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Modern smartphone sensors can be leveraged for providing novel functionality and greatly improving the user

experience. However, sensor data can be misused by privacy-invasive or malicious entities. Additionally, a wide

range of other attacks that use mobile sensor data have been demonstrated; while those attacks have typically

relied on users installing malicious apps, browsers have eliminated that constraint with the deployment of

HTML5 WebAPI.

In this paper we conduct a comprehensive evaluation of the multifaceted threat that mobile web browsing

poses to users, by conducting a large-scale study of mobile-specific HTML5 WebAPI calls across more than

183K of the most popular websites. We build a novel testing infrastructure consisting of actual smartphones

on top of a dynamic Android app analysis framework, allowing us to conduct an end-to-end exploration. In

detail, our system intercepts and tracks data access in real time, from the WebAPI JavaScript calls down to

the Android system calls. Our study reveals the extent to which websites are actively leveraging the WebAPI

for collecting sensor data, with 2.89% websites accessing at least one sensor. To provide a comprehensive

assessment of the risks of this emerging practice, we create a taxonomy of sensor-based attacks from prior

studies, and present an in-depth analysis by framing our collected data within that taxonomy. We find that

1.63% of websites can carry out at least one attack and emphasize the need for a standardized policy across all

browsers and the ability for users to control what sensor data each website can access.
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1 INTRODUCTION

Mobile phone usage has been on a constant rise, and smartphone devices have reached a near-
ubiquitous presence in many countries. According to reports, almost all mobile phone owners in the
United States own a smartphone [73]. Amongst the rich set of functionality offered by such devices
web browsing remains popular. Smartphone usage has gained such traction, that in 2016 more
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internet traffic originated from mobile devices than desktop computers worldwide [57] and 56% of
the traffic to top-sites in the United States was frommobile devices [115]. This upward trend has been
influenced by many factors, including improvements in the speed of mobile internet connections,
mobile browsers offering more features, and improvements in smartphone hardware [50].
On the other hand, apart from the obvious usability benefits, smartphone devices have also in-

troduced a plethora of privacy risks. In this post-Snowden era [58] users are becoming increasingly
aware of privacy issues including online tracking and internet surveillance, and employ private
browsing among other techniques to remain anonymous online (despite overestimating the protec-
tion it actually offers [125]). Nonetheless, private browsing offers some protection against users
being tracked across different sessions [126]. However, adversaries can still track users through
browser or device fingerprints [93]. This consists of collecting characteristics of the device envi-
ronment and the browser itself, making it possible to identify which device is navigating a given
webpage [71]. Prior work has also shown that manufacturing imperfections in sensors’ hardware
render them fingerprintable [45].
Websites can access mobile sensor data through the HTML5 WebAPI, which is supported by

major browsers (with certain variations). The WebAPI is not limited to mobile devices, and offers a
rich set of capabilities to modern websites. Accordingly, Snyder et al. [111] presented a cost-benefit
analysis of the functionality of the WebAPI using a small set of websites, by correlating WebAPI
calls to vulnerabilities reported in CVE reports and relevant academic attacks (including tracking,
cross-origin information stealing [117], and timing attacks [59]). As that study focused on desktop
browsing and was limited in scale, Das et al. recently explored the pervasiveness of mobile device
fingerprinting [42]. However, this is only one of the threats that the WebAPI poses to mobile users
and no comprehensive large-scale exploration currently exists. In practice a plethora of attacks
that were previously limited to mobile apps can łmigratež to the mobile web, as modern browsers
provide access to a device’s underlying mobile sensors.
In this paper we present a quantitative and qualitative large-scale study of mobile-specific

WebAPI calls made by websites in the wild. We build a unique crawling infrastructure that uses
real Android devices and perform an end-to-end analysis of WebAPI requests. In more detail, apart
from injecting a script in websites that allows us to hook all WebAPI calls, we leverage a dynamic
real-time app-analysis system that allows us to trace the internal behavior of the Android OS
when calls occur, ensuring the fidelity of our measurements. Using our crawling infrastructure, we
measure the prevalence of mobile-specific WebAPI calls across 183,571 of the most popular websites
during March-September 2018. Our experiments capture the true scale of this phenomenon, as we
detect 5,313 unique domains accessing at least one mobile WebAPI call; 35.89% of those also result
in sensors being accessed by third-party scripts that originate from 11 second-level domains. To
better understand the implications and potential threat that users face, we survey prior literature
on attacks from malicious apps that leverage data from mobile sensors. Based on this diverse yet
representative selection of papers we create a taxonomy of attacks that can be potentially carried
out by modern websites by obtaining seven categories of sensor data. We then break down the
different attacks based on their sensor requirements and conduct an in-depth analysis of our dataset,
and find that 3,008 websites request access to sensor data needed for at least one attack. While
we refer to attacks, these capabilities include privacy-invasive behavior (e.g., inferring a user’s
sensitive demographic information for personalizing an ad) that can be carried out by, otherwise,
legitimate websites.

Our extensive analysis reveals that popular websites, as well as websites from popular categories
(e.g., e-banking), tend to access more mobile sensors which consequently leads to the feasibility of
conducting more sensor-based attacks. Interestingly at least one domain from every category in
our dataset could potentially infer the user’s input, which is also the most frequently feasible attack
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across all categories and can be used to steal sensitive information (e.g., credit card information and
pin number). Moreover websites do not need to access a lot of different sensors to perform these
attacks; readings from the motion and orientation sensors, which do not require any permission
at the operating system level, can lead to 9 and 8 different attacks respectively. We argue that
with different browsers enforcing different access policies, as do the plethora of apps that support
WebView, there is dire need for a standardized, fine-grained universal mechanism that allows users
to control access to all types of mobile sensor data.
Overall, this paper makes the following contributions:
• We conduct a large-scale end-to-end study of websites targeting mobile-specific sensors
across 183K of the most popular websites according to Alexa, and our findings reveal the
extent to which websites target smartphone users. We use a novel crawling infrastructure
consisting of smartphone devices, which prevents potential evasive behavior from domains
that can infer the presence of a virtualized execution environment (e.g., through canvas
fingerprinting).
• We provide a taxonomy of previously reported sensor-based attacks and reframe them within
the modern mobile ecosystem where WebAPI and WebView are widely supported and attacks
are not constrained to users that install a malicious app. Guided by our taxonomy we conduct
a qualitative and quantitative analysis of our collected data and provide a comprehensive
assessment of the risks presented by the mobile WebAPI.
• Due to the severity of the attacks enabled by mobile sensors, we provide a set of guidelines
for access control policies that should be adopted and standardized across browsers to better
protect users and also allow them more control over their data.
• Our dataset is publicly available at https://www.cs.uic.edu/~webapi to further facilitate
research on the security and privacy risks that users face due to mobile sensor data being
accessible to websites.

2 BACKGROUND

In this section we provide an overview of mobile-specific calls supported by the HTML5 WebAPI
and then present a taxonomy of attacks presented in prior work that rely on data provided by
mobile sensors.

2.1 HTML5 WebAPI

Browsers have evolved significantly from their original design, both in terms of the functionality
they provide as well as their underlying complexity. At the same time, the advent of smartphones
and their almost ubiquitous presence has enabled a wide range of previously-infeasible functionality
due to connectivity on-the-go and the information returned by embedded mobile sensors. As such,
many capabilities previously restricted to native apps are now available to websites. While the
WebAPI introduces obvious usability benefits to end users as it can improve the overall experience,
it also poses a significant privacy and security risk. Apart from enabling certain forms of user
tracking (e.g., through the discontinued Battery API [96]) other sensor-based attacks that were
previously restricted to mobile apps can now be deployed over the web. To better explore this
threat, we focus on all mobile-specific HTML5 WebAPI calls, and subsequently explore the attacks
that they enable. In detail, our study focuses on the following WebAPI calls (which we refer to as
mobile-specific for the remainder of the paper).
DeviceMotionEvent.acceleration [22]: This call provides web developers with information from

the accelerometer sensor about the speed of changes in the device’s position, returning values
expressed inm/s2 for all three X, Y, Z axes.
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Fig. 1. Taxonomy of attacks demonstrated in prior studies that leverage data from mobile sensors.

DeviceMotionEvent.rotationRate [86]: This call returns information from the gyroscope sensor
about the rate at which the device’s orientation changes along the three orientation axis (alpha,
beta, gamma). This value is expressed in degrees per second.

DeviceOrientationEvent [104]: This event is fired when the accelerometer detects a change to the
device’s orientation (i.e., from landscape to portrait and vice versa).
DeviceProximityEvent [23]: This allows websites to obtain information about the distance of a

nearby physical object using the device’s proximity sensor. The value is returned in centimeters.
For instance, this information can be used for energy conservation by turning a device’s screen off
when the user is talking on the phone.

DeviceLightEvent [20]:Websites can obtain information about changes in the device’s environment
by indicating changes in the intensity of the light as measured by the ambient light sensor, which
is expressed in lux units.

Geolocation [19]: This set of API calls allows web developers to retrieve the geographical position
of a smartphone device in real time. This is done at two levels of granularity: fine which relies
on readings for the device’s GPS, or coarse which relies on information of the WiFi network the
device is connected to. Specifically the getCurrentPosition() method instantly retrieves the
position of the device, while the watchPosition()method returns the position of the device using
a new a process that continuously polls for the current location.
getUserMedia [38]: This set of calls provides access to the device’s camera and microphone

sensors.
vibrate() [21]: This allows websites to control the smartphone’s vibration engine, and supports

different vibration patterns of different durations to be sent to the device.

2.2 Attack Taxonomy

A plethora of research papers have demonstrated mobile-based attacks that employ sensor data.
While a considerable number of attacks present similar characteristics, e.g., demonstrating different
techniques for inferring a user’s touchscreen input or fingerprinting the user’s device, a wide range
of different attacks have been proposed. Here we introduce a taxonomy of attacks compiled from
the literature that captures the vast potential of how the seven different categories of mobile sensor
data can be misused by adversaries. Typically these attacks assume that attackers are able to obtain
sensor data through a malicious app installed on the device. However, in practice, modern browsers
can mediate data exchange between websites and sensor data through the HTML5 WebAPI. This
leads to a different threat model and an increased attack surface, as it removes the constraint of
users having to install a malicious app; simply visiting a website can expose users to these attacks.
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While this might affect the accuracy of certain attacks (e.g., due to a website being able to obtain
sensor data for a shorter amount of time compared to an app) it remains an important and largely
unexplored risk for mobile users.
In Figure 1 we present our taxonomy which aims to highlight the variety of attacks enabled

by sensor-data, while simultaneously obscuring the type of sensor used for each attack. We do
not include explicit sensor information in our taxonomy, as prior attacks often obtain the same
objective while using different combinations of sensors (as can be seen in Table 1). At the same
time we opt for a relatively fine-grained first level, and specifically consider acoustic attacks as a
separate class due to their unique and diverse nature, instead of including them as sub-classes of
physical and digital activity inference attacks. Next we briefly describe the four main classes from
our taxonomy’s first level and refer to some of the presented attacks.

Physical activity inference. Numerous studies [60, 64, 80, 90, 102] have demonstrated that mobile
sensors can be used to infer information about personal everyday activities. For example it is possible
to infer whether the user is walking, running or their mode of transportation, by leveraging the
Motion and GPS sensors [102].

Acoustic attacks. [18, 44, 54, 55, 77, 78, 82, 107] showed that access to Accelerometer, Gyroscope
or the Vibration API can be used to infer users’ credit card numbers by listening for specific
frequencies [107] or what a user is typing on a physical keyboard [78], and bypassing dynamic
analysis systems and antivirus products through covert channel attacks [77].

Digital activity inference. This class includes a wide range of attacks, with prior work [31, 34, 36, 51,
62, 80, 97, 113, 128] showing that sensor information (including the Accelerometer and Gyroscope)
can be used to predict what the user is typing on the smartphone’s touchscreen(e.g., [80, 97]). This
is possible because typing leads to changes in the position of the screen, its orientation and the
device’s motion. In a different study, the Light sensor was used to identify the content of an external
display and even classify users’ digital activities into different categories with an 85% accuracy [36].
User tracking. Identifying and tracking users across the web has garnered much attention [16,

17, 32, 40ś43, 45, 51, 60, 65, 66, 82, 90, 102, 103, 131, 133]. This can be conducted in different ways,
from coarse-grained location tracking that does not require any user-permission (using just the
Accelerometer or Gyroscope) [60, 90], to fine-grained device fingerprinting using rich and high-
resolution data from smartphone sensors(e.g., [17, 45]). In this category we also include alternative
attacks that could track users by inferring demographic information (e.g., age [43], gender [82]
and fingerprints [51]), physical traits such as their gait [66, 103], or information about their mental
state or mood [133].
Deconstructing sensor attacks. Table 1 lists the different sensor-based attacks previously

described in the studies that guided our taxonomy. We classify previous attack papers based on the
taxonomy introduced in Figure 1. Subsequently, we break down all the attacks presented in those
papers based on the type of sensor data needed to carry out the attacks. If an attack can be carried
out using a single sensor, that sensor is denoted with . For attacks that require multiple sensors to
succeed we mark the sensors with G. For sensors that are not required, but can be used to improve
accuracy we use #. For example the technique in [102] that infers the body movement or activity
of a user requires access to the motion and GPS sensors. On the other hand, [90] only requires the
orientation sensor, but using the Motion or Magnetometer sensor can further improve the attack.
Even though access to the magnetometer is not currently supported by Firefox [4], which we used,
we include it for completeness.

3 METHODOLOGY AND SYSTEM DESIGN

In this section we present our system design and experimental methodology. We give an overview
of our system’s architecture, and provide implementation details about the in-line hooking methods
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Table 1. Sensor based side-channel attacks.

Ref.# Attack

M
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n
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en
ta
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on

Li
gh
t

V
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ti
on

M
ag
ne
to
m
et
er

Media
(Camera,Mic)

GPS

[102]

Mode of transportation

G - - - - - - G

[60, 61, 64]  - - - - - - -
[92]  - - -  - - -
[90] #  - - # - - -

[124, 129] G G - - G - - -
[116]   - - - - - -

[102]

Body movement or activity

G - - - - - - G

[80, 129] G G - - - - - -
[69]  - - - - - - -
[116]   - - - - - -

[63, 102]

Location Tracking

G - - - - - - G

[60]  - - - - - - -
[90] #  - - # - - -
[91] G G - - - - - -
[124] G G - - G - - -
[92]  - - -  - - -

[78]
Acoustic emanation side-channels

 - - - - - - -
[54, 55, 127, 132] - - - - - -  -

[82]
Speech recognition

-  - - - - - -
[18] G G - - - - - -

[34, 62, 80, 84, 99, 128]

Touchscreen input

G G - - - - - -
[97],[24],[35]  - - - - - - -

[35] -  - - - - - -
[113] - -  - - - - -

[51, 100] - - - - -  - -
[108] G - - - G - - -
[89] -  ,# - - - -  ,# -
[109] - - - - - G G -

[31] OS/app fingerprinting - - - -  - - -

[36] Screen content inference - -  - - - - -

[43, 103, 133]

Physical trait or demographics inference
(e.g., age, sex, mood, fingerprints, gait)

 - - - - - - -
[33]  - - - - - - -
[82] -  - - - - - -
[51] - - - - -  - -

[53, 66] G G - - - - - -
[70] - - - - - -  -

[41, 42, 65, 129]

Device/sensor fingerprinting

G G - - - - - -
[32]  - - - - -  -
[17]  ,G  - - - G - -
[45]  - - - - - - -

[40, 131] - - - - - -  -
[16] G G - - G - G -

[77]
Covert communication side-channels

- - -  - - - -
[107] - - - - - -  -
[44] G - - G - - - -
[130]   - - - - - -

Sensors marked with ( ) are sufficient for performing the specific attack. When a combination of multiple

sensors is required to perform the attack, they are marked with (G). We denote optional sensors with (#)

(e.g., that data is optional and enhances the accuracy of the attack). When papers present multiple attacks,

combinations of all of the above may be present in the table. Grey columns denote sensor data that should

require explicit user permission according to the W3C.

for intercepting both JavaScript and Android system call functions. Due to space constraints we
omit certain details about our system’s functionality regarding the Android internals.
System architecture. Our system employs a transparent proxy server that intercepts network

traffic by using mitmproxy [37]. We configured all the Android devices used in our experiments
with mitm’s certificate in order to intercept both HTTP and HTTPS traffic. As can be seen in
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events of interest. Our code is directly injected in the head of the document (if there is one) or the
page body otherwise.

In order to listen to events and associate a function to a specific target we need to intercept the
setter property. Even though this is possible using Object.defineProperty() the original value
will be lost and the webpage may not function as expected. Therefore, we follow the approach
employed by Chameleon [56] and overwrite the getter property of each event prototype instead
of substituting the setter relative to the target property. As such, every time the property is
read, our custom function is called. While certain sensor data may normally remain the same
during navigation (e.g., properties related to display characteristics), remaining constant might
be considered łsuspiciousž for other sensors. For instance, when an actual human uses the device,
small changes in the gyroscope readings would be expected. As such, to make our crawling more
realistic, our system intercepts the values returned by certain sensors and slightly modifies their
value while ensuring that the result remains łvalidž; For instance, a gyroscope orientation reading
is a decimal number between −365 and +365. In general, data retrieved through events, is handled
in two different ways: listening to addEventListener on the target object while checking if the
argument matches the desired event and defining new getters for the properties of the event’s
prototype.
Identifying the JavaScript source. Apart from logging WebAPI calls we also want to identify

the origin of the JavaScript files being executed. This information is important in order to identify
if the script belongs to a first-party domain or a third-party domain. We register the source of
the URL by utilizing the stack property of the Error object. Our hooking script implements a
mechanism that creates an Error object and reads its stack property.

Android API call interception. Each mobile HTML5 WebAPI is associated with a low-level
Android API call. In order to validate the results of the JavaScript interception and to identify
which ones require a permission, we use the PermissionHarvester [46] module that hooks every
Android permission protected API call and logs the current stacktrace. Since access to some of
the sensors does not require an Android permission, we also manually identified and hooked the
functions that give access to non-permission-protected sensor data. Android applications (including
the device’s browser) cannot directly read the current value of a sensor and are required to register
a listener in order to consequently read the captured events. Each sensor can be obtained by calling
the getDefaultSensor() method of the android.hardware.SensorManager class. The listener
is declared by specifying the name of the sensor with the getDefaultSensor() function, and a
Sensor instance is created. Finally, the listener is registered by calling the registerListener()
method. Our module intercepts both of these function calls.
Experimental setup.Among popular browsers for Android, Google Chrome andMozilla Firefox

have better compatibility for HTML5 WebAPIs [52]. Since Chrome relies heavily on Google Play
Services for the Android internals, while Firefox more clearly leverages the official and better-
documented Android API, we opted for the latter. In our experiments we use Mozilla Firefox
(v.59.0.1) as our browser on three Android Google Nexus 5X and a OnePlus One device, all running
AOSP 7.1.2. We controlled the devices using custom scripts and the Android Debug Bridge. We
first evaluated the effectiveness of our methodology by creating a dummy website that executes all
possible mobile HTML5 WebAPIs. Since browsers require a valid certificate in order to call certain
APIs (i.e., they are only served over HTTPS) we used a self-signed certificate. Before conducting our
actual large-scale study, we confirmed that our approach can successfully intercept and monitor
access to the devices’ sensors. Our system also simulates brief user interaction through random
gestures (swipes and taps) with websites so as to elicit functionality from websites expecting some
user activity. Gestures are issued for approximately 30 seconds on average for each website, while
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Table 2. Number of domains using mobile WebAPI calls.

WebAPI #Domains WebAPI #Domains

Device orientation 2,199 Ambient light sensor 152

Geolocation 1,688 Proximity sensor 142

Device motion 1,360 Vibration 84

Screen orientation change 645 Media capture 12

Total 6,282

an extra module monitors for potential redirections to different domains (e.g., due to clicking on an
ad) which are rolled back so the original website can continue to be processed.

4 DATA COLLECTION AND ANALYSIS

In this section we present our findings from our large scale study on the use of mobile-specific
WebAPI calls in the wild. Our crawling list included the 200K most popular websites according to
Alexa, as returned on 03/24/2018, to be processed by our crawling infrastructure comprising of four
Android smartphones. Our system was unable to access or complete the crawling process for 16,199
(8%) of the domains in our list (e.g., 503-timeout, 502-Bad Gateway, or DNS errors), and omitted
230 domains flagged as malicious by the Google SafeBrowsing API. Our crawling experiments took
place between 03/24/2018-09/03/2018 and 11/11/2018-11/22/2018, from US-based IP addresses.
In Table 2 we can see the prevalence of the mobile-specific WebAPI calls logged by our system

among the 183,571 domains processed by our crawling infrastructure. We logged 5,313 (2.89%)
websites using at least one of the targeted APIs, while 807 request access to sensor data using
more than one of the API calls. The most prevalently accessed data is from the acceleration and
orientation sensors which do not require the user’s permission, as well as geolocation data which
requires permission in major browsers. While the Geolocation API can also return information for
desktop computers (using łinformation about nearby wireless access points and the IP addressž [5]),
we consider it mobile-specific due to smartphones’ integrated GPS receivers which provide real-
time location information. While geolocating users based on landline IP addresses is considerably
accurate [122], that is not the case for mobile IP addresses [26, 119]. It is important to note that
the Media capture and Geolocation APIs should explicitly request permissions from the user;
while this is enforced in major browsers, it is not always the case with other browsers (e.g., for
Geolocation [67]). For the remaining WebAPI calls, users will be unaware that such information
is being retrieved by the website even for major browsers, which occurs in 4,582 (2.49%) of the
websites we processed.

As can be seen in Figure 3 the use of mobile-specific WebAPI calls is not uniform across our
dataset. Indeed, the highest concentration is found in the top 5K websites with 250 domains, which
is more than double the 122 domains in the last chunk 195K-200K. Moreover, all the chunks above
the 150 domain-threshold are found within the top 60K. Overall, most chunks contain between
100 and 150 domains requesting access to mobile-specific API calls. Domains also access more
permission-free WebAPIs (gray bars) independently of their rank, indicating the importance of this
sensor data. As discussed later on, this type of information can be used for a plethora of attacks,
and users should have the ability to explicitly grant permission for them.

As Figure 4 (left) shows the majority of websites issue request access to a single sensor through
the WebAPI, while 15.1% of the domains we processed target at least two different types of sensor
data. As shown in Table 1, only accessing the Motion sensor can lead to six different attacks, while
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a combination of two sensors (Motion and Orientation) leads to eight attacks. Furthermore, as can
be seen in Figure 4 (right) 56.6% of the domains that issue mobile-specific WebAPI calls are able to
perform at least one attack.
Sensor-based attacks. Next, we continue our analysis of the dataset collected by our system

by framing it within our taxonomy based on representative prior work. It is important to note that
in our analysis we do not take into account or argue for (or against) the plausibility of the attacks
presented in previous studies. Instead, our goal is to measure the potential risk that mobile users
face due to web browsing by identifying websites that request access to specific sensor data and
could potentially misuse them in an invasive or malicious manner.
Table 3 breaks down the number of domains for each attack. We observe that the most com-

mon attacks across websites that access WebAPIs are touchscreen input (55.07%), device/sensor
fingerprinting and trait, mood or demographic inference (54.07%), location tracking and mode
of transportation (53.85%) and speech recognition (41.39%). As can be seen in Table 3, the most
commonly feasible attack enabled by collected mobile sensor data is the inference of the user’s
touch input. This would allow a malicious domain to exfiltrate extremely sensitive information, such
as the user’s credit card number, her login credentials, or even private chat messages. The attack
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Table 3. Breakdown of sensor based attacks, the number of domains capable of deploying them and the

percentage of webpages capable of performing the specific attack.

ID Mobile Sensor-based Attack #Domains Percentage

1 Mode of transportation 2,861 53.85%

2 Body movement or activity 720 13.55%

3 Location tracking 2,861 53.85%

4 Acoustic emanation side-channels 1,372 25.82%

5 Speech recognition 2,199 41.39%

6 Touchscreen input 2,926 55.07%

7 Screen content inference 152 2.86%

8 Inferring user’s age 1,360 25.60%

9 Inferring user’s sex 2,199 41.39%

10 Inferring user’s fingerprints 12 0.23%

11 Inferring user’s gait 2,861 53.85%

12 Inferring user’s mood 1,372 25.82%

13 Device/sensor fingerprinting 2,873 54.07%

14 Covert channels 96 1.81%

surface grows considerably due to third-party scripts accessing WebAPIs (see Section 4.2), since
they create a hidden covert channel and can exfiltrate sensitive data even if the user is browsing a
legitimate webpage. We argue that any information gained from sensors poses a risk for users and
an access control policy should be enforced, either through some form of run-time permissions [6]
or using a mechanism similar to GDPR [3] where users are informed and have to explicitly give
their consent.

4.1 In-Depth Analysis and Case Studies

Here we continue our analysis and present a series of case studies. We first classify every domain
that accesses at least one WebAPI call using McAfee’s real time database [79]. In Table 4 we provide
the top 20 categories (sorted in descending order) based on the average number of access requests
for sensor data across all the websites of each category. In Appendix A we provide a full list of
the classification performed in Table 8. The first column denotes the classification label, while the
second, third and fourth columns denote the number of domains, the aggregated number of sensors
accessed and the aggregated number of feasible attacks for each category respectively. The last
column shows the average access requests for sensors across websites that access at least one mobile
sensor. We observe that domains that have a higher request access sensor rate fall into 10 major
categories. Domains that fall into these categories typically show a lot of advertisements as well as
retargeted ads [29], since users with that kind of browsing history appear to be heavily targeted
by advertisers [112]. Based on the plethora of techniques that can be used for the device/sensor
fingerprinting attack (see Table 1), we believe that mobile sensors can be used as another channel
for tracking users even across sessions. We also observe that the three categories with the highest
aggregate number of accessed sensors and attacks are Business, Online Shopping and Entertainment;
these categories typically generate more ad revenue than other categories [12]. Since significant
effort and deliberate design dictate the rules of digital advertising, the fact that these categories have
the highest aggregate numbers of accessed sensors is not coincidental. Indeed ads can influence how
we perceive our surroundings, which is highly applicable in beauty products [118]. For instance, a
prevalent concept spread by the media relates to how people perceive beauty and attractiveness [27].
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Table 4. Domain classification for the top 20 categories sorted in descending order based on the average

request access for sensors across websites accessing at least one mobile sensor.

Label # Domains # Sensors # Attacks % Sensors/Total Domains

Business 662 743 2246 13.98%

Online Shopping 427 539 2316 10.14%

Marketing/Merchandising 417 459 1380 8.64%

Entertainment 348 439 2118 8.26%

Travel 322 392 1492 7.38%

General News 327 385 1640 7.25%

Education/Reference 293 321 1380 6.04%

Internet Services 301 318 1169 5.99%

Finance/Banking 239 307 955 5.78%

Fashion/Beauty 169 249 1218 4.69%

Blogs/Wiki 201 236 1272 4.44%

Public Information 201 226 388 4.25%

Software/Hardware 200 214 569 4.03%

Pornography 136 196 983 3.69%

Potential Illegal Software 117 181 990 3.41%

Health 128 170 480 3.20%

Games 115 143 865 2.69%

Restaurants 126 139 192 2.62%

Sports 113 135 685 2.54%

Real Estate 114 122 252 2.30%

Moreover Barford et al. [28] showed that users with a ’Beauty & Fitness’ profile are highly targeted
by shopping-related ads.

Figure 5 and Figure 6 depict the most frequently accessed sensors and the most frequently feasible
attacks for each domain category. In Figure 5 we observe that the majority of the categories will
more often access three specific sensors: the motion, orientation, and device location sensor. We
emphasize that the motion and the orientation sensors do not require any permission from the
operating system and when used alone lead to 9 and 8 different attacks respectively. Moreover
when these three sensors are combined they can result in 12 different attacks, including inferring
the touchscreen input, device/sensor fingerprinting, and location tracking. Figure 6 shows that
these three are the most frequent attacks across domain categories, along with the inference of
demographic information. Interestingly, every category in our dataset, including those that the
McAfee service could not classify (i.e., NotAvailable), can infer the user’s input across all categories.
We argue that the information gained from this attack is extremely sensitive and can lead to more
severe attacks.
Domain/Category popularity. To explore whether there is a correlation between the popu-

larity of a given domain category and the number of sensors these domains tend to access, we
calculate Pearson’s correlation coefficient. Figure 7 shows Pearson’s correlation coefficient between
the Alexa rank for every website in every domain category with the number of sensors accessed and
with the number of attacks that are feasible with the data they collect. A score of 1 denotes perfect
linear correlation between two variables, 0 denotes no correlation, and -1 shows total negative
correlation. A positive correlation indicates that both variables increase or decrease together, while
negative correlation indicates that as one variable increases, so the other decreases, and vice versa.
As can be seen in Figure 7 the domain categories that have a positive value indicate that as the
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Fig. 6. Most frequent (feasible) attacks for each domain category.
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Fig. 7. Pearson’s coefficient between the Alexa rank for every website in every domain category, correlated to

the number of sensors accessed and the number of attacks that are feasible with the data they collect.

Alexa ranking is dropping so does the number of sensors accessed by websites in this category.
The opposite is also true ś more popular websites are more likely to access more mobile sensors.
This is consistent across different popular categories such as Online Shopping, Finance/Banking,
Entertainment, Pornography and Malicious Sites. Websites in these categories have a smaller Alexa
ranking, which means that they are more popular and, as we discuss later on, these categories
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Fig. 8. Breakdown of sensors accessed and corresponding attacks that could be deployed by banking domains.

request a higher average access rate for sensors compared to other categories. Since the number of
sensors accessed affects the number of feasible attacks, we deduce that popular websites and domain

categories are prone to access more mobile-specific sensors and such information enables a variety of

techniques that can be used for a plethora of attacks. We also observe that for some categories the r
value is zero, indicating that for these categories there is no correlation between the number of
sensors accessed and their popularity. For websites with a negative value we observe that as one
variable increases (Alexa ranking), so the other decreases (sensors accessed). This is potentially due
to these categories containing very few websites as shown in Table 8 in Appendix A.
Banking sites.While device fingerprinting allows third parties to track users across theWeb [93],

fingerprints can be used as an additional factor for authentication [15]. As such, banking websites
are well-suited for deploying such a security mechanism [94] due to the significant implications of
compromised accounts. As details of such practices are not typically disclosed, we further explore
the prevalence of sensor-based information access across e-banking domains. We compiled a list of
bank domains using online resources [1, 7] and cross-referenced it with our dataset.
As can be seen in Figure 8, we identified 65 banking domains that request access to data from

at least one mobile sensor. Overall, banking domains request access for 1.38 sensors on average,
which is higher than the average of 1.17 in other domains, indicating that banking websites are
more likely to leverage the HTML5 WebAPI for accessing sensor data. We find that 24 of the bank
domains obtain access to the sensor data necessary to conduct at least one of the attacks included
in our taxonomy. Interestingly, all of those banks collect the sensor data leveraged in prior work
for device fingerprinting, while 40 banks request access to the user’s geolocation which can also be
used for enhancing the authentication process [15]. Furthermore, we also find that efirstbank.com
actually requests access to more sensors than any other domain in our entire dataset. Overall, while
accessing sensor data could be motivated by enhancing the authentication process, this practice
raises privacy concerns as argued by privacy advocates [83].
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Fig. 9. Breakdown of sensors accessed and corresponding attacks that could be deployed by domains with

adult content.

Adult Content. Figure 9 shows the number of sensors accessed by websites that are classified
by McAfee as łpornographyž. We found that 136 domains access at least one mobile sensor. While
the majority of them accesses one or two mobile sensors, which can result in 11 different attacks, in
aggregate these domains access six out of the eight available sensors (orientation, position, motion,
orientation_change, light, vibration). Interestingly we found that 73 domains are capable of inferring
the user’s age and mood and 87 are capable of inferring the user’s sex. Such information can be
of great value for this specific category of websites since it can be used to recommend additional
content, increasing the duration of users’ sessions while showing them targeted advertisements
(which leads to increased revenue). The information gained from mobile sensors should not be
ignored within this context, especially since third-party analytics and advertising services have the
ability to track users across and outside the adult web [121].
Malicious domains. Even though our system checked Google’s SafeBrowsing API before

visiting a domain, it is possible that visited domains could be flagged as malicious later on, or
by different blacklists. As such, we submitted all the domains that issued WebAPI requests to
VirusTotal. Figure 10 presents the websites flagged as malicious (sorted by their rank), the number
of accessed sensors per website and feasible attacks. Out of those, 149 domains were flagged by one
AV engine and 17 domains were flagged by two. We can see that higher ranking malicious domains
are more likely to access more sensors which results in a higher number of feasible attacks. We
found 11 websites being flagged by at least 3 AV engines. The label on top of the bars in Figure 10
(bottom) represents the number of AV engines identifying these domains as malicious or suspicious.
Finally, we found two websites,1 namely goggle.com and yotube.com, that are flagged by eight
AV engines as malicious. Apart from likely examples of typosquatting [85, 123], these websites
requested access to sensor data that could be used to perform one and eleven different attacks
respectively.
Country code top-level domain. To get a better understanding of the target audience of the

domains that access mobile sensors we plot the websites that access at least one mobile specific
WebAPI based on the country code top-level domain. Figure 11 and Figure 12 show the aggregate
number of sensors accessed and the aggregate number of feasible attacks. We observe that domains
with a code top-level domain from Ukraine, Russia, China, Italy, Canada, Germany, India and Brazil
tend to access more sensors than domains from other countries and also have a higher number
of aggregate attacks. For example, websites from Ukraine, Russia and China have the ability to
perform 909, 795 and 423 attacks respectively. Finally, we observe that some of the countries with
the highest aggregate number of feasible attacks are among those that spend more money on digital

1 The VirusTotal community also confirms that these websites were recently used for malicious purposes, as discussed

here [9] and here [10].
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Fig. 12. Aggregate number of feasible attacks for

websites, classified by their country code top-level

domain.

advertising according to reports (e.g., [13, 14]), indicating that data captured from mobile sensors
(e.g., demographics) could potentially be used for enhancing the efficiency of digital advertising.
While analyzing how mobile sensor data is leveraged by the online ad ecosystem is out of the
scope of this work, we consider an in-depth exploration of this phenomenon an interesting future
direction.
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4.2 WebAPI Request Origin

Next we explore where the WebAPI requests originate from. Apart from exploring whether the
request is first party (i.e., issued from a script hosted on the domain being processed) or third-party
(i.e., issued from an external source but inside the original domain’s page), our system also logs
whether the request originates from an iframe. It is important to note that different browsers
implement different policies regarding which sensors can be accessed for these three different types
of origin. As such, we present statistics for all the websites that requested access, even if those
requests were blocked by Firefox during out experiments.
Iframes. Our system collects all the calls executed by every element of a website, including

iframes. In every log we record the source domain name of the element that is accessing sensor
information. By comparing the URL of the address bar and the URL in the logfiles, we can identify
whether WebAPIs are accessed by the DOM or by an iframe. Our analysis shows that 991 websites
out of 5,313 contain iframes that use WebAPIs to access mobile specific information. We analyzed
all iframes from our experiments and found that specific iframes are found in different websites.
The two most frequent domains injected inside iframes exist in 389 webpages (or 39.3% of pages
with iframes collecting data) and are related to online media players.

External sources. Among the websites that issue API calls for mobile specific information we
found 40 scripts from external domains (either as a third-party scripts or inside an iframe) that
collect data from 2461 websites 46.3%. We manually analyzed these scripts and found that they offer
services for media-players and advertisements and they collect information about the orientation
and motion of the device. In Table 5 we list the domains that appear in more than 50 websites and
collect data from sensors. The first column is the origin of the script being executed. The second
and third column show how many websites and iframes host this script while the fourth column is
the domain of the page inside the iframe. Given that these third-party domains are used in 35.89% of
websites that access sensor data, we classified them based on the type of service they provide using
Cyren2. The last two columns show which sensors the script accessed and their corresponding
attacks. We observe that most of these domains call the motion and orientation WebAPIs which
enable a plethora of attacks. Moreover, domains classified as search engines and ad-networks gain
access to characteristics that can track users across the web.
From Table 5 we can see that the domain api.b2c.com enables 12 different attacks. After inves-

tigating this domain3 through VirusTotal [8] we found that scripts served from this domain and
Android apps that communicate with it are classified as intrusive adware and even malware by some
antivirus vendors. Another domain, c.adsco.re, is flagged as malware by Cyren, even though it is not
considered malicious by the Google SafeBrowsing API. We manually analyzed the content of the
script that retrieves the data and found that apart from retrieving information about the Motion and
the Orientation sensors it also exhibits behavior which is a strong indicator of device fingerprinting,
such as creating and manipulating canvas elements [87] and reading different Navigator, Screen,
Storage and Window properties. Interestingly the adsco.re domain states that it is used for traffic
validation by Adscore, a bot detection service. In total, these two domains which are considered
malicious by certain security lists, were found on 5.4% of all the sensor-accessing domains logged by
our system, which again raises concerns regarding browser policies that allow third party domains
to access sensor data without explicit user permission.
Android internals. Our crawling system allows an end-to-end analysis of sensor data access.

Apart from providing high call-detection fidelity, since we canmatch requests logged by our injected
JavaScript to actions at the operating system level, it also revealed sub-optimal browser behavior.

2https://www.cyren.com/security-center/url-category-check
3https://www.virustotal.com/#/domain/api.b2c.com
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Table 5. Third-party scripts accessing mobile-specific WebAPI calls.

Script origin #Sites #iframes iframe domain Classification Sensors AttackID (see Table 3)

f.vimeocdn.com 275 275 player.vimeo.com Streaming O 1, 2, 3, 5, 6, 9, 11, 13
fast.wistia.com 467 3 fast.wistia.com

Technology
OC -

fast.wistia.net 125 115 fast.wistia.net OC -
c.adsco.re 211 - - Malware M,O 1 - 6, 8, 9, 11, 12, 13

g.alicdn.com 170 65
wanwang.aliyun.com

m.aliyun.com
Shopping
General

O,G 1, 2, 3, 5, 6, 9, 11, 13

aeu.alicdn.com 127 83 mbest.aliexpress.com O 1, 2, 3, 5, 6, 9, 11, 13
api.b2c.com 76 - - General M,O,P,L 1 - 9, 11, 12, 13
cdn.admixer.net 169 - -

Ads
M 1 - 4, 6, 8, 11, 12, 13

static.yieldmo.com 107 - - O 1, 2, 3, 5, 6, 9, 11, 13

secure-ds.serving-sys.com 51 35
googleads.g.doubleclick.net
tpc.googlesyndacation.com

Ads M 1 - 4 , 6, 8, 11, 12, 13

dlswbr.baidu.com 77 69 pos.baidu.com Search Engine M 1 - 4, 6, 8, 11, 12, 13
client.perimeterx.net 73 - - Technology M 1 - 4, 6, 8, 11, 12, 13

M: motion, G: geolocation, P: proximity, O: orientation, L: light, OC: orientation_change

We found that while Firefox prevents iframes from accessing sensor data, in practice Firefox simply
łomitsž returning the sensor data instead of blocking (i.e., ignoring) the actual request. Specifically,
Firefox allows iframes to create event listeners, which then trigger the necessary WebAPI calls
which then trigger the corresponding Android-level processing and permission checks for obtaining
the sensor data; the data is then returned to the browser but not provided to the iframe.
Android WebView is based on the Chromium project and allows mobile apps to access and

display web content. WebView usage is extremely widespread, found in 85% of the apps in the
official Google Play Store in 2015 [88]. Due to its prevalence across Android apps, we also tested
two popular WebView-based browsers, namely UC, and WebView (info.android1.webview), along
with Facebook and Messenger, and found that they allow iframes to obtain data about motion
and orientation. As such, even if users use Firefox or Chrome for web browsing, which currently
block iframes from accessing any sensor data, opening a website within such popular apps that use
WebView would expose them to attacks.

4.3 Transience of Web Measurements

Scheitle et al. [106] recently found that there is significant fluctuation in the websites contained
in ranking lists used by academic studies, with Alexa being the most volatile list. As a result,
similar measurement experiments that use an Alexa list from a different date could result in a
significantly different view of the web ecosystem. To quantify and frame this effect within the
dataset we have collected, we compare to the recently released dataset4 by Das et al. [39] which
was part of their concurrent study on mobile sensor fingerprinting. While their collection set up
was different (they used a modified version of OpenWPM as opposed to actual mobile devices)
they also logged mobile sensor APIs used by popular websites. When comparing the domains
that accessed mobile-specific WebAPI calls during our experiments to those in their dataset, we
find only 403 overlapping domains ś 7.9% of our detected websites. However, our system detected
WebAPI calls in 2,252 domains that are in their two US-based datasets but with no calls logged
during their experiments. Given that both of our experiments were conducted at similar times,
including some overlap in May 2018, and used Alexa’s list (our version is from 03/24/2018 while
their version is from 05/12/2018), this is a surprising result. As such, the two datasets together

4https://databank.illinois.edu/datasets/IDB-9213932#
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Table 6. Domains exhibiting differences in the WebAPI calls reported by our system and Das et al. [39].

Website Our Dataset [39] Website Our Dataset [39]

allrecipes.com O L, M, O, P britishairways.com OC, O M, O

99designs.com M, OC M payback.de M, P P

gilt.com M M, O newsela.com O, P P

joomshaper.com O M, O udnfunlife.com O M, O

beefree.io O M, O ceros.com O M, O

360cities.net M, OC M 99designs.co.uk M, OC M

skyscnr.com M O zerator.com O M, O

provide a more extensive coverage of the websites that use WebAPIs to access mobile sensors in
the wild (we provide a detailed comparison to their study in Section 6).
Another important dimension that needs to be considered is that the modern web is highly

dynamic and websites often introduce new functionality or may even remove existing functionality.
To further explore how a view of the web can change through time, we compare the actual WebAPI
calls reported for those 403 overlapping domains. While we find that for the vast majority (91.8%)
of domains both datasets report the same calls across the two datasets, there are differences for 33
websites. In more detail, for those domains our system logged a total of 74 WebAPI calls, while the
datasets from [39] contain 62 calls. This difference is partially due to that study targeting a subset
of the calls that our study explores. However, in Table 6 we include the remaining domains where
the two datasets report different sensor data being requested, which correspond to ∼ 3.47% of the
domains detected by both systems. While that number is not very large, it is non-negligible and
highlights the dynamic and ever-evolving nature of the web.

A notable example is allrecipes.com which in our experiments only obtains the orientation data,
while Das et al. reported that it accessed four different sensors. To further investigate this issue,
we processed allrecipes.com again (10/31/2018) and verified our original findings. Motivated by
prior work [74] that leveraged the Internet Archive for obtaining a retrospective view of web
tracking, we processed one stored snapshot for each day of the crawling period of that specific
dataset as reported by the authors (5/17/2018 - 5/21/2018) using a US-based IP address as well.
Again we only identified requests for the device’s orientation. Subsequently, we identified the
third-party JavaScript file (originating from api.b2c.com) that issued those requests in their dataset,
and obtained a snapshot of it from the Internet Archive from 05/15/2018. After de-obfuscating it
we verified that it indeed issues those requests.

4.4 Analysis Summary

In our analysis we provide a comprehensive exploration of the mobile sensors that websites access
through the use of mobile HTML5 WebAPI calls, and analyze how this data can be used by websites
in order to exfiltrate personal information about the user. To that end we have created a taxonomy
of sensor-based attacks from prior studies and we present an analysis by framing our collected data
within that taxonomy. Our analysis shows that attacks that were previously limited to mobile apps
can now migrate to the mobile web, and access to these sensors can lead to a plethora of different
attacks such as capturing the user’s input, identifying personal information and interests, as well
as tracking the user across the web. We subsequently perform an in-depth analysis by classifying
these websites into different categories based on the content they provide and analyze our dataset
from multiple viewpoints. We find that popular websites and popular categories tend to access more
mobile sensors, consequently leading to the feasibility of more sensor-based attacks. Furthermore,
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third-party scripts embedded inside webpages are also able to capture sensor information, thus
creating a larger attack surface. Compared to similar studies [39], our study focuses on every
mobile sensor-based WebAPI call and a direct comparison of the results shows that combining
and comparing these datasets highlights the transience of the web ecosystem in practice. To shed
more light on this phenomenon and to further facilitate research on the security and privacy risks
that users face due to mobile sensor data being accessible to websites, we have made our dataset
publicly available. Based on our results we argue that any information gained from sensors poses a
risk for users and more effective access control policies should be enforced.

5 DISCUSSION

In this section we provide guidelines for establishing policies and defining the functionality that
should be supported and standardized across browsers to better protect users.
Even though the research community has proposed access control mechanisms that regulate

which application can access mobile sensors [25] or even provide apps with fake values [11], we
believe that these approaches are not sufficient. Specifically, third-parties are able to circumvent
such mechanisms either by being embedded in the application’s source code or in certain cases by
being part of the webpage in the form of third-party JavaScript. For instance, research has shown
that browsers that rely on WebView do not enforce correct policies for the HTML5 Geolocation
API [68]. Moreover, any approach that relies on completely disabling JavaScript or blocking all
scripts will inadvertently lead to poor usability and user experience. To identify such limitations and
shortcomings, we performed an empirical analysis of the sensor access control options currently
offered by major mobile browsers by examining the security options they provide through their
user interface for different use cases. We also experimentally inferred the access control policies in
place for different scenarios that pose additional threats to users (e.g., the ability of third-part scripts
to access sensor data). Table 7, summarizes our findings. Based on browsers’ existing designs, and
the limitations we have identified we argue that there is dire need for a standardized, fine-grained
universal mechanism that allows users to control access to all types of mobile sensor data. Based
on the severe implications of information being gained by these sensors, we provide guidelines and
propose a concrete list of access control strategies for different scenarios, that should be adopted
across browsers:
• Universal revocation. The browser should provide user’s with the ability to universally
decline access to all mobile sensors, regardless of being protected by a specific Android
permission. Currently, as shown in Table 7, for the motion sensors (accelerometer and
gyroscope) only Google Chrome and Brave (which is based on Chromium) have implemented
a feature allowing users to navigate to the browser’s site settings under the advanced options
in order to disable access to them. Unfortunately, even for these browsers users can not
control how access is granted to other mobile sensors (e.g., Ambient Light). Moreover, users
do not have the option to enable access for a specific sensor or a specific website (i.e., a
whitelist-based approach where a user can explicitly allow a specific website to always access
a given sensor).
• Explicit permission requests - Permissions list. The browser should enforce its own
run-time permission system for all mobile sensors. This feature is already being used for the
GPS sensor; whenever a website requires access to the device’s location, the user can grant or
deny the request. This feature not only informs users about the functionality of the website
but also allows for a fine-grained access control mechanism where users have control over
their data. Since explicitly asking the user for permission to access the sensor at each request
can lead to poor usability and user experience, the browser should maintain a list of domains
that the user has granted or denied access to, similar to Android’s dangerous permissions
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for apps. This will allow users to revoke access to a specific sensor for a specific domain at
any time. A permission list has been implemented in Google Chrome for regulating access
to different elements of a specific website (Sound, Mic, Location, etc.) and can be found in
the Site settings under the permission category. Unfortunately even in the latest version
of the mobile Google Chrome (version 79), the permission list does not support or include
mobile sensors. Interestingly the desktop version of Google Chrome includes motion sensors
in the permission list found under the same Site settings category. Since motion sensors
exists mostly in mobile devices it is likely that this feature may soon be implemented in
the mobile version of Google Chrome. Due to the severity of the attacks enabled by mobile
sensors we argue that whenever a website requests access to any of the available mobile
sensors the user should be informed with an explicit permission request.
• Origin differentiation. As shown by our experiments, the most commonly feasible sensor-
based attack is the inference of the user’s touch input which allows a malicious domain to
exfiltrate extremely sensitive information, such as the user’s credit card number. The attack
surface grows considerably since third-party scripts can create a hidden covert channel and
exfiltrate sensitive data even if the user is browsing a legitimate webpage. Even though only
one of the browsers tested (UC) allows iframes to gain access to motion sensors, we found
that they all allow third-party scripts to obtain data about the device’s motion and orientation.
We believe that the browser should inform the user whether the sensor request originates
from the first party domain or from a script hosted on a third-party domain. This information
about the origin will enable users to make better decisions about whether to grant permission
or not. Indeed, prior work [46] highlighted the need for providing Android API permissions
based on the origin of the request ś a similar idea can be applied at the application layer
for differentiating access control policies based on a script’s origin. Moreover, studies have
shown that users are more likely to deny a permission request when a detailed description
of the data that will be accessed is given [48]. Understanding the purpose of why and how
sensitive resources are used can have a major impact on their feelings and trust decisions [75].
• Private browsing. Private browsing was created as a privacy feature where the browser
creates a temporary session isolated from the browser’s main session and user data. In
the current web ecosystem where ad platforms and trackers collect an abundance of user
information that is added to user profiles so as to improve recommendations, private browsing
modes allow users to browse the web without exposing the common identifiers (i.e., cookies)
that are sent by browsers during normal operation. Unfortunately, data from smartphone
sensors can be used to accurately fingerprint a mobile device and, as an extension, the user.
Therefore we argue that browsers should deny access to all mobile sensors in private browsing
mode by default, unless users explicitly change their settings to allow that. Through empirical
analysis of the most popular mobile browsers, (including Google Chrome, Mozilla Firefox
and Microsoft Edge) we have found that they all allow access to sensors while in private
browsing mode. As shown in Table 7, even privacy-oriented browsers such as Brave and
DuckDuckGo neglect to block sensor access in private browsing mode.

6 RELATED WORK

HTML5 WebAPI. The introduction of WebAPI has standardized many functions and features
providing greater support for developers, enriching websites and web apps and improving the user
experience [101]. Snyder et al. [110] presented a study on the use of HTML5 functions in a small
set (10K) of popular websites. The functionality provided by HTML5 allows users to experience
multimedia content without the hassle and, more importantly, the vulnerabilities introduced by
external plugins or proprietary software, such as the Adobe Flash plugin which was progressively
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Table 7. Access control currently enforced for motion sensors in popular mobile browsers. The "Universal

revocation", "Per-site revocation" and "Origin differentiation" columns indicate whether the browser supports

this feature. Columns marked with an asterisk (*) indicate whether the browser allows access to motion

sensors in those scenarios.

Browser Version
Universal

revocation

Per-site

revocation

Origin

differ/tion

Third-party

scripts*
iframes*

Private

browsing*

Chrome 79.0.39 ✓ ✗ ✗ ✓ ✗ ✓

Firefox 68.4.2 ✗ ✗ ✗ ✓ ✗ ✓

Edge 44.11.2 ✗ ✗ ✗ ✓ ✗ ✓

Brave 1.5.3 ✓ ✗ ✗ ✓ ✗ ✓

Opera Mini 46.0.22 ✗ ✗ ✗ ✓ ✗ ✓

UC Browser v12.12.6 ✗ ✗ ✗ ✓ ✓ ✓

DuckDuckGo 5.41.0 ✗ ✗ ✗ ✓ ✗ ✓

Dolphin v12.1.5 ✗ ✗ ✗ ✓ ✗ ✓

abandoned and substituted with HTML5 media elements [76]. At the same time, smartphone
browsing has become very popular in the past years, with devices facilitating browsing even in
screens that are comparatively small. This transition was possible with the introduction of multi-
touch gestures and the performance improvement of mobile devices and the mobile network [50].
In an independent and concurrent recent study Das et al [39] presented a study on web scripts

accessing mobile sensors. While their study also targets WebAPI calls for mobile sensors, our work
presents significant differences. In regards to the actual datasets, our study is on a considerably
larger set of domains while also having little overlap due to the fluctuation of the Alexa list [106].
Moreover, their system detects a subset of the mobile-specific WebAPI calls handled by our system,
and their study focuses only on sensor-based fingerprinting. As such, their study offers a limited
examination of the risks that users face; our study frames our findings within our attack taxonomy
and provides a more comprehensive evaluation of the feasibility of a wide range of sensor-based
attacks. Furthermore, our crawling infrastructure uses actual mobile devices and provides a unique
end-to-end view of data requests and access from the application layer down to the operating-
system Android internals. Their crawlers rely on a modified version of OpenWPM running on
desktop machines, which could be detected by evasive websites, e.g., through canvas and emoji
elements [72], that subsequently alter their behavior. Nonetheless, we believe that their study
provides an important and complimentary view of the mobile web ecosystem, and the combination
of our findings and public datasets will be useful resources for the research community.
Browser fingerprinting has gathered a lot of attention in recent years and the research com-

munity has extensively studied the techniques that make it possible [49]. Eckersley [47] introduced
the Panopticlick project and explored browser fingerprinting in depth. With the growing usage of
smartphones, traditional desktop fingerprinting techniques [120] (e.g., canvas, screen and graphics
fingerprinting, etc.), are becoming less effective as some information is being standardized in many
mobile browsers [65].
On the other hand, the development of new mobile-specific HTML5 WebAPIs offered new

avenues for trackers to exploit other types of data that were not present in desktops. As previous
work [16, 17, 32, 40ś43, 45, 51, 60, 65, 66, 82, 90, 102, 103, 131, 133] has shown, the huge amount of
input collected by smartphones sensors resulted in new opportunities for device fingerprinting. A
notable case is by Olejnik et al. [95], that explores how the Battery Status API yields information
about the maximum capacity of the battery and the discharge time, which can be used to effectively
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track users across the web. This attracted a lot of attention which resulted in Firefox discontinuing
its support of the Battery API.

Modern smartphones contain a wide range of sensors that collect information about the current
state of the device and the environment surrounding it. Websites and applications have access
to these sensors with most of them (e.g., gyroscope, accelerometer, proximity etc.) not explicitly
requiring the permission of the user. Bai et al. [25] provided a solution by instrumenting the
original .apk and enforcing a policy controller. Papadopoulos et al. [98] proposed an anti-blocking
mechanism for PII. Other countermeasures that address information leakage include the use of
browser extensions. Starov et al. [114] developed PrivacyMeter, an extension that calculates on-the-
fly a privacy score for each visited website. Merzdovnik et al. [81] study the effectiveness of the
most popular extensions in identifying and blocking trackers from third-party libraries. Snyder et
al. [111] developed an extension that is able to manipulate web-pages and block specific API calls.
Even though extensions are widely supported by most common browsers for desktop platforms
they are not widely available for mobile devices. Google Chrome for Android does not support
extensions, nor does Firefox in iOS.

7 CONCLUSION

We presented a comprehensive evaluation of the threats that mobile users face when browsing the
Web, due to capabilities offered by modern browsers. Specifically, we conducted the largest and
most extensive study to date on the use of mobile-specific WebAPI calls in the wild. Our study was
conducted using a novel crawling infrastructure built on top of actual smartphone devices, allowing
us to trace data requests and access from the application layer down to the Android operating
system internals. Our findings demonstrate that WebAPI capabilities are actively being used by
websites for accessing mobile sensors. To provide the appropriate context that highlights the true
threat posed by this practice, we created a taxonomy of sensor-based attacks compiled from a
wide range of attacks demonstrated in prior work. Our subsequent in-depth analysis correlated
the sensor data currently being accessed by websites and the data-requirements of prior attacks,
leading to several alarming findings. Apart from the fact that the vast majority of the websites that
leverage mobile-specific WebAPI calls can carry out privacy-invasive attacks, we also found that
5.4% of those websites included third-party scripts that accessed sensor data and were hosted on
domains flagged as malware by security services. We believe that our findings support the need for
more stringent policies for websites attempting to access sensor data, allowing users to explicitly
declare preferences and set their own privacy policy.
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A APPENDIX

Table 8. Domain classification sorted in descending order based on the average request access for sensors

across websites accessing at least one mobile sensor.

Label # Domains # Sensors # Attacks % Sensors/Total Domains

Business 662 743 2246 13.98%

Online Shopping 427 539 2316 10.14%

Marketing/Merchandising 417 459 1380 8.64%

Entertainment 348 439 2118 8.26%

Travel 322 392 1492 7.38%

General News 327 385 1640 7.25%

Education/Reference 293 321 1380 6.04%

Internet Services 301 318 1169 5.99%

Finance/Banking 239 307 955 5.78%

Fashion/Beauty 169 249 1218 4.69%

Blogs/Wiki 201 236 1272 4.44%

Public Information 201 226 388 4.25%

Software/Hardware 200 214 569 4.03%

Pornography 136 196 983 3.69%

Potential Illegal Software 117 181 990 3.41%

Health 128 170 480 3.20%

Games 115 143 865 2.69%

Restaurants 126 139 192 2.62%

Sports 113 135 685 2.54%

Real Estate 114 122 252 2.30%

Motor Vehicles 105 111 252 2.09%

Government/Military 64 96 364 1.81%

Portal Sites 81 88 304 1.66%

Recreation/Hobbies 63 71 300 1.34%

Forum/Bulletin Boards 64 68 240 1.28%

Job Search 64 68 164 1.28%

NonProfit/Advocacy/NGO 46 58 188 1.09%

Streaming Media 33 43 210 0.81%

Technical/Business Forums 34 43 204 0.81%

NotAvailable 35 39 222 0.73%

Auctions/Classifieds 28 31 150 0.58%

PUPs 26 30 176 0.56%

Gambling 15 23 97 0.43%

Parked Domain 19 23 85 0.43%

Pharmacy 19 23 71 0.43%

Search Engines 18 21 46 0.40%

Dating/Personals 17 20 70 0.38%

Media Sharing 13 17 70 0.32%

Interactive Web Applications 15 16 46 0.30%

Religion/Ideologies 13 16 65 0.30%

Provocative Attire 12 15 80 0.28%

Social Networking 13 15 82 0.28%

Art/Culture/Heritage 13 14 55 0.26%

Content Server 12 14 51 0.26%

Stock Trading 11 14 54 0.26%

Continued on next page
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Table 8 ś continued from previous page

Label # Domains # Sensors # Attacks % Sensors/Total Domains

Technical Information 12 13 62 0.24%

Personal Pages 10 12 77 0.23%

Internet Radio/TV 8 9 56 0.17%

Sexual Materials 8 9 18 0.17%

Weapons 7 9 12 0.17%

Major Global Religions 8 8 21 0.15%

Mobile Phone 8 8 44 0.15%

Incidental Nudity 6 7 24 0.13%

Malicious Sites 6 7 47 0.13%

Shareware/Freeware 7 7 39 0.13%

Alcohol 6 6 0 0.11%

Gambling Related 4 6 13 0.11%

Game/Cartoon Violence 4 6 37 0.11%

Media Downloads 5 6 27 0.11%

P2P/File Sharing 4 6 36 0.11%

Politics/Opinion 6 6 45 0.11%

Tobacco 5 6 39 0.11%

Chat 5 5 22 0.09%

Humor/Comics 3 5 17 0.09%

Nudity 5 5 30 0.09%

Phishing 3 5 25 0.09%

Profanity 4 5 30 0.09%

School Cheating Information 5 5 40 0.09%

Drugs 4 4 0 0.08%

Extreme 3 4 19 0.08%

For Kids 3 4 27 0.08%

Personal Network Storage 3 4 25 0.08%

Web Ads 4 4 7 0.08%

Web Meetings 1 4 12 0.08%

Anonymizers 2 3 18 0.06%

Web Mail 3 3 7 0.06%

Potential Criminal Activities 2 2 8 0.04%

Resource Sharing 2 2 7 0.04%

Consumer Protection 1 1 8 0.02%

Malicious Downloads 1 1 7 0.02%

Messaging 1 1 0 0.02%

Remote Access 1 1 0 0.02%

Text Translators 1 1 7 0.02%
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