors distribution in the training set on the DNN em-
bedding space, this approximation is sufficient for achieving
new SOTA adversarial detection. We emphasize that this
approximation was done only for the festing set, and not for
the validation set.

Activation layers: The LID, Mahalanobis, and NNIF
detectors can be trained using either features from the em-
bedding space alone or using all the activation layers in the
network. The DENN detector portrays very poor results
when it is applied on all the DNN’s features (data not shown)
and therefore, we present all the DENN results by training
features from the embedding space alone.

Threat model: We consider two treat models, black-box
and white-box settings. Unless stated otherwise, the default

threat model is black-box, where the attacker is unaware
that an adversarial detection is employed. In this setting,
only the model’s parameters are given to the adversary. In
Section 4.5 we also consider a white-box setting, where the
attacker knows the model parameters, and also the adversar-
ial detection scheme.

4.2. Detection of adversarial attacks

Figure 2 shows the discrimination power (AUC score)
of the four inspected adversarial detectors: DENN (black),
LID (blue), Mahalabolis (green) and NNIF (red), on three
popular datasets: CIFAR-10, CIFAR-100, and SVHN. We
compare between the detection scores calculated for six
adversarial attacks: FGSM, JSMA, Deepfool, CW, PGD,
and EAD. The solid bars correspond to detections where
only the penultimate activation layer was utilized. In some
cases, considering all the layers in the DNN activations
boosts the LID/Mahalanobis/NNIF scores; this is portrayed
as a complementary hatched patterned bar above the solid
bar.

Our method surpasses all other detectors for distinguish-
ing Deepfool, CW, and PGD attacks, for all the datasets.
On FGSM and JSMA our NNIF detector also demonstrates
SOTA results, matching the Mahalanobis detector’s perfor-
mance. Against EAD we show new SOTA for CIFAR-10
and SVHN, but not for CIFAR-100. Table 1 summarizes
the AUC scores of the detectors using features from all the
DNN’s activation layers. The only exception is the DAKNN
method, which is employed only on the embedding space.
In the supp. material, we include results for more attacks
and a similar table for the obtained AUC scores using only
the DNN’s penultimate layer.

Table 1. Comparison of AUC scores (%) for various adversarial
detection methods. Results obtained using all the DNN’s activation
layers for LID/Mahalanobis/NNIF and only the embedding space
for DENN.

Dataset Detector FGSM JSMA Deepfool CW PGD EAD
DENN 87.81 95.37 95.82 96.88 86.83 85.20
CIFAR-10 LID 98.18 95.74 95.80 97.82 9324 83.46

Mahalanobis | 99.80 99.56 97.49 96.48 94.74 89.41
NNIF (ours) | 99.96 99.50 99.32 99.5 9831 95.09
DANN 93.65 83.46 76.71 93.77 7378 78.42
LID 9233 78.63 51.61 67.83 7371 51.11
Mahalanobis | 99.87 96.44 62.05 7443 7853 6293
NNIF (ours) | 99.96 97.50 77.17 96.51 96.60 74.86
DENN 85.24 94.61 91.13 95.15 79.07 84.77
LID 99.92 97.06 93.90 95.82 80.12 87.86
Mahalanobis | 100.00 99.91 97.92 99.18 94.47 95.77
NNIF (ours) | 100.00 99.76 99.06 99.59 96.18 97.40

CIFAR-100

SVHN

Table 2. Ablation test for adversarial attack detection: Calculating
AUC score and accuracy for selected features. Attacking CIFAR-10
dataset using Deepfool.

RMT pMT RML DML AUC(%) acc(%)
v 82.11 77.03

v 66.14 61.47

v v 83.25 78.44

v 99.79 97.68

v v 99.82 97.51

v v 99.79 99.29

v v v 99.81 97.34

v 98.27 96.69
v v 97.73 97.21
v v 98.28 96.73
v v v 97.62 97.12
v v 99.79 97.73
v v v 99.81 97.78
v v v 99.79 97.71
v v v v 99.82 97.86

4.3. Ablation study

To quantify the contribution of each one of the features
(RMT, DMT RML DMy on the NNIF method perfor-
mance, we conducted an ablation study on CIFAR-10 dataset.
Table 2 shows the AUC and accuracy results for Deepfool
attack using features from the DNN’s embedding space only.
In the supp. material we present an extended ablation study
with more attacks: FGSM, JSMA, and CW.

Our analysis shows that the most influential feature is
DMT which is the Lo distance from the most helpful train-
ing examples on the embedding space. In most cases, our
NNIF detector performance using D7 is nearly as good
as the performance upon utilizing all four features. The
least important feature is R+, which barely helps the ad-
versarial detection. Intuitively it makes sense because we
have noticed that the classes of the most harmful training
examples always differ from the normal examples’ class and
mostly differ from the adversarial examples’ class, and thus

their rankings (R +) are expected to be high for both cases
(normal/adversarial). On the other hand, the distances from
the most harmful training examples (D V) are beneficial for
the detection. The most helpful ranks (RM7Y is a beneficial
feature when used by itself, alas incorporating it with DM
did not improve the results. We therefore deduce that the
information added by R™T can already be inferred from
DMT in our detector.

We also show that the features RMT, DMT DML affect
every attack differently. We calculated the probability den-
sity functions for these three features on CIFAR-10, applying
the Deepfool and CW attacks (shown in the supp. material).
From these histograms it can be easily observed that R**
or DM are more useful for detecting Deepfool adversarial
attacks than CW ones. On the other hand, the DM feature
discriminates CW attacks better than Deepfool attacks.

A deployment of any learning based detector on systems
is risky since an attacker could potentially have access to
the LR classifier’s parameters. Thus, it is helpful to deploy
instead a detector which inspects only one feature and applies
a simple thresholding. Our results show that this scheme
is possible with NNIF using only the DM feature for all
attacks.

4.4. Generalization to other attacks

To evaluate how well our detection method can be trans-
ferred to unseen attacks, we trained LR classifiers on the
features obtained using the FGSM attack, and then evaluated
the classifies on the other (unseen) attacks. The AUC scores
are shown in Table 3. It can be observed that our NNIF
method shows the best generalization everywhere except to
JSMA. Table 3 results were collected using only the penul-
timate layer in the DNN (the embedding vector); A similar
generalization table with additional attacks, using all the
DNN layers, is provided in the supp. material. Notice that
the generalization is weaker for all methods in this case.

Table 3. Generalization of adversarial detection from FGSM attack
to unseen attacks. The LR classifier is trained on the features
extracted after applying FGSM attack, and then evaluated on JSMA,
Deepfool, CW, PGD, and EAD.

Dataset Detector l;ij:;[JSMA Deepfool CW PGD EAD
DANN 87.81 94.89 95.21 96.76 85.10 83.28

CIFAR-10 LID 90.12 94.67 95.43 97.66 9029 82.52
Mahalanobis | 96.80 98.95 95.03 89.57 91.39 68.87

NNIF (ours) | 87.75 94.81 97.98 98.98 9394 86.95

DENN 93.65 83.16 62.41 9222 73.60 62.67

LID 80.68 74.33 52.25 67.84 7225 52.10

CIFAR-100 Mahalanobis | 83.90 90.20 59.96 68.72 69.42 59.34
NNIF (ours) | 8723 80.76 78.82 93.16 81.87 70.49

. DANN 8524 9343 89.84 9220 7599 79.81

SVHN LID 88.38 93.93 91.32 9422 8026 84.24
Mahalanobis | 98.14 99.00 91.46 8751 86.26 80.62

NNIF (ours) | 91.06 97.91 95.79 98.16 89.80 91.99

4.5. Attack against NNIF

Here we consider a white-box threat model. In this setting,
the adversary knows more than just the model parameters.
We assume that the attacker is familiar with the adversarial
defense scheme, but does not have access to the detector’s
parameters. Since the NNIF algorithm utilizes the entire
training set, these data are also accessible to the attacker in
our white-box setting. We employ a similar attack strategy
as was proposed in [3] to evade the KD-based detector, and
define a modified objective for the CW minimization:

xadeg +c- (gcw(xadv) + g*(D(xadv))) 3

2)
where /., is the original adversarial loss term used in [4],
and D(z,4,) is the sum over all the distances (in the em-
bedding space) between the adversarial image and the origi-
nal image’s most helpful training samples (Da 4 0 Alg. 1).
More rigorously, we define:

ZDadv

M
> " [IDNN(2agy) — DNN (Xpain (Hf g, [0D)],
=1

minimize ||z —

‘e* (-D ladv
3)

where DNN(-) is the network transformation from the input
image to the embedding vector in the penultimate layer, and
Ht [i] is the index of the i*" most helpful training sample.
Lastly, c is a constant which balances between the fidelity to
the original image and the adversarial strength.

The objective of the minimization in Eq. (2) is to apply
the CW attack while keeping x4, close to the most helpful
training samples of the original image. In theory, we should
have demanded this proximity for the nearest neighbors of
Tadv, and not for x4, itself, but differentiating over the
nearest neighbor algorithm is not feasible. It should also be
noted that this attack was performed only on the penultimate
activation layer, with the features that correspond to the most
helpful examples: RMT and DMT.

We applied this white-box attack on 4000 random samples
of CIFAR-10 test set. We show the performances of DENN,
LID, Mahalanobis, and NNIF detectors on the original CW
compared to our CW-Opt attack in Table 4. Results for other
datasets are in the supp. material. For every detector we used
the same hyper-parameters which yielded the best defense
results using only the last layer. Following [3], we present
the results in this experiment in term of accuracy, instead of
AUC used in previous tests.

From Table 4 we observe that the proposed white-box at-
tack decreases NNIF detection accuracy by only 1%. There-
fore, we conclude that our NNIF defense algorithm is ro-
bust to a white-box setting. In addition, we note that the
new attack impairs all the defense algorithms which rely on
L, distance of nearest neighbors in the embedding space:
DENN, LID, and NNIF. Yet, for Mahalanobis we observe

Table 4. Defense accuracy (%) for a white-box attack targeting the
NNIF detector on CIFAR-10.

Attack DENN LID Mahalanobis NNIF
CW 9345 9143 90.70 91.95
CW-Opt 90.99 89.74 92.29 90.81

an adverse effect. This is somewhat expected since Maha-
lanobis estimates a global Gaussian for each class, and does
not consider local features in the embedding space.

5. Discussion and conclusions

In this paper, we addressed the task of detecting adversar-
ial attacks. We showed that for normal (untempered) images,
there exists a strong correlation between their nearest neigh-
bors in the DNN’s embedding space and their most helpful
training examples, found using influence functions. Our em-
pirical results show that the Lo distance from a test image
embedding vector to its most helpful training inputs (DM)
is a strong measure for the detection of adversarial exam-
ples. The aforementioned distance combined with the near-
est neighbors ranking order of the training inputs were used
to achieve a SOTA adversarial detection performance for six
attacks (FGSM, JISMA, Deepfool, CW, PGD, EAD) on three
datasets: CIFAR-10, CIFAR-100, and SVHN. Furthermore,
we showed that our detector is robust in a white-box setting.

One possible avenue for future research is to inspect
how the nearest neighbors are correlated with the most help-
ful/harmful training examples using different distance met-
rics or by employing a transform on the DNN embedding
vectors. We emphasize that we mainly used the Lo distance
throughout our analysis, thus, we suspect that using another
distance metric such as Mahalanobis [23] could improve our
results further.

Another open issue for future research is the long com-
putation time, which is required to calculate the influence
functions for the entire training set. It is obvious that in order
to deploy our NNIF algorithm, a significant improvement in
computation time is needed, especially for real time appli-
cations or systems, which mandate fast detection pace. A
possible solution to this problem may be a form of hash map
from the nearest neighbors to the most influence training
examples. Every training example can be encoded with a
probability vector for its influence on a specific class; then,
instead of employing a simple k-NN search in the embedding
space, we can average over the probability of each class.

Acknowledgements. GS is partially supported by ARO,
NGA, ONR, NSF, and gifts from Amazon, Google, and
Microsoft. RG and GC are supported by ERC-StG grant
no. 757497 (SPADE) and gifts from NVIDIA, Amazon, and
Google.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. arXiv:1409.0473, 2014.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland
Brendel, Jonas Rauber, Dimitris Tsipras, lan Goodfellow,
Aleksander Madry, and Alexey Kurakin. On evaluating ad-
versarial robustness. arXiv:1902.06705, 2019.

Nicholas Carlini and David A Wagner. Adversarial examples
are not easily detected: Bypassing ten detection methods. In
AlSec@CCS, 2017.

Nicholas Carlini and David A Wagner. Towards evaluating
the robustness of neural networks. 2017 I[EEE Symposium on
Security and Privacy (SP), pages 39-57, 2017.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-
Jui Hsieh. Ead: Elastic-net attacks to deep neural networks
via adversarial examples. In AAAZ, 2018.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann
Dauphin, and Nicolas Usunier. Parseval networks: Improving
robustness to adversarial examples. In /ICML, 2017.

Gilad Cohen, Guillermo Sapiro, and Raja Giryes. DNN
or k-NN: That is the generalize vs. memorize question.
arXiv:1805.06822, 2018.

Maik Doéring, Lasz16 Gyorfi, and Harro Walk. Rate of con-
vergence of k-nearest-neighbor classification rule. J. Mach.
Learn. Res., 18(1):8485-8500, 1 2017.

Abhimanyu Dubey, Laurens van der Maaten, Zeki Yalniz,
Yixuan Li, and Dhruv Kumar Mahajan. Defense against
adversarial images using web-scale nearest-neighbor search.
CVPR, pages 8759-8768, 2019.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal
Frossard, and Stefano Soatto. Classification regions of deep
neural networks. arXiv:1705.09552, 2017.

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and An-
drew B Gardner. Detecting adversarial samples from artifacts.
arXiv:1703.00410, 2017.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In /CLR,
2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. CVPR, pages
770-778, 2016.

Matthias Hein and Maksym Andriushchenko. Formal guar-
antees on the robustness of a classifier against adversarial
manipulation. In NIPS, 2017.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-
Rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian King-
bury. Deep neural networks for acoustic modeling in speech
recognition. /[EEE Signal Processing Magazine, 29(6):82-97,
2012.

Daniel Jakubovitz and Raja Giryes. Improving dnn robustness
to adversarial attacks using jacobian regularization. In ECCV,
2018.

Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta.
To trust or not to trust a classifier. In NIPS, pages 55465557,
2018.

(18]
(19]
[20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

Yoon Kim. Convolutional neural networks for sentence clas-
sification. In EMNLP, pages 17461751, 2014.

Pang Wei Koh and Percy S. Liang. Understanding black-box
predictions via influence functions. In /ICML, 2017.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoftrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
Advances In Neural Information Processing Systems, pages
1-9, 2012.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Ad-
versarial machine learning at scale. arXiv:1611.01236, 2017.
Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A
simple unified framework for detecting out-of-distribution
samples and adversarial attacks. NeurIPS, 2018.

Xin Li and Fuxin Li. Adversarial examples detection in deep
networks with convolutional filter statistics. ICCV, pages
5775-5783, 2017.

Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi
N R Wijewickrema, Michael E Houle, Grant Schoenebeck,
Dawn Song, and James Bailey. Characterizing adversarial sub-
spaces using local intrinsic dimensionality. arXiv:1801.02613,
2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In /CLR, 2018.
Dongyu Meng and Hao Chen. Magnet: A two-pronged de-
fense against adversarial examples. In ACM, 2017.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and
Bastian Bischoff. On detecting adversarial perturbations. In
ICLR, 2017.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken
Nakae, and Shin Ishii. Distributional smoothing with virtual
adversarial training. In /CLR, 2015.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar
Fawzi, and Pascal Frossard. Universal adversarial perturba-
tions. In CVPR, 2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar
Fawzi, Pascal Frossard, and Stefano Soatto. Analysis of
universal adversarial perturbations. ArXiv:1705.09554, 2017.
Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pas-
cal Frossard. Deepfool: A simple and accurate method to
fool deep neural networks. CVPR, pages 2574-2582, 2016.
Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, and Andrew Y Ng. Reading digits in natural images
with unsupervised feature learning. 2011.

Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Good-
fellow, Reuben Feinman, Alexey Kurakin, Cihang Xie, Yash
Sharma, Tom Brown, Aurko Roy, Alexander Matyasko, Vahid
Behzadan, Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin
Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg, Jonathan
Uesato, Willi Gierke, Yinpeng Dong, David Berthelot, Paul
Hendricks, Jonas Rauber, and Rujun Long. Technical re-
port on the cleverhans v2.1.0 adversarial examples library.
arXiv:1610.00768, 2018.

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami.
Distillation as a defense to adversarial perturbations against

(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

(501

[51]

deep neural networks. In IEEE Symposium on Security and
Privacy (SP), 2016.

Nicolas Papernot and Patrick D McDaniel. Deep k-nearest
neighbors: Towards confident, interpretable and robust deep
learning. arXiv:1803.04765, 2018.

Nicolas Papernot, Patrick D McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. [EEE
European Symposium on Security and Privacy (EuroS&P),
pages 372-387, 2016.

Andrew Slavin Ross and Finale Doshi-Velez. Improving
the adversarial robustness and interpretability of deep neural
networks by regularizing their input gradients. In AAAI, 2017.
Bita Darvish Rouhani, Mohammad Samragh, Tara Javidi, and
Farinaz Koushanfar. Towards safe deep learning: Unsuper-
vised defense against generic adversarial attacks. 2018.
Andras Rozsa, Manuel Gunther, and Terrance E. Boult. To-
wards robust deep neural networks with bang. In WACV,
2018.

Florian Schroff, Dmitry Kalenichenko, and James Philbin.
FaceNet: A unified embedding for face recognition and clus-
tering. In CVPR, 2015.

Uri Shaham, Yutaro Yamada, and Sahand Negahban. Un-
derstanding adversarial training: Increasing local stability of
supervised models through robust optimization. Neurocom-
puting, 307:195-204, 2018.

Carl-Johann Simon-Gabriel, Yann Ollivier, Léon Bottou,
Bernhard Scholkopf, and David Lopez-Paz. First-order adver-
sarial vulnerability of neural networks and input dimension.
In ICML, 2019.

Aman Sinha, Hongseok Namkoong, and John Duchi. Cer-
tifiable distributional robustness with principled adversarial
training. In /CLR, 2018.

Chawin Sitawarin and David Wégner. Defending against
adversarial examples with k-nearest neighbor. ArXiv,
abs/1906.09525, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. In ICLR, 2014.
Florian Tramer, Nicolas Papernot, Ian Goodfellow, Dan
Bonehl, and Patrick McDaniel. The space of transferable
adversarial examples. arXiv:1704.03453,2017.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Ian Good-
fellow, Dan Boneh, and Patrick McDaniel. Ensemble adver-
sarial training: Attacks and defenses. In /CLR, 2018.
Athanasios Voulodimos, Nikolaos Doulamis, Anastasios
Doulamis, and Eftychios Protopapadakis. Deep learning for
computer vision: A brief review. Computational Intelligence
and Neuroscience, 2018.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeez-
ing: Detecting adversarial examples in deep neural networks.
arXiv:1704.01155, 2018.

Ying Zhang, Mohammad Pezeshki, Philemon Brakel,
Saizheng Zhang, César Laurent, Yoshua Bengio, and Aaron C
Courville. Towards end-to-end speech recognition with deep
convolutional neural networks. In Interspeech, 2016.

A. Method

The main paper proposes a new reactive detection method for adversarial images: the Nearest Neighbors Influence Functions
(NNIF). Our detector utilizes a influence functions algorithm as shown in [19] to measure the contribution of each training
sample to a test samples prediction. Their algorithm is summarized in Algorithm 2. For measuring the influence a train sample
z has on the loss of a specific test sample 2.4, [19] approximate this term in Eq. (1):

Iup,loss(za Ztest) = _VGL(Ztest7 H)THg_lvﬁ’L(Z: 0)7

where H is the Hessian of the machine learning model, L is its loss, and 6 are the model parameters. Eq. (1) is repeated
throughout the training set, calculating I, 1,55 for every training sample. For our NNIF algorithm only the top M helpful

training examples (/1 z—; 45) and the top M harmful training examples (H, ,.) are chosen for further processing.

Algorithm 2 Influence Functions

Input: Test sample (z;,y;) and a training set (X;rains Yirain)
Input: M: Number of top influence samples to collect
Output: H; , H. .
Ntrain = |Xtra'm|
Initialize H; , =[1, H;, ;.=[]
Initialize I.,p 1055 = 2€10S[Nirqin]
for (xj7 yj) in (Xtrains Yrtrain) do
Lupiosslj] = —VeL(x;, H)TH(;lVgL(xj, 0) > Apply influence function (Eq. (1))
end for
Sort(Lyp joss 7D > Sorting for the most influential training samples
for m in [0, M — 1] do
Ji. = Training example index of L, 10ss[Nrain — m] > choosing most helpful examples
H;, 4 -append(j;7)
Jm = Training example index of I,,;, joss[m] > choosing most harmful examples
H; ...append(j,,)
: end for
return H , H.

inds® “tinds

> Most helpful/harmful training examples indices

R e AN A R i

— — = = =
R T

> Most helpful/harmful training examples indices

B. Experimental setup

The DNNS5s clean accuracies, when not under attack, are shown in Table 5. In Table 6 we present the attack success rate of
the Fast Gradient Sign Method (FGSM) ([12]), Jacobian-based Saliency Map Attack (JSMA) ([37]), Deepfool ([32]), Carlini
& Wagner (CW) ([4]), our CW-Opt attack, Projected Gradient Descent (PGD) ([26]), and Elastic-net Attack on Dnns (EAD)
([5D)- Note that the success rates of all attacks are higher for CIFAR-100. This makes sense since CIFAR-100 dataset has 100
classes instead of 10, and it is thus more vulnerable to misclassifications.

Table 5. DNN clean accuracies (%), for normal images not under attack.

Dataset ‘ train acc val acc test acc
CIFAR-10 99.75 93.70 92.08
CIFAR-100 96.80 70.80 67.99

SVHN 99.46 96.20 94.59

Table 6. Adversarial attack success rates (%) of FGSM, JSMA, Deepfool, CW, CW-Opt, PGD, and EAD. CW-Opt attack is CW regulated
with a loss term optimized against our NNIF defense in a white-box setting.

FGSM JISMA Deepfool Ccw CW-Opt PGD EAD
Dataset
val test val test val test val test val test val test val test
CIFAR-10 | 80.47 79.27 | 71.18 70.21 | 9434 96.19 | 93.70 94.46 | 86.87 86.31 | 79.62 80.51 | 46.64 48.14
CIFAR-100 | 95.19 9526 | 86.02 86.19 | 100.00 99.91 | 99.44 98.90 | 99.15 99.10 | 99.58 99.25 | 86.86 89.41
SVHN 84.72 8551 | 69.02 6551 | 92.62 9245 | 93.24 95.69 | 49.69 4596 | 39.09 47.73 | 7599 77.44

The paper explains how we tuned the hyper-parameters for the four inspected algorithms: DANN, LID, Mahalanobis, and
our NNIF method. For the DENN and LID algorithms we tuned the number of neighbors (k), for the Mahalanobis algorithm
we tuned the noise magnitude (e), and for our NNIF method we set the number of top influence samples to collect (M).
All parameters were chosen using nested cross entropy validation within the validation set, based on the AUC values of the
detection ROC curve. The results are shown in Table 7.

Table 7. Hyper-parameter setting for the four inspected detectors. k denotes the number of nearest neighers used in DENN and LID
algorithms, € is the noise magnitude in the Mahalanobis detector, and M is the number of most helpful/harmful training images used in our
NNIF method.

Dataset Param FGSM JSMA Deepfool CwW PGD EAD
DENN (k) 4900 5000 4900 4900 4800 4900
CIFAR-10 LID (k) 18 18 18 18 24 16
Mahalanobis () | 0.0002 0.0002 0.00005 0.00001 0.00005 0.00001
NNIF (M) 50 200 100 200 450 500
DENN (k) 490 450 20 430 500 10
LID (k) 10 10 10 10 10 10
CIFAR-100 Mabhalanobis () | 0.005 0.005 0.0005 0.00001 0.01 0.0002
NNIF (M) 30 30 40 40 50 30
DENN (k) 3200 3000 1400 3200 3200 3200
SVHN LID (k) 18 22 22 22 22 24
Mabhalanobis () | 0.001 0.0005 0.00005 0.00001 0.00008 0.00001
NNIF (M) 300 50 300 50 100 100

C. Detection of adversarial attacks

Figure 3 presents two ROC curves for classification of Deepfool and CW adversarial attacks on the CIFAR-10 dataset.
One can observe that our NNIF method (solid red line) achieves better classification power over the previous state-of-the-art
methods.

(a) Deepfool (b) Carlini-Wagner
1.0 1 1.0 1
0.8 1 0.8 A
0.6 1 : 0.6 :
« 0.90 A o« .90
a o
= 0.85 4 = 0.85 1
04 T T T T 04] T T T
0.0 0.2 0.4 0.0 0.2 0.4
0.2 4 —— DKNN 0.2 4 —— DKNN
— LID — LID
—— Mahalanobis —— Mahalanobis
—— NNIF (ours) —— NNIF (ours)
0.0 A 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR FPR

Figure 3. ROC curves for classifying adversarial examples. (a) Defending Deepfool attack. (b) Defending Carlini-Wagner (CW) L attack.
All plots correspond to the CIFAR-10 dataset. We achieve state-of-the-art results, surpassing previous defense methods by a large margin.

Table 8 presents the AUC scores for the adversarial detection of FGSM, JSMA, Deepfool, CW, PGD, and EAD attacks on
CIFAR-10, CIFAR-100, and SVHN datasets. These results were obtained by using DNN’s features from only the embedding
space. A similar table with detectors which were trained on the entire DNN’s features is in the main paper.

Table 8. Comparison of AUC scores (%) for various adversarial detection methods, for FGSM, JSMA, Deepfool, CW, PGD, and EAD
attacks. Results obtained using only the DNN’s penultimate layer.

Dataset Detector FGSM JSMA Deepfool CW PGD EAD
DAENN 87.81 95.37 95.82 96.88 86.83 85.20
CIFAR-10 LID 90.12 94.67 95.43 97.66 90.49 82.87

Mahalanobis | 96.80 98.95 96.49 96.96 9291 85.30
NNIF (ours) | 87.75 97.67 99.82 99.05 94.01 88.06
DiENN 93.65 83.46 76.71 93.77 73.78 78.42
LID 80.68 74.33 52.25 67.84 7225 52.10

CIFAR-100 Mahalanobis | 83.90 90.20 62.05 71.60 7246 61.65
NNIF (ours) | 87.23 86.63 84.20 94.58 83.09 7242

DiANN 85.24 94.61 91.13 95.15 79.07 84.77

SVHN LID 88.38 94.31 92.00 95.64 80.92 86.74

Mahalanobis | 98.14 99.15 96.07 98.26 90.41 92.95
NNIF (ours) | 91.06 98.29 97.11 98.68 92.46 93.72

D. Ablation study

To inspect how the four learned features influence our adversarial detection we conducted an ablation study on CIFAR-10
dataset, for four attacks: FGSM, JSMA, Deepfool, and CW. The results are shown in Table 9. From these results, one may
conclude that the most beneficial feature is DT, which is the L, distance from the most helpful training examples on the
deep neural network (DNN) embedding space.

Figure 4 shows the probability density functions for RMT, DM and DM features on CIFAR-10 for the Deepfool and
CW adversarial attacks. From these histograms, it can be easily observed that RMT or DM are more useful for detecting
Deepfool adversarial attacks than CW attacks. On the other hand, the DM feature discriminates CW attacks better than
Deepfool attacks. This is also supported by the results on Table 9: For RMT or DT alone NNIF detects Deepfool better than
CW (98.27% > 81.91% and 99.79% > 97.27%), however, for DM+ NNIF is able to detect CW attacks better than Deepfool
attacks (89.97% > 82.11%).

Table 9. Ablation test for adversarial attack detection: Calculating AUC score and accuracy for selected features. Attacking CIFAR-10
dataset using FGSM, JSMA, Deepfool, and CW.

RMT pMT RMI DMI | FGSM JSMA Deepfool CW

v 78.99 83.23 82.11 89.97
514 51.93 66.14 53.14
82.08 85.11 83.25 90.27
84.19 9741 99.79 97.27
86.74 97.54 99.82 08.81
84.20 9741 99.79 97.27
87.74 97.66 99.81 99.0
64.85 85.27 98.27 81.91
80.19 85.4 97.73 95.14
64.31 85.34 08.28 81.95
83.14 85.97 97.62 95.34
84.18 9743 99.79 97.21
86.66 97.51 99.81 08.85
84.22 97.44 99.79 97.21
87.75 97.67 99.82 99.05

v
v

RS SENENENENENEN
RSRNENEN

NN <
N N N NN

ESRNENEN
NN

Helpful ranks

(a)

Deepfool

0.00025 4
0.00020 4
0.00015 4
0.00010 A

0.00005 4

real
adv

0.00000

(©°

2000 4000 6000 8000

10000

0.8+

Helpful distances
o o
S o

=3
o

real
adv
pred(incorrect)

o
=]

—_
e 2 o
P - -

Harmful distances

o
N

real
adv

o
=)
=}

1

2 3 4 5 6

7

8

Helpful ranks

(b)

Carlini-Wagner

0.00025

0.00020

0.00015 -

0.00010

0.00005

real
adv

0.00000

(dy,,”

2000 4000 6000

8000

10000

o
=

Helpful distances
(=] (=1
) 'S

real
adv
pred(incorrect)

o
o
=)

C

o o o
5 o ®

Harmful distances

o
o

real
adv

0.0
4]

1

2 3 4 5 6

7

8

Figure 4. Probability density functions of the most helpful ranks (R™", top row), most helpful distances (D™, middle row), and the most
harmful distances (D™*, bottom row), on CIFAR-10 for the Deepfool and CW attacks. The features for the normal (untempered) images
that were correctly classified by the network are shown in blue. The features for the adversarial images are shown in orange. The features for
the normal images that were misclassified by the network are shown in green (in the middle row).

E. Generalization to other attacks

The main paper measures the NNIF method transferability from one attack (FGSM) to other, unseen attacks (JSMA,
Deepfool, CW, PGD, and EAD), where all the features are extracted from the penultimate activation layer. Here we provide a
similar table where all the DNN’s activation layers are employed for this comparison (Table 10), except of DEKNN which only
utilizes features from the DNN’s embedding space. The generalization results in Table 10 does not have a definite winner
method. The DENN, Mahalanobis, and our NNIF methods demonstrate the best transferability for various setups. The LID
detector shows the worst generalization overall.

Table 10. Generalization of adversarial detection from FGSM attack to unseen attacks. The LR classifier is trained on all activation layers’
features extracted after applying FGSM attack, and then evaluated on JSMA, Deepfool, CW, PGD, and EAD.

Dataset Detector Izs(igrlt;[JSMA Deepfool CW PGD EAD
DINN | 8781 9480 9521 9676 85.10 83.28

CIFARLLO LID 08.18 9170 8451 91.67 85.62 70.85
Mahalanobis | 99.80 96.11 8625 85.17 8424 68.30

NNIF (ours) | 99.96 9276 79.84 8444 81.66 70.02

DINN | 93.65 83.16 6241 9222 73.60 62.67

LID 0233 7265 5119 59.09 6449 51.00

CIFAR-100 rhalanobis | 99.87 8226 52.15 5372 5294 52.58
NNIF (ours) | 99.96 89.52 6433 8643 85.79 63.64

DINN | 8524 9343 89.84 9220 7500 7981

SVHN LID 00.92 9491 8255 8226 69.90 73.40
Mahalanobis | 100.00 99.18 9224 86.87 82.57 81.06

NNIF (ours) | 100.00 9245 80.14 8320 75.74 75.52

F. Attack against NNIF

We applied a white-box attack against our NNIF defense model on CIFAR-10/100 and SVHN datasets, CW-Opt (Section
4.5 in the main paper). This attack optimization requires a hyper-parameter in the new regularization term, M. This is the
number of the most helpful training examples of the normal image. We apply this term only on the top 1% helpful training
samples which belong to the predicted class (we find this to be most effective for the attack to succeed). Therefore, we set
M = 50 for CIFAR-10 and SVHN and M = 5 for CIFAR-100. Table 4 shows the DKNN, LID, Mahalanobis, and our NNIF
detection accuracies on two scenarios: 1) With the vanilla CW attack and 2) With our white-box attack (CW-Opt).

Table 11. Attack failure rate without defense (%) and defense accuracy (%) for a white-box attack targeting the NNIF detector. The attack
failure rate in the third column corresponds to the probability of the adversary to fail flipping a correct label without any defense method.

Dataset Attack Attack fail rate Defense accuracy (%)
(w.o. defense) (%) | DKkNN LID Mahalanobis NNIF
CwW 5.54 9345 9143 90.70 91.95
CIFAR-10 CW-Opt 13.69 90.99 89.74 92.29 90.81
Ccw 1.10 87.42 61.37 64.16 85.42
CIFAR-100 CW-Opt 0.90 94.16 66.05 51.98 91.15
SVHN Cw 4.31 91.03 87.91 93.24 94.65
CW-Opt 54.04 65.59 70.21 77.23 75.21

For CIFAR-10 we observe only a 1% decrease in our NNIF adversarial detection accuracy. Similar decrease is present also
for all the algorithms which utilize L, distance of nearest neighbors in the embedding space: DENN and LID.

For SVHN we observe that CW-Opt attack impairs our NNIF defense by 20%. We speculate this is because CW-Opt was
able to flip only 46% of labels in the SVHN test set, instead of 96% where attacking with the vanilla CW. Therefore, in the
white-box setting we consider only the hardest test samples for our detection task. We also notice that DENN and LID defense
accuracies are decreased by more than 20% as well.

The results for CIFAR-100 are unconformable to the other datasets, showing an increase of the NNIF detection accuracy in
the white-box setting. This finding also presents with DEKNN and LID, which is correlative to the trend shown on CIFAR-10.
This happens since the attack focuses only on the most helpful distance feature and our defense takes into account also other
parameters. Therefore, to verify our white-box attack indeed brings an adversarial image closer to its natural image’s helpful
training images (in the embedding space), we repeated the experiment by only collecting the distance features, DT, in our
defense and ignoring the ranks, R T. This method demonstrates a decrease of the detection accuracy from 74% to 65%.
This shows that indeed the white box attack also affects CIFAR-100 when it relies only on distance features. The detection
accuracies using only DM7 are summarized in Table 12. Note that our defense technique is always robust to the white-box
attacks when it only uses the distance features. The fact that we show robustness also when considering the ranks features
makes it even stronger since it is hard to optimize the white-box attacks to ranks (as they are non-differentiable).

Overall, we conclude that our NNIF defense method is robust in a white-box setting.

Table 12. Defense accuracy (%) for a white-box attack targeting the NNIF detector, using only the distance features D™,
Dataset Attack NNIF defense acc.

CW 91.96
CIFAR-10 CW-Opt 90.91
CW 74.09

CIFAR-100 CW-Opt 65.48
SVHN CW 94.65

CW-Opt 75.27

G. Influence function smoothness

Since we use ReLLU activations in our Resnet-34 DNN, the cross entropy loss function is not continuously differentiable,
therefore we might have an issue calculating the influence function in Eq. (1). Although this is a technical concern, in practice
we can assume this is not an issue since the set of discontinuities has measure zero, and the problematic activation points will

never be encountered in the back propagation.

